xref: /openbmc/linux/fs/f2fs/node.c (revision b8b6ff01)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 				sizeof(struct free_nid)) >> PAGE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 		if (excess_cached_nats(sbi))
56 			res = false;
57 	} else if (type == DIRTY_DENTS) {
58 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 			return false;
60 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 	} else if (type == INO_ENTRIES) {
63 		int i;
64 
65 		for (i = 0; i <= UPDATE_INO; i++)
66 			mem_size += (sbi->im[i].ino_num *
67 				sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 	} else if (type == EXTENT_CACHE) {
70 		mem_size = (atomic_read(&sbi->total_ext_tree) *
71 				sizeof(struct extent_tree) +
72 				atomic_read(&sbi->total_ext_node) *
73 				sizeof(struct extent_node)) >> PAGE_SHIFT;
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else {
76 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return true;
78 	}
79 	return res;
80 }
81 
82 static void clear_node_page_dirty(struct page *page)
83 {
84 	struct address_space *mapping = page->mapping;
85 	unsigned int long flags;
86 
87 	if (PageDirty(page)) {
88 		spin_lock_irqsave(&mapping->tree_lock, flags);
89 		radix_tree_tag_clear(&mapping->page_tree,
90 				page_index(page),
91 				PAGECACHE_TAG_DIRTY);
92 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
93 
94 		clear_page_dirty_for_io(page);
95 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96 	}
97 	ClearPageUptodate(page);
98 }
99 
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101 {
102 	pgoff_t index = current_nat_addr(sbi, nid);
103 	return get_meta_page(sbi, index);
104 }
105 
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 	struct page *src_page;
109 	struct page *dst_page;
110 	pgoff_t src_off;
111 	pgoff_t dst_off;
112 	void *src_addr;
113 	void *dst_addr;
114 	struct f2fs_nm_info *nm_i = NM_I(sbi);
115 
116 	src_off = current_nat_addr(sbi, nid);
117 	dst_off = next_nat_addr(sbi, src_off);
118 
119 	/* get current nat block page with lock */
120 	src_page = get_meta_page(sbi, src_off);
121 	dst_page = grab_meta_page(sbi, dst_off);
122 	f2fs_bug_on(sbi, PageDirty(src_page));
123 
124 	src_addr = page_address(src_page);
125 	dst_addr = page_address(dst_page);
126 	memcpy(dst_addr, src_addr, PAGE_SIZE);
127 	set_page_dirty(dst_page);
128 	f2fs_put_page(src_page, 1);
129 
130 	set_to_next_nat(nm_i, nid);
131 
132 	return dst_page;
133 }
134 
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136 {
137 	return radix_tree_lookup(&nm_i->nat_root, n);
138 }
139 
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 		nid_t start, unsigned int nr, struct nat_entry **ep)
142 {
143 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 }
145 
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147 {
148 	list_del(&e->list);
149 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 	nm_i->nat_cnt--;
151 	kmem_cache_free(nat_entry_slab, e);
152 }
153 
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 						struct nat_entry *ne)
156 {
157 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 	struct nat_entry_set *head;
159 
160 	if (get_nat_flag(ne, IS_DIRTY))
161 		return;
162 
163 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 	if (!head) {
165 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166 
167 		INIT_LIST_HEAD(&head->entry_list);
168 		INIT_LIST_HEAD(&head->set_list);
169 		head->set = set;
170 		head->entry_cnt = 0;
171 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172 	}
173 	list_move_tail(&ne->list, &head->entry_list);
174 	nm_i->dirty_nat_cnt++;
175 	head->entry_cnt++;
176 	set_nat_flag(ne, IS_DIRTY, true);
177 }
178 
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 						struct nat_entry *ne)
181 {
182 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 	struct nat_entry_set *head;
184 
185 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 	if (head) {
187 		list_move_tail(&ne->list, &nm_i->nat_entries);
188 		set_nat_flag(ne, IS_DIRTY, false);
189 		head->entry_cnt--;
190 		nm_i->dirty_nat_cnt--;
191 	}
192 }
193 
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 							start, nr);
199 }
200 
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203 	struct f2fs_nm_info *nm_i = NM_I(sbi);
204 	struct nat_entry *e;
205 	bool need = false;
206 
207 	down_read(&nm_i->nat_tree_lock);
208 	e = __lookup_nat_cache(nm_i, nid);
209 	if (e) {
210 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 				!get_nat_flag(e, HAS_FSYNCED_INODE))
212 			need = true;
213 	}
214 	up_read(&nm_i->nat_tree_lock);
215 	return need;
216 }
217 
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220 	struct f2fs_nm_info *nm_i = NM_I(sbi);
221 	struct nat_entry *e;
222 	bool is_cp = true;
223 
224 	down_read(&nm_i->nat_tree_lock);
225 	e = __lookup_nat_cache(nm_i, nid);
226 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 		is_cp = false;
228 	up_read(&nm_i->nat_tree_lock);
229 	return is_cp;
230 }
231 
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234 	struct f2fs_nm_info *nm_i = NM_I(sbi);
235 	struct nat_entry *e;
236 	bool need_update = true;
237 
238 	down_read(&nm_i->nat_tree_lock);
239 	e = __lookup_nat_cache(nm_i, ino);
240 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 			(get_nat_flag(e, IS_CHECKPOINTED) ||
242 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 		need_update = false;
244 	up_read(&nm_i->nat_tree_lock);
245 	return need_update;
246 }
247 
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 								bool no_fail)
250 {
251 	struct nat_entry *new;
252 
253 	if (no_fail) {
254 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 		f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 	} else {
257 		new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258 		if (!new)
259 			return NULL;
260 		if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261 			kmem_cache_free(nat_entry_slab, new);
262 			return NULL;
263 		}
264 	}
265 
266 	memset(new, 0, sizeof(struct nat_entry));
267 	nat_set_nid(new, nid);
268 	nat_reset_flag(new);
269 	list_add_tail(&new->list, &nm_i->nat_entries);
270 	nm_i->nat_cnt++;
271 	return new;
272 }
273 
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275 						struct f2fs_nat_entry *ne)
276 {
277 	struct f2fs_nm_info *nm_i = NM_I(sbi);
278 	struct nat_entry *e;
279 
280 	e = __lookup_nat_cache(nm_i, nid);
281 	if (!e) {
282 		e = grab_nat_entry(nm_i, nid, false);
283 		if (e)
284 			node_info_from_raw_nat(&e->ni, ne);
285 	} else {
286 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287 				nat_get_blkaddr(e) !=
288 					le32_to_cpu(ne->block_addr) ||
289 				nat_get_version(e) != ne->version);
290 	}
291 }
292 
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294 			block_t new_blkaddr, bool fsync_done)
295 {
296 	struct f2fs_nm_info *nm_i = NM_I(sbi);
297 	struct nat_entry *e;
298 
299 	down_write(&nm_i->nat_tree_lock);
300 	e = __lookup_nat_cache(nm_i, ni->nid);
301 	if (!e) {
302 		e = grab_nat_entry(nm_i, ni->nid, true);
303 		copy_node_info(&e->ni, ni);
304 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305 	} else if (new_blkaddr == NEW_ADDR) {
306 		/*
307 		 * when nid is reallocated,
308 		 * previous nat entry can be remained in nat cache.
309 		 * So, reinitialize it with new information.
310 		 */
311 		copy_node_info(&e->ni, ni);
312 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
313 	}
314 
315 	/* sanity check */
316 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318 			new_blkaddr == NULL_ADDR);
319 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320 			new_blkaddr == NEW_ADDR);
321 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322 			nat_get_blkaddr(e) != NULL_ADDR &&
323 			new_blkaddr == NEW_ADDR);
324 
325 	/* increment version no as node is removed */
326 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327 		unsigned char version = nat_get_version(e);
328 		nat_set_version(e, inc_node_version(version));
329 
330 		/* in order to reuse the nid */
331 		if (nm_i->next_scan_nid > ni->nid)
332 			nm_i->next_scan_nid = ni->nid;
333 	}
334 
335 	/* change address */
336 	nat_set_blkaddr(e, new_blkaddr);
337 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338 		set_nat_flag(e, IS_CHECKPOINTED, false);
339 	__set_nat_cache_dirty(nm_i, e);
340 
341 	if (enabled_nat_bits(sbi, NULL) && new_blkaddr == NEW_ADDR)
342 		clear_bit_le(NAT_BLOCK_OFFSET(ni->nid), nm_i->empty_nat_bits);
343 
344 	/* update fsync_mark if its inode nat entry is still alive */
345 	if (ni->nid != ni->ino)
346 		e = __lookup_nat_cache(nm_i, ni->ino);
347 	if (e) {
348 		if (fsync_done && ni->nid == ni->ino)
349 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
350 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
351 	}
352 	up_write(&nm_i->nat_tree_lock);
353 }
354 
355 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
356 {
357 	struct f2fs_nm_info *nm_i = NM_I(sbi);
358 	int nr = nr_shrink;
359 
360 	if (!down_write_trylock(&nm_i->nat_tree_lock))
361 		return 0;
362 
363 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
364 		struct nat_entry *ne;
365 		ne = list_first_entry(&nm_i->nat_entries,
366 					struct nat_entry, list);
367 		__del_from_nat_cache(nm_i, ne);
368 		nr_shrink--;
369 	}
370 	up_write(&nm_i->nat_tree_lock);
371 	return nr - nr_shrink;
372 }
373 
374 /*
375  * This function always returns success
376  */
377 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
378 {
379 	struct f2fs_nm_info *nm_i = NM_I(sbi);
380 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
381 	struct f2fs_journal *journal = curseg->journal;
382 	nid_t start_nid = START_NID(nid);
383 	struct f2fs_nat_block *nat_blk;
384 	struct page *page = NULL;
385 	struct f2fs_nat_entry ne;
386 	struct nat_entry *e;
387 	int i;
388 
389 	ni->nid = nid;
390 
391 	/* Check nat cache */
392 	down_read(&nm_i->nat_tree_lock);
393 	e = __lookup_nat_cache(nm_i, nid);
394 	if (e) {
395 		ni->ino = nat_get_ino(e);
396 		ni->blk_addr = nat_get_blkaddr(e);
397 		ni->version = nat_get_version(e);
398 		up_read(&nm_i->nat_tree_lock);
399 		return;
400 	}
401 
402 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
403 
404 	/* Check current segment summary */
405 	down_read(&curseg->journal_rwsem);
406 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
407 	if (i >= 0) {
408 		ne = nat_in_journal(journal, i);
409 		node_info_from_raw_nat(ni, &ne);
410 	}
411 	up_read(&curseg->journal_rwsem);
412 	if (i >= 0)
413 		goto cache;
414 
415 	/* Fill node_info from nat page */
416 	page = get_current_nat_page(sbi, start_nid);
417 	nat_blk = (struct f2fs_nat_block *)page_address(page);
418 	ne = nat_blk->entries[nid - start_nid];
419 	node_info_from_raw_nat(ni, &ne);
420 	f2fs_put_page(page, 1);
421 cache:
422 	up_read(&nm_i->nat_tree_lock);
423 	/* cache nat entry */
424 	down_write(&nm_i->nat_tree_lock);
425 	cache_nat_entry(sbi, nid, &ne);
426 	up_write(&nm_i->nat_tree_lock);
427 }
428 
429 /*
430  * readahead MAX_RA_NODE number of node pages.
431  */
432 static void ra_node_pages(struct page *parent, int start, int n)
433 {
434 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
435 	struct blk_plug plug;
436 	int i, end;
437 	nid_t nid;
438 
439 	blk_start_plug(&plug);
440 
441 	/* Then, try readahead for siblings of the desired node */
442 	end = start + n;
443 	end = min(end, NIDS_PER_BLOCK);
444 	for (i = start; i < end; i++) {
445 		nid = get_nid(parent, i, false);
446 		ra_node_page(sbi, nid);
447 	}
448 
449 	blk_finish_plug(&plug);
450 }
451 
452 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
453 {
454 	const long direct_index = ADDRS_PER_INODE(dn->inode);
455 	const long direct_blks = ADDRS_PER_BLOCK;
456 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
457 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
458 	int cur_level = dn->cur_level;
459 	int max_level = dn->max_level;
460 	pgoff_t base = 0;
461 
462 	if (!dn->max_level)
463 		return pgofs + 1;
464 
465 	while (max_level-- > cur_level)
466 		skipped_unit *= NIDS_PER_BLOCK;
467 
468 	switch (dn->max_level) {
469 	case 3:
470 		base += 2 * indirect_blks;
471 	case 2:
472 		base += 2 * direct_blks;
473 	case 1:
474 		base += direct_index;
475 		break;
476 	default:
477 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
478 	}
479 
480 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
481 }
482 
483 /*
484  * The maximum depth is four.
485  * Offset[0] will have raw inode offset.
486  */
487 static int get_node_path(struct inode *inode, long block,
488 				int offset[4], unsigned int noffset[4])
489 {
490 	const long direct_index = ADDRS_PER_INODE(inode);
491 	const long direct_blks = ADDRS_PER_BLOCK;
492 	const long dptrs_per_blk = NIDS_PER_BLOCK;
493 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
494 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
495 	int n = 0;
496 	int level = 0;
497 
498 	noffset[0] = 0;
499 
500 	if (block < direct_index) {
501 		offset[n] = block;
502 		goto got;
503 	}
504 	block -= direct_index;
505 	if (block < direct_blks) {
506 		offset[n++] = NODE_DIR1_BLOCK;
507 		noffset[n] = 1;
508 		offset[n] = block;
509 		level = 1;
510 		goto got;
511 	}
512 	block -= direct_blks;
513 	if (block < direct_blks) {
514 		offset[n++] = NODE_DIR2_BLOCK;
515 		noffset[n] = 2;
516 		offset[n] = block;
517 		level = 1;
518 		goto got;
519 	}
520 	block -= direct_blks;
521 	if (block < indirect_blks) {
522 		offset[n++] = NODE_IND1_BLOCK;
523 		noffset[n] = 3;
524 		offset[n++] = block / direct_blks;
525 		noffset[n] = 4 + offset[n - 1];
526 		offset[n] = block % direct_blks;
527 		level = 2;
528 		goto got;
529 	}
530 	block -= indirect_blks;
531 	if (block < indirect_blks) {
532 		offset[n++] = NODE_IND2_BLOCK;
533 		noffset[n] = 4 + dptrs_per_blk;
534 		offset[n++] = block / direct_blks;
535 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
536 		offset[n] = block % direct_blks;
537 		level = 2;
538 		goto got;
539 	}
540 	block -= indirect_blks;
541 	if (block < dindirect_blks) {
542 		offset[n++] = NODE_DIND_BLOCK;
543 		noffset[n] = 5 + (dptrs_per_blk * 2);
544 		offset[n++] = block / indirect_blks;
545 		noffset[n] = 6 + (dptrs_per_blk * 2) +
546 			      offset[n - 1] * (dptrs_per_blk + 1);
547 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
548 		noffset[n] = 7 + (dptrs_per_blk * 2) +
549 			      offset[n - 2] * (dptrs_per_blk + 1) +
550 			      offset[n - 1];
551 		offset[n] = block % direct_blks;
552 		level = 3;
553 		goto got;
554 	} else {
555 		BUG();
556 	}
557 got:
558 	return level;
559 }
560 
561 /*
562  * Caller should call f2fs_put_dnode(dn).
563  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
564  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
565  * In the case of RDONLY_NODE, we don't need to care about mutex.
566  */
567 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
568 {
569 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
570 	struct page *npage[4];
571 	struct page *parent = NULL;
572 	int offset[4];
573 	unsigned int noffset[4];
574 	nid_t nids[4];
575 	int level, i = 0;
576 	int err = 0;
577 
578 	level = get_node_path(dn->inode, index, offset, noffset);
579 
580 	nids[0] = dn->inode->i_ino;
581 	npage[0] = dn->inode_page;
582 
583 	if (!npage[0]) {
584 		npage[0] = get_node_page(sbi, nids[0]);
585 		if (IS_ERR(npage[0]))
586 			return PTR_ERR(npage[0]);
587 	}
588 
589 	/* if inline_data is set, should not report any block indices */
590 	if (f2fs_has_inline_data(dn->inode) && index) {
591 		err = -ENOENT;
592 		f2fs_put_page(npage[0], 1);
593 		goto release_out;
594 	}
595 
596 	parent = npage[0];
597 	if (level != 0)
598 		nids[1] = get_nid(parent, offset[0], true);
599 	dn->inode_page = npage[0];
600 	dn->inode_page_locked = true;
601 
602 	/* get indirect or direct nodes */
603 	for (i = 1; i <= level; i++) {
604 		bool done = false;
605 
606 		if (!nids[i] && mode == ALLOC_NODE) {
607 			/* alloc new node */
608 			if (!alloc_nid(sbi, &(nids[i]))) {
609 				err = -ENOSPC;
610 				goto release_pages;
611 			}
612 
613 			dn->nid = nids[i];
614 			npage[i] = new_node_page(dn, noffset[i], NULL);
615 			if (IS_ERR(npage[i])) {
616 				alloc_nid_failed(sbi, nids[i]);
617 				err = PTR_ERR(npage[i]);
618 				goto release_pages;
619 			}
620 
621 			set_nid(parent, offset[i - 1], nids[i], i == 1);
622 			alloc_nid_done(sbi, nids[i]);
623 			done = true;
624 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
625 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
626 			if (IS_ERR(npage[i])) {
627 				err = PTR_ERR(npage[i]);
628 				goto release_pages;
629 			}
630 			done = true;
631 		}
632 		if (i == 1) {
633 			dn->inode_page_locked = false;
634 			unlock_page(parent);
635 		} else {
636 			f2fs_put_page(parent, 1);
637 		}
638 
639 		if (!done) {
640 			npage[i] = get_node_page(sbi, nids[i]);
641 			if (IS_ERR(npage[i])) {
642 				err = PTR_ERR(npage[i]);
643 				f2fs_put_page(npage[0], 0);
644 				goto release_out;
645 			}
646 		}
647 		if (i < level) {
648 			parent = npage[i];
649 			nids[i + 1] = get_nid(parent, offset[i], false);
650 		}
651 	}
652 	dn->nid = nids[level];
653 	dn->ofs_in_node = offset[level];
654 	dn->node_page = npage[level];
655 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
656 	return 0;
657 
658 release_pages:
659 	f2fs_put_page(parent, 1);
660 	if (i > 1)
661 		f2fs_put_page(npage[0], 0);
662 release_out:
663 	dn->inode_page = NULL;
664 	dn->node_page = NULL;
665 	if (err == -ENOENT) {
666 		dn->cur_level = i;
667 		dn->max_level = level;
668 		dn->ofs_in_node = offset[level];
669 	}
670 	return err;
671 }
672 
673 static void truncate_node(struct dnode_of_data *dn)
674 {
675 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
676 	struct node_info ni;
677 
678 	get_node_info(sbi, dn->nid, &ni);
679 	if (dn->inode->i_blocks == 0) {
680 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
681 		goto invalidate;
682 	}
683 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
684 
685 	/* Deallocate node address */
686 	invalidate_blocks(sbi, ni.blk_addr);
687 	dec_valid_node_count(sbi, dn->inode);
688 	set_node_addr(sbi, &ni, NULL_ADDR, false);
689 
690 	if (dn->nid == dn->inode->i_ino) {
691 		remove_orphan_inode(sbi, dn->nid);
692 		dec_valid_inode_count(sbi);
693 		f2fs_inode_synced(dn->inode);
694 	}
695 invalidate:
696 	clear_node_page_dirty(dn->node_page);
697 	set_sbi_flag(sbi, SBI_IS_DIRTY);
698 
699 	f2fs_put_page(dn->node_page, 1);
700 
701 	invalidate_mapping_pages(NODE_MAPPING(sbi),
702 			dn->node_page->index, dn->node_page->index);
703 
704 	dn->node_page = NULL;
705 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
706 }
707 
708 static int truncate_dnode(struct dnode_of_data *dn)
709 {
710 	struct page *page;
711 
712 	if (dn->nid == 0)
713 		return 1;
714 
715 	/* get direct node */
716 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
717 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
718 		return 1;
719 	else if (IS_ERR(page))
720 		return PTR_ERR(page);
721 
722 	/* Make dnode_of_data for parameter */
723 	dn->node_page = page;
724 	dn->ofs_in_node = 0;
725 	truncate_data_blocks(dn);
726 	truncate_node(dn);
727 	return 1;
728 }
729 
730 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
731 						int ofs, int depth)
732 {
733 	struct dnode_of_data rdn = *dn;
734 	struct page *page;
735 	struct f2fs_node *rn;
736 	nid_t child_nid;
737 	unsigned int child_nofs;
738 	int freed = 0;
739 	int i, ret;
740 
741 	if (dn->nid == 0)
742 		return NIDS_PER_BLOCK + 1;
743 
744 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
745 
746 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
747 	if (IS_ERR(page)) {
748 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
749 		return PTR_ERR(page);
750 	}
751 
752 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
753 
754 	rn = F2FS_NODE(page);
755 	if (depth < 3) {
756 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
757 			child_nid = le32_to_cpu(rn->in.nid[i]);
758 			if (child_nid == 0)
759 				continue;
760 			rdn.nid = child_nid;
761 			ret = truncate_dnode(&rdn);
762 			if (ret < 0)
763 				goto out_err;
764 			if (set_nid(page, i, 0, false))
765 				dn->node_changed = true;
766 		}
767 	} else {
768 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
769 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
770 			child_nid = le32_to_cpu(rn->in.nid[i]);
771 			if (child_nid == 0) {
772 				child_nofs += NIDS_PER_BLOCK + 1;
773 				continue;
774 			}
775 			rdn.nid = child_nid;
776 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
777 			if (ret == (NIDS_PER_BLOCK + 1)) {
778 				if (set_nid(page, i, 0, false))
779 					dn->node_changed = true;
780 				child_nofs += ret;
781 			} else if (ret < 0 && ret != -ENOENT) {
782 				goto out_err;
783 			}
784 		}
785 		freed = child_nofs;
786 	}
787 
788 	if (!ofs) {
789 		/* remove current indirect node */
790 		dn->node_page = page;
791 		truncate_node(dn);
792 		freed++;
793 	} else {
794 		f2fs_put_page(page, 1);
795 	}
796 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
797 	return freed;
798 
799 out_err:
800 	f2fs_put_page(page, 1);
801 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
802 	return ret;
803 }
804 
805 static int truncate_partial_nodes(struct dnode_of_data *dn,
806 			struct f2fs_inode *ri, int *offset, int depth)
807 {
808 	struct page *pages[2];
809 	nid_t nid[3];
810 	nid_t child_nid;
811 	int err = 0;
812 	int i;
813 	int idx = depth - 2;
814 
815 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
816 	if (!nid[0])
817 		return 0;
818 
819 	/* get indirect nodes in the path */
820 	for (i = 0; i < idx + 1; i++) {
821 		/* reference count'll be increased */
822 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
823 		if (IS_ERR(pages[i])) {
824 			err = PTR_ERR(pages[i]);
825 			idx = i - 1;
826 			goto fail;
827 		}
828 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
829 	}
830 
831 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
832 
833 	/* free direct nodes linked to a partial indirect node */
834 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
835 		child_nid = get_nid(pages[idx], i, false);
836 		if (!child_nid)
837 			continue;
838 		dn->nid = child_nid;
839 		err = truncate_dnode(dn);
840 		if (err < 0)
841 			goto fail;
842 		if (set_nid(pages[idx], i, 0, false))
843 			dn->node_changed = true;
844 	}
845 
846 	if (offset[idx + 1] == 0) {
847 		dn->node_page = pages[idx];
848 		dn->nid = nid[idx];
849 		truncate_node(dn);
850 	} else {
851 		f2fs_put_page(pages[idx], 1);
852 	}
853 	offset[idx]++;
854 	offset[idx + 1] = 0;
855 	idx--;
856 fail:
857 	for (i = idx; i >= 0; i--)
858 		f2fs_put_page(pages[i], 1);
859 
860 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
861 
862 	return err;
863 }
864 
865 /*
866  * All the block addresses of data and nodes should be nullified.
867  */
868 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
869 {
870 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
871 	int err = 0, cont = 1;
872 	int level, offset[4], noffset[4];
873 	unsigned int nofs = 0;
874 	struct f2fs_inode *ri;
875 	struct dnode_of_data dn;
876 	struct page *page;
877 
878 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
879 
880 	level = get_node_path(inode, from, offset, noffset);
881 
882 	page = get_node_page(sbi, inode->i_ino);
883 	if (IS_ERR(page)) {
884 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
885 		return PTR_ERR(page);
886 	}
887 
888 	set_new_dnode(&dn, inode, page, NULL, 0);
889 	unlock_page(page);
890 
891 	ri = F2FS_INODE(page);
892 	switch (level) {
893 	case 0:
894 	case 1:
895 		nofs = noffset[1];
896 		break;
897 	case 2:
898 		nofs = noffset[1];
899 		if (!offset[level - 1])
900 			goto skip_partial;
901 		err = truncate_partial_nodes(&dn, ri, offset, level);
902 		if (err < 0 && err != -ENOENT)
903 			goto fail;
904 		nofs += 1 + NIDS_PER_BLOCK;
905 		break;
906 	case 3:
907 		nofs = 5 + 2 * NIDS_PER_BLOCK;
908 		if (!offset[level - 1])
909 			goto skip_partial;
910 		err = truncate_partial_nodes(&dn, ri, offset, level);
911 		if (err < 0 && err != -ENOENT)
912 			goto fail;
913 		break;
914 	default:
915 		BUG();
916 	}
917 
918 skip_partial:
919 	while (cont) {
920 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
921 		switch (offset[0]) {
922 		case NODE_DIR1_BLOCK:
923 		case NODE_DIR2_BLOCK:
924 			err = truncate_dnode(&dn);
925 			break;
926 
927 		case NODE_IND1_BLOCK:
928 		case NODE_IND2_BLOCK:
929 			err = truncate_nodes(&dn, nofs, offset[1], 2);
930 			break;
931 
932 		case NODE_DIND_BLOCK:
933 			err = truncate_nodes(&dn, nofs, offset[1], 3);
934 			cont = 0;
935 			break;
936 
937 		default:
938 			BUG();
939 		}
940 		if (err < 0 && err != -ENOENT)
941 			goto fail;
942 		if (offset[1] == 0 &&
943 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
944 			lock_page(page);
945 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
946 			f2fs_wait_on_page_writeback(page, NODE, true);
947 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
948 			set_page_dirty(page);
949 			unlock_page(page);
950 		}
951 		offset[1] = 0;
952 		offset[0]++;
953 		nofs += err;
954 	}
955 fail:
956 	f2fs_put_page(page, 0);
957 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
958 	return err > 0 ? 0 : err;
959 }
960 
961 int truncate_xattr_node(struct inode *inode, struct page *page)
962 {
963 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
964 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
965 	struct dnode_of_data dn;
966 	struct page *npage;
967 
968 	if (!nid)
969 		return 0;
970 
971 	npage = get_node_page(sbi, nid);
972 	if (IS_ERR(npage))
973 		return PTR_ERR(npage);
974 
975 	f2fs_i_xnid_write(inode, 0);
976 
977 	set_new_dnode(&dn, inode, page, npage, nid);
978 
979 	if (page)
980 		dn.inode_page_locked = true;
981 	truncate_node(&dn);
982 	return 0;
983 }
984 
985 /*
986  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
987  * f2fs_unlock_op().
988  */
989 int remove_inode_page(struct inode *inode)
990 {
991 	struct dnode_of_data dn;
992 	int err;
993 
994 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
995 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
996 	if (err)
997 		return err;
998 
999 	err = truncate_xattr_node(inode, dn.inode_page);
1000 	if (err) {
1001 		f2fs_put_dnode(&dn);
1002 		return err;
1003 	}
1004 
1005 	/* remove potential inline_data blocks */
1006 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1007 				S_ISLNK(inode->i_mode))
1008 		truncate_data_blocks_range(&dn, 1);
1009 
1010 	/* 0 is possible, after f2fs_new_inode() has failed */
1011 	f2fs_bug_on(F2FS_I_SB(inode),
1012 			inode->i_blocks != 0 && inode->i_blocks != 1);
1013 
1014 	/* will put inode & node pages */
1015 	truncate_node(&dn);
1016 	return 0;
1017 }
1018 
1019 struct page *new_inode_page(struct inode *inode)
1020 {
1021 	struct dnode_of_data dn;
1022 
1023 	/* allocate inode page for new inode */
1024 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1025 
1026 	/* caller should f2fs_put_page(page, 1); */
1027 	return new_node_page(&dn, 0, NULL);
1028 }
1029 
1030 struct page *new_node_page(struct dnode_of_data *dn,
1031 				unsigned int ofs, struct page *ipage)
1032 {
1033 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1034 	struct node_info new_ni;
1035 	struct page *page;
1036 	int err;
1037 
1038 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1039 		return ERR_PTR(-EPERM);
1040 
1041 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1042 	if (!page)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1046 		err = -ENOSPC;
1047 		goto fail;
1048 	}
1049 #ifdef CONFIG_F2FS_CHECK_FS
1050 	get_node_info(sbi, dn->nid, &new_ni);
1051 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1052 #endif
1053 	new_ni.nid = dn->nid;
1054 	new_ni.ino = dn->inode->i_ino;
1055 	new_ni.blk_addr = NULL_ADDR;
1056 	new_ni.flag = 0;
1057 	new_ni.version = 0;
1058 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1059 
1060 	f2fs_wait_on_page_writeback(page, NODE, true);
1061 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1062 	set_cold_node(dn->inode, page);
1063 	if (!PageUptodate(page))
1064 		SetPageUptodate(page);
1065 	if (set_page_dirty(page))
1066 		dn->node_changed = true;
1067 
1068 	if (f2fs_has_xattr_block(ofs))
1069 		f2fs_i_xnid_write(dn->inode, dn->nid);
1070 
1071 	if (ofs == 0)
1072 		inc_valid_inode_count(sbi);
1073 	return page;
1074 
1075 fail:
1076 	clear_node_page_dirty(page);
1077 	f2fs_put_page(page, 1);
1078 	return ERR_PTR(err);
1079 }
1080 
1081 /*
1082  * Caller should do after getting the following values.
1083  * 0: f2fs_put_page(page, 0)
1084  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1085  */
1086 static int read_node_page(struct page *page, int op_flags)
1087 {
1088 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1089 	struct node_info ni;
1090 	struct f2fs_io_info fio = {
1091 		.sbi = sbi,
1092 		.type = NODE,
1093 		.op = REQ_OP_READ,
1094 		.op_flags = op_flags,
1095 		.page = page,
1096 		.encrypted_page = NULL,
1097 	};
1098 
1099 	if (PageUptodate(page))
1100 		return LOCKED_PAGE;
1101 
1102 	get_node_info(sbi, page->index, &ni);
1103 
1104 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1105 		ClearPageUptodate(page);
1106 		return -ENOENT;
1107 	}
1108 
1109 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1110 	return f2fs_submit_page_bio(&fio);
1111 }
1112 
1113 /*
1114  * Readahead a node page
1115  */
1116 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1117 {
1118 	struct page *apage;
1119 	int err;
1120 
1121 	if (!nid)
1122 		return;
1123 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1124 
1125 	rcu_read_lock();
1126 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1127 	rcu_read_unlock();
1128 	if (apage)
1129 		return;
1130 
1131 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1132 	if (!apage)
1133 		return;
1134 
1135 	err = read_node_page(apage, REQ_RAHEAD);
1136 	f2fs_put_page(apage, err ? 1 : 0);
1137 }
1138 
1139 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1140 					struct page *parent, int start)
1141 {
1142 	struct page *page;
1143 	int err;
1144 
1145 	if (!nid)
1146 		return ERR_PTR(-ENOENT);
1147 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1148 repeat:
1149 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1150 	if (!page)
1151 		return ERR_PTR(-ENOMEM);
1152 
1153 	err = read_node_page(page, 0);
1154 	if (err < 0) {
1155 		f2fs_put_page(page, 1);
1156 		return ERR_PTR(err);
1157 	} else if (err == LOCKED_PAGE) {
1158 		goto page_hit;
1159 	}
1160 
1161 	if (parent)
1162 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1163 
1164 	lock_page(page);
1165 
1166 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1167 		f2fs_put_page(page, 1);
1168 		goto repeat;
1169 	}
1170 
1171 	if (unlikely(!PageUptodate(page)))
1172 		goto out_err;
1173 page_hit:
1174 	if(unlikely(nid != nid_of_node(page))) {
1175 		f2fs_bug_on(sbi, 1);
1176 		ClearPageUptodate(page);
1177 out_err:
1178 		f2fs_put_page(page, 1);
1179 		return ERR_PTR(-EIO);
1180 	}
1181 	return page;
1182 }
1183 
1184 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1185 {
1186 	return __get_node_page(sbi, nid, NULL, 0);
1187 }
1188 
1189 struct page *get_node_page_ra(struct page *parent, int start)
1190 {
1191 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1192 	nid_t nid = get_nid(parent, start, false);
1193 
1194 	return __get_node_page(sbi, nid, parent, start);
1195 }
1196 
1197 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1198 {
1199 	struct inode *inode;
1200 	struct page *page;
1201 	int ret;
1202 
1203 	/* should flush inline_data before evict_inode */
1204 	inode = ilookup(sbi->sb, ino);
1205 	if (!inode)
1206 		return;
1207 
1208 	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1209 	if (!page)
1210 		goto iput_out;
1211 
1212 	if (!PageUptodate(page))
1213 		goto page_out;
1214 
1215 	if (!PageDirty(page))
1216 		goto page_out;
1217 
1218 	if (!clear_page_dirty_for_io(page))
1219 		goto page_out;
1220 
1221 	ret = f2fs_write_inline_data(inode, page);
1222 	inode_dec_dirty_pages(inode);
1223 	remove_dirty_inode(inode);
1224 	if (ret)
1225 		set_page_dirty(page);
1226 page_out:
1227 	f2fs_put_page(page, 1);
1228 iput_out:
1229 	iput(inode);
1230 }
1231 
1232 void move_node_page(struct page *node_page, int gc_type)
1233 {
1234 	if (gc_type == FG_GC) {
1235 		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1236 		struct writeback_control wbc = {
1237 			.sync_mode = WB_SYNC_ALL,
1238 			.nr_to_write = 1,
1239 			.for_reclaim = 0,
1240 		};
1241 
1242 		set_page_dirty(node_page);
1243 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1244 
1245 		f2fs_bug_on(sbi, PageWriteback(node_page));
1246 		if (!clear_page_dirty_for_io(node_page))
1247 			goto out_page;
1248 
1249 		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1250 			unlock_page(node_page);
1251 		goto release_page;
1252 	} else {
1253 		/* set page dirty and write it */
1254 		if (!PageWriteback(node_page))
1255 			set_page_dirty(node_page);
1256 	}
1257 out_page:
1258 	unlock_page(node_page);
1259 release_page:
1260 	f2fs_put_page(node_page, 0);
1261 }
1262 
1263 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1264 {
1265 	pgoff_t index, end;
1266 	struct pagevec pvec;
1267 	struct page *last_page = NULL;
1268 
1269 	pagevec_init(&pvec, 0);
1270 	index = 0;
1271 	end = ULONG_MAX;
1272 
1273 	while (index <= end) {
1274 		int i, nr_pages;
1275 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1276 				PAGECACHE_TAG_DIRTY,
1277 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1278 		if (nr_pages == 0)
1279 			break;
1280 
1281 		for (i = 0; i < nr_pages; i++) {
1282 			struct page *page = pvec.pages[i];
1283 
1284 			if (unlikely(f2fs_cp_error(sbi))) {
1285 				f2fs_put_page(last_page, 0);
1286 				pagevec_release(&pvec);
1287 				return ERR_PTR(-EIO);
1288 			}
1289 
1290 			if (!IS_DNODE(page) || !is_cold_node(page))
1291 				continue;
1292 			if (ino_of_node(page) != ino)
1293 				continue;
1294 
1295 			lock_page(page);
1296 
1297 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1298 continue_unlock:
1299 				unlock_page(page);
1300 				continue;
1301 			}
1302 			if (ino_of_node(page) != ino)
1303 				goto continue_unlock;
1304 
1305 			if (!PageDirty(page)) {
1306 				/* someone wrote it for us */
1307 				goto continue_unlock;
1308 			}
1309 
1310 			if (last_page)
1311 				f2fs_put_page(last_page, 0);
1312 
1313 			get_page(page);
1314 			last_page = page;
1315 			unlock_page(page);
1316 		}
1317 		pagevec_release(&pvec);
1318 		cond_resched();
1319 	}
1320 	return last_page;
1321 }
1322 
1323 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1324 				struct writeback_control *wbc)
1325 {
1326 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1327 	nid_t nid;
1328 	struct node_info ni;
1329 	struct f2fs_io_info fio = {
1330 		.sbi = sbi,
1331 		.type = NODE,
1332 		.op = REQ_OP_WRITE,
1333 		.op_flags = wbc_to_write_flags(wbc),
1334 		.page = page,
1335 		.encrypted_page = NULL,
1336 		.submitted = false,
1337 	};
1338 
1339 	trace_f2fs_writepage(page, NODE);
1340 
1341 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1342 		goto redirty_out;
1343 	if (unlikely(f2fs_cp_error(sbi)))
1344 		goto redirty_out;
1345 
1346 	/* get old block addr of this node page */
1347 	nid = nid_of_node(page);
1348 	f2fs_bug_on(sbi, page->index != nid);
1349 
1350 	if (wbc->for_reclaim) {
1351 		if (!down_read_trylock(&sbi->node_write))
1352 			goto redirty_out;
1353 	} else {
1354 		down_read(&sbi->node_write);
1355 	}
1356 
1357 	get_node_info(sbi, nid, &ni);
1358 
1359 	/* This page is already truncated */
1360 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1361 		ClearPageUptodate(page);
1362 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1363 		up_read(&sbi->node_write);
1364 		unlock_page(page);
1365 		return 0;
1366 	}
1367 
1368 	if (atomic && !test_opt(sbi, NOBARRIER))
1369 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1370 
1371 	set_page_writeback(page);
1372 	fio.old_blkaddr = ni.blk_addr;
1373 	write_node_page(nid, &fio);
1374 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1375 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1376 	up_read(&sbi->node_write);
1377 
1378 	if (wbc->for_reclaim) {
1379 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0,
1380 						page->index, NODE, WRITE);
1381 		submitted = NULL;
1382 	}
1383 
1384 	unlock_page(page);
1385 
1386 	if (unlikely(f2fs_cp_error(sbi))) {
1387 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1388 		submitted = NULL;
1389 	}
1390 	if (submitted)
1391 		*submitted = fio.submitted;
1392 
1393 	return 0;
1394 
1395 redirty_out:
1396 	redirty_page_for_writepage(wbc, page);
1397 	return AOP_WRITEPAGE_ACTIVATE;
1398 }
1399 
1400 static int f2fs_write_node_page(struct page *page,
1401 				struct writeback_control *wbc)
1402 {
1403 	return __write_node_page(page, false, NULL, wbc);
1404 }
1405 
1406 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1407 			struct writeback_control *wbc, bool atomic)
1408 {
1409 	pgoff_t index, end;
1410 	pgoff_t last_idx = ULONG_MAX;
1411 	struct pagevec pvec;
1412 	int ret = 0;
1413 	struct page *last_page = NULL;
1414 	bool marked = false;
1415 	nid_t ino = inode->i_ino;
1416 
1417 	if (atomic) {
1418 		last_page = last_fsync_dnode(sbi, ino);
1419 		if (IS_ERR_OR_NULL(last_page))
1420 			return PTR_ERR_OR_ZERO(last_page);
1421 	}
1422 retry:
1423 	pagevec_init(&pvec, 0);
1424 	index = 0;
1425 	end = ULONG_MAX;
1426 
1427 	while (index <= end) {
1428 		int i, nr_pages;
1429 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1430 				PAGECACHE_TAG_DIRTY,
1431 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1432 		if (nr_pages == 0)
1433 			break;
1434 
1435 		for (i = 0; i < nr_pages; i++) {
1436 			struct page *page = pvec.pages[i];
1437 			bool submitted = false;
1438 
1439 			if (unlikely(f2fs_cp_error(sbi))) {
1440 				f2fs_put_page(last_page, 0);
1441 				pagevec_release(&pvec);
1442 				ret = -EIO;
1443 				goto out;
1444 			}
1445 
1446 			if (!IS_DNODE(page) || !is_cold_node(page))
1447 				continue;
1448 			if (ino_of_node(page) != ino)
1449 				continue;
1450 
1451 			lock_page(page);
1452 
1453 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1454 continue_unlock:
1455 				unlock_page(page);
1456 				continue;
1457 			}
1458 			if (ino_of_node(page) != ino)
1459 				goto continue_unlock;
1460 
1461 			if (!PageDirty(page) && page != last_page) {
1462 				/* someone wrote it for us */
1463 				goto continue_unlock;
1464 			}
1465 
1466 			f2fs_wait_on_page_writeback(page, NODE, true);
1467 			BUG_ON(PageWriteback(page));
1468 
1469 			if (!atomic || page == last_page) {
1470 				set_fsync_mark(page, 1);
1471 				if (IS_INODE(page)) {
1472 					if (is_inode_flag_set(inode,
1473 								FI_DIRTY_INODE))
1474 						update_inode(inode, page);
1475 					set_dentry_mark(page,
1476 						need_dentry_mark(sbi, ino));
1477 				}
1478 				/*  may be written by other thread */
1479 				if (!PageDirty(page))
1480 					set_page_dirty(page);
1481 			}
1482 
1483 			if (!clear_page_dirty_for_io(page))
1484 				goto continue_unlock;
1485 
1486 			ret = __write_node_page(page, atomic &&
1487 						page == last_page,
1488 						&submitted, wbc);
1489 			if (ret) {
1490 				unlock_page(page);
1491 				f2fs_put_page(last_page, 0);
1492 				break;
1493 			} else if (submitted) {
1494 				last_idx = page->index;
1495 			}
1496 
1497 			if (page == last_page) {
1498 				f2fs_put_page(page, 0);
1499 				marked = true;
1500 				break;
1501 			}
1502 		}
1503 		pagevec_release(&pvec);
1504 		cond_resched();
1505 
1506 		if (ret || marked)
1507 			break;
1508 	}
1509 	if (!ret && atomic && !marked) {
1510 		f2fs_msg(sbi->sb, KERN_DEBUG,
1511 			"Retry to write fsync mark: ino=%u, idx=%lx",
1512 					ino, last_page->index);
1513 		lock_page(last_page);
1514 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1515 		set_page_dirty(last_page);
1516 		unlock_page(last_page);
1517 		goto retry;
1518 	}
1519 out:
1520 	if (last_idx != ULONG_MAX)
1521 		f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx,
1522 							NODE, WRITE);
1523 	return ret ? -EIO: 0;
1524 }
1525 
1526 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1527 {
1528 	pgoff_t index, end;
1529 	struct pagevec pvec;
1530 	int step = 0;
1531 	int nwritten = 0;
1532 	int ret = 0;
1533 
1534 	pagevec_init(&pvec, 0);
1535 
1536 next_step:
1537 	index = 0;
1538 	end = ULONG_MAX;
1539 
1540 	while (index <= end) {
1541 		int i, nr_pages;
1542 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1543 				PAGECACHE_TAG_DIRTY,
1544 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1545 		if (nr_pages == 0)
1546 			break;
1547 
1548 		for (i = 0; i < nr_pages; i++) {
1549 			struct page *page = pvec.pages[i];
1550 			bool submitted = false;
1551 
1552 			if (unlikely(f2fs_cp_error(sbi))) {
1553 				pagevec_release(&pvec);
1554 				ret = -EIO;
1555 				goto out;
1556 			}
1557 
1558 			/*
1559 			 * flushing sequence with step:
1560 			 * 0. indirect nodes
1561 			 * 1. dentry dnodes
1562 			 * 2. file dnodes
1563 			 */
1564 			if (step == 0 && IS_DNODE(page))
1565 				continue;
1566 			if (step == 1 && (!IS_DNODE(page) ||
1567 						is_cold_node(page)))
1568 				continue;
1569 			if (step == 2 && (!IS_DNODE(page) ||
1570 						!is_cold_node(page)))
1571 				continue;
1572 lock_node:
1573 			if (!trylock_page(page))
1574 				continue;
1575 
1576 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1577 continue_unlock:
1578 				unlock_page(page);
1579 				continue;
1580 			}
1581 
1582 			if (!PageDirty(page)) {
1583 				/* someone wrote it for us */
1584 				goto continue_unlock;
1585 			}
1586 
1587 			/* flush inline_data */
1588 			if (is_inline_node(page)) {
1589 				clear_inline_node(page);
1590 				unlock_page(page);
1591 				flush_inline_data(sbi, ino_of_node(page));
1592 				goto lock_node;
1593 			}
1594 
1595 			f2fs_wait_on_page_writeback(page, NODE, true);
1596 
1597 			BUG_ON(PageWriteback(page));
1598 			if (!clear_page_dirty_for_io(page))
1599 				goto continue_unlock;
1600 
1601 			set_fsync_mark(page, 0);
1602 			set_dentry_mark(page, 0);
1603 
1604 			ret = __write_node_page(page, false, &submitted, wbc);
1605 			if (ret)
1606 				unlock_page(page);
1607 			else if (submitted)
1608 				nwritten++;
1609 
1610 			if (--wbc->nr_to_write == 0)
1611 				break;
1612 		}
1613 		pagevec_release(&pvec);
1614 		cond_resched();
1615 
1616 		if (wbc->nr_to_write == 0) {
1617 			step = 2;
1618 			break;
1619 		}
1620 	}
1621 
1622 	if (step < 2) {
1623 		step++;
1624 		goto next_step;
1625 	}
1626 out:
1627 	if (nwritten)
1628 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1629 	return ret;
1630 }
1631 
1632 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1633 {
1634 	pgoff_t index = 0, end = ULONG_MAX;
1635 	struct pagevec pvec;
1636 	int ret2, ret = 0;
1637 
1638 	pagevec_init(&pvec, 0);
1639 
1640 	while (index <= end) {
1641 		int i, nr_pages;
1642 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1643 				PAGECACHE_TAG_WRITEBACK,
1644 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1645 		if (nr_pages == 0)
1646 			break;
1647 
1648 		for (i = 0; i < nr_pages; i++) {
1649 			struct page *page = pvec.pages[i];
1650 
1651 			/* until radix tree lookup accepts end_index */
1652 			if (unlikely(page->index > end))
1653 				continue;
1654 
1655 			if (ino && ino_of_node(page) == ino) {
1656 				f2fs_wait_on_page_writeback(page, NODE, true);
1657 				if (TestClearPageError(page))
1658 					ret = -EIO;
1659 			}
1660 		}
1661 		pagevec_release(&pvec);
1662 		cond_resched();
1663 	}
1664 
1665 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1666 	if (!ret)
1667 		ret = ret2;
1668 	return ret;
1669 }
1670 
1671 static int f2fs_write_node_pages(struct address_space *mapping,
1672 			    struct writeback_control *wbc)
1673 {
1674 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1675 	struct blk_plug plug;
1676 	long diff;
1677 
1678 	/* balancing f2fs's metadata in background */
1679 	f2fs_balance_fs_bg(sbi);
1680 
1681 	/* collect a number of dirty node pages and write together */
1682 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1683 		goto skip_write;
1684 
1685 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1686 
1687 	diff = nr_pages_to_write(sbi, NODE, wbc);
1688 	wbc->sync_mode = WB_SYNC_NONE;
1689 	blk_start_plug(&plug);
1690 	sync_node_pages(sbi, wbc);
1691 	blk_finish_plug(&plug);
1692 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1693 	return 0;
1694 
1695 skip_write:
1696 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1697 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1698 	return 0;
1699 }
1700 
1701 static int f2fs_set_node_page_dirty(struct page *page)
1702 {
1703 	trace_f2fs_set_page_dirty(page, NODE);
1704 
1705 	if (!PageUptodate(page))
1706 		SetPageUptodate(page);
1707 	if (!PageDirty(page)) {
1708 		f2fs_set_page_dirty_nobuffers(page);
1709 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1710 		SetPagePrivate(page);
1711 		f2fs_trace_pid(page);
1712 		return 1;
1713 	}
1714 	return 0;
1715 }
1716 
1717 /*
1718  * Structure of the f2fs node operations
1719  */
1720 const struct address_space_operations f2fs_node_aops = {
1721 	.writepage	= f2fs_write_node_page,
1722 	.writepages	= f2fs_write_node_pages,
1723 	.set_page_dirty	= f2fs_set_node_page_dirty,
1724 	.invalidatepage	= f2fs_invalidate_page,
1725 	.releasepage	= f2fs_release_page,
1726 #ifdef CONFIG_MIGRATION
1727 	.migratepage    = f2fs_migrate_page,
1728 #endif
1729 };
1730 
1731 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1732 						nid_t n)
1733 {
1734 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1735 }
1736 
1737 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1738 			struct free_nid *i, enum nid_list list, bool new)
1739 {
1740 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1741 
1742 	if (new) {
1743 		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1744 		if (err)
1745 			return err;
1746 	}
1747 
1748 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1749 						i->state != NID_ALLOC);
1750 	nm_i->nid_cnt[list]++;
1751 	list_add_tail(&i->list, &nm_i->nid_list[list]);
1752 	return 0;
1753 }
1754 
1755 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1756 			struct free_nid *i, enum nid_list list, bool reuse)
1757 {
1758 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1759 
1760 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1761 						i->state != NID_ALLOC);
1762 	nm_i->nid_cnt[list]--;
1763 	list_del(&i->list);
1764 	if (!reuse)
1765 		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1766 }
1767 
1768 /* return if the nid is recognized as free */
1769 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1770 {
1771 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1772 	struct free_nid *i;
1773 	struct nat_entry *ne;
1774 	int err;
1775 
1776 	/* 0 nid should not be used */
1777 	if (unlikely(nid == 0))
1778 		return false;
1779 
1780 	if (build) {
1781 		/* do not add allocated nids */
1782 		ne = __lookup_nat_cache(nm_i, nid);
1783 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1784 				nat_get_blkaddr(ne) != NULL_ADDR))
1785 			return false;
1786 	}
1787 
1788 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1789 	i->nid = nid;
1790 	i->state = NID_NEW;
1791 
1792 	if (radix_tree_preload(GFP_NOFS)) {
1793 		kmem_cache_free(free_nid_slab, i);
1794 		return true;
1795 	}
1796 
1797 	spin_lock(&nm_i->nid_list_lock);
1798 	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1799 	spin_unlock(&nm_i->nid_list_lock);
1800 	radix_tree_preload_end();
1801 	if (err) {
1802 		kmem_cache_free(free_nid_slab, i);
1803 		return true;
1804 	}
1805 	return true;
1806 }
1807 
1808 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1809 {
1810 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1811 	struct free_nid *i;
1812 	bool need_free = false;
1813 
1814 	spin_lock(&nm_i->nid_list_lock);
1815 	i = __lookup_free_nid_list(nm_i, nid);
1816 	if (i && i->state == NID_NEW) {
1817 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1818 		need_free = true;
1819 	}
1820 	spin_unlock(&nm_i->nid_list_lock);
1821 
1822 	if (need_free)
1823 		kmem_cache_free(free_nid_slab, i);
1824 }
1825 
1826 void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, bool set)
1827 {
1828 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1829 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1830 	unsigned int nid_ofs = nid - START_NID(nid);
1831 
1832 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1833 		return;
1834 
1835 	if (set)
1836 		set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1837 	else
1838 		clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1839 }
1840 
1841 static void scan_nat_page(struct f2fs_sb_info *sbi,
1842 			struct page *nat_page, nid_t start_nid)
1843 {
1844 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1845 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1846 	block_t blk_addr;
1847 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1848 	int i;
1849 
1850 	set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1851 
1852 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1853 
1854 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1855 		bool freed = false;
1856 
1857 		if (unlikely(start_nid >= nm_i->max_nid))
1858 			break;
1859 
1860 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1861 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1862 		if (blk_addr == NULL_ADDR)
1863 			freed = add_free_nid(sbi, start_nid, true);
1864 		update_free_nid_bitmap(sbi, start_nid, freed);
1865 	}
1866 }
1867 
1868 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1869 {
1870 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1871 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1872 	struct f2fs_journal *journal = curseg->journal;
1873 	unsigned int i, idx;
1874 
1875 	down_read(&nm_i->nat_tree_lock);
1876 
1877 	for (i = 0; i < nm_i->nat_blocks; i++) {
1878 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
1879 			continue;
1880 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1881 			nid_t nid;
1882 
1883 			if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1884 				continue;
1885 
1886 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
1887 			add_free_nid(sbi, nid, true);
1888 
1889 			if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1890 				goto out;
1891 		}
1892 	}
1893 out:
1894 	down_read(&curseg->journal_rwsem);
1895 	for (i = 0; i < nats_in_cursum(journal); i++) {
1896 		block_t addr;
1897 		nid_t nid;
1898 
1899 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1900 		nid = le32_to_cpu(nid_in_journal(journal, i));
1901 		if (addr == NULL_ADDR)
1902 			add_free_nid(sbi, nid, true);
1903 		else
1904 			remove_free_nid(sbi, nid);
1905 	}
1906 	up_read(&curseg->journal_rwsem);
1907 	up_read(&nm_i->nat_tree_lock);
1908 }
1909 
1910 static int scan_nat_bits(struct f2fs_sb_info *sbi)
1911 {
1912 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1913 	struct page *page;
1914 	unsigned int i = 0;
1915 	nid_t nid;
1916 
1917 	if (!enabled_nat_bits(sbi, NULL))
1918 		return -EAGAIN;
1919 
1920 	down_read(&nm_i->nat_tree_lock);
1921 check_empty:
1922 	i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
1923 	if (i >= nm_i->nat_blocks) {
1924 		i = 0;
1925 		goto check_partial;
1926 	}
1927 
1928 	for (nid = i * NAT_ENTRY_PER_BLOCK; nid < (i + 1) * NAT_ENTRY_PER_BLOCK;
1929 									nid++) {
1930 		if (unlikely(nid >= nm_i->max_nid))
1931 			break;
1932 		add_free_nid(sbi, nid, true);
1933 	}
1934 
1935 	if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1936 		goto out;
1937 	i++;
1938 	goto check_empty;
1939 
1940 check_partial:
1941 	i = find_next_zero_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
1942 	if (i >= nm_i->nat_blocks) {
1943 		disable_nat_bits(sbi, true);
1944 		up_read(&nm_i->nat_tree_lock);
1945 		return -EINVAL;
1946 	}
1947 
1948 	nid = i * NAT_ENTRY_PER_BLOCK;
1949 	page = get_current_nat_page(sbi, nid);
1950 	scan_nat_page(sbi, page, nid);
1951 	f2fs_put_page(page, 1);
1952 
1953 	if (nm_i->nid_cnt[FREE_NID_LIST] < MAX_FREE_NIDS) {
1954 		i++;
1955 		goto check_partial;
1956 	}
1957 out:
1958 	up_read(&nm_i->nat_tree_lock);
1959 	return 0;
1960 }
1961 
1962 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1963 {
1964 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1965 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966 	struct f2fs_journal *journal = curseg->journal;
1967 	int i = 0;
1968 	nid_t nid = nm_i->next_scan_nid;
1969 
1970 	/* Enough entries */
1971 	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1972 		return;
1973 
1974 	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1975 		return;
1976 
1977 	if (!mount) {
1978 		/* try to find free nids in free_nid_bitmap */
1979 		scan_free_nid_bits(sbi);
1980 
1981 		if (nm_i->nid_cnt[FREE_NID_LIST])
1982 			return;
1983 
1984 		/* try to find free nids with nat_bits */
1985 		if (!scan_nat_bits(sbi) && nm_i->nid_cnt[FREE_NID_LIST])
1986 			return;
1987 	}
1988 
1989 	/* find next valid candidate */
1990 	if (enabled_nat_bits(sbi, NULL)) {
1991 		int idx = find_next_zero_bit_le(nm_i->full_nat_bits,
1992 					nm_i->nat_blocks, 0);
1993 
1994 		if (idx >= nm_i->nat_blocks)
1995 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1996 		else
1997 			nid = idx * NAT_ENTRY_PER_BLOCK;
1998 	}
1999 
2000 	/* readahead nat pages to be scanned */
2001 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2002 							META_NAT, true);
2003 
2004 	down_read(&nm_i->nat_tree_lock);
2005 
2006 	while (1) {
2007 		struct page *page = get_current_nat_page(sbi, nid);
2008 
2009 		scan_nat_page(sbi, page, nid);
2010 		f2fs_put_page(page, 1);
2011 
2012 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2013 		if (unlikely(nid >= nm_i->max_nid))
2014 			nid = 0;
2015 
2016 		if (++i >= FREE_NID_PAGES)
2017 			break;
2018 	}
2019 
2020 	/* go to the next free nat pages to find free nids abundantly */
2021 	nm_i->next_scan_nid = nid;
2022 
2023 	/* find free nids from current sum_pages */
2024 	down_read(&curseg->journal_rwsem);
2025 	for (i = 0; i < nats_in_cursum(journal); i++) {
2026 		block_t addr;
2027 
2028 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2029 		nid = le32_to_cpu(nid_in_journal(journal, i));
2030 		if (addr == NULL_ADDR)
2031 			add_free_nid(sbi, nid, true);
2032 		else
2033 			remove_free_nid(sbi, nid);
2034 	}
2035 	up_read(&curseg->journal_rwsem);
2036 	up_read(&nm_i->nat_tree_lock);
2037 
2038 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2039 					nm_i->ra_nid_pages, META_NAT, false);
2040 }
2041 
2042 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2043 {
2044 	mutex_lock(&NM_I(sbi)->build_lock);
2045 	__build_free_nids(sbi, sync, mount);
2046 	mutex_unlock(&NM_I(sbi)->build_lock);
2047 }
2048 
2049 /*
2050  * If this function returns success, caller can obtain a new nid
2051  * from second parameter of this function.
2052  * The returned nid could be used ino as well as nid when inode is created.
2053  */
2054 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2055 {
2056 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2057 	struct free_nid *i = NULL;
2058 retry:
2059 #ifdef CONFIG_F2FS_FAULT_INJECTION
2060 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2061 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2062 		return false;
2063 	}
2064 #endif
2065 	spin_lock(&nm_i->nid_list_lock);
2066 
2067 	if (unlikely(nm_i->available_nids == 0)) {
2068 		spin_unlock(&nm_i->nid_list_lock);
2069 		return false;
2070 	}
2071 
2072 	/* We should not use stale free nids created by build_free_nids */
2073 	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2074 		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2075 		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2076 					struct free_nid, list);
2077 		*nid = i->nid;
2078 
2079 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2080 		i->state = NID_ALLOC;
2081 		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2082 		nm_i->available_nids--;
2083 
2084 		update_free_nid_bitmap(sbi, *nid, false);
2085 
2086 		spin_unlock(&nm_i->nid_list_lock);
2087 		return true;
2088 	}
2089 	spin_unlock(&nm_i->nid_list_lock);
2090 
2091 	/* Let's scan nat pages and its caches to get free nids */
2092 	build_free_nids(sbi, true, false);
2093 	goto retry;
2094 }
2095 
2096 /*
2097  * alloc_nid() should be called prior to this function.
2098  */
2099 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2100 {
2101 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2102 	struct free_nid *i;
2103 
2104 	spin_lock(&nm_i->nid_list_lock);
2105 	i = __lookup_free_nid_list(nm_i, nid);
2106 	f2fs_bug_on(sbi, !i);
2107 	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2108 	spin_unlock(&nm_i->nid_list_lock);
2109 
2110 	kmem_cache_free(free_nid_slab, i);
2111 }
2112 
2113 /*
2114  * alloc_nid() should be called prior to this function.
2115  */
2116 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2117 {
2118 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2119 	struct free_nid *i;
2120 	bool need_free = false;
2121 
2122 	if (!nid)
2123 		return;
2124 
2125 	spin_lock(&nm_i->nid_list_lock);
2126 	i = __lookup_free_nid_list(nm_i, nid);
2127 	f2fs_bug_on(sbi, !i);
2128 
2129 	if (!available_free_memory(sbi, FREE_NIDS)) {
2130 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2131 		need_free = true;
2132 	} else {
2133 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2134 		i->state = NID_NEW;
2135 		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2136 	}
2137 
2138 	nm_i->available_nids++;
2139 
2140 	update_free_nid_bitmap(sbi, nid, true);
2141 
2142 	spin_unlock(&nm_i->nid_list_lock);
2143 
2144 	if (need_free)
2145 		kmem_cache_free(free_nid_slab, i);
2146 }
2147 
2148 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2149 {
2150 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2151 	struct free_nid *i, *next;
2152 	int nr = nr_shrink;
2153 
2154 	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2155 		return 0;
2156 
2157 	if (!mutex_trylock(&nm_i->build_lock))
2158 		return 0;
2159 
2160 	spin_lock(&nm_i->nid_list_lock);
2161 	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2162 									list) {
2163 		if (nr_shrink <= 0 ||
2164 				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2165 			break;
2166 
2167 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2168 		kmem_cache_free(free_nid_slab, i);
2169 		nr_shrink--;
2170 	}
2171 	spin_unlock(&nm_i->nid_list_lock);
2172 	mutex_unlock(&nm_i->build_lock);
2173 
2174 	return nr - nr_shrink;
2175 }
2176 
2177 void recover_inline_xattr(struct inode *inode, struct page *page)
2178 {
2179 	void *src_addr, *dst_addr;
2180 	size_t inline_size;
2181 	struct page *ipage;
2182 	struct f2fs_inode *ri;
2183 
2184 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2185 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2186 
2187 	ri = F2FS_INODE(page);
2188 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2189 		clear_inode_flag(inode, FI_INLINE_XATTR);
2190 		goto update_inode;
2191 	}
2192 
2193 	dst_addr = inline_xattr_addr(ipage);
2194 	src_addr = inline_xattr_addr(page);
2195 	inline_size = inline_xattr_size(inode);
2196 
2197 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2198 	memcpy(dst_addr, src_addr, inline_size);
2199 update_inode:
2200 	update_inode(inode, ipage);
2201 	f2fs_put_page(ipage, 1);
2202 }
2203 
2204 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2205 {
2206 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2207 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2208 	nid_t new_xnid = nid_of_node(page);
2209 	struct node_info ni;
2210 	struct page *xpage;
2211 
2212 	if (!prev_xnid)
2213 		goto recover_xnid;
2214 
2215 	/* 1: invalidate the previous xattr nid */
2216 	get_node_info(sbi, prev_xnid, &ni);
2217 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2218 	invalidate_blocks(sbi, ni.blk_addr);
2219 	dec_valid_node_count(sbi, inode);
2220 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2221 
2222 recover_xnid:
2223 	/* 2: update xattr nid in inode */
2224 	remove_free_nid(sbi, new_xnid);
2225 	f2fs_i_xnid_write(inode, new_xnid);
2226 	if (unlikely(!inc_valid_node_count(sbi, inode)))
2227 		f2fs_bug_on(sbi, 1);
2228 	update_inode_page(inode);
2229 
2230 	/* 3: update and set xattr node page dirty */
2231 	xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2232 	if (!xpage)
2233 		return -ENOMEM;
2234 
2235 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2236 
2237 	get_node_info(sbi, new_xnid, &ni);
2238 	ni.ino = inode->i_ino;
2239 	set_node_addr(sbi, &ni, NEW_ADDR, false);
2240 	set_page_dirty(xpage);
2241 	f2fs_put_page(xpage, 1);
2242 
2243 	return 0;
2244 }
2245 
2246 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2247 {
2248 	struct f2fs_inode *src, *dst;
2249 	nid_t ino = ino_of_node(page);
2250 	struct node_info old_ni, new_ni;
2251 	struct page *ipage;
2252 
2253 	get_node_info(sbi, ino, &old_ni);
2254 
2255 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2256 		return -EINVAL;
2257 retry:
2258 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2259 	if (!ipage) {
2260 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2261 		goto retry;
2262 	}
2263 
2264 	/* Should not use this inode from free nid list */
2265 	remove_free_nid(sbi, ino);
2266 
2267 	if (!PageUptodate(ipage))
2268 		SetPageUptodate(ipage);
2269 	fill_node_footer(ipage, ino, ino, 0, true);
2270 
2271 	src = F2FS_INODE(page);
2272 	dst = F2FS_INODE(ipage);
2273 
2274 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2275 	dst->i_size = 0;
2276 	dst->i_blocks = cpu_to_le64(1);
2277 	dst->i_links = cpu_to_le32(1);
2278 	dst->i_xattr_nid = 0;
2279 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2280 
2281 	new_ni = old_ni;
2282 	new_ni.ino = ino;
2283 
2284 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2285 		WARN_ON(1);
2286 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2287 	inc_valid_inode_count(sbi);
2288 	set_page_dirty(ipage);
2289 	f2fs_put_page(ipage, 1);
2290 	return 0;
2291 }
2292 
2293 int restore_node_summary(struct f2fs_sb_info *sbi,
2294 			unsigned int segno, struct f2fs_summary_block *sum)
2295 {
2296 	struct f2fs_node *rn;
2297 	struct f2fs_summary *sum_entry;
2298 	block_t addr;
2299 	int i, idx, last_offset, nrpages;
2300 
2301 	/* scan the node segment */
2302 	last_offset = sbi->blocks_per_seg;
2303 	addr = START_BLOCK(sbi, segno);
2304 	sum_entry = &sum->entries[0];
2305 
2306 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2307 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2308 
2309 		/* readahead node pages */
2310 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2311 
2312 		for (idx = addr; idx < addr + nrpages; idx++) {
2313 			struct page *page = get_tmp_page(sbi, idx);
2314 
2315 			rn = F2FS_NODE(page);
2316 			sum_entry->nid = rn->footer.nid;
2317 			sum_entry->version = 0;
2318 			sum_entry->ofs_in_node = 0;
2319 			sum_entry++;
2320 			f2fs_put_page(page, 1);
2321 		}
2322 
2323 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2324 							addr + nrpages);
2325 	}
2326 	return 0;
2327 }
2328 
2329 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2330 {
2331 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2332 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2333 	struct f2fs_journal *journal = curseg->journal;
2334 	int i;
2335 
2336 	down_write(&curseg->journal_rwsem);
2337 	for (i = 0; i < nats_in_cursum(journal); i++) {
2338 		struct nat_entry *ne;
2339 		struct f2fs_nat_entry raw_ne;
2340 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2341 
2342 		raw_ne = nat_in_journal(journal, i);
2343 
2344 		ne = __lookup_nat_cache(nm_i, nid);
2345 		if (!ne) {
2346 			ne = grab_nat_entry(nm_i, nid, true);
2347 			node_info_from_raw_nat(&ne->ni, &raw_ne);
2348 		}
2349 
2350 		/*
2351 		 * if a free nat in journal has not been used after last
2352 		 * checkpoint, we should remove it from available nids,
2353 		 * since later we will add it again.
2354 		 */
2355 		if (!get_nat_flag(ne, IS_DIRTY) &&
2356 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2357 			spin_lock(&nm_i->nid_list_lock);
2358 			nm_i->available_nids--;
2359 			spin_unlock(&nm_i->nid_list_lock);
2360 		}
2361 
2362 		__set_nat_cache_dirty(nm_i, ne);
2363 	}
2364 	update_nats_in_cursum(journal, -i);
2365 	up_write(&curseg->journal_rwsem);
2366 }
2367 
2368 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2369 						struct list_head *head, int max)
2370 {
2371 	struct nat_entry_set *cur;
2372 
2373 	if (nes->entry_cnt >= max)
2374 		goto add_out;
2375 
2376 	list_for_each_entry(cur, head, set_list) {
2377 		if (cur->entry_cnt >= nes->entry_cnt) {
2378 			list_add(&nes->set_list, cur->set_list.prev);
2379 			return;
2380 		}
2381 	}
2382 add_out:
2383 	list_add_tail(&nes->set_list, head);
2384 }
2385 
2386 void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2387 						struct page *page)
2388 {
2389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2391 	struct f2fs_nat_block *nat_blk = page_address(page);
2392 	int valid = 0;
2393 	int i;
2394 
2395 	if (!enabled_nat_bits(sbi, NULL))
2396 		return;
2397 
2398 	for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2399 		if (start_nid == 0 && i == 0)
2400 			valid++;
2401 		if (nat_blk->entries[i].block_addr)
2402 			valid++;
2403 	}
2404 	if (valid == 0) {
2405 		set_bit_le(nat_index, nm_i->empty_nat_bits);
2406 		clear_bit_le(nat_index, nm_i->full_nat_bits);
2407 		return;
2408 	}
2409 
2410 	clear_bit_le(nat_index, nm_i->empty_nat_bits);
2411 	if (valid == NAT_ENTRY_PER_BLOCK)
2412 		set_bit_le(nat_index, nm_i->full_nat_bits);
2413 	else
2414 		clear_bit_le(nat_index, nm_i->full_nat_bits);
2415 }
2416 
2417 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2418 		struct nat_entry_set *set, struct cp_control *cpc)
2419 {
2420 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2421 	struct f2fs_journal *journal = curseg->journal;
2422 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2423 	bool to_journal = true;
2424 	struct f2fs_nat_block *nat_blk;
2425 	struct nat_entry *ne, *cur;
2426 	struct page *page = NULL;
2427 
2428 	/*
2429 	 * there are two steps to flush nat entries:
2430 	 * #1, flush nat entries to journal in current hot data summary block.
2431 	 * #2, flush nat entries to nat page.
2432 	 */
2433 	if (enabled_nat_bits(sbi, cpc) ||
2434 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2435 		to_journal = false;
2436 
2437 	if (to_journal) {
2438 		down_write(&curseg->journal_rwsem);
2439 	} else {
2440 		page = get_next_nat_page(sbi, start_nid);
2441 		nat_blk = page_address(page);
2442 		f2fs_bug_on(sbi, !nat_blk);
2443 	}
2444 
2445 	/* flush dirty nats in nat entry set */
2446 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2447 		struct f2fs_nat_entry *raw_ne;
2448 		nid_t nid = nat_get_nid(ne);
2449 		int offset;
2450 
2451 		if (nat_get_blkaddr(ne) == NEW_ADDR)
2452 			continue;
2453 
2454 		if (to_journal) {
2455 			offset = lookup_journal_in_cursum(journal,
2456 							NAT_JOURNAL, nid, 1);
2457 			f2fs_bug_on(sbi, offset < 0);
2458 			raw_ne = &nat_in_journal(journal, offset);
2459 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2460 		} else {
2461 			raw_ne = &nat_blk->entries[nid - start_nid];
2462 		}
2463 		raw_nat_from_node_info(raw_ne, &ne->ni);
2464 		nat_reset_flag(ne);
2465 		__clear_nat_cache_dirty(NM_I(sbi), ne);
2466 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2467 			add_free_nid(sbi, nid, false);
2468 			spin_lock(&NM_I(sbi)->nid_list_lock);
2469 			NM_I(sbi)->available_nids++;
2470 			update_free_nid_bitmap(sbi, nid, true);
2471 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2472 		} else {
2473 			spin_lock(&NM_I(sbi)->nid_list_lock);
2474 			update_free_nid_bitmap(sbi, nid, false);
2475 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2476 		}
2477 	}
2478 
2479 	if (to_journal) {
2480 		up_write(&curseg->journal_rwsem);
2481 	} else {
2482 		__update_nat_bits(sbi, start_nid, page);
2483 		f2fs_put_page(page, 1);
2484 	}
2485 
2486 	f2fs_bug_on(sbi, set->entry_cnt);
2487 
2488 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2489 	kmem_cache_free(nat_entry_set_slab, set);
2490 }
2491 
2492 /*
2493  * This function is called during the checkpointing process.
2494  */
2495 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2496 {
2497 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2498 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2499 	struct f2fs_journal *journal = curseg->journal;
2500 	struct nat_entry_set *setvec[SETVEC_SIZE];
2501 	struct nat_entry_set *set, *tmp;
2502 	unsigned int found;
2503 	nid_t set_idx = 0;
2504 	LIST_HEAD(sets);
2505 
2506 	if (!nm_i->dirty_nat_cnt)
2507 		return;
2508 
2509 	down_write(&nm_i->nat_tree_lock);
2510 
2511 	/*
2512 	 * if there are no enough space in journal to store dirty nat
2513 	 * entries, remove all entries from journal and merge them
2514 	 * into nat entry set.
2515 	 */
2516 	if (enabled_nat_bits(sbi, cpc) ||
2517 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2518 		remove_nats_in_journal(sbi);
2519 
2520 	while ((found = __gang_lookup_nat_set(nm_i,
2521 					set_idx, SETVEC_SIZE, setvec))) {
2522 		unsigned idx;
2523 		set_idx = setvec[found - 1]->set + 1;
2524 		for (idx = 0; idx < found; idx++)
2525 			__adjust_nat_entry_set(setvec[idx], &sets,
2526 						MAX_NAT_JENTRIES(journal));
2527 	}
2528 
2529 	/* flush dirty nats in nat entry set */
2530 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2531 		__flush_nat_entry_set(sbi, set, cpc);
2532 
2533 	up_write(&nm_i->nat_tree_lock);
2534 
2535 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2536 }
2537 
2538 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2539 {
2540 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2541 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2542 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2543 	unsigned int i;
2544 	__u64 cp_ver = cur_cp_version(ckpt);
2545 	block_t nat_bits_addr;
2546 
2547 	if (!enabled_nat_bits(sbi, NULL))
2548 		return 0;
2549 
2550 	nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2551 						F2FS_BLKSIZE - 1);
2552 	nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2553 						GFP_KERNEL);
2554 	if (!nm_i->nat_bits)
2555 		return -ENOMEM;
2556 
2557 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2558 						nm_i->nat_bits_blocks;
2559 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2560 		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2561 
2562 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2563 					page_address(page), F2FS_BLKSIZE);
2564 		f2fs_put_page(page, 1);
2565 	}
2566 
2567 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2568 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2569 		disable_nat_bits(sbi, true);
2570 		return 0;
2571 	}
2572 
2573 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2574 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2575 
2576 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2577 	return 0;
2578 }
2579 
2580 static int init_node_manager(struct f2fs_sb_info *sbi)
2581 {
2582 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2583 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 	unsigned char *version_bitmap;
2585 	unsigned int nat_segs;
2586 	int err;
2587 
2588 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2589 
2590 	/* segment_count_nat includes pair segment so divide to 2. */
2591 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2592 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2593 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2594 
2595 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2596 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2597 							F2FS_RESERVED_NODE_NUM;
2598 	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2599 	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2600 	nm_i->nat_cnt = 0;
2601 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2602 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2603 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2604 
2605 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2606 	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2607 	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2608 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2609 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2610 	INIT_LIST_HEAD(&nm_i->nat_entries);
2611 
2612 	mutex_init(&nm_i->build_lock);
2613 	spin_lock_init(&nm_i->nid_list_lock);
2614 	init_rwsem(&nm_i->nat_tree_lock);
2615 
2616 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2617 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2618 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2619 	if (!version_bitmap)
2620 		return -EFAULT;
2621 
2622 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2623 					GFP_KERNEL);
2624 	if (!nm_i->nat_bitmap)
2625 		return -ENOMEM;
2626 
2627 	err = __get_nat_bitmaps(sbi);
2628 	if (err)
2629 		return err;
2630 
2631 #ifdef CONFIG_F2FS_CHECK_FS
2632 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2633 					GFP_KERNEL);
2634 	if (!nm_i->nat_bitmap_mir)
2635 		return -ENOMEM;
2636 #endif
2637 
2638 	return 0;
2639 }
2640 
2641 int init_free_nid_cache(struct f2fs_sb_info *sbi)
2642 {
2643 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2644 
2645 	nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks *
2646 					NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2647 	if (!nm_i->free_nid_bitmap)
2648 		return -ENOMEM;
2649 
2650 	nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8,
2651 								GFP_KERNEL);
2652 	if (!nm_i->nat_block_bitmap)
2653 		return -ENOMEM;
2654 	return 0;
2655 }
2656 
2657 int build_node_manager(struct f2fs_sb_info *sbi)
2658 {
2659 	int err;
2660 
2661 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2662 	if (!sbi->nm_info)
2663 		return -ENOMEM;
2664 
2665 	err = init_node_manager(sbi);
2666 	if (err)
2667 		return err;
2668 
2669 	err = init_free_nid_cache(sbi);
2670 	if (err)
2671 		return err;
2672 
2673 	build_free_nids(sbi, true, true);
2674 	return 0;
2675 }
2676 
2677 void destroy_node_manager(struct f2fs_sb_info *sbi)
2678 {
2679 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2680 	struct free_nid *i, *next_i;
2681 	struct nat_entry *natvec[NATVEC_SIZE];
2682 	struct nat_entry_set *setvec[SETVEC_SIZE];
2683 	nid_t nid = 0;
2684 	unsigned int found;
2685 
2686 	if (!nm_i)
2687 		return;
2688 
2689 	/* destroy free nid list */
2690 	spin_lock(&nm_i->nid_list_lock);
2691 	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2692 									list) {
2693 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2694 		spin_unlock(&nm_i->nid_list_lock);
2695 		kmem_cache_free(free_nid_slab, i);
2696 		spin_lock(&nm_i->nid_list_lock);
2697 	}
2698 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2699 	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2700 	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2701 	spin_unlock(&nm_i->nid_list_lock);
2702 
2703 	/* destroy nat cache */
2704 	down_write(&nm_i->nat_tree_lock);
2705 	while ((found = __gang_lookup_nat_cache(nm_i,
2706 					nid, NATVEC_SIZE, natvec))) {
2707 		unsigned idx;
2708 
2709 		nid = nat_get_nid(natvec[found - 1]) + 1;
2710 		for (idx = 0; idx < found; idx++)
2711 			__del_from_nat_cache(nm_i, natvec[idx]);
2712 	}
2713 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2714 
2715 	/* destroy nat set cache */
2716 	nid = 0;
2717 	while ((found = __gang_lookup_nat_set(nm_i,
2718 					nid, SETVEC_SIZE, setvec))) {
2719 		unsigned idx;
2720 
2721 		nid = setvec[found - 1]->set + 1;
2722 		for (idx = 0; idx < found; idx++) {
2723 			/* entry_cnt is not zero, when cp_error was occurred */
2724 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2725 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2726 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2727 		}
2728 	}
2729 	up_write(&nm_i->nat_tree_lock);
2730 
2731 	kvfree(nm_i->nat_block_bitmap);
2732 	kvfree(nm_i->free_nid_bitmap);
2733 
2734 	kfree(nm_i->nat_bitmap);
2735 	kfree(nm_i->nat_bits);
2736 #ifdef CONFIG_F2FS_CHECK_FS
2737 	kfree(nm_i->nat_bitmap_mir);
2738 #endif
2739 	sbi->nm_info = NULL;
2740 	kfree(nm_i);
2741 }
2742 
2743 int __init create_node_manager_caches(void)
2744 {
2745 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2746 			sizeof(struct nat_entry));
2747 	if (!nat_entry_slab)
2748 		goto fail;
2749 
2750 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2751 			sizeof(struct free_nid));
2752 	if (!free_nid_slab)
2753 		goto destroy_nat_entry;
2754 
2755 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2756 			sizeof(struct nat_entry_set));
2757 	if (!nat_entry_set_slab)
2758 		goto destroy_free_nid;
2759 	return 0;
2760 
2761 destroy_free_nid:
2762 	kmem_cache_destroy(free_nid_slab);
2763 destroy_nat_entry:
2764 	kmem_cache_destroy(nat_entry_slab);
2765 fail:
2766 	return -ENOMEM;
2767 }
2768 
2769 void destroy_node_manager_caches(void)
2770 {
2771 	kmem_cache_destroy(nat_entry_set_slab);
2772 	kmem_cache_destroy(free_nid_slab);
2773 	kmem_cache_destroy(nat_entry_slab);
2774 }
2775