xref: /openbmc/linux/fs/f2fs/node.c (revision b868a02e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == EXTENT_CACHE) {
89 		mem_size = (atomic_read(&sbi->total_ext_tree) *
90 				sizeof(struct extent_tree) +
91 				atomic_read(&sbi->total_ext_node) *
92 				sizeof(struct extent_node)) >> PAGE_SHIFT;
93 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
94 	} else if (type == DISCARD_CACHE) {
95 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
96 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
97 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
98 	} else if (type == COMPRESS_PAGE) {
99 #ifdef CONFIG_F2FS_FS_COMPRESSION
100 		unsigned long free_ram = val.freeram;
101 
102 		/*
103 		 * free memory is lower than watermark or cached page count
104 		 * exceed threshold, deny caching compress page.
105 		 */
106 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
107 			(COMPRESS_MAPPING(sbi)->nrpages <
108 			 free_ram * sbi->compress_percent / 100);
109 #else
110 		res = false;
111 #endif
112 	} else {
113 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
114 			return true;
115 	}
116 	return res;
117 }
118 
119 static void clear_node_page_dirty(struct page *page)
120 {
121 	if (PageDirty(page)) {
122 		f2fs_clear_page_cache_dirty_tag(page);
123 		clear_page_dirty_for_io(page);
124 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
125 	}
126 	ClearPageUptodate(page);
127 }
128 
129 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
130 {
131 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
132 }
133 
134 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
135 {
136 	struct page *src_page;
137 	struct page *dst_page;
138 	pgoff_t dst_off;
139 	void *src_addr;
140 	void *dst_addr;
141 	struct f2fs_nm_info *nm_i = NM_I(sbi);
142 
143 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
144 
145 	/* get current nat block page with lock */
146 	src_page = get_current_nat_page(sbi, nid);
147 	if (IS_ERR(src_page))
148 		return src_page;
149 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
150 	f2fs_bug_on(sbi, PageDirty(src_page));
151 
152 	src_addr = page_address(src_page);
153 	dst_addr = page_address(dst_page);
154 	memcpy(dst_addr, src_addr, PAGE_SIZE);
155 	set_page_dirty(dst_page);
156 	f2fs_put_page(src_page, 1);
157 
158 	set_to_next_nat(nm_i, nid);
159 
160 	return dst_page;
161 }
162 
163 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
164 						nid_t nid, bool no_fail)
165 {
166 	struct nat_entry *new;
167 
168 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
169 					GFP_F2FS_ZERO, no_fail, sbi);
170 	if (new) {
171 		nat_set_nid(new, nid);
172 		nat_reset_flag(new);
173 	}
174 	return new;
175 }
176 
177 static void __free_nat_entry(struct nat_entry *e)
178 {
179 	kmem_cache_free(nat_entry_slab, e);
180 }
181 
182 /* must be locked by nat_tree_lock */
183 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
184 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
185 {
186 	if (no_fail)
187 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
188 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
189 		return NULL;
190 
191 	if (raw_ne)
192 		node_info_from_raw_nat(&ne->ni, raw_ne);
193 
194 	spin_lock(&nm_i->nat_list_lock);
195 	list_add_tail(&ne->list, &nm_i->nat_entries);
196 	spin_unlock(&nm_i->nat_list_lock);
197 
198 	nm_i->nat_cnt[TOTAL_NAT]++;
199 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
200 	return ne;
201 }
202 
203 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
204 {
205 	struct nat_entry *ne;
206 
207 	ne = radix_tree_lookup(&nm_i->nat_root, n);
208 
209 	/* for recent accessed nat entry, move it to tail of lru list */
210 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
211 		spin_lock(&nm_i->nat_list_lock);
212 		if (!list_empty(&ne->list))
213 			list_move_tail(&ne->list, &nm_i->nat_entries);
214 		spin_unlock(&nm_i->nat_list_lock);
215 	}
216 
217 	return ne;
218 }
219 
220 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
221 		nid_t start, unsigned int nr, struct nat_entry **ep)
222 {
223 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
224 }
225 
226 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
227 {
228 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
229 	nm_i->nat_cnt[TOTAL_NAT]--;
230 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
231 	__free_nat_entry(e);
232 }
233 
234 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
235 							struct nat_entry *ne)
236 {
237 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
238 	struct nat_entry_set *head;
239 
240 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
241 	if (!head) {
242 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
243 						GFP_NOFS, true, NULL);
244 
245 		INIT_LIST_HEAD(&head->entry_list);
246 		INIT_LIST_HEAD(&head->set_list);
247 		head->set = set;
248 		head->entry_cnt = 0;
249 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
250 	}
251 	return head;
252 }
253 
254 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
255 						struct nat_entry *ne)
256 {
257 	struct nat_entry_set *head;
258 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
259 
260 	if (!new_ne)
261 		head = __grab_nat_entry_set(nm_i, ne);
262 
263 	/*
264 	 * update entry_cnt in below condition:
265 	 * 1. update NEW_ADDR to valid block address;
266 	 * 2. update old block address to new one;
267 	 */
268 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
269 				!get_nat_flag(ne, IS_DIRTY)))
270 		head->entry_cnt++;
271 
272 	set_nat_flag(ne, IS_PREALLOC, new_ne);
273 
274 	if (get_nat_flag(ne, IS_DIRTY))
275 		goto refresh_list;
276 
277 	nm_i->nat_cnt[DIRTY_NAT]++;
278 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
279 	set_nat_flag(ne, IS_DIRTY, true);
280 refresh_list:
281 	spin_lock(&nm_i->nat_list_lock);
282 	if (new_ne)
283 		list_del_init(&ne->list);
284 	else
285 		list_move_tail(&ne->list, &head->entry_list);
286 	spin_unlock(&nm_i->nat_list_lock);
287 }
288 
289 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
290 		struct nat_entry_set *set, struct nat_entry *ne)
291 {
292 	spin_lock(&nm_i->nat_list_lock);
293 	list_move_tail(&ne->list, &nm_i->nat_entries);
294 	spin_unlock(&nm_i->nat_list_lock);
295 
296 	set_nat_flag(ne, IS_DIRTY, false);
297 	set->entry_cnt--;
298 	nm_i->nat_cnt[DIRTY_NAT]--;
299 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
300 }
301 
302 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
303 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
304 {
305 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
306 							start, nr);
307 }
308 
309 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
310 {
311 	return NODE_MAPPING(sbi) == page->mapping &&
312 			IS_DNODE(page) && is_cold_node(page);
313 }
314 
315 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
316 {
317 	spin_lock_init(&sbi->fsync_node_lock);
318 	INIT_LIST_HEAD(&sbi->fsync_node_list);
319 	sbi->fsync_seg_id = 0;
320 	sbi->fsync_node_num = 0;
321 }
322 
323 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
324 							struct page *page)
325 {
326 	struct fsync_node_entry *fn;
327 	unsigned long flags;
328 	unsigned int seq_id;
329 
330 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
331 					GFP_NOFS, true, NULL);
332 
333 	get_page(page);
334 	fn->page = page;
335 	INIT_LIST_HEAD(&fn->list);
336 
337 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
338 	list_add_tail(&fn->list, &sbi->fsync_node_list);
339 	fn->seq_id = sbi->fsync_seg_id++;
340 	seq_id = fn->seq_id;
341 	sbi->fsync_node_num++;
342 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343 
344 	return seq_id;
345 }
346 
347 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
348 {
349 	struct fsync_node_entry *fn;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
353 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
354 		if (fn->page == page) {
355 			list_del(&fn->list);
356 			sbi->fsync_node_num--;
357 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
358 			kmem_cache_free(fsync_node_entry_slab, fn);
359 			put_page(page);
360 			return;
361 		}
362 	}
363 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
364 	f2fs_bug_on(sbi, 1);
365 }
366 
367 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
368 {
369 	unsigned long flags;
370 
371 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
372 	sbi->fsync_seg_id = 0;
373 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
374 }
375 
376 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
377 {
378 	struct f2fs_nm_info *nm_i = NM_I(sbi);
379 	struct nat_entry *e;
380 	bool need = false;
381 
382 	f2fs_down_read(&nm_i->nat_tree_lock);
383 	e = __lookup_nat_cache(nm_i, nid);
384 	if (e) {
385 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
386 				!get_nat_flag(e, HAS_FSYNCED_INODE))
387 			need = true;
388 	}
389 	f2fs_up_read(&nm_i->nat_tree_lock);
390 	return need;
391 }
392 
393 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
394 {
395 	struct f2fs_nm_info *nm_i = NM_I(sbi);
396 	struct nat_entry *e;
397 	bool is_cp = true;
398 
399 	f2fs_down_read(&nm_i->nat_tree_lock);
400 	e = __lookup_nat_cache(nm_i, nid);
401 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
402 		is_cp = false;
403 	f2fs_up_read(&nm_i->nat_tree_lock);
404 	return is_cp;
405 }
406 
407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
408 {
409 	struct f2fs_nm_info *nm_i = NM_I(sbi);
410 	struct nat_entry *e;
411 	bool need_update = true;
412 
413 	f2fs_down_read(&nm_i->nat_tree_lock);
414 	e = __lookup_nat_cache(nm_i, ino);
415 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
416 			(get_nat_flag(e, IS_CHECKPOINTED) ||
417 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
418 		need_update = false;
419 	f2fs_up_read(&nm_i->nat_tree_lock);
420 	return need_update;
421 }
422 
423 /* must be locked by nat_tree_lock */
424 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
425 						struct f2fs_nat_entry *ne)
426 {
427 	struct f2fs_nm_info *nm_i = NM_I(sbi);
428 	struct nat_entry *new, *e;
429 
430 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
431 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
432 		return;
433 
434 	new = __alloc_nat_entry(sbi, nid, false);
435 	if (!new)
436 		return;
437 
438 	f2fs_down_write(&nm_i->nat_tree_lock);
439 	e = __lookup_nat_cache(nm_i, nid);
440 	if (!e)
441 		e = __init_nat_entry(nm_i, new, ne, false);
442 	else
443 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
444 				nat_get_blkaddr(e) !=
445 					le32_to_cpu(ne->block_addr) ||
446 				nat_get_version(e) != ne->version);
447 	f2fs_up_write(&nm_i->nat_tree_lock);
448 	if (e != new)
449 		__free_nat_entry(new);
450 }
451 
452 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
453 			block_t new_blkaddr, bool fsync_done)
454 {
455 	struct f2fs_nm_info *nm_i = NM_I(sbi);
456 	struct nat_entry *e;
457 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
458 
459 	f2fs_down_write(&nm_i->nat_tree_lock);
460 	e = __lookup_nat_cache(nm_i, ni->nid);
461 	if (!e) {
462 		e = __init_nat_entry(nm_i, new, NULL, true);
463 		copy_node_info(&e->ni, ni);
464 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
465 	} else if (new_blkaddr == NEW_ADDR) {
466 		/*
467 		 * when nid is reallocated,
468 		 * previous nat entry can be remained in nat cache.
469 		 * So, reinitialize it with new information.
470 		 */
471 		copy_node_info(&e->ni, ni);
472 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
473 	}
474 	/* let's free early to reduce memory consumption */
475 	if (e != new)
476 		__free_nat_entry(new);
477 
478 	/* sanity check */
479 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
480 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
481 			new_blkaddr == NULL_ADDR);
482 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
483 			new_blkaddr == NEW_ADDR);
484 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
485 			new_blkaddr == NEW_ADDR);
486 
487 	/* increment version no as node is removed */
488 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
489 		unsigned char version = nat_get_version(e);
490 
491 		nat_set_version(e, inc_node_version(version));
492 	}
493 
494 	/* change address */
495 	nat_set_blkaddr(e, new_blkaddr);
496 	if (!__is_valid_data_blkaddr(new_blkaddr))
497 		set_nat_flag(e, IS_CHECKPOINTED, false);
498 	__set_nat_cache_dirty(nm_i, e);
499 
500 	/* update fsync_mark if its inode nat entry is still alive */
501 	if (ni->nid != ni->ino)
502 		e = __lookup_nat_cache(nm_i, ni->ino);
503 	if (e) {
504 		if (fsync_done && ni->nid == ni->ino)
505 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
506 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
507 	}
508 	f2fs_up_write(&nm_i->nat_tree_lock);
509 }
510 
511 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
512 {
513 	struct f2fs_nm_info *nm_i = NM_I(sbi);
514 	int nr = nr_shrink;
515 
516 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
517 		return 0;
518 
519 	spin_lock(&nm_i->nat_list_lock);
520 	while (nr_shrink) {
521 		struct nat_entry *ne;
522 
523 		if (list_empty(&nm_i->nat_entries))
524 			break;
525 
526 		ne = list_first_entry(&nm_i->nat_entries,
527 					struct nat_entry, list);
528 		list_del(&ne->list);
529 		spin_unlock(&nm_i->nat_list_lock);
530 
531 		__del_from_nat_cache(nm_i, ne);
532 		nr_shrink--;
533 
534 		spin_lock(&nm_i->nat_list_lock);
535 	}
536 	spin_unlock(&nm_i->nat_list_lock);
537 
538 	f2fs_up_write(&nm_i->nat_tree_lock);
539 	return nr - nr_shrink;
540 }
541 
542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
543 				struct node_info *ni, bool checkpoint_context)
544 {
545 	struct f2fs_nm_info *nm_i = NM_I(sbi);
546 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
547 	struct f2fs_journal *journal = curseg->journal;
548 	nid_t start_nid = START_NID(nid);
549 	struct f2fs_nat_block *nat_blk;
550 	struct page *page = NULL;
551 	struct f2fs_nat_entry ne;
552 	struct nat_entry *e;
553 	pgoff_t index;
554 	block_t blkaddr;
555 	int i;
556 
557 	ni->nid = nid;
558 retry:
559 	/* Check nat cache */
560 	f2fs_down_read(&nm_i->nat_tree_lock);
561 	e = __lookup_nat_cache(nm_i, nid);
562 	if (e) {
563 		ni->ino = nat_get_ino(e);
564 		ni->blk_addr = nat_get_blkaddr(e);
565 		ni->version = nat_get_version(e);
566 		f2fs_up_read(&nm_i->nat_tree_lock);
567 		return 0;
568 	}
569 
570 	/*
571 	 * Check current segment summary by trying to grab journal_rwsem first.
572 	 * This sem is on the critical path on the checkpoint requiring the above
573 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
574 	 * while not bothering checkpoint.
575 	 */
576 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
577 		down_read(&curseg->journal_rwsem);
578 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
579 				!down_read_trylock(&curseg->journal_rwsem)) {
580 		f2fs_up_read(&nm_i->nat_tree_lock);
581 		goto retry;
582 	}
583 
584 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
585 	if (i >= 0) {
586 		ne = nat_in_journal(journal, i);
587 		node_info_from_raw_nat(ni, &ne);
588 	}
589 	up_read(&curseg->journal_rwsem);
590 	if (i >= 0) {
591 		f2fs_up_read(&nm_i->nat_tree_lock);
592 		goto cache;
593 	}
594 
595 	/* Fill node_info from nat page */
596 	index = current_nat_addr(sbi, nid);
597 	f2fs_up_read(&nm_i->nat_tree_lock);
598 
599 	page = f2fs_get_meta_page(sbi, index);
600 	if (IS_ERR(page))
601 		return PTR_ERR(page);
602 
603 	nat_blk = (struct f2fs_nat_block *)page_address(page);
604 	ne = nat_blk->entries[nid - start_nid];
605 	node_info_from_raw_nat(ni, &ne);
606 	f2fs_put_page(page, 1);
607 cache:
608 	blkaddr = le32_to_cpu(ne.block_addr);
609 	if (__is_valid_data_blkaddr(blkaddr) &&
610 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
611 		return -EFAULT;
612 
613 	/* cache nat entry */
614 	cache_nat_entry(sbi, nid, &ne);
615 	return 0;
616 }
617 
618 /*
619  * readahead MAX_RA_NODE number of node pages.
620  */
621 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
622 {
623 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
624 	struct blk_plug plug;
625 	int i, end;
626 	nid_t nid;
627 
628 	blk_start_plug(&plug);
629 
630 	/* Then, try readahead for siblings of the desired node */
631 	end = start + n;
632 	end = min(end, NIDS_PER_BLOCK);
633 	for (i = start; i < end; i++) {
634 		nid = get_nid(parent, i, false);
635 		f2fs_ra_node_page(sbi, nid);
636 	}
637 
638 	blk_finish_plug(&plug);
639 }
640 
641 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
642 {
643 	const long direct_index = ADDRS_PER_INODE(dn->inode);
644 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
645 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
646 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
647 	int cur_level = dn->cur_level;
648 	int max_level = dn->max_level;
649 	pgoff_t base = 0;
650 
651 	if (!dn->max_level)
652 		return pgofs + 1;
653 
654 	while (max_level-- > cur_level)
655 		skipped_unit *= NIDS_PER_BLOCK;
656 
657 	switch (dn->max_level) {
658 	case 3:
659 		base += 2 * indirect_blks;
660 		fallthrough;
661 	case 2:
662 		base += 2 * direct_blks;
663 		fallthrough;
664 	case 1:
665 		base += direct_index;
666 		break;
667 	default:
668 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
669 	}
670 
671 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
672 }
673 
674 /*
675  * The maximum depth is four.
676  * Offset[0] will have raw inode offset.
677  */
678 static int get_node_path(struct inode *inode, long block,
679 				int offset[4], unsigned int noffset[4])
680 {
681 	const long direct_index = ADDRS_PER_INODE(inode);
682 	const long direct_blks = ADDRS_PER_BLOCK(inode);
683 	const long dptrs_per_blk = NIDS_PER_BLOCK;
684 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
685 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
686 	int n = 0;
687 	int level = 0;
688 
689 	noffset[0] = 0;
690 
691 	if (block < direct_index) {
692 		offset[n] = block;
693 		goto got;
694 	}
695 	block -= direct_index;
696 	if (block < direct_blks) {
697 		offset[n++] = NODE_DIR1_BLOCK;
698 		noffset[n] = 1;
699 		offset[n] = block;
700 		level = 1;
701 		goto got;
702 	}
703 	block -= direct_blks;
704 	if (block < direct_blks) {
705 		offset[n++] = NODE_DIR2_BLOCK;
706 		noffset[n] = 2;
707 		offset[n] = block;
708 		level = 1;
709 		goto got;
710 	}
711 	block -= direct_blks;
712 	if (block < indirect_blks) {
713 		offset[n++] = NODE_IND1_BLOCK;
714 		noffset[n] = 3;
715 		offset[n++] = block / direct_blks;
716 		noffset[n] = 4 + offset[n - 1];
717 		offset[n] = block % direct_blks;
718 		level = 2;
719 		goto got;
720 	}
721 	block -= indirect_blks;
722 	if (block < indirect_blks) {
723 		offset[n++] = NODE_IND2_BLOCK;
724 		noffset[n] = 4 + dptrs_per_blk;
725 		offset[n++] = block / direct_blks;
726 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
727 		offset[n] = block % direct_blks;
728 		level = 2;
729 		goto got;
730 	}
731 	block -= indirect_blks;
732 	if (block < dindirect_blks) {
733 		offset[n++] = NODE_DIND_BLOCK;
734 		noffset[n] = 5 + (dptrs_per_blk * 2);
735 		offset[n++] = block / indirect_blks;
736 		noffset[n] = 6 + (dptrs_per_blk * 2) +
737 			      offset[n - 1] * (dptrs_per_blk + 1);
738 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
739 		noffset[n] = 7 + (dptrs_per_blk * 2) +
740 			      offset[n - 2] * (dptrs_per_blk + 1) +
741 			      offset[n - 1];
742 		offset[n] = block % direct_blks;
743 		level = 3;
744 		goto got;
745 	} else {
746 		return -E2BIG;
747 	}
748 got:
749 	return level;
750 }
751 
752 /*
753  * Caller should call f2fs_put_dnode(dn).
754  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
755  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
756  */
757 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
758 {
759 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
760 	struct page *npage[4];
761 	struct page *parent = NULL;
762 	int offset[4];
763 	unsigned int noffset[4];
764 	nid_t nids[4];
765 	int level, i = 0;
766 	int err = 0;
767 
768 	level = get_node_path(dn->inode, index, offset, noffset);
769 	if (level < 0)
770 		return level;
771 
772 	nids[0] = dn->inode->i_ino;
773 	npage[0] = dn->inode_page;
774 
775 	if (!npage[0]) {
776 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
777 		if (IS_ERR(npage[0]))
778 			return PTR_ERR(npage[0]);
779 	}
780 
781 	/* if inline_data is set, should not report any block indices */
782 	if (f2fs_has_inline_data(dn->inode) && index) {
783 		err = -ENOENT;
784 		f2fs_put_page(npage[0], 1);
785 		goto release_out;
786 	}
787 
788 	parent = npage[0];
789 	if (level != 0)
790 		nids[1] = get_nid(parent, offset[0], true);
791 	dn->inode_page = npage[0];
792 	dn->inode_page_locked = true;
793 
794 	/* get indirect or direct nodes */
795 	for (i = 1; i <= level; i++) {
796 		bool done = false;
797 
798 		if (!nids[i] && mode == ALLOC_NODE) {
799 			/* alloc new node */
800 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
801 				err = -ENOSPC;
802 				goto release_pages;
803 			}
804 
805 			dn->nid = nids[i];
806 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
807 			if (IS_ERR(npage[i])) {
808 				f2fs_alloc_nid_failed(sbi, nids[i]);
809 				err = PTR_ERR(npage[i]);
810 				goto release_pages;
811 			}
812 
813 			set_nid(parent, offset[i - 1], nids[i], i == 1);
814 			f2fs_alloc_nid_done(sbi, nids[i]);
815 			done = true;
816 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
817 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
818 			if (IS_ERR(npage[i])) {
819 				err = PTR_ERR(npage[i]);
820 				goto release_pages;
821 			}
822 			done = true;
823 		}
824 		if (i == 1) {
825 			dn->inode_page_locked = false;
826 			unlock_page(parent);
827 		} else {
828 			f2fs_put_page(parent, 1);
829 		}
830 
831 		if (!done) {
832 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
833 			if (IS_ERR(npage[i])) {
834 				err = PTR_ERR(npage[i]);
835 				f2fs_put_page(npage[0], 0);
836 				goto release_out;
837 			}
838 		}
839 		if (i < level) {
840 			parent = npage[i];
841 			nids[i + 1] = get_nid(parent, offset[i], false);
842 		}
843 	}
844 	dn->nid = nids[level];
845 	dn->ofs_in_node = offset[level];
846 	dn->node_page = npage[level];
847 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
848 
849 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
850 					f2fs_sb_has_readonly(sbi)) {
851 		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
852 		block_t blkaddr;
853 
854 		if (!c_len)
855 			goto out;
856 
857 		blkaddr = f2fs_data_blkaddr(dn);
858 		if (blkaddr == COMPRESS_ADDR)
859 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
860 						dn->ofs_in_node + 1);
861 
862 		f2fs_update_extent_tree_range_compressed(dn->inode,
863 					index, blkaddr,
864 					F2FS_I(dn->inode)->i_cluster_size,
865 					c_len);
866 	}
867 out:
868 	return 0;
869 
870 release_pages:
871 	f2fs_put_page(parent, 1);
872 	if (i > 1)
873 		f2fs_put_page(npage[0], 0);
874 release_out:
875 	dn->inode_page = NULL;
876 	dn->node_page = NULL;
877 	if (err == -ENOENT) {
878 		dn->cur_level = i;
879 		dn->max_level = level;
880 		dn->ofs_in_node = offset[level];
881 	}
882 	return err;
883 }
884 
885 static int truncate_node(struct dnode_of_data *dn)
886 {
887 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
888 	struct node_info ni;
889 	int err;
890 	pgoff_t index;
891 
892 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
893 	if (err)
894 		return err;
895 
896 	/* Deallocate node address */
897 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
898 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
899 	set_node_addr(sbi, &ni, NULL_ADDR, false);
900 
901 	if (dn->nid == dn->inode->i_ino) {
902 		f2fs_remove_orphan_inode(sbi, dn->nid);
903 		dec_valid_inode_count(sbi);
904 		f2fs_inode_synced(dn->inode);
905 	}
906 
907 	clear_node_page_dirty(dn->node_page);
908 	set_sbi_flag(sbi, SBI_IS_DIRTY);
909 
910 	index = dn->node_page->index;
911 	f2fs_put_page(dn->node_page, 1);
912 
913 	invalidate_mapping_pages(NODE_MAPPING(sbi),
914 			index, index);
915 
916 	dn->node_page = NULL;
917 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
918 
919 	return 0;
920 }
921 
922 static int truncate_dnode(struct dnode_of_data *dn)
923 {
924 	struct page *page;
925 	int err;
926 
927 	if (dn->nid == 0)
928 		return 1;
929 
930 	/* get direct node */
931 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932 	if (PTR_ERR(page) == -ENOENT)
933 		return 1;
934 	else if (IS_ERR(page))
935 		return PTR_ERR(page);
936 
937 	/* Make dnode_of_data for parameter */
938 	dn->node_page = page;
939 	dn->ofs_in_node = 0;
940 	f2fs_truncate_data_blocks(dn);
941 	err = truncate_node(dn);
942 	if (err)
943 		return err;
944 
945 	return 1;
946 }
947 
948 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
949 						int ofs, int depth)
950 {
951 	struct dnode_of_data rdn = *dn;
952 	struct page *page;
953 	struct f2fs_node *rn;
954 	nid_t child_nid;
955 	unsigned int child_nofs;
956 	int freed = 0;
957 	int i, ret;
958 
959 	if (dn->nid == 0)
960 		return NIDS_PER_BLOCK + 1;
961 
962 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
963 
964 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
965 	if (IS_ERR(page)) {
966 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
967 		return PTR_ERR(page);
968 	}
969 
970 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
971 
972 	rn = F2FS_NODE(page);
973 	if (depth < 3) {
974 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
975 			child_nid = le32_to_cpu(rn->in.nid[i]);
976 			if (child_nid == 0)
977 				continue;
978 			rdn.nid = child_nid;
979 			ret = truncate_dnode(&rdn);
980 			if (ret < 0)
981 				goto out_err;
982 			if (set_nid(page, i, 0, false))
983 				dn->node_changed = true;
984 		}
985 	} else {
986 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
987 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
988 			child_nid = le32_to_cpu(rn->in.nid[i]);
989 			if (child_nid == 0) {
990 				child_nofs += NIDS_PER_BLOCK + 1;
991 				continue;
992 			}
993 			rdn.nid = child_nid;
994 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
995 			if (ret == (NIDS_PER_BLOCK + 1)) {
996 				if (set_nid(page, i, 0, false))
997 					dn->node_changed = true;
998 				child_nofs += ret;
999 			} else if (ret < 0 && ret != -ENOENT) {
1000 				goto out_err;
1001 			}
1002 		}
1003 		freed = child_nofs;
1004 	}
1005 
1006 	if (!ofs) {
1007 		/* remove current indirect node */
1008 		dn->node_page = page;
1009 		ret = truncate_node(dn);
1010 		if (ret)
1011 			goto out_err;
1012 		freed++;
1013 	} else {
1014 		f2fs_put_page(page, 1);
1015 	}
1016 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1017 	return freed;
1018 
1019 out_err:
1020 	f2fs_put_page(page, 1);
1021 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1022 	return ret;
1023 }
1024 
1025 static int truncate_partial_nodes(struct dnode_of_data *dn,
1026 			struct f2fs_inode *ri, int *offset, int depth)
1027 {
1028 	struct page *pages[2];
1029 	nid_t nid[3];
1030 	nid_t child_nid;
1031 	int err = 0;
1032 	int i;
1033 	int idx = depth - 2;
1034 
1035 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1036 	if (!nid[0])
1037 		return 0;
1038 
1039 	/* get indirect nodes in the path */
1040 	for (i = 0; i < idx + 1; i++) {
1041 		/* reference count'll be increased */
1042 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1043 		if (IS_ERR(pages[i])) {
1044 			err = PTR_ERR(pages[i]);
1045 			idx = i - 1;
1046 			goto fail;
1047 		}
1048 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1049 	}
1050 
1051 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1052 
1053 	/* free direct nodes linked to a partial indirect node */
1054 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1055 		child_nid = get_nid(pages[idx], i, false);
1056 		if (!child_nid)
1057 			continue;
1058 		dn->nid = child_nid;
1059 		err = truncate_dnode(dn);
1060 		if (err < 0)
1061 			goto fail;
1062 		if (set_nid(pages[idx], i, 0, false))
1063 			dn->node_changed = true;
1064 	}
1065 
1066 	if (offset[idx + 1] == 0) {
1067 		dn->node_page = pages[idx];
1068 		dn->nid = nid[idx];
1069 		err = truncate_node(dn);
1070 		if (err)
1071 			goto fail;
1072 	} else {
1073 		f2fs_put_page(pages[idx], 1);
1074 	}
1075 	offset[idx]++;
1076 	offset[idx + 1] = 0;
1077 	idx--;
1078 fail:
1079 	for (i = idx; i >= 0; i--)
1080 		f2fs_put_page(pages[i], 1);
1081 
1082 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1083 
1084 	return err;
1085 }
1086 
1087 /*
1088  * All the block addresses of data and nodes should be nullified.
1089  */
1090 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1091 {
1092 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093 	int err = 0, cont = 1;
1094 	int level, offset[4], noffset[4];
1095 	unsigned int nofs = 0;
1096 	struct f2fs_inode *ri;
1097 	struct dnode_of_data dn;
1098 	struct page *page;
1099 
1100 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1101 
1102 	level = get_node_path(inode, from, offset, noffset);
1103 	if (level < 0) {
1104 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1105 		return level;
1106 	}
1107 
1108 	page = f2fs_get_node_page(sbi, inode->i_ino);
1109 	if (IS_ERR(page)) {
1110 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1111 		return PTR_ERR(page);
1112 	}
1113 
1114 	set_new_dnode(&dn, inode, page, NULL, 0);
1115 	unlock_page(page);
1116 
1117 	ri = F2FS_INODE(page);
1118 	switch (level) {
1119 	case 0:
1120 	case 1:
1121 		nofs = noffset[1];
1122 		break;
1123 	case 2:
1124 		nofs = noffset[1];
1125 		if (!offset[level - 1])
1126 			goto skip_partial;
1127 		err = truncate_partial_nodes(&dn, ri, offset, level);
1128 		if (err < 0 && err != -ENOENT)
1129 			goto fail;
1130 		nofs += 1 + NIDS_PER_BLOCK;
1131 		break;
1132 	case 3:
1133 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1134 		if (!offset[level - 1])
1135 			goto skip_partial;
1136 		err = truncate_partial_nodes(&dn, ri, offset, level);
1137 		if (err < 0 && err != -ENOENT)
1138 			goto fail;
1139 		break;
1140 	default:
1141 		BUG();
1142 	}
1143 
1144 skip_partial:
1145 	while (cont) {
1146 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1147 		switch (offset[0]) {
1148 		case NODE_DIR1_BLOCK:
1149 		case NODE_DIR2_BLOCK:
1150 			err = truncate_dnode(&dn);
1151 			break;
1152 
1153 		case NODE_IND1_BLOCK:
1154 		case NODE_IND2_BLOCK:
1155 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1156 			break;
1157 
1158 		case NODE_DIND_BLOCK:
1159 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1160 			cont = 0;
1161 			break;
1162 
1163 		default:
1164 			BUG();
1165 		}
1166 		if (err < 0 && err != -ENOENT)
1167 			goto fail;
1168 		if (offset[1] == 0 &&
1169 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1170 			lock_page(page);
1171 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1172 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1173 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1174 			set_page_dirty(page);
1175 			unlock_page(page);
1176 		}
1177 		offset[1] = 0;
1178 		offset[0]++;
1179 		nofs += err;
1180 	}
1181 fail:
1182 	f2fs_put_page(page, 0);
1183 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1184 	return err > 0 ? 0 : err;
1185 }
1186 
1187 /* caller must lock inode page */
1188 int f2fs_truncate_xattr_node(struct inode *inode)
1189 {
1190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1192 	struct dnode_of_data dn;
1193 	struct page *npage;
1194 	int err;
1195 
1196 	if (!nid)
1197 		return 0;
1198 
1199 	npage = f2fs_get_node_page(sbi, nid);
1200 	if (IS_ERR(npage))
1201 		return PTR_ERR(npage);
1202 
1203 	set_new_dnode(&dn, inode, NULL, npage, nid);
1204 	err = truncate_node(&dn);
1205 	if (err) {
1206 		f2fs_put_page(npage, 1);
1207 		return err;
1208 	}
1209 
1210 	f2fs_i_xnid_write(inode, 0);
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1217  * f2fs_unlock_op().
1218  */
1219 int f2fs_remove_inode_page(struct inode *inode)
1220 {
1221 	struct dnode_of_data dn;
1222 	int err;
1223 
1224 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1225 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1226 	if (err)
1227 		return err;
1228 
1229 	err = f2fs_truncate_xattr_node(inode);
1230 	if (err) {
1231 		f2fs_put_dnode(&dn);
1232 		return err;
1233 	}
1234 
1235 	/* remove potential inline_data blocks */
1236 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1237 				S_ISLNK(inode->i_mode))
1238 		f2fs_truncate_data_blocks_range(&dn, 1);
1239 
1240 	/* 0 is possible, after f2fs_new_inode() has failed */
1241 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1242 		f2fs_put_dnode(&dn);
1243 		return -EIO;
1244 	}
1245 
1246 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1247 		f2fs_warn(F2FS_I_SB(inode),
1248 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1249 			inode->i_ino, (unsigned long long)inode->i_blocks);
1250 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1251 	}
1252 
1253 	/* will put inode & node pages */
1254 	err = truncate_node(&dn);
1255 	if (err) {
1256 		f2fs_put_dnode(&dn);
1257 		return err;
1258 	}
1259 	return 0;
1260 }
1261 
1262 struct page *f2fs_new_inode_page(struct inode *inode)
1263 {
1264 	struct dnode_of_data dn;
1265 
1266 	/* allocate inode page for new inode */
1267 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1268 
1269 	/* caller should f2fs_put_page(page, 1); */
1270 	return f2fs_new_node_page(&dn, 0);
1271 }
1272 
1273 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1274 {
1275 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1276 	struct node_info new_ni;
1277 	struct page *page;
1278 	int err;
1279 
1280 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1281 		return ERR_PTR(-EPERM);
1282 
1283 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1284 	if (!page)
1285 		return ERR_PTR(-ENOMEM);
1286 
1287 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1288 		goto fail;
1289 
1290 #ifdef CONFIG_F2FS_CHECK_FS
1291 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1292 	if (err) {
1293 		dec_valid_node_count(sbi, dn->inode, !ofs);
1294 		goto fail;
1295 	}
1296 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1297 		err = -EFSCORRUPTED;
1298 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1299 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1300 		goto fail;
1301 	}
1302 #endif
1303 	new_ni.nid = dn->nid;
1304 	new_ni.ino = dn->inode->i_ino;
1305 	new_ni.blk_addr = NULL_ADDR;
1306 	new_ni.flag = 0;
1307 	new_ni.version = 0;
1308 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1309 
1310 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1311 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1312 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1313 	if (!PageUptodate(page))
1314 		SetPageUptodate(page);
1315 	if (set_page_dirty(page))
1316 		dn->node_changed = true;
1317 
1318 	if (f2fs_has_xattr_block(ofs))
1319 		f2fs_i_xnid_write(dn->inode, dn->nid);
1320 
1321 	if (ofs == 0)
1322 		inc_valid_inode_count(sbi);
1323 	return page;
1324 
1325 fail:
1326 	clear_node_page_dirty(page);
1327 	f2fs_put_page(page, 1);
1328 	return ERR_PTR(err);
1329 }
1330 
1331 /*
1332  * Caller should do after getting the following values.
1333  * 0: f2fs_put_page(page, 0)
1334  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1335  */
1336 static int read_node_page(struct page *page, blk_opf_t op_flags)
1337 {
1338 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1339 	struct node_info ni;
1340 	struct f2fs_io_info fio = {
1341 		.sbi = sbi,
1342 		.type = NODE,
1343 		.op = REQ_OP_READ,
1344 		.op_flags = op_flags,
1345 		.page = page,
1346 		.encrypted_page = NULL,
1347 	};
1348 	int err;
1349 
1350 	if (PageUptodate(page)) {
1351 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1352 			ClearPageUptodate(page);
1353 			return -EFSBADCRC;
1354 		}
1355 		return LOCKED_PAGE;
1356 	}
1357 
1358 	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1359 	if (err)
1360 		return err;
1361 
1362 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1363 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1364 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1365 		ClearPageUptodate(page);
1366 		return -ENOENT;
1367 	}
1368 
1369 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1370 
1371 	err = f2fs_submit_page_bio(&fio);
1372 
1373 	if (!err)
1374 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1375 
1376 	return err;
1377 }
1378 
1379 /*
1380  * Readahead a node page
1381  */
1382 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1383 {
1384 	struct page *apage;
1385 	int err;
1386 
1387 	if (!nid)
1388 		return;
1389 	if (f2fs_check_nid_range(sbi, nid))
1390 		return;
1391 
1392 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1393 	if (apage)
1394 		return;
1395 
1396 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1397 	if (!apage)
1398 		return;
1399 
1400 	err = read_node_page(apage, REQ_RAHEAD);
1401 	f2fs_put_page(apage, err ? 1 : 0);
1402 }
1403 
1404 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1405 					struct page *parent, int start)
1406 {
1407 	struct page *page;
1408 	int err;
1409 
1410 	if (!nid)
1411 		return ERR_PTR(-ENOENT);
1412 	if (f2fs_check_nid_range(sbi, nid))
1413 		return ERR_PTR(-EINVAL);
1414 repeat:
1415 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1416 	if (!page)
1417 		return ERR_PTR(-ENOMEM);
1418 
1419 	err = read_node_page(page, 0);
1420 	if (err < 0) {
1421 		goto out_put_err;
1422 	} else if (err == LOCKED_PAGE) {
1423 		err = 0;
1424 		goto page_hit;
1425 	}
1426 
1427 	if (parent)
1428 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1429 
1430 	lock_page(page);
1431 
1432 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1433 		f2fs_put_page(page, 1);
1434 		goto repeat;
1435 	}
1436 
1437 	if (unlikely(!PageUptodate(page))) {
1438 		err = -EIO;
1439 		goto out_err;
1440 	}
1441 
1442 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1443 		err = -EFSBADCRC;
1444 		goto out_err;
1445 	}
1446 page_hit:
1447 	if (likely(nid == nid_of_node(page)))
1448 		return page;
1449 
1450 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1451 			  nid, nid_of_node(page), ino_of_node(page),
1452 			  ofs_of_node(page), cpver_of_node(page),
1453 			  next_blkaddr_of_node(page));
1454 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1455 	err = -EINVAL;
1456 out_err:
1457 	ClearPageUptodate(page);
1458 out_put_err:
1459 	/* ENOENT comes from read_node_page which is not an error. */
1460 	if (err != -ENOENT)
1461 		f2fs_handle_page_eio(sbi, page->index, NODE);
1462 	f2fs_put_page(page, 1);
1463 	return ERR_PTR(err);
1464 }
1465 
1466 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1467 {
1468 	return __get_node_page(sbi, nid, NULL, 0);
1469 }
1470 
1471 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1472 {
1473 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1474 	nid_t nid = get_nid(parent, start, false);
1475 
1476 	return __get_node_page(sbi, nid, parent, start);
1477 }
1478 
1479 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1480 {
1481 	struct inode *inode;
1482 	struct page *page;
1483 	int ret;
1484 
1485 	/* should flush inline_data before evict_inode */
1486 	inode = ilookup(sbi->sb, ino);
1487 	if (!inode)
1488 		return;
1489 
1490 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1491 					FGP_LOCK|FGP_NOWAIT, 0);
1492 	if (!page)
1493 		goto iput_out;
1494 
1495 	if (!PageUptodate(page))
1496 		goto page_out;
1497 
1498 	if (!PageDirty(page))
1499 		goto page_out;
1500 
1501 	if (!clear_page_dirty_for_io(page))
1502 		goto page_out;
1503 
1504 	ret = f2fs_write_inline_data(inode, page);
1505 	inode_dec_dirty_pages(inode);
1506 	f2fs_remove_dirty_inode(inode);
1507 	if (ret)
1508 		set_page_dirty(page);
1509 page_out:
1510 	f2fs_put_page(page, 1);
1511 iput_out:
1512 	iput(inode);
1513 }
1514 
1515 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1516 {
1517 	pgoff_t index;
1518 	struct pagevec pvec;
1519 	struct page *last_page = NULL;
1520 	int nr_pages;
1521 
1522 	pagevec_init(&pvec);
1523 	index = 0;
1524 
1525 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1526 				PAGECACHE_TAG_DIRTY))) {
1527 		int i;
1528 
1529 		for (i = 0; i < nr_pages; i++) {
1530 			struct page *page = pvec.pages[i];
1531 
1532 			if (unlikely(f2fs_cp_error(sbi))) {
1533 				f2fs_put_page(last_page, 0);
1534 				pagevec_release(&pvec);
1535 				return ERR_PTR(-EIO);
1536 			}
1537 
1538 			if (!IS_DNODE(page) || !is_cold_node(page))
1539 				continue;
1540 			if (ino_of_node(page) != ino)
1541 				continue;
1542 
1543 			lock_page(page);
1544 
1545 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1546 continue_unlock:
1547 				unlock_page(page);
1548 				continue;
1549 			}
1550 			if (ino_of_node(page) != ino)
1551 				goto continue_unlock;
1552 
1553 			if (!PageDirty(page)) {
1554 				/* someone wrote it for us */
1555 				goto continue_unlock;
1556 			}
1557 
1558 			if (last_page)
1559 				f2fs_put_page(last_page, 0);
1560 
1561 			get_page(page);
1562 			last_page = page;
1563 			unlock_page(page);
1564 		}
1565 		pagevec_release(&pvec);
1566 		cond_resched();
1567 	}
1568 	return last_page;
1569 }
1570 
1571 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1572 				struct writeback_control *wbc, bool do_balance,
1573 				enum iostat_type io_type, unsigned int *seq_id)
1574 {
1575 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1576 	nid_t nid;
1577 	struct node_info ni;
1578 	struct f2fs_io_info fio = {
1579 		.sbi = sbi,
1580 		.ino = ino_of_node(page),
1581 		.type = NODE,
1582 		.op = REQ_OP_WRITE,
1583 		.op_flags = wbc_to_write_flags(wbc),
1584 		.page = page,
1585 		.encrypted_page = NULL,
1586 		.submitted = false,
1587 		.io_type = io_type,
1588 		.io_wbc = wbc,
1589 	};
1590 	unsigned int seq;
1591 
1592 	trace_f2fs_writepage(page, NODE);
1593 
1594 	if (unlikely(f2fs_cp_error(sbi))) {
1595 		ClearPageUptodate(page);
1596 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1597 		unlock_page(page);
1598 		return 0;
1599 	}
1600 
1601 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1602 		goto redirty_out;
1603 
1604 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1605 			wbc->sync_mode == WB_SYNC_NONE &&
1606 			IS_DNODE(page) && is_cold_node(page))
1607 		goto redirty_out;
1608 
1609 	/* get old block addr of this node page */
1610 	nid = nid_of_node(page);
1611 	f2fs_bug_on(sbi, page->index != nid);
1612 
1613 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1614 		goto redirty_out;
1615 
1616 	if (wbc->for_reclaim) {
1617 		if (!f2fs_down_read_trylock(&sbi->node_write))
1618 			goto redirty_out;
1619 	} else {
1620 		f2fs_down_read(&sbi->node_write);
1621 	}
1622 
1623 	/* This page is already truncated */
1624 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1625 		ClearPageUptodate(page);
1626 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1627 		f2fs_up_read(&sbi->node_write);
1628 		unlock_page(page);
1629 		return 0;
1630 	}
1631 
1632 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1633 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1634 					DATA_GENERIC_ENHANCE)) {
1635 		f2fs_up_read(&sbi->node_write);
1636 		goto redirty_out;
1637 	}
1638 
1639 	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1640 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1641 
1642 	/* should add to global list before clearing PAGECACHE status */
1643 	if (f2fs_in_warm_node_list(sbi, page)) {
1644 		seq = f2fs_add_fsync_node_entry(sbi, page);
1645 		if (seq_id)
1646 			*seq_id = seq;
1647 	}
1648 
1649 	set_page_writeback(page);
1650 	ClearPageError(page);
1651 
1652 	fio.old_blkaddr = ni.blk_addr;
1653 	f2fs_do_write_node_page(nid, &fio);
1654 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1655 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1656 	f2fs_up_read(&sbi->node_write);
1657 
1658 	if (wbc->for_reclaim) {
1659 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1660 		submitted = NULL;
1661 	}
1662 
1663 	unlock_page(page);
1664 
1665 	if (unlikely(f2fs_cp_error(sbi))) {
1666 		f2fs_submit_merged_write(sbi, NODE);
1667 		submitted = NULL;
1668 	}
1669 	if (submitted)
1670 		*submitted = fio.submitted;
1671 
1672 	if (do_balance)
1673 		f2fs_balance_fs(sbi, false);
1674 	return 0;
1675 
1676 redirty_out:
1677 	redirty_page_for_writepage(wbc, page);
1678 	return AOP_WRITEPAGE_ACTIVATE;
1679 }
1680 
1681 int f2fs_move_node_page(struct page *node_page, int gc_type)
1682 {
1683 	int err = 0;
1684 
1685 	if (gc_type == FG_GC) {
1686 		struct writeback_control wbc = {
1687 			.sync_mode = WB_SYNC_ALL,
1688 			.nr_to_write = 1,
1689 			.for_reclaim = 0,
1690 		};
1691 
1692 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1693 
1694 		set_page_dirty(node_page);
1695 
1696 		if (!clear_page_dirty_for_io(node_page)) {
1697 			err = -EAGAIN;
1698 			goto out_page;
1699 		}
1700 
1701 		if (__write_node_page(node_page, false, NULL,
1702 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1703 			err = -EAGAIN;
1704 			unlock_page(node_page);
1705 		}
1706 		goto release_page;
1707 	} else {
1708 		/* set page dirty and write it */
1709 		if (!PageWriteback(node_page))
1710 			set_page_dirty(node_page);
1711 	}
1712 out_page:
1713 	unlock_page(node_page);
1714 release_page:
1715 	f2fs_put_page(node_page, 0);
1716 	return err;
1717 }
1718 
1719 static int f2fs_write_node_page(struct page *page,
1720 				struct writeback_control *wbc)
1721 {
1722 	return __write_node_page(page, false, NULL, wbc, false,
1723 						FS_NODE_IO, NULL);
1724 }
1725 
1726 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1727 			struct writeback_control *wbc, bool atomic,
1728 			unsigned int *seq_id)
1729 {
1730 	pgoff_t index;
1731 	struct pagevec pvec;
1732 	int ret = 0;
1733 	struct page *last_page = NULL;
1734 	bool marked = false;
1735 	nid_t ino = inode->i_ino;
1736 	int nr_pages;
1737 	int nwritten = 0;
1738 
1739 	if (atomic) {
1740 		last_page = last_fsync_dnode(sbi, ino);
1741 		if (IS_ERR_OR_NULL(last_page))
1742 			return PTR_ERR_OR_ZERO(last_page);
1743 	}
1744 retry:
1745 	pagevec_init(&pvec);
1746 	index = 0;
1747 
1748 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1749 				PAGECACHE_TAG_DIRTY))) {
1750 		int i;
1751 
1752 		for (i = 0; i < nr_pages; i++) {
1753 			struct page *page = pvec.pages[i];
1754 			bool submitted = false;
1755 
1756 			if (unlikely(f2fs_cp_error(sbi))) {
1757 				f2fs_put_page(last_page, 0);
1758 				pagevec_release(&pvec);
1759 				ret = -EIO;
1760 				goto out;
1761 			}
1762 
1763 			if (!IS_DNODE(page) || !is_cold_node(page))
1764 				continue;
1765 			if (ino_of_node(page) != ino)
1766 				continue;
1767 
1768 			lock_page(page);
1769 
1770 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1771 continue_unlock:
1772 				unlock_page(page);
1773 				continue;
1774 			}
1775 			if (ino_of_node(page) != ino)
1776 				goto continue_unlock;
1777 
1778 			if (!PageDirty(page) && page != last_page) {
1779 				/* someone wrote it for us */
1780 				goto continue_unlock;
1781 			}
1782 
1783 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1784 
1785 			set_fsync_mark(page, 0);
1786 			set_dentry_mark(page, 0);
1787 
1788 			if (!atomic || page == last_page) {
1789 				set_fsync_mark(page, 1);
1790 				percpu_counter_inc(&sbi->rf_node_block_count);
1791 				if (IS_INODE(page)) {
1792 					if (is_inode_flag_set(inode,
1793 								FI_DIRTY_INODE))
1794 						f2fs_update_inode(inode, page);
1795 					set_dentry_mark(page,
1796 						f2fs_need_dentry_mark(sbi, ino));
1797 				}
1798 				/* may be written by other thread */
1799 				if (!PageDirty(page))
1800 					set_page_dirty(page);
1801 			}
1802 
1803 			if (!clear_page_dirty_for_io(page))
1804 				goto continue_unlock;
1805 
1806 			ret = __write_node_page(page, atomic &&
1807 						page == last_page,
1808 						&submitted, wbc, true,
1809 						FS_NODE_IO, seq_id);
1810 			if (ret) {
1811 				unlock_page(page);
1812 				f2fs_put_page(last_page, 0);
1813 				break;
1814 			} else if (submitted) {
1815 				nwritten++;
1816 			}
1817 
1818 			if (page == last_page) {
1819 				f2fs_put_page(page, 0);
1820 				marked = true;
1821 				break;
1822 			}
1823 		}
1824 		pagevec_release(&pvec);
1825 		cond_resched();
1826 
1827 		if (ret || marked)
1828 			break;
1829 	}
1830 	if (!ret && atomic && !marked) {
1831 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1832 			   ino, last_page->index);
1833 		lock_page(last_page);
1834 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1835 		set_page_dirty(last_page);
1836 		unlock_page(last_page);
1837 		goto retry;
1838 	}
1839 out:
1840 	if (nwritten)
1841 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1842 	return ret ? -EIO : 0;
1843 }
1844 
1845 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1846 {
1847 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1848 	bool clean;
1849 
1850 	if (inode->i_ino != ino)
1851 		return 0;
1852 
1853 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1854 		return 0;
1855 
1856 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1857 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1858 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1859 
1860 	if (clean)
1861 		return 0;
1862 
1863 	inode = igrab(inode);
1864 	if (!inode)
1865 		return 0;
1866 	return 1;
1867 }
1868 
1869 static bool flush_dirty_inode(struct page *page)
1870 {
1871 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1872 	struct inode *inode;
1873 	nid_t ino = ino_of_node(page);
1874 
1875 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1876 	if (!inode)
1877 		return false;
1878 
1879 	f2fs_update_inode(inode, page);
1880 	unlock_page(page);
1881 
1882 	iput(inode);
1883 	return true;
1884 }
1885 
1886 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1887 {
1888 	pgoff_t index = 0;
1889 	struct pagevec pvec;
1890 	int nr_pages;
1891 
1892 	pagevec_init(&pvec);
1893 
1894 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1895 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1896 		int i;
1897 
1898 		for (i = 0; i < nr_pages; i++) {
1899 			struct page *page = pvec.pages[i];
1900 
1901 			if (!IS_DNODE(page))
1902 				continue;
1903 
1904 			lock_page(page);
1905 
1906 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1907 continue_unlock:
1908 				unlock_page(page);
1909 				continue;
1910 			}
1911 
1912 			if (!PageDirty(page)) {
1913 				/* someone wrote it for us */
1914 				goto continue_unlock;
1915 			}
1916 
1917 			/* flush inline_data, if it's async context. */
1918 			if (page_private_inline(page)) {
1919 				clear_page_private_inline(page);
1920 				unlock_page(page);
1921 				flush_inline_data(sbi, ino_of_node(page));
1922 				continue;
1923 			}
1924 			unlock_page(page);
1925 		}
1926 		pagevec_release(&pvec);
1927 		cond_resched();
1928 	}
1929 }
1930 
1931 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1932 				struct writeback_control *wbc,
1933 				bool do_balance, enum iostat_type io_type)
1934 {
1935 	pgoff_t index;
1936 	struct pagevec pvec;
1937 	int step = 0;
1938 	int nwritten = 0;
1939 	int ret = 0;
1940 	int nr_pages, done = 0;
1941 
1942 	pagevec_init(&pvec);
1943 
1944 next_step:
1945 	index = 0;
1946 
1947 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1948 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1949 		int i;
1950 
1951 		for (i = 0; i < nr_pages; i++) {
1952 			struct page *page = pvec.pages[i];
1953 			bool submitted = false;
1954 
1955 			/* give a priority to WB_SYNC threads */
1956 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1957 					wbc->sync_mode == WB_SYNC_NONE) {
1958 				done = 1;
1959 				break;
1960 			}
1961 
1962 			/*
1963 			 * flushing sequence with step:
1964 			 * 0. indirect nodes
1965 			 * 1. dentry dnodes
1966 			 * 2. file dnodes
1967 			 */
1968 			if (step == 0 && IS_DNODE(page))
1969 				continue;
1970 			if (step == 1 && (!IS_DNODE(page) ||
1971 						is_cold_node(page)))
1972 				continue;
1973 			if (step == 2 && (!IS_DNODE(page) ||
1974 						!is_cold_node(page)))
1975 				continue;
1976 lock_node:
1977 			if (wbc->sync_mode == WB_SYNC_ALL)
1978 				lock_page(page);
1979 			else if (!trylock_page(page))
1980 				continue;
1981 
1982 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1983 continue_unlock:
1984 				unlock_page(page);
1985 				continue;
1986 			}
1987 
1988 			if (!PageDirty(page)) {
1989 				/* someone wrote it for us */
1990 				goto continue_unlock;
1991 			}
1992 
1993 			/* flush inline_data/inode, if it's async context. */
1994 			if (!do_balance)
1995 				goto write_node;
1996 
1997 			/* flush inline_data */
1998 			if (page_private_inline(page)) {
1999 				clear_page_private_inline(page);
2000 				unlock_page(page);
2001 				flush_inline_data(sbi, ino_of_node(page));
2002 				goto lock_node;
2003 			}
2004 
2005 			/* flush dirty inode */
2006 			if (IS_INODE(page) && flush_dirty_inode(page))
2007 				goto lock_node;
2008 write_node:
2009 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2010 
2011 			if (!clear_page_dirty_for_io(page))
2012 				goto continue_unlock;
2013 
2014 			set_fsync_mark(page, 0);
2015 			set_dentry_mark(page, 0);
2016 
2017 			ret = __write_node_page(page, false, &submitted,
2018 						wbc, do_balance, io_type, NULL);
2019 			if (ret)
2020 				unlock_page(page);
2021 			else if (submitted)
2022 				nwritten++;
2023 
2024 			if (--wbc->nr_to_write == 0)
2025 				break;
2026 		}
2027 		pagevec_release(&pvec);
2028 		cond_resched();
2029 
2030 		if (wbc->nr_to_write == 0) {
2031 			step = 2;
2032 			break;
2033 		}
2034 	}
2035 
2036 	if (step < 2) {
2037 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2038 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2039 			goto out;
2040 		step++;
2041 		goto next_step;
2042 	}
2043 out:
2044 	if (nwritten)
2045 		f2fs_submit_merged_write(sbi, NODE);
2046 
2047 	if (unlikely(f2fs_cp_error(sbi)))
2048 		return -EIO;
2049 	return ret;
2050 }
2051 
2052 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2053 						unsigned int seq_id)
2054 {
2055 	struct fsync_node_entry *fn;
2056 	struct page *page;
2057 	struct list_head *head = &sbi->fsync_node_list;
2058 	unsigned long flags;
2059 	unsigned int cur_seq_id = 0;
2060 	int ret2, ret = 0;
2061 
2062 	while (seq_id && cur_seq_id < seq_id) {
2063 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2064 		if (list_empty(head)) {
2065 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2066 			break;
2067 		}
2068 		fn = list_first_entry(head, struct fsync_node_entry, list);
2069 		if (fn->seq_id > seq_id) {
2070 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2071 			break;
2072 		}
2073 		cur_seq_id = fn->seq_id;
2074 		page = fn->page;
2075 		get_page(page);
2076 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2077 
2078 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2079 		if (TestClearPageError(page))
2080 			ret = -EIO;
2081 
2082 		put_page(page);
2083 
2084 		if (ret)
2085 			break;
2086 	}
2087 
2088 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2089 	if (!ret)
2090 		ret = ret2;
2091 
2092 	return ret;
2093 }
2094 
2095 static int f2fs_write_node_pages(struct address_space *mapping,
2096 			    struct writeback_control *wbc)
2097 {
2098 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2099 	struct blk_plug plug;
2100 	long diff;
2101 
2102 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2103 		goto skip_write;
2104 
2105 	/* balancing f2fs's metadata in background */
2106 	f2fs_balance_fs_bg(sbi, true);
2107 
2108 	/* collect a number of dirty node pages and write together */
2109 	if (wbc->sync_mode != WB_SYNC_ALL &&
2110 			get_pages(sbi, F2FS_DIRTY_NODES) <
2111 					nr_pages_to_skip(sbi, NODE))
2112 		goto skip_write;
2113 
2114 	if (wbc->sync_mode == WB_SYNC_ALL)
2115 		atomic_inc(&sbi->wb_sync_req[NODE]);
2116 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2117 		/* to avoid potential deadlock */
2118 		if (current->plug)
2119 			blk_finish_plug(current->plug);
2120 		goto skip_write;
2121 	}
2122 
2123 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2124 
2125 	diff = nr_pages_to_write(sbi, NODE, wbc);
2126 	blk_start_plug(&plug);
2127 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2128 	blk_finish_plug(&plug);
2129 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2130 
2131 	if (wbc->sync_mode == WB_SYNC_ALL)
2132 		atomic_dec(&sbi->wb_sync_req[NODE]);
2133 	return 0;
2134 
2135 skip_write:
2136 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2137 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2138 	return 0;
2139 }
2140 
2141 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2142 		struct folio *folio)
2143 {
2144 	trace_f2fs_set_page_dirty(&folio->page, NODE);
2145 
2146 	if (!folio_test_uptodate(folio))
2147 		folio_mark_uptodate(folio);
2148 #ifdef CONFIG_F2FS_CHECK_FS
2149 	if (IS_INODE(&folio->page))
2150 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2151 #endif
2152 	if (filemap_dirty_folio(mapping, folio)) {
2153 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2154 		set_page_private_reference(&folio->page);
2155 		return true;
2156 	}
2157 	return false;
2158 }
2159 
2160 /*
2161  * Structure of the f2fs node operations
2162  */
2163 const struct address_space_operations f2fs_node_aops = {
2164 	.writepage	= f2fs_write_node_page,
2165 	.writepages	= f2fs_write_node_pages,
2166 	.dirty_folio	= f2fs_dirty_node_folio,
2167 	.invalidate_folio = f2fs_invalidate_folio,
2168 	.release_folio	= f2fs_release_folio,
2169 	.migrate_folio	= filemap_migrate_folio,
2170 };
2171 
2172 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2173 						nid_t n)
2174 {
2175 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2176 }
2177 
2178 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2179 				struct free_nid *i)
2180 {
2181 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2182 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2183 
2184 	if (err)
2185 		return err;
2186 
2187 	nm_i->nid_cnt[FREE_NID]++;
2188 	list_add_tail(&i->list, &nm_i->free_nid_list);
2189 	return 0;
2190 }
2191 
2192 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2193 			struct free_nid *i, enum nid_state state)
2194 {
2195 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2196 
2197 	f2fs_bug_on(sbi, state != i->state);
2198 	nm_i->nid_cnt[state]--;
2199 	if (state == FREE_NID)
2200 		list_del(&i->list);
2201 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2202 }
2203 
2204 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2205 			enum nid_state org_state, enum nid_state dst_state)
2206 {
2207 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2208 
2209 	f2fs_bug_on(sbi, org_state != i->state);
2210 	i->state = dst_state;
2211 	nm_i->nid_cnt[org_state]--;
2212 	nm_i->nid_cnt[dst_state]++;
2213 
2214 	switch (dst_state) {
2215 	case PREALLOC_NID:
2216 		list_del(&i->list);
2217 		break;
2218 	case FREE_NID:
2219 		list_add_tail(&i->list, &nm_i->free_nid_list);
2220 		break;
2221 	default:
2222 		BUG_ON(1);
2223 	}
2224 }
2225 
2226 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2227 {
2228 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2229 	unsigned int i;
2230 	bool ret = true;
2231 
2232 	f2fs_down_read(&nm_i->nat_tree_lock);
2233 	for (i = 0; i < nm_i->nat_blocks; i++) {
2234 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2235 			ret = false;
2236 			break;
2237 		}
2238 	}
2239 	f2fs_up_read(&nm_i->nat_tree_lock);
2240 
2241 	return ret;
2242 }
2243 
2244 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2245 							bool set, bool build)
2246 {
2247 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2248 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2249 	unsigned int nid_ofs = nid - START_NID(nid);
2250 
2251 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2252 		return;
2253 
2254 	if (set) {
2255 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2256 			return;
2257 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2258 		nm_i->free_nid_count[nat_ofs]++;
2259 	} else {
2260 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2261 			return;
2262 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2263 		if (!build)
2264 			nm_i->free_nid_count[nat_ofs]--;
2265 	}
2266 }
2267 
2268 /* return if the nid is recognized as free */
2269 static bool add_free_nid(struct f2fs_sb_info *sbi,
2270 				nid_t nid, bool build, bool update)
2271 {
2272 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2273 	struct free_nid *i, *e;
2274 	struct nat_entry *ne;
2275 	int err = -EINVAL;
2276 	bool ret = false;
2277 
2278 	/* 0 nid should not be used */
2279 	if (unlikely(nid == 0))
2280 		return false;
2281 
2282 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2283 		return false;
2284 
2285 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2286 	i->nid = nid;
2287 	i->state = FREE_NID;
2288 
2289 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2290 
2291 	spin_lock(&nm_i->nid_list_lock);
2292 
2293 	if (build) {
2294 		/*
2295 		 *   Thread A             Thread B
2296 		 *  - f2fs_create
2297 		 *   - f2fs_new_inode
2298 		 *    - f2fs_alloc_nid
2299 		 *     - __insert_nid_to_list(PREALLOC_NID)
2300 		 *                     - f2fs_balance_fs_bg
2301 		 *                      - f2fs_build_free_nids
2302 		 *                       - __f2fs_build_free_nids
2303 		 *                        - scan_nat_page
2304 		 *                         - add_free_nid
2305 		 *                          - __lookup_nat_cache
2306 		 *  - f2fs_add_link
2307 		 *   - f2fs_init_inode_metadata
2308 		 *    - f2fs_new_inode_page
2309 		 *     - f2fs_new_node_page
2310 		 *      - set_node_addr
2311 		 *  - f2fs_alloc_nid_done
2312 		 *   - __remove_nid_from_list(PREALLOC_NID)
2313 		 *                         - __insert_nid_to_list(FREE_NID)
2314 		 */
2315 		ne = __lookup_nat_cache(nm_i, nid);
2316 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2317 				nat_get_blkaddr(ne) != NULL_ADDR))
2318 			goto err_out;
2319 
2320 		e = __lookup_free_nid_list(nm_i, nid);
2321 		if (e) {
2322 			if (e->state == FREE_NID)
2323 				ret = true;
2324 			goto err_out;
2325 		}
2326 	}
2327 	ret = true;
2328 	err = __insert_free_nid(sbi, i);
2329 err_out:
2330 	if (update) {
2331 		update_free_nid_bitmap(sbi, nid, ret, build);
2332 		if (!build)
2333 			nm_i->available_nids++;
2334 	}
2335 	spin_unlock(&nm_i->nid_list_lock);
2336 	radix_tree_preload_end();
2337 
2338 	if (err)
2339 		kmem_cache_free(free_nid_slab, i);
2340 	return ret;
2341 }
2342 
2343 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2344 {
2345 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2346 	struct free_nid *i;
2347 	bool need_free = false;
2348 
2349 	spin_lock(&nm_i->nid_list_lock);
2350 	i = __lookup_free_nid_list(nm_i, nid);
2351 	if (i && i->state == FREE_NID) {
2352 		__remove_free_nid(sbi, i, FREE_NID);
2353 		need_free = true;
2354 	}
2355 	spin_unlock(&nm_i->nid_list_lock);
2356 
2357 	if (need_free)
2358 		kmem_cache_free(free_nid_slab, i);
2359 }
2360 
2361 static int scan_nat_page(struct f2fs_sb_info *sbi,
2362 			struct page *nat_page, nid_t start_nid)
2363 {
2364 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2365 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2366 	block_t blk_addr;
2367 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2368 	int i;
2369 
2370 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2371 
2372 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2373 
2374 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2375 		if (unlikely(start_nid >= nm_i->max_nid))
2376 			break;
2377 
2378 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2379 
2380 		if (blk_addr == NEW_ADDR)
2381 			return -EINVAL;
2382 
2383 		if (blk_addr == NULL_ADDR) {
2384 			add_free_nid(sbi, start_nid, true, true);
2385 		} else {
2386 			spin_lock(&NM_I(sbi)->nid_list_lock);
2387 			update_free_nid_bitmap(sbi, start_nid, false, true);
2388 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2389 		}
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2396 {
2397 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2398 	struct f2fs_journal *journal = curseg->journal;
2399 	int i;
2400 
2401 	down_read(&curseg->journal_rwsem);
2402 	for (i = 0; i < nats_in_cursum(journal); i++) {
2403 		block_t addr;
2404 		nid_t nid;
2405 
2406 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2407 		nid = le32_to_cpu(nid_in_journal(journal, i));
2408 		if (addr == NULL_ADDR)
2409 			add_free_nid(sbi, nid, true, false);
2410 		else
2411 			remove_free_nid(sbi, nid);
2412 	}
2413 	up_read(&curseg->journal_rwsem);
2414 }
2415 
2416 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2417 {
2418 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2419 	unsigned int i, idx;
2420 	nid_t nid;
2421 
2422 	f2fs_down_read(&nm_i->nat_tree_lock);
2423 
2424 	for (i = 0; i < nm_i->nat_blocks; i++) {
2425 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2426 			continue;
2427 		if (!nm_i->free_nid_count[i])
2428 			continue;
2429 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2430 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2431 						NAT_ENTRY_PER_BLOCK, idx);
2432 			if (idx >= NAT_ENTRY_PER_BLOCK)
2433 				break;
2434 
2435 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2436 			add_free_nid(sbi, nid, true, false);
2437 
2438 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2439 				goto out;
2440 		}
2441 	}
2442 out:
2443 	scan_curseg_cache(sbi);
2444 
2445 	f2fs_up_read(&nm_i->nat_tree_lock);
2446 }
2447 
2448 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2449 						bool sync, bool mount)
2450 {
2451 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2452 	int i = 0, ret;
2453 	nid_t nid = nm_i->next_scan_nid;
2454 
2455 	if (unlikely(nid >= nm_i->max_nid))
2456 		nid = 0;
2457 
2458 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2459 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2460 
2461 	/* Enough entries */
2462 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2463 		return 0;
2464 
2465 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2466 		return 0;
2467 
2468 	if (!mount) {
2469 		/* try to find free nids in free_nid_bitmap */
2470 		scan_free_nid_bits(sbi);
2471 
2472 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2473 			return 0;
2474 	}
2475 
2476 	/* readahead nat pages to be scanned */
2477 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2478 							META_NAT, true);
2479 
2480 	f2fs_down_read(&nm_i->nat_tree_lock);
2481 
2482 	while (1) {
2483 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2484 						nm_i->nat_block_bitmap)) {
2485 			struct page *page = get_current_nat_page(sbi, nid);
2486 
2487 			if (IS_ERR(page)) {
2488 				ret = PTR_ERR(page);
2489 			} else {
2490 				ret = scan_nat_page(sbi, page, nid);
2491 				f2fs_put_page(page, 1);
2492 			}
2493 
2494 			if (ret) {
2495 				f2fs_up_read(&nm_i->nat_tree_lock);
2496 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2497 				return ret;
2498 			}
2499 		}
2500 
2501 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2502 		if (unlikely(nid >= nm_i->max_nid))
2503 			nid = 0;
2504 
2505 		if (++i >= FREE_NID_PAGES)
2506 			break;
2507 	}
2508 
2509 	/* go to the next free nat pages to find free nids abundantly */
2510 	nm_i->next_scan_nid = nid;
2511 
2512 	/* find free nids from current sum_pages */
2513 	scan_curseg_cache(sbi);
2514 
2515 	f2fs_up_read(&nm_i->nat_tree_lock);
2516 
2517 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2518 					nm_i->ra_nid_pages, META_NAT, false);
2519 
2520 	return 0;
2521 }
2522 
2523 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2524 {
2525 	int ret;
2526 
2527 	mutex_lock(&NM_I(sbi)->build_lock);
2528 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2529 	mutex_unlock(&NM_I(sbi)->build_lock);
2530 
2531 	return ret;
2532 }
2533 
2534 /*
2535  * If this function returns success, caller can obtain a new nid
2536  * from second parameter of this function.
2537  * The returned nid could be used ino as well as nid when inode is created.
2538  */
2539 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2540 {
2541 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2542 	struct free_nid *i = NULL;
2543 retry:
2544 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2545 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2546 		return false;
2547 	}
2548 
2549 	spin_lock(&nm_i->nid_list_lock);
2550 
2551 	if (unlikely(nm_i->available_nids == 0)) {
2552 		spin_unlock(&nm_i->nid_list_lock);
2553 		return false;
2554 	}
2555 
2556 	/* We should not use stale free nids created by f2fs_build_free_nids */
2557 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2558 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2559 		i = list_first_entry(&nm_i->free_nid_list,
2560 					struct free_nid, list);
2561 		*nid = i->nid;
2562 
2563 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2564 		nm_i->available_nids--;
2565 
2566 		update_free_nid_bitmap(sbi, *nid, false, false);
2567 
2568 		spin_unlock(&nm_i->nid_list_lock);
2569 		return true;
2570 	}
2571 	spin_unlock(&nm_i->nid_list_lock);
2572 
2573 	/* Let's scan nat pages and its caches to get free nids */
2574 	if (!f2fs_build_free_nids(sbi, true, false))
2575 		goto retry;
2576 	return false;
2577 }
2578 
2579 /*
2580  * f2fs_alloc_nid() should be called prior to this function.
2581  */
2582 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2583 {
2584 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2585 	struct free_nid *i;
2586 
2587 	spin_lock(&nm_i->nid_list_lock);
2588 	i = __lookup_free_nid_list(nm_i, nid);
2589 	f2fs_bug_on(sbi, !i);
2590 	__remove_free_nid(sbi, i, PREALLOC_NID);
2591 	spin_unlock(&nm_i->nid_list_lock);
2592 
2593 	kmem_cache_free(free_nid_slab, i);
2594 }
2595 
2596 /*
2597  * f2fs_alloc_nid() should be called prior to this function.
2598  */
2599 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2600 {
2601 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2602 	struct free_nid *i;
2603 	bool need_free = false;
2604 
2605 	if (!nid)
2606 		return;
2607 
2608 	spin_lock(&nm_i->nid_list_lock);
2609 	i = __lookup_free_nid_list(nm_i, nid);
2610 	f2fs_bug_on(sbi, !i);
2611 
2612 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2613 		__remove_free_nid(sbi, i, PREALLOC_NID);
2614 		need_free = true;
2615 	} else {
2616 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2617 	}
2618 
2619 	nm_i->available_nids++;
2620 
2621 	update_free_nid_bitmap(sbi, nid, true, false);
2622 
2623 	spin_unlock(&nm_i->nid_list_lock);
2624 
2625 	if (need_free)
2626 		kmem_cache_free(free_nid_slab, i);
2627 }
2628 
2629 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2630 {
2631 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2632 	int nr = nr_shrink;
2633 
2634 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2635 		return 0;
2636 
2637 	if (!mutex_trylock(&nm_i->build_lock))
2638 		return 0;
2639 
2640 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2641 		struct free_nid *i, *next;
2642 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2643 
2644 		spin_lock(&nm_i->nid_list_lock);
2645 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2646 			if (!nr_shrink || !batch ||
2647 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2648 				break;
2649 			__remove_free_nid(sbi, i, FREE_NID);
2650 			kmem_cache_free(free_nid_slab, i);
2651 			nr_shrink--;
2652 			batch--;
2653 		}
2654 		spin_unlock(&nm_i->nid_list_lock);
2655 	}
2656 
2657 	mutex_unlock(&nm_i->build_lock);
2658 
2659 	return nr - nr_shrink;
2660 }
2661 
2662 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2663 {
2664 	void *src_addr, *dst_addr;
2665 	size_t inline_size;
2666 	struct page *ipage;
2667 	struct f2fs_inode *ri;
2668 
2669 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2670 	if (IS_ERR(ipage))
2671 		return PTR_ERR(ipage);
2672 
2673 	ri = F2FS_INODE(page);
2674 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2675 		if (!f2fs_has_inline_xattr(inode)) {
2676 			set_inode_flag(inode, FI_INLINE_XATTR);
2677 			stat_inc_inline_xattr(inode);
2678 		}
2679 	} else {
2680 		if (f2fs_has_inline_xattr(inode)) {
2681 			stat_dec_inline_xattr(inode);
2682 			clear_inode_flag(inode, FI_INLINE_XATTR);
2683 		}
2684 		goto update_inode;
2685 	}
2686 
2687 	dst_addr = inline_xattr_addr(inode, ipage);
2688 	src_addr = inline_xattr_addr(inode, page);
2689 	inline_size = inline_xattr_size(inode);
2690 
2691 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2692 	memcpy(dst_addr, src_addr, inline_size);
2693 update_inode:
2694 	f2fs_update_inode(inode, ipage);
2695 	f2fs_put_page(ipage, 1);
2696 	return 0;
2697 }
2698 
2699 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2700 {
2701 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2702 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2703 	nid_t new_xnid;
2704 	struct dnode_of_data dn;
2705 	struct node_info ni;
2706 	struct page *xpage;
2707 	int err;
2708 
2709 	if (!prev_xnid)
2710 		goto recover_xnid;
2711 
2712 	/* 1: invalidate the previous xattr nid */
2713 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2714 	if (err)
2715 		return err;
2716 
2717 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2718 	dec_valid_node_count(sbi, inode, false);
2719 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2720 
2721 recover_xnid:
2722 	/* 2: update xattr nid in inode */
2723 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2724 		return -ENOSPC;
2725 
2726 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2727 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2728 	if (IS_ERR(xpage)) {
2729 		f2fs_alloc_nid_failed(sbi, new_xnid);
2730 		return PTR_ERR(xpage);
2731 	}
2732 
2733 	f2fs_alloc_nid_done(sbi, new_xnid);
2734 	f2fs_update_inode_page(inode);
2735 
2736 	/* 3: update and set xattr node page dirty */
2737 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2738 
2739 	set_page_dirty(xpage);
2740 	f2fs_put_page(xpage, 1);
2741 
2742 	return 0;
2743 }
2744 
2745 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2746 {
2747 	struct f2fs_inode *src, *dst;
2748 	nid_t ino = ino_of_node(page);
2749 	struct node_info old_ni, new_ni;
2750 	struct page *ipage;
2751 	int err;
2752 
2753 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2754 	if (err)
2755 		return err;
2756 
2757 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2758 		return -EINVAL;
2759 retry:
2760 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2761 	if (!ipage) {
2762 		memalloc_retry_wait(GFP_NOFS);
2763 		goto retry;
2764 	}
2765 
2766 	/* Should not use this inode from free nid list */
2767 	remove_free_nid(sbi, ino);
2768 
2769 	if (!PageUptodate(ipage))
2770 		SetPageUptodate(ipage);
2771 	fill_node_footer(ipage, ino, ino, 0, true);
2772 	set_cold_node(ipage, false);
2773 
2774 	src = F2FS_INODE(page);
2775 	dst = F2FS_INODE(ipage);
2776 
2777 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2778 	dst->i_size = 0;
2779 	dst->i_blocks = cpu_to_le64(1);
2780 	dst->i_links = cpu_to_le32(1);
2781 	dst->i_xattr_nid = 0;
2782 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2783 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2784 		dst->i_extra_isize = src->i_extra_isize;
2785 
2786 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2787 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2788 							i_inline_xattr_size))
2789 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2790 
2791 		if (f2fs_sb_has_project_quota(sbi) &&
2792 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2793 								i_projid))
2794 			dst->i_projid = src->i_projid;
2795 
2796 		if (f2fs_sb_has_inode_crtime(sbi) &&
2797 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2798 							i_crtime_nsec)) {
2799 			dst->i_crtime = src->i_crtime;
2800 			dst->i_crtime_nsec = src->i_crtime_nsec;
2801 		}
2802 	}
2803 
2804 	new_ni = old_ni;
2805 	new_ni.ino = ino;
2806 
2807 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2808 		WARN_ON(1);
2809 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2810 	inc_valid_inode_count(sbi);
2811 	set_page_dirty(ipage);
2812 	f2fs_put_page(ipage, 1);
2813 	return 0;
2814 }
2815 
2816 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2817 			unsigned int segno, struct f2fs_summary_block *sum)
2818 {
2819 	struct f2fs_node *rn;
2820 	struct f2fs_summary *sum_entry;
2821 	block_t addr;
2822 	int i, idx, last_offset, nrpages;
2823 
2824 	/* scan the node segment */
2825 	last_offset = sbi->blocks_per_seg;
2826 	addr = START_BLOCK(sbi, segno);
2827 	sum_entry = &sum->entries[0];
2828 
2829 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2830 		nrpages = bio_max_segs(last_offset - i);
2831 
2832 		/* readahead node pages */
2833 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2834 
2835 		for (idx = addr; idx < addr + nrpages; idx++) {
2836 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2837 
2838 			if (IS_ERR(page))
2839 				return PTR_ERR(page);
2840 
2841 			rn = F2FS_NODE(page);
2842 			sum_entry->nid = rn->footer.nid;
2843 			sum_entry->version = 0;
2844 			sum_entry->ofs_in_node = 0;
2845 			sum_entry++;
2846 			f2fs_put_page(page, 1);
2847 		}
2848 
2849 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2850 							addr + nrpages);
2851 	}
2852 	return 0;
2853 }
2854 
2855 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2856 {
2857 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2858 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2859 	struct f2fs_journal *journal = curseg->journal;
2860 	int i;
2861 
2862 	down_write(&curseg->journal_rwsem);
2863 	for (i = 0; i < nats_in_cursum(journal); i++) {
2864 		struct nat_entry *ne;
2865 		struct f2fs_nat_entry raw_ne;
2866 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2867 
2868 		if (f2fs_check_nid_range(sbi, nid))
2869 			continue;
2870 
2871 		raw_ne = nat_in_journal(journal, i);
2872 
2873 		ne = __lookup_nat_cache(nm_i, nid);
2874 		if (!ne) {
2875 			ne = __alloc_nat_entry(sbi, nid, true);
2876 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2877 		}
2878 
2879 		/*
2880 		 * if a free nat in journal has not been used after last
2881 		 * checkpoint, we should remove it from available nids,
2882 		 * since later we will add it again.
2883 		 */
2884 		if (!get_nat_flag(ne, IS_DIRTY) &&
2885 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2886 			spin_lock(&nm_i->nid_list_lock);
2887 			nm_i->available_nids--;
2888 			spin_unlock(&nm_i->nid_list_lock);
2889 		}
2890 
2891 		__set_nat_cache_dirty(nm_i, ne);
2892 	}
2893 	update_nats_in_cursum(journal, -i);
2894 	up_write(&curseg->journal_rwsem);
2895 }
2896 
2897 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2898 						struct list_head *head, int max)
2899 {
2900 	struct nat_entry_set *cur;
2901 
2902 	if (nes->entry_cnt >= max)
2903 		goto add_out;
2904 
2905 	list_for_each_entry(cur, head, set_list) {
2906 		if (cur->entry_cnt >= nes->entry_cnt) {
2907 			list_add(&nes->set_list, cur->set_list.prev);
2908 			return;
2909 		}
2910 	}
2911 add_out:
2912 	list_add_tail(&nes->set_list, head);
2913 }
2914 
2915 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2916 							unsigned int valid)
2917 {
2918 	if (valid == 0) {
2919 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2920 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2921 		return;
2922 	}
2923 
2924 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2925 	if (valid == NAT_ENTRY_PER_BLOCK)
2926 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2927 	else
2928 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2929 }
2930 
2931 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2932 						struct page *page)
2933 {
2934 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2935 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2936 	struct f2fs_nat_block *nat_blk = page_address(page);
2937 	int valid = 0;
2938 	int i = 0;
2939 
2940 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2941 		return;
2942 
2943 	if (nat_index == 0) {
2944 		valid = 1;
2945 		i = 1;
2946 	}
2947 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2948 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2949 			valid++;
2950 	}
2951 
2952 	__update_nat_bits(nm_i, nat_index, valid);
2953 }
2954 
2955 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2956 {
2957 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2958 	unsigned int nat_ofs;
2959 
2960 	f2fs_down_read(&nm_i->nat_tree_lock);
2961 
2962 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2963 		unsigned int valid = 0, nid_ofs = 0;
2964 
2965 		/* handle nid zero due to it should never be used */
2966 		if (unlikely(nat_ofs == 0)) {
2967 			valid = 1;
2968 			nid_ofs = 1;
2969 		}
2970 
2971 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2972 			if (!test_bit_le(nid_ofs,
2973 					nm_i->free_nid_bitmap[nat_ofs]))
2974 				valid++;
2975 		}
2976 
2977 		__update_nat_bits(nm_i, nat_ofs, valid);
2978 	}
2979 
2980 	f2fs_up_read(&nm_i->nat_tree_lock);
2981 }
2982 
2983 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2984 		struct nat_entry_set *set, struct cp_control *cpc)
2985 {
2986 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2987 	struct f2fs_journal *journal = curseg->journal;
2988 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2989 	bool to_journal = true;
2990 	struct f2fs_nat_block *nat_blk;
2991 	struct nat_entry *ne, *cur;
2992 	struct page *page = NULL;
2993 
2994 	/*
2995 	 * there are two steps to flush nat entries:
2996 	 * #1, flush nat entries to journal in current hot data summary block.
2997 	 * #2, flush nat entries to nat page.
2998 	 */
2999 	if ((cpc->reason & CP_UMOUNT) ||
3000 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3001 		to_journal = false;
3002 
3003 	if (to_journal) {
3004 		down_write(&curseg->journal_rwsem);
3005 	} else {
3006 		page = get_next_nat_page(sbi, start_nid);
3007 		if (IS_ERR(page))
3008 			return PTR_ERR(page);
3009 
3010 		nat_blk = page_address(page);
3011 		f2fs_bug_on(sbi, !nat_blk);
3012 	}
3013 
3014 	/* flush dirty nats in nat entry set */
3015 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3016 		struct f2fs_nat_entry *raw_ne;
3017 		nid_t nid = nat_get_nid(ne);
3018 		int offset;
3019 
3020 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3021 
3022 		if (to_journal) {
3023 			offset = f2fs_lookup_journal_in_cursum(journal,
3024 							NAT_JOURNAL, nid, 1);
3025 			f2fs_bug_on(sbi, offset < 0);
3026 			raw_ne = &nat_in_journal(journal, offset);
3027 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3028 		} else {
3029 			raw_ne = &nat_blk->entries[nid - start_nid];
3030 		}
3031 		raw_nat_from_node_info(raw_ne, &ne->ni);
3032 		nat_reset_flag(ne);
3033 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3034 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3035 			add_free_nid(sbi, nid, false, true);
3036 		} else {
3037 			spin_lock(&NM_I(sbi)->nid_list_lock);
3038 			update_free_nid_bitmap(sbi, nid, false, false);
3039 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3040 		}
3041 	}
3042 
3043 	if (to_journal) {
3044 		up_write(&curseg->journal_rwsem);
3045 	} else {
3046 		update_nat_bits(sbi, start_nid, page);
3047 		f2fs_put_page(page, 1);
3048 	}
3049 
3050 	/* Allow dirty nats by node block allocation in write_begin */
3051 	if (!set->entry_cnt) {
3052 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3053 		kmem_cache_free(nat_entry_set_slab, set);
3054 	}
3055 	return 0;
3056 }
3057 
3058 /*
3059  * This function is called during the checkpointing process.
3060  */
3061 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3062 {
3063 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3064 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3065 	struct f2fs_journal *journal = curseg->journal;
3066 	struct nat_entry_set *setvec[SETVEC_SIZE];
3067 	struct nat_entry_set *set, *tmp;
3068 	unsigned int found;
3069 	nid_t set_idx = 0;
3070 	LIST_HEAD(sets);
3071 	int err = 0;
3072 
3073 	/*
3074 	 * during unmount, let's flush nat_bits before checking
3075 	 * nat_cnt[DIRTY_NAT].
3076 	 */
3077 	if (cpc->reason & CP_UMOUNT) {
3078 		f2fs_down_write(&nm_i->nat_tree_lock);
3079 		remove_nats_in_journal(sbi);
3080 		f2fs_up_write(&nm_i->nat_tree_lock);
3081 	}
3082 
3083 	if (!nm_i->nat_cnt[DIRTY_NAT])
3084 		return 0;
3085 
3086 	f2fs_down_write(&nm_i->nat_tree_lock);
3087 
3088 	/*
3089 	 * if there are no enough space in journal to store dirty nat
3090 	 * entries, remove all entries from journal and merge them
3091 	 * into nat entry set.
3092 	 */
3093 	if (cpc->reason & CP_UMOUNT ||
3094 		!__has_cursum_space(journal,
3095 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3096 		remove_nats_in_journal(sbi);
3097 
3098 	while ((found = __gang_lookup_nat_set(nm_i,
3099 					set_idx, SETVEC_SIZE, setvec))) {
3100 		unsigned idx;
3101 
3102 		set_idx = setvec[found - 1]->set + 1;
3103 		for (idx = 0; idx < found; idx++)
3104 			__adjust_nat_entry_set(setvec[idx], &sets,
3105 						MAX_NAT_JENTRIES(journal));
3106 	}
3107 
3108 	/* flush dirty nats in nat entry set */
3109 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3110 		err = __flush_nat_entry_set(sbi, set, cpc);
3111 		if (err)
3112 			break;
3113 	}
3114 
3115 	f2fs_up_write(&nm_i->nat_tree_lock);
3116 	/* Allow dirty nats by node block allocation in write_begin */
3117 
3118 	return err;
3119 }
3120 
3121 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3122 {
3123 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3124 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3125 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3126 	unsigned int i;
3127 	__u64 cp_ver = cur_cp_version(ckpt);
3128 	block_t nat_bits_addr;
3129 
3130 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3131 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3132 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3133 	if (!nm_i->nat_bits)
3134 		return -ENOMEM;
3135 
3136 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3137 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3138 
3139 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3140 		return 0;
3141 
3142 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3143 						nm_i->nat_bits_blocks;
3144 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3145 		struct page *page;
3146 
3147 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3148 		if (IS_ERR(page))
3149 			return PTR_ERR(page);
3150 
3151 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3152 					page_address(page), F2FS_BLKSIZE);
3153 		f2fs_put_page(page, 1);
3154 	}
3155 
3156 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3157 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3158 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3159 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3160 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3161 		return 0;
3162 	}
3163 
3164 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3165 	return 0;
3166 }
3167 
3168 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3169 {
3170 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3171 	unsigned int i = 0;
3172 	nid_t nid, last_nid;
3173 
3174 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3175 		return;
3176 
3177 	for (i = 0; i < nm_i->nat_blocks; i++) {
3178 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3179 		if (i >= nm_i->nat_blocks)
3180 			break;
3181 
3182 		__set_bit_le(i, nm_i->nat_block_bitmap);
3183 
3184 		nid = i * NAT_ENTRY_PER_BLOCK;
3185 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3186 
3187 		spin_lock(&NM_I(sbi)->nid_list_lock);
3188 		for (; nid < last_nid; nid++)
3189 			update_free_nid_bitmap(sbi, nid, true, true);
3190 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3191 	}
3192 
3193 	for (i = 0; i < nm_i->nat_blocks; i++) {
3194 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3195 		if (i >= nm_i->nat_blocks)
3196 			break;
3197 
3198 		__set_bit_le(i, nm_i->nat_block_bitmap);
3199 	}
3200 }
3201 
3202 static int init_node_manager(struct f2fs_sb_info *sbi)
3203 {
3204 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3205 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3206 	unsigned char *version_bitmap;
3207 	unsigned int nat_segs;
3208 	int err;
3209 
3210 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3211 
3212 	/* segment_count_nat includes pair segment so divide to 2. */
3213 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3214 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3215 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3216 
3217 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3218 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3219 						F2FS_RESERVED_NODE_NUM;
3220 	nm_i->nid_cnt[FREE_NID] = 0;
3221 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3222 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3223 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3224 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3225 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3226 
3227 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3228 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3229 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3230 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3231 	INIT_LIST_HEAD(&nm_i->nat_entries);
3232 	spin_lock_init(&nm_i->nat_list_lock);
3233 
3234 	mutex_init(&nm_i->build_lock);
3235 	spin_lock_init(&nm_i->nid_list_lock);
3236 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3237 
3238 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3239 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3240 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3241 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3242 					GFP_KERNEL);
3243 	if (!nm_i->nat_bitmap)
3244 		return -ENOMEM;
3245 
3246 	err = __get_nat_bitmaps(sbi);
3247 	if (err)
3248 		return err;
3249 
3250 #ifdef CONFIG_F2FS_CHECK_FS
3251 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3252 					GFP_KERNEL);
3253 	if (!nm_i->nat_bitmap_mir)
3254 		return -ENOMEM;
3255 #endif
3256 
3257 	return 0;
3258 }
3259 
3260 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3261 {
3262 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3263 	int i;
3264 
3265 	nm_i->free_nid_bitmap =
3266 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3267 					      nm_i->nat_blocks),
3268 			      GFP_KERNEL);
3269 	if (!nm_i->free_nid_bitmap)
3270 		return -ENOMEM;
3271 
3272 	for (i = 0; i < nm_i->nat_blocks; i++) {
3273 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3274 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3275 		if (!nm_i->free_nid_bitmap[i])
3276 			return -ENOMEM;
3277 	}
3278 
3279 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3280 								GFP_KERNEL);
3281 	if (!nm_i->nat_block_bitmap)
3282 		return -ENOMEM;
3283 
3284 	nm_i->free_nid_count =
3285 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3286 					      nm_i->nat_blocks),
3287 			      GFP_KERNEL);
3288 	if (!nm_i->free_nid_count)
3289 		return -ENOMEM;
3290 	return 0;
3291 }
3292 
3293 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3294 {
3295 	int err;
3296 
3297 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3298 							GFP_KERNEL);
3299 	if (!sbi->nm_info)
3300 		return -ENOMEM;
3301 
3302 	err = init_node_manager(sbi);
3303 	if (err)
3304 		return err;
3305 
3306 	err = init_free_nid_cache(sbi);
3307 	if (err)
3308 		return err;
3309 
3310 	/* load free nid status from nat_bits table */
3311 	load_free_nid_bitmap(sbi);
3312 
3313 	return f2fs_build_free_nids(sbi, true, true);
3314 }
3315 
3316 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3317 {
3318 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3319 	struct free_nid *i, *next_i;
3320 	struct nat_entry *natvec[NATVEC_SIZE];
3321 	struct nat_entry_set *setvec[SETVEC_SIZE];
3322 	nid_t nid = 0;
3323 	unsigned int found;
3324 
3325 	if (!nm_i)
3326 		return;
3327 
3328 	/* destroy free nid list */
3329 	spin_lock(&nm_i->nid_list_lock);
3330 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3331 		__remove_free_nid(sbi, i, FREE_NID);
3332 		spin_unlock(&nm_i->nid_list_lock);
3333 		kmem_cache_free(free_nid_slab, i);
3334 		spin_lock(&nm_i->nid_list_lock);
3335 	}
3336 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3337 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3338 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3339 	spin_unlock(&nm_i->nid_list_lock);
3340 
3341 	/* destroy nat cache */
3342 	f2fs_down_write(&nm_i->nat_tree_lock);
3343 	while ((found = __gang_lookup_nat_cache(nm_i,
3344 					nid, NATVEC_SIZE, natvec))) {
3345 		unsigned idx;
3346 
3347 		nid = nat_get_nid(natvec[found - 1]) + 1;
3348 		for (idx = 0; idx < found; idx++) {
3349 			spin_lock(&nm_i->nat_list_lock);
3350 			list_del(&natvec[idx]->list);
3351 			spin_unlock(&nm_i->nat_list_lock);
3352 
3353 			__del_from_nat_cache(nm_i, natvec[idx]);
3354 		}
3355 	}
3356 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3357 
3358 	/* destroy nat set cache */
3359 	nid = 0;
3360 	while ((found = __gang_lookup_nat_set(nm_i,
3361 					nid, SETVEC_SIZE, setvec))) {
3362 		unsigned idx;
3363 
3364 		nid = setvec[found - 1]->set + 1;
3365 		for (idx = 0; idx < found; idx++) {
3366 			/* entry_cnt is not zero, when cp_error was occurred */
3367 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3368 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3369 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3370 		}
3371 	}
3372 	f2fs_up_write(&nm_i->nat_tree_lock);
3373 
3374 	kvfree(nm_i->nat_block_bitmap);
3375 	if (nm_i->free_nid_bitmap) {
3376 		int i;
3377 
3378 		for (i = 0; i < nm_i->nat_blocks; i++)
3379 			kvfree(nm_i->free_nid_bitmap[i]);
3380 		kvfree(nm_i->free_nid_bitmap);
3381 	}
3382 	kvfree(nm_i->free_nid_count);
3383 
3384 	kvfree(nm_i->nat_bitmap);
3385 	kvfree(nm_i->nat_bits);
3386 #ifdef CONFIG_F2FS_CHECK_FS
3387 	kvfree(nm_i->nat_bitmap_mir);
3388 #endif
3389 	sbi->nm_info = NULL;
3390 	kfree(nm_i);
3391 }
3392 
3393 int __init f2fs_create_node_manager_caches(void)
3394 {
3395 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3396 			sizeof(struct nat_entry));
3397 	if (!nat_entry_slab)
3398 		goto fail;
3399 
3400 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3401 			sizeof(struct free_nid));
3402 	if (!free_nid_slab)
3403 		goto destroy_nat_entry;
3404 
3405 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3406 			sizeof(struct nat_entry_set));
3407 	if (!nat_entry_set_slab)
3408 		goto destroy_free_nid;
3409 
3410 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3411 			sizeof(struct fsync_node_entry));
3412 	if (!fsync_node_entry_slab)
3413 		goto destroy_nat_entry_set;
3414 	return 0;
3415 
3416 destroy_nat_entry_set:
3417 	kmem_cache_destroy(nat_entry_set_slab);
3418 destroy_free_nid:
3419 	kmem_cache_destroy(free_nid_slab);
3420 destroy_nat_entry:
3421 	kmem_cache_destroy(nat_entry_slab);
3422 fail:
3423 	return -ENOMEM;
3424 }
3425 
3426 void f2fs_destroy_node_manager_caches(void)
3427 {
3428 	kmem_cache_destroy(fsync_node_entry_slab);
3429 	kmem_cache_destroy(nat_entry_set_slab);
3430 	kmem_cache_destroy(free_nid_slab);
3431 	kmem_cache_destroy(nat_entry_slab);
3432 }
3433