1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 314 { 315 return NODE_MAPPING(sbi) == page->mapping && 316 IS_DNODE(page) && is_cold_node(page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->nid = nid; 562 retry: 563 /* Check nat cache */ 564 f2fs_down_read(&nm_i->nat_tree_lock); 565 e = __lookup_nat_cache(nm_i, nid); 566 if (e) { 567 ni->ino = nat_get_ino(e); 568 ni->blk_addr = nat_get_blkaddr(e); 569 ni->version = nat_get_version(e); 570 f2fs_up_read(&nm_i->nat_tree_lock); 571 return 0; 572 } 573 574 /* 575 * Check current segment summary by trying to grab journal_rwsem first. 576 * This sem is on the critical path on the checkpoint requiring the above 577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 578 * while not bothering checkpoint. 579 */ 580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 581 down_read(&curseg->journal_rwsem); 582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 583 !down_read_trylock(&curseg->journal_rwsem)) { 584 f2fs_up_read(&nm_i->nat_tree_lock); 585 goto retry; 586 } 587 588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 589 if (i >= 0) { 590 ne = nat_in_journal(journal, i); 591 node_info_from_raw_nat(ni, &ne); 592 } 593 up_read(&curseg->journal_rwsem); 594 if (i >= 0) { 595 f2fs_up_read(&nm_i->nat_tree_lock); 596 goto cache; 597 } 598 599 /* Fill node_info from nat page */ 600 index = current_nat_addr(sbi, nid); 601 f2fs_up_read(&nm_i->nat_tree_lock); 602 603 page = f2fs_get_meta_page(sbi, index); 604 if (IS_ERR(page)) 605 return PTR_ERR(page); 606 607 nat_blk = (struct f2fs_nat_block *)page_address(page); 608 ne = nat_blk->entries[nid - start_nid]; 609 node_info_from_raw_nat(ni, &ne); 610 f2fs_put_page(page, 1); 611 cache: 612 blkaddr = le32_to_cpu(ne.block_addr); 613 if (__is_valid_data_blkaddr(blkaddr) && 614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 615 return -EFAULT; 616 617 /* cache nat entry */ 618 cache_nat_entry(sbi, nid, &ne); 619 return 0; 620 } 621 622 /* 623 * readahead MAX_RA_NODE number of node pages. 624 */ 625 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 626 { 627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 628 struct blk_plug plug; 629 int i, end; 630 nid_t nid; 631 632 blk_start_plug(&plug); 633 634 /* Then, try readahead for siblings of the desired node */ 635 end = start + n; 636 end = min(end, NIDS_PER_BLOCK); 637 for (i = start; i < end; i++) { 638 nid = get_nid(parent, i, false); 639 f2fs_ra_node_page(sbi, nid); 640 } 641 642 blk_finish_plug(&plug); 643 } 644 645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 646 { 647 const long direct_index = ADDRS_PER_INODE(dn->inode); 648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 651 int cur_level = dn->cur_level; 652 int max_level = dn->max_level; 653 pgoff_t base = 0; 654 655 if (!dn->max_level) 656 return pgofs + 1; 657 658 while (max_level-- > cur_level) 659 skipped_unit *= NIDS_PER_BLOCK; 660 661 switch (dn->max_level) { 662 case 3: 663 base += 2 * indirect_blks; 664 fallthrough; 665 case 2: 666 base += 2 * direct_blks; 667 fallthrough; 668 case 1: 669 base += direct_index; 670 break; 671 default: 672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 673 } 674 675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 676 } 677 678 /* 679 * The maximum depth is four. 680 * Offset[0] will have raw inode offset. 681 */ 682 static int get_node_path(struct inode *inode, long block, 683 int offset[4], unsigned int noffset[4]) 684 { 685 const long direct_index = ADDRS_PER_INODE(inode); 686 const long direct_blks = ADDRS_PER_BLOCK(inode); 687 const long dptrs_per_blk = NIDS_PER_BLOCK; 688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 690 int n = 0; 691 int level = 0; 692 693 noffset[0] = 0; 694 695 if (block < direct_index) { 696 offset[n] = block; 697 goto got; 698 } 699 block -= direct_index; 700 if (block < direct_blks) { 701 offset[n++] = NODE_DIR1_BLOCK; 702 noffset[n] = 1; 703 offset[n] = block; 704 level = 1; 705 goto got; 706 } 707 block -= direct_blks; 708 if (block < direct_blks) { 709 offset[n++] = NODE_DIR2_BLOCK; 710 noffset[n] = 2; 711 offset[n] = block; 712 level = 1; 713 goto got; 714 } 715 block -= direct_blks; 716 if (block < indirect_blks) { 717 offset[n++] = NODE_IND1_BLOCK; 718 noffset[n] = 3; 719 offset[n++] = block / direct_blks; 720 noffset[n] = 4 + offset[n - 1]; 721 offset[n] = block % direct_blks; 722 level = 2; 723 goto got; 724 } 725 block -= indirect_blks; 726 if (block < indirect_blks) { 727 offset[n++] = NODE_IND2_BLOCK; 728 noffset[n] = 4 + dptrs_per_blk; 729 offset[n++] = block / direct_blks; 730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 731 offset[n] = block % direct_blks; 732 level = 2; 733 goto got; 734 } 735 block -= indirect_blks; 736 if (block < dindirect_blks) { 737 offset[n++] = NODE_DIND_BLOCK; 738 noffset[n] = 5 + (dptrs_per_blk * 2); 739 offset[n++] = block / indirect_blks; 740 noffset[n] = 6 + (dptrs_per_blk * 2) + 741 offset[n - 1] * (dptrs_per_blk + 1); 742 offset[n++] = (block / direct_blks) % dptrs_per_blk; 743 noffset[n] = 7 + (dptrs_per_blk * 2) + 744 offset[n - 2] * (dptrs_per_blk + 1) + 745 offset[n - 1]; 746 offset[n] = block % direct_blks; 747 level = 3; 748 goto got; 749 } else { 750 return -E2BIG; 751 } 752 got: 753 return level; 754 } 755 756 /* 757 * Caller should call f2fs_put_dnode(dn). 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 760 */ 761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 764 struct page *npage[4]; 765 struct page *parent = NULL; 766 int offset[4]; 767 unsigned int noffset[4]; 768 nid_t nids[4]; 769 int level, i = 0; 770 int err = 0; 771 772 level = get_node_path(dn->inode, index, offset, noffset); 773 if (level < 0) 774 return level; 775 776 nids[0] = dn->inode->i_ino; 777 npage[0] = dn->inode_page; 778 779 if (!npage[0]) { 780 npage[0] = f2fs_get_node_page(sbi, nids[0]); 781 if (IS_ERR(npage[0])) 782 return PTR_ERR(npage[0]); 783 } 784 785 /* if inline_data is set, should not report any block indices */ 786 if (f2fs_has_inline_data(dn->inode) && index) { 787 err = -ENOENT; 788 f2fs_put_page(npage[0], 1); 789 goto release_out; 790 } 791 792 parent = npage[0]; 793 if (level != 0) 794 nids[1] = get_nid(parent, offset[0], true); 795 dn->inode_page = npage[0]; 796 dn->inode_page_locked = true; 797 798 /* get indirect or direct nodes */ 799 for (i = 1; i <= level; i++) { 800 bool done = false; 801 802 if (!nids[i] && mode == ALLOC_NODE) { 803 /* alloc new node */ 804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 805 err = -ENOSPC; 806 goto release_pages; 807 } 808 809 dn->nid = nids[i]; 810 npage[i] = f2fs_new_node_page(dn, noffset[i]); 811 if (IS_ERR(npage[i])) { 812 f2fs_alloc_nid_failed(sbi, nids[i]); 813 err = PTR_ERR(npage[i]); 814 goto release_pages; 815 } 816 817 set_nid(parent, offset[i - 1], nids[i], i == 1); 818 f2fs_alloc_nid_done(sbi, nids[i]); 819 done = true; 820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 822 if (IS_ERR(npage[i])) { 823 err = PTR_ERR(npage[i]); 824 goto release_pages; 825 } 826 done = true; 827 } 828 if (i == 1) { 829 dn->inode_page_locked = false; 830 unlock_page(parent); 831 } else { 832 f2fs_put_page(parent, 1); 833 } 834 835 if (!done) { 836 npage[i] = f2fs_get_node_page(sbi, nids[i]); 837 if (IS_ERR(npage[i])) { 838 err = PTR_ERR(npage[i]); 839 f2fs_put_page(npage[0], 0); 840 goto release_out; 841 } 842 } 843 if (i < level) { 844 parent = npage[i]; 845 nids[i + 1] = get_nid(parent, offset[i], false); 846 } 847 } 848 dn->nid = nids[level]; 849 dn->ofs_in_node = offset[level]; 850 dn->node_page = npage[level]; 851 dn->data_blkaddr = f2fs_data_blkaddr(dn); 852 853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 854 f2fs_sb_has_readonly(sbi)) { 855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 856 unsigned int ofs_in_node = dn->ofs_in_node; 857 pgoff_t fofs = index; 858 unsigned int c_len; 859 block_t blkaddr; 860 861 /* should align fofs and ofs_in_node to cluster_size */ 862 if (fofs % cluster_size) { 863 fofs = round_down(fofs, cluster_size); 864 ofs_in_node = round_down(ofs_in_node, cluster_size); 865 } 866 867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node); 868 if (!c_len) 869 goto out; 870 871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node); 872 if (blkaddr == COMPRESS_ADDR) 873 blkaddr = data_blkaddr(dn->inode, dn->node_page, 874 ofs_in_node + 1); 875 876 f2fs_update_read_extent_tree_range_compressed(dn->inode, 877 fofs, blkaddr, cluster_size, c_len); 878 } 879 out: 880 return 0; 881 882 release_pages: 883 f2fs_put_page(parent, 1); 884 if (i > 1) 885 f2fs_put_page(npage[0], 0); 886 release_out: 887 dn->inode_page = NULL; 888 dn->node_page = NULL; 889 if (err == -ENOENT) { 890 dn->cur_level = i; 891 dn->max_level = level; 892 dn->ofs_in_node = offset[level]; 893 } 894 return err; 895 } 896 897 static int truncate_node(struct dnode_of_data *dn) 898 { 899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 900 struct node_info ni; 901 int err; 902 pgoff_t index; 903 904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 905 if (err) 906 return err; 907 908 /* Deallocate node address */ 909 f2fs_invalidate_blocks(sbi, ni.blk_addr); 910 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 911 set_node_addr(sbi, &ni, NULL_ADDR, false); 912 913 if (dn->nid == dn->inode->i_ino) { 914 f2fs_remove_orphan_inode(sbi, dn->nid); 915 dec_valid_inode_count(sbi); 916 f2fs_inode_synced(dn->inode); 917 } 918 919 clear_node_page_dirty(dn->node_page); 920 set_sbi_flag(sbi, SBI_IS_DIRTY); 921 922 index = dn->node_page->index; 923 f2fs_put_page(dn->node_page, 1); 924 925 invalidate_mapping_pages(NODE_MAPPING(sbi), 926 index, index); 927 928 dn->node_page = NULL; 929 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 930 931 return 0; 932 } 933 934 static int truncate_dnode(struct dnode_of_data *dn) 935 { 936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 937 struct page *page; 938 int err; 939 940 if (dn->nid == 0) 941 return 1; 942 943 /* get direct node */ 944 page = f2fs_get_node_page(sbi, dn->nid); 945 if (PTR_ERR(page) == -ENOENT) 946 return 1; 947 else if (IS_ERR(page)) 948 return PTR_ERR(page); 949 950 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) { 951 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", 952 dn->inode->i_ino, dn->nid, ino_of_node(page)); 953 set_sbi_flag(sbi, SBI_NEED_FSCK); 954 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); 955 f2fs_put_page(page, 1); 956 return -EFSCORRUPTED; 957 } 958 959 /* Make dnode_of_data for parameter */ 960 dn->node_page = page; 961 dn->ofs_in_node = 0; 962 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 963 err = truncate_node(dn); 964 if (err) { 965 f2fs_put_page(page, 1); 966 return err; 967 } 968 969 return 1; 970 } 971 972 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 973 int ofs, int depth) 974 { 975 struct dnode_of_data rdn = *dn; 976 struct page *page; 977 struct f2fs_node *rn; 978 nid_t child_nid; 979 unsigned int child_nofs; 980 int freed = 0; 981 int i, ret; 982 983 if (dn->nid == 0) 984 return NIDS_PER_BLOCK + 1; 985 986 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 987 988 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 989 if (IS_ERR(page)) { 990 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 991 return PTR_ERR(page); 992 } 993 994 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 995 996 rn = F2FS_NODE(page); 997 if (depth < 3) { 998 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 999 child_nid = le32_to_cpu(rn->in.nid[i]); 1000 if (child_nid == 0) 1001 continue; 1002 rdn.nid = child_nid; 1003 ret = truncate_dnode(&rdn); 1004 if (ret < 0) 1005 goto out_err; 1006 if (set_nid(page, i, 0, false)) 1007 dn->node_changed = true; 1008 } 1009 } else { 1010 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 1011 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 1012 child_nid = le32_to_cpu(rn->in.nid[i]); 1013 if (child_nid == 0) { 1014 child_nofs += NIDS_PER_BLOCK + 1; 1015 continue; 1016 } 1017 rdn.nid = child_nid; 1018 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 1019 if (ret == (NIDS_PER_BLOCK + 1)) { 1020 if (set_nid(page, i, 0, false)) 1021 dn->node_changed = true; 1022 child_nofs += ret; 1023 } else if (ret < 0 && ret != -ENOENT) { 1024 goto out_err; 1025 } 1026 } 1027 freed = child_nofs; 1028 } 1029 1030 if (!ofs) { 1031 /* remove current indirect node */ 1032 dn->node_page = page; 1033 ret = truncate_node(dn); 1034 if (ret) 1035 goto out_err; 1036 freed++; 1037 } else { 1038 f2fs_put_page(page, 1); 1039 } 1040 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1041 return freed; 1042 1043 out_err: 1044 f2fs_put_page(page, 1); 1045 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1046 return ret; 1047 } 1048 1049 static int truncate_partial_nodes(struct dnode_of_data *dn, 1050 struct f2fs_inode *ri, int *offset, int depth) 1051 { 1052 struct page *pages[2]; 1053 nid_t nid[3]; 1054 nid_t child_nid; 1055 int err = 0; 1056 int i; 1057 int idx = depth - 2; 1058 1059 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1060 if (!nid[0]) 1061 return 0; 1062 1063 /* get indirect nodes in the path */ 1064 for (i = 0; i < idx + 1; i++) { 1065 /* reference count'll be increased */ 1066 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1067 if (IS_ERR(pages[i])) { 1068 err = PTR_ERR(pages[i]); 1069 idx = i - 1; 1070 goto fail; 1071 } 1072 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1073 } 1074 1075 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1076 1077 /* free direct nodes linked to a partial indirect node */ 1078 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1079 child_nid = get_nid(pages[idx], i, false); 1080 if (!child_nid) 1081 continue; 1082 dn->nid = child_nid; 1083 err = truncate_dnode(dn); 1084 if (err < 0) 1085 goto fail; 1086 if (set_nid(pages[idx], i, 0, false)) 1087 dn->node_changed = true; 1088 } 1089 1090 if (offset[idx + 1] == 0) { 1091 dn->node_page = pages[idx]; 1092 dn->nid = nid[idx]; 1093 err = truncate_node(dn); 1094 if (err) 1095 goto fail; 1096 } else { 1097 f2fs_put_page(pages[idx], 1); 1098 } 1099 offset[idx]++; 1100 offset[idx + 1] = 0; 1101 idx--; 1102 fail: 1103 for (i = idx; i >= 0; i--) 1104 f2fs_put_page(pages[i], 1); 1105 1106 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1107 1108 return err; 1109 } 1110 1111 /* 1112 * All the block addresses of data and nodes should be nullified. 1113 */ 1114 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1115 { 1116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1117 int err = 0, cont = 1; 1118 int level, offset[4], noffset[4]; 1119 unsigned int nofs = 0; 1120 struct f2fs_inode *ri; 1121 struct dnode_of_data dn; 1122 struct page *page; 1123 1124 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1125 1126 level = get_node_path(inode, from, offset, noffset); 1127 if (level < 0) { 1128 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1129 return level; 1130 } 1131 1132 page = f2fs_get_node_page(sbi, inode->i_ino); 1133 if (IS_ERR(page)) { 1134 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1135 return PTR_ERR(page); 1136 } 1137 1138 set_new_dnode(&dn, inode, page, NULL, 0); 1139 unlock_page(page); 1140 1141 ri = F2FS_INODE(page); 1142 switch (level) { 1143 case 0: 1144 case 1: 1145 nofs = noffset[1]; 1146 break; 1147 case 2: 1148 nofs = noffset[1]; 1149 if (!offset[level - 1]) 1150 goto skip_partial; 1151 err = truncate_partial_nodes(&dn, ri, offset, level); 1152 if (err < 0 && err != -ENOENT) 1153 goto fail; 1154 nofs += 1 + NIDS_PER_BLOCK; 1155 break; 1156 case 3: 1157 nofs = 5 + 2 * NIDS_PER_BLOCK; 1158 if (!offset[level - 1]) 1159 goto skip_partial; 1160 err = truncate_partial_nodes(&dn, ri, offset, level); 1161 if (err < 0 && err != -ENOENT) 1162 goto fail; 1163 break; 1164 default: 1165 BUG(); 1166 } 1167 1168 skip_partial: 1169 while (cont) { 1170 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1171 switch (offset[0]) { 1172 case NODE_DIR1_BLOCK: 1173 case NODE_DIR2_BLOCK: 1174 err = truncate_dnode(&dn); 1175 break; 1176 1177 case NODE_IND1_BLOCK: 1178 case NODE_IND2_BLOCK: 1179 err = truncate_nodes(&dn, nofs, offset[1], 2); 1180 break; 1181 1182 case NODE_DIND_BLOCK: 1183 err = truncate_nodes(&dn, nofs, offset[1], 3); 1184 cont = 0; 1185 break; 1186 1187 default: 1188 BUG(); 1189 } 1190 if (err < 0 && err != -ENOENT) 1191 goto fail; 1192 if (offset[1] == 0 && 1193 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1194 lock_page(page); 1195 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1196 f2fs_wait_on_page_writeback(page, NODE, true, true); 1197 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1198 set_page_dirty(page); 1199 unlock_page(page); 1200 } 1201 offset[1] = 0; 1202 offset[0]++; 1203 nofs += err; 1204 } 1205 fail: 1206 f2fs_put_page(page, 0); 1207 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1208 return err > 0 ? 0 : err; 1209 } 1210 1211 /* caller must lock inode page */ 1212 int f2fs_truncate_xattr_node(struct inode *inode) 1213 { 1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1215 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1216 struct dnode_of_data dn; 1217 struct page *npage; 1218 int err; 1219 1220 if (!nid) 1221 return 0; 1222 1223 npage = f2fs_get_node_page(sbi, nid); 1224 if (IS_ERR(npage)) 1225 return PTR_ERR(npage); 1226 1227 set_new_dnode(&dn, inode, NULL, npage, nid); 1228 err = truncate_node(&dn); 1229 if (err) { 1230 f2fs_put_page(npage, 1); 1231 return err; 1232 } 1233 1234 f2fs_i_xnid_write(inode, 0); 1235 1236 return 0; 1237 } 1238 1239 /* 1240 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1241 * f2fs_unlock_op(). 1242 */ 1243 int f2fs_remove_inode_page(struct inode *inode) 1244 { 1245 struct dnode_of_data dn; 1246 int err; 1247 1248 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1249 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1250 if (err) 1251 return err; 1252 1253 err = f2fs_truncate_xattr_node(inode); 1254 if (err) { 1255 f2fs_put_dnode(&dn); 1256 return err; 1257 } 1258 1259 /* remove potential inline_data blocks */ 1260 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1261 S_ISLNK(inode->i_mode)) 1262 f2fs_truncate_data_blocks_range(&dn, 1); 1263 1264 /* 0 is possible, after f2fs_new_inode() has failed */ 1265 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1266 f2fs_put_dnode(&dn); 1267 return -EIO; 1268 } 1269 1270 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1271 f2fs_warn(F2FS_I_SB(inode), 1272 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1273 inode->i_ino, (unsigned long long)inode->i_blocks); 1274 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1275 } 1276 1277 /* will put inode & node pages */ 1278 err = truncate_node(&dn); 1279 if (err) { 1280 f2fs_put_dnode(&dn); 1281 return err; 1282 } 1283 return 0; 1284 } 1285 1286 struct page *f2fs_new_inode_page(struct inode *inode) 1287 { 1288 struct dnode_of_data dn; 1289 1290 /* allocate inode page for new inode */ 1291 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1292 1293 /* caller should f2fs_put_page(page, 1); */ 1294 return f2fs_new_node_page(&dn, 0); 1295 } 1296 1297 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1298 { 1299 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1300 struct node_info new_ni; 1301 struct page *page; 1302 int err; 1303 1304 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1305 return ERR_PTR(-EPERM); 1306 1307 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1308 if (!page) 1309 return ERR_PTR(-ENOMEM); 1310 1311 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1312 goto fail; 1313 1314 #ifdef CONFIG_F2FS_CHECK_FS 1315 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1316 if (err) { 1317 dec_valid_node_count(sbi, dn->inode, !ofs); 1318 goto fail; 1319 } 1320 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1321 err = -EFSCORRUPTED; 1322 dec_valid_node_count(sbi, dn->inode, !ofs); 1323 set_sbi_flag(sbi, SBI_NEED_FSCK); 1324 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1325 goto fail; 1326 } 1327 #endif 1328 new_ni.nid = dn->nid; 1329 new_ni.ino = dn->inode->i_ino; 1330 new_ni.blk_addr = NULL_ADDR; 1331 new_ni.flag = 0; 1332 new_ni.version = 0; 1333 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1334 1335 f2fs_wait_on_page_writeback(page, NODE, true, true); 1336 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1337 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1338 if (!PageUptodate(page)) 1339 SetPageUptodate(page); 1340 if (set_page_dirty(page)) 1341 dn->node_changed = true; 1342 1343 if (f2fs_has_xattr_block(ofs)) 1344 f2fs_i_xnid_write(dn->inode, dn->nid); 1345 1346 if (ofs == 0) 1347 inc_valid_inode_count(sbi); 1348 return page; 1349 fail: 1350 clear_node_page_dirty(page); 1351 f2fs_put_page(page, 1); 1352 return ERR_PTR(err); 1353 } 1354 1355 /* 1356 * Caller should do after getting the following values. 1357 * 0: f2fs_put_page(page, 0) 1358 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1359 */ 1360 static int read_node_page(struct page *page, blk_opf_t op_flags) 1361 { 1362 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1363 struct node_info ni; 1364 struct f2fs_io_info fio = { 1365 .sbi = sbi, 1366 .type = NODE, 1367 .op = REQ_OP_READ, 1368 .op_flags = op_flags, 1369 .page = page, 1370 .encrypted_page = NULL, 1371 }; 1372 int err; 1373 1374 if (PageUptodate(page)) { 1375 if (!f2fs_inode_chksum_verify(sbi, page)) { 1376 ClearPageUptodate(page); 1377 return -EFSBADCRC; 1378 } 1379 return LOCKED_PAGE; 1380 } 1381 1382 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1383 if (err) 1384 return err; 1385 1386 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1387 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1388 ClearPageUptodate(page); 1389 return -ENOENT; 1390 } 1391 1392 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1393 1394 err = f2fs_submit_page_bio(&fio); 1395 1396 if (!err) 1397 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1398 1399 return err; 1400 } 1401 1402 /* 1403 * Readahead a node page 1404 */ 1405 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1406 { 1407 struct page *apage; 1408 int err; 1409 1410 if (!nid) 1411 return; 1412 if (f2fs_check_nid_range(sbi, nid)) 1413 return; 1414 1415 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1416 if (apage) 1417 return; 1418 1419 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1420 if (!apage) 1421 return; 1422 1423 err = read_node_page(apage, REQ_RAHEAD); 1424 f2fs_put_page(apage, err ? 1 : 0); 1425 } 1426 1427 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1428 struct page *parent, int start) 1429 { 1430 struct page *page; 1431 int err; 1432 1433 if (!nid) 1434 return ERR_PTR(-ENOENT); 1435 if (f2fs_check_nid_range(sbi, nid)) 1436 return ERR_PTR(-EINVAL); 1437 repeat: 1438 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1439 if (!page) 1440 return ERR_PTR(-ENOMEM); 1441 1442 err = read_node_page(page, 0); 1443 if (err < 0) { 1444 goto out_put_err; 1445 } else if (err == LOCKED_PAGE) { 1446 err = 0; 1447 goto page_hit; 1448 } 1449 1450 if (parent) 1451 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1452 1453 lock_page(page); 1454 1455 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1456 f2fs_put_page(page, 1); 1457 goto repeat; 1458 } 1459 1460 if (unlikely(!PageUptodate(page))) { 1461 err = -EIO; 1462 goto out_err; 1463 } 1464 1465 if (!f2fs_inode_chksum_verify(sbi, page)) { 1466 err = -EFSBADCRC; 1467 goto out_err; 1468 } 1469 page_hit: 1470 if (likely(nid == nid_of_node(page))) 1471 return page; 1472 1473 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1474 nid, nid_of_node(page), ino_of_node(page), 1475 ofs_of_node(page), cpver_of_node(page), 1476 next_blkaddr_of_node(page)); 1477 set_sbi_flag(sbi, SBI_NEED_FSCK); 1478 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); 1479 err = -EFSCORRUPTED; 1480 out_err: 1481 ClearPageUptodate(page); 1482 out_put_err: 1483 /* ENOENT comes from read_node_page which is not an error. */ 1484 if (err != -ENOENT) 1485 f2fs_handle_page_eio(sbi, page->index, NODE); 1486 f2fs_put_page(page, 1); 1487 return ERR_PTR(err); 1488 } 1489 1490 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1491 { 1492 return __get_node_page(sbi, nid, NULL, 0); 1493 } 1494 1495 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1496 { 1497 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1498 nid_t nid = get_nid(parent, start, false); 1499 1500 return __get_node_page(sbi, nid, parent, start); 1501 } 1502 1503 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1504 { 1505 struct inode *inode; 1506 struct page *page; 1507 int ret; 1508 1509 /* should flush inline_data before evict_inode */ 1510 inode = ilookup(sbi->sb, ino); 1511 if (!inode) 1512 return; 1513 1514 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1515 FGP_LOCK|FGP_NOWAIT, 0); 1516 if (!page) 1517 goto iput_out; 1518 1519 if (!PageUptodate(page)) 1520 goto page_out; 1521 1522 if (!PageDirty(page)) 1523 goto page_out; 1524 1525 if (!clear_page_dirty_for_io(page)) 1526 goto page_out; 1527 1528 ret = f2fs_write_inline_data(inode, page); 1529 inode_dec_dirty_pages(inode); 1530 f2fs_remove_dirty_inode(inode); 1531 if (ret) 1532 set_page_dirty(page); 1533 page_out: 1534 f2fs_put_page(page, 1); 1535 iput_out: 1536 iput(inode); 1537 } 1538 1539 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1540 { 1541 pgoff_t index; 1542 struct folio_batch fbatch; 1543 struct page *last_page = NULL; 1544 int nr_folios; 1545 1546 folio_batch_init(&fbatch); 1547 index = 0; 1548 1549 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1550 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1551 &fbatch))) { 1552 int i; 1553 1554 for (i = 0; i < nr_folios; i++) { 1555 struct page *page = &fbatch.folios[i]->page; 1556 1557 if (unlikely(f2fs_cp_error(sbi))) { 1558 f2fs_put_page(last_page, 0); 1559 folio_batch_release(&fbatch); 1560 return ERR_PTR(-EIO); 1561 } 1562 1563 if (!IS_DNODE(page) || !is_cold_node(page)) 1564 continue; 1565 if (ino_of_node(page) != ino) 1566 continue; 1567 1568 lock_page(page); 1569 1570 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1571 continue_unlock: 1572 unlock_page(page); 1573 continue; 1574 } 1575 if (ino_of_node(page) != ino) 1576 goto continue_unlock; 1577 1578 if (!PageDirty(page)) { 1579 /* someone wrote it for us */ 1580 goto continue_unlock; 1581 } 1582 1583 if (last_page) 1584 f2fs_put_page(last_page, 0); 1585 1586 get_page(page); 1587 last_page = page; 1588 unlock_page(page); 1589 } 1590 folio_batch_release(&fbatch); 1591 cond_resched(); 1592 } 1593 return last_page; 1594 } 1595 1596 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1597 struct writeback_control *wbc, bool do_balance, 1598 enum iostat_type io_type, unsigned int *seq_id) 1599 { 1600 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1601 nid_t nid; 1602 struct node_info ni; 1603 struct f2fs_io_info fio = { 1604 .sbi = sbi, 1605 .ino = ino_of_node(page), 1606 .type = NODE, 1607 .op = REQ_OP_WRITE, 1608 .op_flags = wbc_to_write_flags(wbc), 1609 .page = page, 1610 .encrypted_page = NULL, 1611 .submitted = 0, 1612 .io_type = io_type, 1613 .io_wbc = wbc, 1614 }; 1615 unsigned int seq; 1616 1617 trace_f2fs_writepage(page, NODE); 1618 1619 if (unlikely(f2fs_cp_error(sbi))) { 1620 /* keep node pages in remount-ro mode */ 1621 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 1622 goto redirty_out; 1623 ClearPageUptodate(page); 1624 dec_page_count(sbi, F2FS_DIRTY_NODES); 1625 unlock_page(page); 1626 return 0; 1627 } 1628 1629 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1630 goto redirty_out; 1631 1632 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1633 wbc->sync_mode == WB_SYNC_NONE && 1634 IS_DNODE(page) && is_cold_node(page)) 1635 goto redirty_out; 1636 1637 /* get old block addr of this node page */ 1638 nid = nid_of_node(page); 1639 f2fs_bug_on(sbi, page->index != nid); 1640 1641 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1642 goto redirty_out; 1643 1644 if (wbc->for_reclaim) { 1645 if (!f2fs_down_read_trylock(&sbi->node_write)) 1646 goto redirty_out; 1647 } else { 1648 f2fs_down_read(&sbi->node_write); 1649 } 1650 1651 /* This page is already truncated */ 1652 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1653 ClearPageUptodate(page); 1654 dec_page_count(sbi, F2FS_DIRTY_NODES); 1655 f2fs_up_read(&sbi->node_write); 1656 unlock_page(page); 1657 return 0; 1658 } 1659 1660 if (__is_valid_data_blkaddr(ni.blk_addr) && 1661 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1662 DATA_GENERIC_ENHANCE)) { 1663 f2fs_up_read(&sbi->node_write); 1664 goto redirty_out; 1665 } 1666 1667 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1668 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1669 1670 /* should add to global list before clearing PAGECACHE status */ 1671 if (f2fs_in_warm_node_list(sbi, page)) { 1672 seq = f2fs_add_fsync_node_entry(sbi, page); 1673 if (seq_id) 1674 *seq_id = seq; 1675 } 1676 1677 set_page_writeback(page); 1678 1679 fio.old_blkaddr = ni.blk_addr; 1680 f2fs_do_write_node_page(nid, &fio); 1681 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1682 dec_page_count(sbi, F2FS_DIRTY_NODES); 1683 f2fs_up_read(&sbi->node_write); 1684 1685 if (wbc->for_reclaim) { 1686 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1687 submitted = NULL; 1688 } 1689 1690 unlock_page(page); 1691 1692 if (unlikely(f2fs_cp_error(sbi))) { 1693 f2fs_submit_merged_write(sbi, NODE); 1694 submitted = NULL; 1695 } 1696 if (submitted) 1697 *submitted = fio.submitted; 1698 1699 if (do_balance) 1700 f2fs_balance_fs(sbi, false); 1701 return 0; 1702 1703 redirty_out: 1704 redirty_page_for_writepage(wbc, page); 1705 return AOP_WRITEPAGE_ACTIVATE; 1706 } 1707 1708 int f2fs_move_node_page(struct page *node_page, int gc_type) 1709 { 1710 int err = 0; 1711 1712 if (gc_type == FG_GC) { 1713 struct writeback_control wbc = { 1714 .sync_mode = WB_SYNC_ALL, 1715 .nr_to_write = 1, 1716 .for_reclaim = 0, 1717 }; 1718 1719 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1720 1721 set_page_dirty(node_page); 1722 1723 if (!clear_page_dirty_for_io(node_page)) { 1724 err = -EAGAIN; 1725 goto out_page; 1726 } 1727 1728 if (__write_node_page(node_page, false, NULL, 1729 &wbc, false, FS_GC_NODE_IO, NULL)) { 1730 err = -EAGAIN; 1731 unlock_page(node_page); 1732 } 1733 goto release_page; 1734 } else { 1735 /* set page dirty and write it */ 1736 if (!PageWriteback(node_page)) 1737 set_page_dirty(node_page); 1738 } 1739 out_page: 1740 unlock_page(node_page); 1741 release_page: 1742 f2fs_put_page(node_page, 0); 1743 return err; 1744 } 1745 1746 static int f2fs_write_node_page(struct page *page, 1747 struct writeback_control *wbc) 1748 { 1749 return __write_node_page(page, false, NULL, wbc, false, 1750 FS_NODE_IO, NULL); 1751 } 1752 1753 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1754 struct writeback_control *wbc, bool atomic, 1755 unsigned int *seq_id) 1756 { 1757 pgoff_t index; 1758 struct folio_batch fbatch; 1759 int ret = 0; 1760 struct page *last_page = NULL; 1761 bool marked = false; 1762 nid_t ino = inode->i_ino; 1763 int nr_folios; 1764 int nwritten = 0; 1765 1766 if (atomic) { 1767 last_page = last_fsync_dnode(sbi, ino); 1768 if (IS_ERR_OR_NULL(last_page)) 1769 return PTR_ERR_OR_ZERO(last_page); 1770 } 1771 retry: 1772 folio_batch_init(&fbatch); 1773 index = 0; 1774 1775 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1776 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1777 &fbatch))) { 1778 int i; 1779 1780 for (i = 0; i < nr_folios; i++) { 1781 struct page *page = &fbatch.folios[i]->page; 1782 bool submitted = false; 1783 1784 if (unlikely(f2fs_cp_error(sbi))) { 1785 f2fs_put_page(last_page, 0); 1786 folio_batch_release(&fbatch); 1787 ret = -EIO; 1788 goto out; 1789 } 1790 1791 if (!IS_DNODE(page) || !is_cold_node(page)) 1792 continue; 1793 if (ino_of_node(page) != ino) 1794 continue; 1795 1796 lock_page(page); 1797 1798 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1799 continue_unlock: 1800 unlock_page(page); 1801 continue; 1802 } 1803 if (ino_of_node(page) != ino) 1804 goto continue_unlock; 1805 1806 if (!PageDirty(page) && page != last_page) { 1807 /* someone wrote it for us */ 1808 goto continue_unlock; 1809 } 1810 1811 f2fs_wait_on_page_writeback(page, NODE, true, true); 1812 1813 set_fsync_mark(page, 0); 1814 set_dentry_mark(page, 0); 1815 1816 if (!atomic || page == last_page) { 1817 set_fsync_mark(page, 1); 1818 percpu_counter_inc(&sbi->rf_node_block_count); 1819 if (IS_INODE(page)) { 1820 if (is_inode_flag_set(inode, 1821 FI_DIRTY_INODE)) 1822 f2fs_update_inode(inode, page); 1823 set_dentry_mark(page, 1824 f2fs_need_dentry_mark(sbi, ino)); 1825 } 1826 /* may be written by other thread */ 1827 if (!PageDirty(page)) 1828 set_page_dirty(page); 1829 } 1830 1831 if (!clear_page_dirty_for_io(page)) 1832 goto continue_unlock; 1833 1834 ret = __write_node_page(page, atomic && 1835 page == last_page, 1836 &submitted, wbc, true, 1837 FS_NODE_IO, seq_id); 1838 if (ret) { 1839 unlock_page(page); 1840 f2fs_put_page(last_page, 0); 1841 break; 1842 } else if (submitted) { 1843 nwritten++; 1844 } 1845 1846 if (page == last_page) { 1847 f2fs_put_page(page, 0); 1848 marked = true; 1849 break; 1850 } 1851 } 1852 folio_batch_release(&fbatch); 1853 cond_resched(); 1854 1855 if (ret || marked) 1856 break; 1857 } 1858 if (!ret && atomic && !marked) { 1859 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1860 ino, last_page->index); 1861 lock_page(last_page); 1862 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1863 set_page_dirty(last_page); 1864 unlock_page(last_page); 1865 goto retry; 1866 } 1867 out: 1868 if (nwritten) 1869 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1870 return ret ? -EIO : 0; 1871 } 1872 1873 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1874 { 1875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1876 bool clean; 1877 1878 if (inode->i_ino != ino) 1879 return 0; 1880 1881 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1882 return 0; 1883 1884 spin_lock(&sbi->inode_lock[DIRTY_META]); 1885 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1886 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1887 1888 if (clean) 1889 return 0; 1890 1891 inode = igrab(inode); 1892 if (!inode) 1893 return 0; 1894 return 1; 1895 } 1896 1897 static bool flush_dirty_inode(struct page *page) 1898 { 1899 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1900 struct inode *inode; 1901 nid_t ino = ino_of_node(page); 1902 1903 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1904 if (!inode) 1905 return false; 1906 1907 f2fs_update_inode(inode, page); 1908 unlock_page(page); 1909 1910 iput(inode); 1911 return true; 1912 } 1913 1914 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1915 { 1916 pgoff_t index = 0; 1917 struct folio_batch fbatch; 1918 int nr_folios; 1919 1920 folio_batch_init(&fbatch); 1921 1922 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1923 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1924 &fbatch))) { 1925 int i; 1926 1927 for (i = 0; i < nr_folios; i++) { 1928 struct page *page = &fbatch.folios[i]->page; 1929 1930 if (!IS_DNODE(page)) 1931 continue; 1932 1933 lock_page(page); 1934 1935 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1936 continue_unlock: 1937 unlock_page(page); 1938 continue; 1939 } 1940 1941 if (!PageDirty(page)) { 1942 /* someone wrote it for us */ 1943 goto continue_unlock; 1944 } 1945 1946 /* flush inline_data, if it's async context. */ 1947 if (page_private_inline(page)) { 1948 clear_page_private_inline(page); 1949 unlock_page(page); 1950 flush_inline_data(sbi, ino_of_node(page)); 1951 continue; 1952 } 1953 unlock_page(page); 1954 } 1955 folio_batch_release(&fbatch); 1956 cond_resched(); 1957 } 1958 } 1959 1960 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1961 struct writeback_control *wbc, 1962 bool do_balance, enum iostat_type io_type) 1963 { 1964 pgoff_t index; 1965 struct folio_batch fbatch; 1966 int step = 0; 1967 int nwritten = 0; 1968 int ret = 0; 1969 int nr_folios, done = 0; 1970 1971 folio_batch_init(&fbatch); 1972 1973 next_step: 1974 index = 0; 1975 1976 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 1977 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1978 &fbatch))) { 1979 int i; 1980 1981 for (i = 0; i < nr_folios; i++) { 1982 struct page *page = &fbatch.folios[i]->page; 1983 bool submitted = false; 1984 1985 /* give a priority to WB_SYNC threads */ 1986 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1987 wbc->sync_mode == WB_SYNC_NONE) { 1988 done = 1; 1989 break; 1990 } 1991 1992 /* 1993 * flushing sequence with step: 1994 * 0. indirect nodes 1995 * 1. dentry dnodes 1996 * 2. file dnodes 1997 */ 1998 if (step == 0 && IS_DNODE(page)) 1999 continue; 2000 if (step == 1 && (!IS_DNODE(page) || 2001 is_cold_node(page))) 2002 continue; 2003 if (step == 2 && (!IS_DNODE(page) || 2004 !is_cold_node(page))) 2005 continue; 2006 lock_node: 2007 if (wbc->sync_mode == WB_SYNC_ALL) 2008 lock_page(page); 2009 else if (!trylock_page(page)) 2010 continue; 2011 2012 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 2013 continue_unlock: 2014 unlock_page(page); 2015 continue; 2016 } 2017 2018 if (!PageDirty(page)) { 2019 /* someone wrote it for us */ 2020 goto continue_unlock; 2021 } 2022 2023 /* flush inline_data/inode, if it's async context. */ 2024 if (!do_balance) 2025 goto write_node; 2026 2027 /* flush inline_data */ 2028 if (page_private_inline(page)) { 2029 clear_page_private_inline(page); 2030 unlock_page(page); 2031 flush_inline_data(sbi, ino_of_node(page)); 2032 goto lock_node; 2033 } 2034 2035 /* flush dirty inode */ 2036 if (IS_INODE(page) && flush_dirty_inode(page)) 2037 goto lock_node; 2038 write_node: 2039 f2fs_wait_on_page_writeback(page, NODE, true, true); 2040 2041 if (!clear_page_dirty_for_io(page)) 2042 goto continue_unlock; 2043 2044 set_fsync_mark(page, 0); 2045 set_dentry_mark(page, 0); 2046 2047 ret = __write_node_page(page, false, &submitted, 2048 wbc, do_balance, io_type, NULL); 2049 if (ret) 2050 unlock_page(page); 2051 else if (submitted) 2052 nwritten++; 2053 2054 if (--wbc->nr_to_write == 0) 2055 break; 2056 } 2057 folio_batch_release(&fbatch); 2058 cond_resched(); 2059 2060 if (wbc->nr_to_write == 0) { 2061 step = 2; 2062 break; 2063 } 2064 } 2065 2066 if (step < 2) { 2067 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2068 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2069 goto out; 2070 step++; 2071 goto next_step; 2072 } 2073 out: 2074 if (nwritten) 2075 f2fs_submit_merged_write(sbi, NODE); 2076 2077 if (unlikely(f2fs_cp_error(sbi))) 2078 return -EIO; 2079 return ret; 2080 } 2081 2082 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2083 unsigned int seq_id) 2084 { 2085 struct fsync_node_entry *fn; 2086 struct page *page; 2087 struct list_head *head = &sbi->fsync_node_list; 2088 unsigned long flags; 2089 unsigned int cur_seq_id = 0; 2090 2091 while (seq_id && cur_seq_id < seq_id) { 2092 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2093 if (list_empty(head)) { 2094 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2095 break; 2096 } 2097 fn = list_first_entry(head, struct fsync_node_entry, list); 2098 if (fn->seq_id > seq_id) { 2099 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2100 break; 2101 } 2102 cur_seq_id = fn->seq_id; 2103 page = fn->page; 2104 get_page(page); 2105 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2106 2107 f2fs_wait_on_page_writeback(page, NODE, true, false); 2108 2109 put_page(page); 2110 } 2111 2112 return filemap_check_errors(NODE_MAPPING(sbi)); 2113 } 2114 2115 static int f2fs_write_node_pages(struct address_space *mapping, 2116 struct writeback_control *wbc) 2117 { 2118 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2119 struct blk_plug plug; 2120 long diff; 2121 2122 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2123 goto skip_write; 2124 2125 /* balancing f2fs's metadata in background */ 2126 f2fs_balance_fs_bg(sbi, true); 2127 2128 /* collect a number of dirty node pages and write together */ 2129 if (wbc->sync_mode != WB_SYNC_ALL && 2130 get_pages(sbi, F2FS_DIRTY_NODES) < 2131 nr_pages_to_skip(sbi, NODE)) 2132 goto skip_write; 2133 2134 if (wbc->sync_mode == WB_SYNC_ALL) 2135 atomic_inc(&sbi->wb_sync_req[NODE]); 2136 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2137 /* to avoid potential deadlock */ 2138 if (current->plug) 2139 blk_finish_plug(current->plug); 2140 goto skip_write; 2141 } 2142 2143 trace_f2fs_writepages(mapping->host, wbc, NODE); 2144 2145 diff = nr_pages_to_write(sbi, NODE, wbc); 2146 blk_start_plug(&plug); 2147 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2148 blk_finish_plug(&plug); 2149 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2150 2151 if (wbc->sync_mode == WB_SYNC_ALL) 2152 atomic_dec(&sbi->wb_sync_req[NODE]); 2153 return 0; 2154 2155 skip_write: 2156 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2157 trace_f2fs_writepages(mapping->host, wbc, NODE); 2158 return 0; 2159 } 2160 2161 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2162 struct folio *folio) 2163 { 2164 trace_f2fs_set_page_dirty(&folio->page, NODE); 2165 2166 if (!folio_test_uptodate(folio)) 2167 folio_mark_uptodate(folio); 2168 #ifdef CONFIG_F2FS_CHECK_FS 2169 if (IS_INODE(&folio->page)) 2170 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2171 #endif 2172 if (filemap_dirty_folio(mapping, folio)) { 2173 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2174 set_page_private_reference(&folio->page); 2175 return true; 2176 } 2177 return false; 2178 } 2179 2180 /* 2181 * Structure of the f2fs node operations 2182 */ 2183 const struct address_space_operations f2fs_node_aops = { 2184 .writepage = f2fs_write_node_page, 2185 .writepages = f2fs_write_node_pages, 2186 .dirty_folio = f2fs_dirty_node_folio, 2187 .invalidate_folio = f2fs_invalidate_folio, 2188 .release_folio = f2fs_release_folio, 2189 .migrate_folio = filemap_migrate_folio, 2190 }; 2191 2192 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2193 nid_t n) 2194 { 2195 return radix_tree_lookup(&nm_i->free_nid_root, n); 2196 } 2197 2198 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2199 struct free_nid *i) 2200 { 2201 struct f2fs_nm_info *nm_i = NM_I(sbi); 2202 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2203 2204 if (err) 2205 return err; 2206 2207 nm_i->nid_cnt[FREE_NID]++; 2208 list_add_tail(&i->list, &nm_i->free_nid_list); 2209 return 0; 2210 } 2211 2212 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2213 struct free_nid *i, enum nid_state state) 2214 { 2215 struct f2fs_nm_info *nm_i = NM_I(sbi); 2216 2217 f2fs_bug_on(sbi, state != i->state); 2218 nm_i->nid_cnt[state]--; 2219 if (state == FREE_NID) 2220 list_del(&i->list); 2221 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2222 } 2223 2224 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2225 enum nid_state org_state, enum nid_state dst_state) 2226 { 2227 struct f2fs_nm_info *nm_i = NM_I(sbi); 2228 2229 f2fs_bug_on(sbi, org_state != i->state); 2230 i->state = dst_state; 2231 nm_i->nid_cnt[org_state]--; 2232 nm_i->nid_cnt[dst_state]++; 2233 2234 switch (dst_state) { 2235 case PREALLOC_NID: 2236 list_del(&i->list); 2237 break; 2238 case FREE_NID: 2239 list_add_tail(&i->list, &nm_i->free_nid_list); 2240 break; 2241 default: 2242 BUG_ON(1); 2243 } 2244 } 2245 2246 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2247 { 2248 struct f2fs_nm_info *nm_i = NM_I(sbi); 2249 unsigned int i; 2250 bool ret = true; 2251 2252 f2fs_down_read(&nm_i->nat_tree_lock); 2253 for (i = 0; i < nm_i->nat_blocks; i++) { 2254 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2255 ret = false; 2256 break; 2257 } 2258 } 2259 f2fs_up_read(&nm_i->nat_tree_lock); 2260 2261 return ret; 2262 } 2263 2264 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2265 bool set, bool build) 2266 { 2267 struct f2fs_nm_info *nm_i = NM_I(sbi); 2268 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2269 unsigned int nid_ofs = nid - START_NID(nid); 2270 2271 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2272 return; 2273 2274 if (set) { 2275 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2276 return; 2277 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2278 nm_i->free_nid_count[nat_ofs]++; 2279 } else { 2280 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2281 return; 2282 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2283 if (!build) 2284 nm_i->free_nid_count[nat_ofs]--; 2285 } 2286 } 2287 2288 /* return if the nid is recognized as free */ 2289 static bool add_free_nid(struct f2fs_sb_info *sbi, 2290 nid_t nid, bool build, bool update) 2291 { 2292 struct f2fs_nm_info *nm_i = NM_I(sbi); 2293 struct free_nid *i, *e; 2294 struct nat_entry *ne; 2295 int err = -EINVAL; 2296 bool ret = false; 2297 2298 /* 0 nid should not be used */ 2299 if (unlikely(nid == 0)) 2300 return false; 2301 2302 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2303 return false; 2304 2305 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2306 i->nid = nid; 2307 i->state = FREE_NID; 2308 2309 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2310 2311 spin_lock(&nm_i->nid_list_lock); 2312 2313 if (build) { 2314 /* 2315 * Thread A Thread B 2316 * - f2fs_create 2317 * - f2fs_new_inode 2318 * - f2fs_alloc_nid 2319 * - __insert_nid_to_list(PREALLOC_NID) 2320 * - f2fs_balance_fs_bg 2321 * - f2fs_build_free_nids 2322 * - __f2fs_build_free_nids 2323 * - scan_nat_page 2324 * - add_free_nid 2325 * - __lookup_nat_cache 2326 * - f2fs_add_link 2327 * - f2fs_init_inode_metadata 2328 * - f2fs_new_inode_page 2329 * - f2fs_new_node_page 2330 * - set_node_addr 2331 * - f2fs_alloc_nid_done 2332 * - __remove_nid_from_list(PREALLOC_NID) 2333 * - __insert_nid_to_list(FREE_NID) 2334 */ 2335 ne = __lookup_nat_cache(nm_i, nid); 2336 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2337 nat_get_blkaddr(ne) != NULL_ADDR)) 2338 goto err_out; 2339 2340 e = __lookup_free_nid_list(nm_i, nid); 2341 if (e) { 2342 if (e->state == FREE_NID) 2343 ret = true; 2344 goto err_out; 2345 } 2346 } 2347 ret = true; 2348 err = __insert_free_nid(sbi, i); 2349 err_out: 2350 if (update) { 2351 update_free_nid_bitmap(sbi, nid, ret, build); 2352 if (!build) 2353 nm_i->available_nids++; 2354 } 2355 spin_unlock(&nm_i->nid_list_lock); 2356 radix_tree_preload_end(); 2357 2358 if (err) 2359 kmem_cache_free(free_nid_slab, i); 2360 return ret; 2361 } 2362 2363 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2364 { 2365 struct f2fs_nm_info *nm_i = NM_I(sbi); 2366 struct free_nid *i; 2367 bool need_free = false; 2368 2369 spin_lock(&nm_i->nid_list_lock); 2370 i = __lookup_free_nid_list(nm_i, nid); 2371 if (i && i->state == FREE_NID) { 2372 __remove_free_nid(sbi, i, FREE_NID); 2373 need_free = true; 2374 } 2375 spin_unlock(&nm_i->nid_list_lock); 2376 2377 if (need_free) 2378 kmem_cache_free(free_nid_slab, i); 2379 } 2380 2381 static int scan_nat_page(struct f2fs_sb_info *sbi, 2382 struct page *nat_page, nid_t start_nid) 2383 { 2384 struct f2fs_nm_info *nm_i = NM_I(sbi); 2385 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2386 block_t blk_addr; 2387 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2388 int i; 2389 2390 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2391 2392 i = start_nid % NAT_ENTRY_PER_BLOCK; 2393 2394 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2395 if (unlikely(start_nid >= nm_i->max_nid)) 2396 break; 2397 2398 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2399 2400 if (blk_addr == NEW_ADDR) 2401 return -EFSCORRUPTED; 2402 2403 if (blk_addr == NULL_ADDR) { 2404 add_free_nid(sbi, start_nid, true, true); 2405 } else { 2406 spin_lock(&NM_I(sbi)->nid_list_lock); 2407 update_free_nid_bitmap(sbi, start_nid, false, true); 2408 spin_unlock(&NM_I(sbi)->nid_list_lock); 2409 } 2410 } 2411 2412 return 0; 2413 } 2414 2415 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2416 { 2417 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2418 struct f2fs_journal *journal = curseg->journal; 2419 int i; 2420 2421 down_read(&curseg->journal_rwsem); 2422 for (i = 0; i < nats_in_cursum(journal); i++) { 2423 block_t addr; 2424 nid_t nid; 2425 2426 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2427 nid = le32_to_cpu(nid_in_journal(journal, i)); 2428 if (addr == NULL_ADDR) 2429 add_free_nid(sbi, nid, true, false); 2430 else 2431 remove_free_nid(sbi, nid); 2432 } 2433 up_read(&curseg->journal_rwsem); 2434 } 2435 2436 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2437 { 2438 struct f2fs_nm_info *nm_i = NM_I(sbi); 2439 unsigned int i, idx; 2440 nid_t nid; 2441 2442 f2fs_down_read(&nm_i->nat_tree_lock); 2443 2444 for (i = 0; i < nm_i->nat_blocks; i++) { 2445 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2446 continue; 2447 if (!nm_i->free_nid_count[i]) 2448 continue; 2449 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2450 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2451 NAT_ENTRY_PER_BLOCK, idx); 2452 if (idx >= NAT_ENTRY_PER_BLOCK) 2453 break; 2454 2455 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2456 add_free_nid(sbi, nid, true, false); 2457 2458 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2459 goto out; 2460 } 2461 } 2462 out: 2463 scan_curseg_cache(sbi); 2464 2465 f2fs_up_read(&nm_i->nat_tree_lock); 2466 } 2467 2468 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2469 bool sync, bool mount) 2470 { 2471 struct f2fs_nm_info *nm_i = NM_I(sbi); 2472 int i = 0, ret; 2473 nid_t nid = nm_i->next_scan_nid; 2474 2475 if (unlikely(nid >= nm_i->max_nid)) 2476 nid = 0; 2477 2478 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2479 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2480 2481 /* Enough entries */ 2482 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2483 return 0; 2484 2485 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2486 return 0; 2487 2488 if (!mount) { 2489 /* try to find free nids in free_nid_bitmap */ 2490 scan_free_nid_bits(sbi); 2491 2492 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2493 return 0; 2494 } 2495 2496 /* readahead nat pages to be scanned */ 2497 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2498 META_NAT, true); 2499 2500 f2fs_down_read(&nm_i->nat_tree_lock); 2501 2502 while (1) { 2503 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2504 nm_i->nat_block_bitmap)) { 2505 struct page *page = get_current_nat_page(sbi, nid); 2506 2507 if (IS_ERR(page)) { 2508 ret = PTR_ERR(page); 2509 } else { 2510 ret = scan_nat_page(sbi, page, nid); 2511 f2fs_put_page(page, 1); 2512 } 2513 2514 if (ret) { 2515 f2fs_up_read(&nm_i->nat_tree_lock); 2516 2517 if (ret == -EFSCORRUPTED) { 2518 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2519 set_sbi_flag(sbi, SBI_NEED_FSCK); 2520 f2fs_handle_error(sbi, 2521 ERROR_INCONSISTENT_NAT); 2522 } 2523 2524 return ret; 2525 } 2526 } 2527 2528 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2529 if (unlikely(nid >= nm_i->max_nid)) 2530 nid = 0; 2531 2532 if (++i >= FREE_NID_PAGES) 2533 break; 2534 } 2535 2536 /* go to the next free nat pages to find free nids abundantly */ 2537 nm_i->next_scan_nid = nid; 2538 2539 /* find free nids from current sum_pages */ 2540 scan_curseg_cache(sbi); 2541 2542 f2fs_up_read(&nm_i->nat_tree_lock); 2543 2544 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2545 nm_i->ra_nid_pages, META_NAT, false); 2546 2547 return 0; 2548 } 2549 2550 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2551 { 2552 int ret; 2553 2554 mutex_lock(&NM_I(sbi)->build_lock); 2555 ret = __f2fs_build_free_nids(sbi, sync, mount); 2556 mutex_unlock(&NM_I(sbi)->build_lock); 2557 2558 return ret; 2559 } 2560 2561 /* 2562 * If this function returns success, caller can obtain a new nid 2563 * from second parameter of this function. 2564 * The returned nid could be used ino as well as nid when inode is created. 2565 */ 2566 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2567 { 2568 struct f2fs_nm_info *nm_i = NM_I(sbi); 2569 struct free_nid *i = NULL; 2570 retry: 2571 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2572 return false; 2573 2574 spin_lock(&nm_i->nid_list_lock); 2575 2576 if (unlikely(nm_i->available_nids == 0)) { 2577 spin_unlock(&nm_i->nid_list_lock); 2578 return false; 2579 } 2580 2581 /* We should not use stale free nids created by f2fs_build_free_nids */ 2582 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2583 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2584 i = list_first_entry(&nm_i->free_nid_list, 2585 struct free_nid, list); 2586 *nid = i->nid; 2587 2588 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2589 nm_i->available_nids--; 2590 2591 update_free_nid_bitmap(sbi, *nid, false, false); 2592 2593 spin_unlock(&nm_i->nid_list_lock); 2594 return true; 2595 } 2596 spin_unlock(&nm_i->nid_list_lock); 2597 2598 /* Let's scan nat pages and its caches to get free nids */ 2599 if (!f2fs_build_free_nids(sbi, true, false)) 2600 goto retry; 2601 return false; 2602 } 2603 2604 /* 2605 * f2fs_alloc_nid() should be called prior to this function. 2606 */ 2607 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2608 { 2609 struct f2fs_nm_info *nm_i = NM_I(sbi); 2610 struct free_nid *i; 2611 2612 spin_lock(&nm_i->nid_list_lock); 2613 i = __lookup_free_nid_list(nm_i, nid); 2614 f2fs_bug_on(sbi, !i); 2615 __remove_free_nid(sbi, i, PREALLOC_NID); 2616 spin_unlock(&nm_i->nid_list_lock); 2617 2618 kmem_cache_free(free_nid_slab, i); 2619 } 2620 2621 /* 2622 * f2fs_alloc_nid() should be called prior to this function. 2623 */ 2624 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2625 { 2626 struct f2fs_nm_info *nm_i = NM_I(sbi); 2627 struct free_nid *i; 2628 bool need_free = false; 2629 2630 if (!nid) 2631 return; 2632 2633 spin_lock(&nm_i->nid_list_lock); 2634 i = __lookup_free_nid_list(nm_i, nid); 2635 f2fs_bug_on(sbi, !i); 2636 2637 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2638 __remove_free_nid(sbi, i, PREALLOC_NID); 2639 need_free = true; 2640 } else { 2641 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2642 } 2643 2644 nm_i->available_nids++; 2645 2646 update_free_nid_bitmap(sbi, nid, true, false); 2647 2648 spin_unlock(&nm_i->nid_list_lock); 2649 2650 if (need_free) 2651 kmem_cache_free(free_nid_slab, i); 2652 } 2653 2654 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2655 { 2656 struct f2fs_nm_info *nm_i = NM_I(sbi); 2657 int nr = nr_shrink; 2658 2659 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2660 return 0; 2661 2662 if (!mutex_trylock(&nm_i->build_lock)) 2663 return 0; 2664 2665 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2666 struct free_nid *i, *next; 2667 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2668 2669 spin_lock(&nm_i->nid_list_lock); 2670 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2671 if (!nr_shrink || !batch || 2672 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2673 break; 2674 __remove_free_nid(sbi, i, FREE_NID); 2675 kmem_cache_free(free_nid_slab, i); 2676 nr_shrink--; 2677 batch--; 2678 } 2679 spin_unlock(&nm_i->nid_list_lock); 2680 } 2681 2682 mutex_unlock(&nm_i->build_lock); 2683 2684 return nr - nr_shrink; 2685 } 2686 2687 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2688 { 2689 void *src_addr, *dst_addr; 2690 size_t inline_size; 2691 struct page *ipage; 2692 struct f2fs_inode *ri; 2693 2694 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2695 if (IS_ERR(ipage)) 2696 return PTR_ERR(ipage); 2697 2698 ri = F2FS_INODE(page); 2699 if (ri->i_inline & F2FS_INLINE_XATTR) { 2700 if (!f2fs_has_inline_xattr(inode)) { 2701 set_inode_flag(inode, FI_INLINE_XATTR); 2702 stat_inc_inline_xattr(inode); 2703 } 2704 } else { 2705 if (f2fs_has_inline_xattr(inode)) { 2706 stat_dec_inline_xattr(inode); 2707 clear_inode_flag(inode, FI_INLINE_XATTR); 2708 } 2709 goto update_inode; 2710 } 2711 2712 dst_addr = inline_xattr_addr(inode, ipage); 2713 src_addr = inline_xattr_addr(inode, page); 2714 inline_size = inline_xattr_size(inode); 2715 2716 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2717 memcpy(dst_addr, src_addr, inline_size); 2718 update_inode: 2719 f2fs_update_inode(inode, ipage); 2720 f2fs_put_page(ipage, 1); 2721 return 0; 2722 } 2723 2724 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2725 { 2726 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2727 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2728 nid_t new_xnid; 2729 struct dnode_of_data dn; 2730 struct node_info ni; 2731 struct page *xpage; 2732 int err; 2733 2734 if (!prev_xnid) 2735 goto recover_xnid; 2736 2737 /* 1: invalidate the previous xattr nid */ 2738 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2739 if (err) 2740 return err; 2741 2742 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2743 dec_valid_node_count(sbi, inode, false); 2744 set_node_addr(sbi, &ni, NULL_ADDR, false); 2745 2746 recover_xnid: 2747 /* 2: update xattr nid in inode */ 2748 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2749 return -ENOSPC; 2750 2751 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2752 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2753 if (IS_ERR(xpage)) { 2754 f2fs_alloc_nid_failed(sbi, new_xnid); 2755 return PTR_ERR(xpage); 2756 } 2757 2758 f2fs_alloc_nid_done(sbi, new_xnid); 2759 f2fs_update_inode_page(inode); 2760 2761 /* 3: update and set xattr node page dirty */ 2762 if (page) { 2763 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), 2764 VALID_XATTR_BLOCK_SIZE); 2765 set_page_dirty(xpage); 2766 } 2767 f2fs_put_page(xpage, 1); 2768 2769 return 0; 2770 } 2771 2772 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2773 { 2774 struct f2fs_inode *src, *dst; 2775 nid_t ino = ino_of_node(page); 2776 struct node_info old_ni, new_ni; 2777 struct page *ipage; 2778 int err; 2779 2780 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2781 if (err) 2782 return err; 2783 2784 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2785 return -EINVAL; 2786 retry: 2787 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2788 if (!ipage) { 2789 memalloc_retry_wait(GFP_NOFS); 2790 goto retry; 2791 } 2792 2793 /* Should not use this inode from free nid list */ 2794 remove_free_nid(sbi, ino); 2795 2796 if (!PageUptodate(ipage)) 2797 SetPageUptodate(ipage); 2798 fill_node_footer(ipage, ino, ino, 0, true); 2799 set_cold_node(ipage, false); 2800 2801 src = F2FS_INODE(page); 2802 dst = F2FS_INODE(ipage); 2803 2804 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2805 dst->i_size = 0; 2806 dst->i_blocks = cpu_to_le64(1); 2807 dst->i_links = cpu_to_le32(1); 2808 dst->i_xattr_nid = 0; 2809 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2810 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2811 dst->i_extra_isize = src->i_extra_isize; 2812 2813 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2814 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2815 i_inline_xattr_size)) 2816 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2817 2818 if (f2fs_sb_has_project_quota(sbi) && 2819 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2820 i_projid)) 2821 dst->i_projid = src->i_projid; 2822 2823 if (f2fs_sb_has_inode_crtime(sbi) && 2824 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2825 i_crtime_nsec)) { 2826 dst->i_crtime = src->i_crtime; 2827 dst->i_crtime_nsec = src->i_crtime_nsec; 2828 } 2829 } 2830 2831 new_ni = old_ni; 2832 new_ni.ino = ino; 2833 2834 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2835 WARN_ON(1); 2836 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2837 inc_valid_inode_count(sbi); 2838 set_page_dirty(ipage); 2839 f2fs_put_page(ipage, 1); 2840 return 0; 2841 } 2842 2843 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2844 unsigned int segno, struct f2fs_summary_block *sum) 2845 { 2846 struct f2fs_node *rn; 2847 struct f2fs_summary *sum_entry; 2848 block_t addr; 2849 int i, idx, last_offset, nrpages; 2850 2851 /* scan the node segment */ 2852 last_offset = BLKS_PER_SEG(sbi); 2853 addr = START_BLOCK(sbi, segno); 2854 sum_entry = &sum->entries[0]; 2855 2856 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2857 nrpages = bio_max_segs(last_offset - i); 2858 2859 /* readahead node pages */ 2860 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2861 2862 for (idx = addr; idx < addr + nrpages; idx++) { 2863 struct page *page = f2fs_get_tmp_page(sbi, idx); 2864 2865 if (IS_ERR(page)) 2866 return PTR_ERR(page); 2867 2868 rn = F2FS_NODE(page); 2869 sum_entry->nid = rn->footer.nid; 2870 sum_entry->version = 0; 2871 sum_entry->ofs_in_node = 0; 2872 sum_entry++; 2873 f2fs_put_page(page, 1); 2874 } 2875 2876 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2877 addr + nrpages); 2878 } 2879 return 0; 2880 } 2881 2882 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2883 { 2884 struct f2fs_nm_info *nm_i = NM_I(sbi); 2885 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2886 struct f2fs_journal *journal = curseg->journal; 2887 int i; 2888 2889 down_write(&curseg->journal_rwsem); 2890 for (i = 0; i < nats_in_cursum(journal); i++) { 2891 struct nat_entry *ne; 2892 struct f2fs_nat_entry raw_ne; 2893 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2894 2895 if (f2fs_check_nid_range(sbi, nid)) 2896 continue; 2897 2898 raw_ne = nat_in_journal(journal, i); 2899 2900 ne = __lookup_nat_cache(nm_i, nid); 2901 if (!ne) { 2902 ne = __alloc_nat_entry(sbi, nid, true); 2903 __init_nat_entry(nm_i, ne, &raw_ne, true); 2904 } 2905 2906 /* 2907 * if a free nat in journal has not been used after last 2908 * checkpoint, we should remove it from available nids, 2909 * since later we will add it again. 2910 */ 2911 if (!get_nat_flag(ne, IS_DIRTY) && 2912 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2913 spin_lock(&nm_i->nid_list_lock); 2914 nm_i->available_nids--; 2915 spin_unlock(&nm_i->nid_list_lock); 2916 } 2917 2918 __set_nat_cache_dirty(nm_i, ne); 2919 } 2920 update_nats_in_cursum(journal, -i); 2921 up_write(&curseg->journal_rwsem); 2922 } 2923 2924 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2925 struct list_head *head, int max) 2926 { 2927 struct nat_entry_set *cur; 2928 2929 if (nes->entry_cnt >= max) 2930 goto add_out; 2931 2932 list_for_each_entry(cur, head, set_list) { 2933 if (cur->entry_cnt >= nes->entry_cnt) { 2934 list_add(&nes->set_list, cur->set_list.prev); 2935 return; 2936 } 2937 } 2938 add_out: 2939 list_add_tail(&nes->set_list, head); 2940 } 2941 2942 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2943 unsigned int valid) 2944 { 2945 if (valid == 0) { 2946 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2947 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2948 return; 2949 } 2950 2951 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2952 if (valid == NAT_ENTRY_PER_BLOCK) 2953 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2954 else 2955 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2956 } 2957 2958 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2959 struct page *page) 2960 { 2961 struct f2fs_nm_info *nm_i = NM_I(sbi); 2962 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2963 struct f2fs_nat_block *nat_blk = page_address(page); 2964 int valid = 0; 2965 int i = 0; 2966 2967 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2968 return; 2969 2970 if (nat_index == 0) { 2971 valid = 1; 2972 i = 1; 2973 } 2974 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2975 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2976 valid++; 2977 } 2978 2979 __update_nat_bits(nm_i, nat_index, valid); 2980 } 2981 2982 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2983 { 2984 struct f2fs_nm_info *nm_i = NM_I(sbi); 2985 unsigned int nat_ofs; 2986 2987 f2fs_down_read(&nm_i->nat_tree_lock); 2988 2989 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2990 unsigned int valid = 0, nid_ofs = 0; 2991 2992 /* handle nid zero due to it should never be used */ 2993 if (unlikely(nat_ofs == 0)) { 2994 valid = 1; 2995 nid_ofs = 1; 2996 } 2997 2998 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2999 if (!test_bit_le(nid_ofs, 3000 nm_i->free_nid_bitmap[nat_ofs])) 3001 valid++; 3002 } 3003 3004 __update_nat_bits(nm_i, nat_ofs, valid); 3005 } 3006 3007 f2fs_up_read(&nm_i->nat_tree_lock); 3008 } 3009 3010 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 3011 struct nat_entry_set *set, struct cp_control *cpc) 3012 { 3013 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3014 struct f2fs_journal *journal = curseg->journal; 3015 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 3016 bool to_journal = true; 3017 struct f2fs_nat_block *nat_blk; 3018 struct nat_entry *ne, *cur; 3019 struct page *page = NULL; 3020 3021 /* 3022 * there are two steps to flush nat entries: 3023 * #1, flush nat entries to journal in current hot data summary block. 3024 * #2, flush nat entries to nat page. 3025 */ 3026 if ((cpc->reason & CP_UMOUNT) || 3027 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3028 to_journal = false; 3029 3030 if (to_journal) { 3031 down_write(&curseg->journal_rwsem); 3032 } else { 3033 page = get_next_nat_page(sbi, start_nid); 3034 if (IS_ERR(page)) 3035 return PTR_ERR(page); 3036 3037 nat_blk = page_address(page); 3038 f2fs_bug_on(sbi, !nat_blk); 3039 } 3040 3041 /* flush dirty nats in nat entry set */ 3042 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3043 struct f2fs_nat_entry *raw_ne; 3044 nid_t nid = nat_get_nid(ne); 3045 int offset; 3046 3047 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3048 3049 if (to_journal) { 3050 offset = f2fs_lookup_journal_in_cursum(journal, 3051 NAT_JOURNAL, nid, 1); 3052 f2fs_bug_on(sbi, offset < 0); 3053 raw_ne = &nat_in_journal(journal, offset); 3054 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3055 } else { 3056 raw_ne = &nat_blk->entries[nid - start_nid]; 3057 } 3058 raw_nat_from_node_info(raw_ne, &ne->ni); 3059 nat_reset_flag(ne); 3060 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3061 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3062 add_free_nid(sbi, nid, false, true); 3063 } else { 3064 spin_lock(&NM_I(sbi)->nid_list_lock); 3065 update_free_nid_bitmap(sbi, nid, false, false); 3066 spin_unlock(&NM_I(sbi)->nid_list_lock); 3067 } 3068 } 3069 3070 if (to_journal) { 3071 up_write(&curseg->journal_rwsem); 3072 } else { 3073 update_nat_bits(sbi, start_nid, page); 3074 f2fs_put_page(page, 1); 3075 } 3076 3077 /* Allow dirty nats by node block allocation in write_begin */ 3078 if (!set->entry_cnt) { 3079 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3080 kmem_cache_free(nat_entry_set_slab, set); 3081 } 3082 return 0; 3083 } 3084 3085 /* 3086 * This function is called during the checkpointing process. 3087 */ 3088 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3089 { 3090 struct f2fs_nm_info *nm_i = NM_I(sbi); 3091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3092 struct f2fs_journal *journal = curseg->journal; 3093 struct nat_entry_set *setvec[NAT_VEC_SIZE]; 3094 struct nat_entry_set *set, *tmp; 3095 unsigned int found; 3096 nid_t set_idx = 0; 3097 LIST_HEAD(sets); 3098 int err = 0; 3099 3100 /* 3101 * during unmount, let's flush nat_bits before checking 3102 * nat_cnt[DIRTY_NAT]. 3103 */ 3104 if (cpc->reason & CP_UMOUNT) { 3105 f2fs_down_write(&nm_i->nat_tree_lock); 3106 remove_nats_in_journal(sbi); 3107 f2fs_up_write(&nm_i->nat_tree_lock); 3108 } 3109 3110 if (!nm_i->nat_cnt[DIRTY_NAT]) 3111 return 0; 3112 3113 f2fs_down_write(&nm_i->nat_tree_lock); 3114 3115 /* 3116 * if there are no enough space in journal to store dirty nat 3117 * entries, remove all entries from journal and merge them 3118 * into nat entry set. 3119 */ 3120 if (cpc->reason & CP_UMOUNT || 3121 !__has_cursum_space(journal, 3122 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3123 remove_nats_in_journal(sbi); 3124 3125 while ((found = __gang_lookup_nat_set(nm_i, 3126 set_idx, NAT_VEC_SIZE, setvec))) { 3127 unsigned idx; 3128 3129 set_idx = setvec[found - 1]->set + 1; 3130 for (idx = 0; idx < found; idx++) 3131 __adjust_nat_entry_set(setvec[idx], &sets, 3132 MAX_NAT_JENTRIES(journal)); 3133 } 3134 3135 /* flush dirty nats in nat entry set */ 3136 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3137 err = __flush_nat_entry_set(sbi, set, cpc); 3138 if (err) 3139 break; 3140 } 3141 3142 f2fs_up_write(&nm_i->nat_tree_lock); 3143 /* Allow dirty nats by node block allocation in write_begin */ 3144 3145 return err; 3146 } 3147 3148 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3149 { 3150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3151 struct f2fs_nm_info *nm_i = NM_I(sbi); 3152 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3153 unsigned int i; 3154 __u64 cp_ver = cur_cp_version(ckpt); 3155 block_t nat_bits_addr; 3156 3157 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3158 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3159 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3160 if (!nm_i->nat_bits) 3161 return -ENOMEM; 3162 3163 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3164 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3165 3166 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3167 return 0; 3168 3169 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) - 3170 nm_i->nat_bits_blocks; 3171 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3172 struct page *page; 3173 3174 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3175 if (IS_ERR(page)) 3176 return PTR_ERR(page); 3177 3178 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3179 page_address(page), F2FS_BLKSIZE); 3180 f2fs_put_page(page, 1); 3181 } 3182 3183 cp_ver |= (cur_cp_crc(ckpt) << 32); 3184 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3185 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3186 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3187 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3188 return 0; 3189 } 3190 3191 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3192 return 0; 3193 } 3194 3195 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3196 { 3197 struct f2fs_nm_info *nm_i = NM_I(sbi); 3198 unsigned int i = 0; 3199 nid_t nid, last_nid; 3200 3201 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3202 return; 3203 3204 for (i = 0; i < nm_i->nat_blocks; i++) { 3205 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3206 if (i >= nm_i->nat_blocks) 3207 break; 3208 3209 __set_bit_le(i, nm_i->nat_block_bitmap); 3210 3211 nid = i * NAT_ENTRY_PER_BLOCK; 3212 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3213 3214 spin_lock(&NM_I(sbi)->nid_list_lock); 3215 for (; nid < last_nid; nid++) 3216 update_free_nid_bitmap(sbi, nid, true, true); 3217 spin_unlock(&NM_I(sbi)->nid_list_lock); 3218 } 3219 3220 for (i = 0; i < nm_i->nat_blocks; i++) { 3221 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3222 if (i >= nm_i->nat_blocks) 3223 break; 3224 3225 __set_bit_le(i, nm_i->nat_block_bitmap); 3226 } 3227 } 3228 3229 static int init_node_manager(struct f2fs_sb_info *sbi) 3230 { 3231 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3232 struct f2fs_nm_info *nm_i = NM_I(sbi); 3233 unsigned char *version_bitmap; 3234 unsigned int nat_segs; 3235 int err; 3236 3237 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3238 3239 /* segment_count_nat includes pair segment so divide to 2. */ 3240 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3241 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3242 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3243 3244 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3245 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3246 F2FS_RESERVED_NODE_NUM; 3247 nm_i->nid_cnt[FREE_NID] = 0; 3248 nm_i->nid_cnt[PREALLOC_NID] = 0; 3249 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3250 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3251 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3252 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3253 3254 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3255 INIT_LIST_HEAD(&nm_i->free_nid_list); 3256 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3257 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3258 INIT_LIST_HEAD(&nm_i->nat_entries); 3259 spin_lock_init(&nm_i->nat_list_lock); 3260 3261 mutex_init(&nm_i->build_lock); 3262 spin_lock_init(&nm_i->nid_list_lock); 3263 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3264 3265 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3266 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3267 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3268 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3269 GFP_KERNEL); 3270 if (!nm_i->nat_bitmap) 3271 return -ENOMEM; 3272 3273 err = __get_nat_bitmaps(sbi); 3274 if (err) 3275 return err; 3276 3277 #ifdef CONFIG_F2FS_CHECK_FS 3278 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3279 GFP_KERNEL); 3280 if (!nm_i->nat_bitmap_mir) 3281 return -ENOMEM; 3282 #endif 3283 3284 return 0; 3285 } 3286 3287 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3288 { 3289 struct f2fs_nm_info *nm_i = NM_I(sbi); 3290 int i; 3291 3292 nm_i->free_nid_bitmap = 3293 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3294 nm_i->nat_blocks), 3295 GFP_KERNEL); 3296 if (!nm_i->free_nid_bitmap) 3297 return -ENOMEM; 3298 3299 for (i = 0; i < nm_i->nat_blocks; i++) { 3300 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3301 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3302 if (!nm_i->free_nid_bitmap[i]) 3303 return -ENOMEM; 3304 } 3305 3306 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3307 GFP_KERNEL); 3308 if (!nm_i->nat_block_bitmap) 3309 return -ENOMEM; 3310 3311 nm_i->free_nid_count = 3312 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3313 nm_i->nat_blocks), 3314 GFP_KERNEL); 3315 if (!nm_i->free_nid_count) 3316 return -ENOMEM; 3317 return 0; 3318 } 3319 3320 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3321 { 3322 int err; 3323 3324 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3325 GFP_KERNEL); 3326 if (!sbi->nm_info) 3327 return -ENOMEM; 3328 3329 err = init_node_manager(sbi); 3330 if (err) 3331 return err; 3332 3333 err = init_free_nid_cache(sbi); 3334 if (err) 3335 return err; 3336 3337 /* load free nid status from nat_bits table */ 3338 load_free_nid_bitmap(sbi); 3339 3340 return f2fs_build_free_nids(sbi, true, true); 3341 } 3342 3343 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3344 { 3345 struct f2fs_nm_info *nm_i = NM_I(sbi); 3346 struct free_nid *i, *next_i; 3347 void *vec[NAT_VEC_SIZE]; 3348 struct nat_entry **natvec = (struct nat_entry **)vec; 3349 struct nat_entry_set **setvec = (struct nat_entry_set **)vec; 3350 nid_t nid = 0; 3351 unsigned int found; 3352 3353 if (!nm_i) 3354 return; 3355 3356 /* destroy free nid list */ 3357 spin_lock(&nm_i->nid_list_lock); 3358 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3359 __remove_free_nid(sbi, i, FREE_NID); 3360 spin_unlock(&nm_i->nid_list_lock); 3361 kmem_cache_free(free_nid_slab, i); 3362 spin_lock(&nm_i->nid_list_lock); 3363 } 3364 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3365 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3366 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3367 spin_unlock(&nm_i->nid_list_lock); 3368 3369 /* destroy nat cache */ 3370 f2fs_down_write(&nm_i->nat_tree_lock); 3371 while ((found = __gang_lookup_nat_cache(nm_i, 3372 nid, NAT_VEC_SIZE, natvec))) { 3373 unsigned idx; 3374 3375 nid = nat_get_nid(natvec[found - 1]) + 1; 3376 for (idx = 0; idx < found; idx++) { 3377 spin_lock(&nm_i->nat_list_lock); 3378 list_del(&natvec[idx]->list); 3379 spin_unlock(&nm_i->nat_list_lock); 3380 3381 __del_from_nat_cache(nm_i, natvec[idx]); 3382 } 3383 } 3384 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3385 3386 /* destroy nat set cache */ 3387 nid = 0; 3388 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); 3389 while ((found = __gang_lookup_nat_set(nm_i, 3390 nid, NAT_VEC_SIZE, setvec))) { 3391 unsigned idx; 3392 3393 nid = setvec[found - 1]->set + 1; 3394 for (idx = 0; idx < found; idx++) { 3395 /* entry_cnt is not zero, when cp_error was occurred */ 3396 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3397 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3398 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3399 } 3400 } 3401 f2fs_up_write(&nm_i->nat_tree_lock); 3402 3403 kvfree(nm_i->nat_block_bitmap); 3404 if (nm_i->free_nid_bitmap) { 3405 int i; 3406 3407 for (i = 0; i < nm_i->nat_blocks; i++) 3408 kvfree(nm_i->free_nid_bitmap[i]); 3409 kvfree(nm_i->free_nid_bitmap); 3410 } 3411 kvfree(nm_i->free_nid_count); 3412 3413 kvfree(nm_i->nat_bitmap); 3414 kvfree(nm_i->nat_bits); 3415 #ifdef CONFIG_F2FS_CHECK_FS 3416 kvfree(nm_i->nat_bitmap_mir); 3417 #endif 3418 sbi->nm_info = NULL; 3419 kfree(nm_i); 3420 } 3421 3422 int __init f2fs_create_node_manager_caches(void) 3423 { 3424 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3425 sizeof(struct nat_entry)); 3426 if (!nat_entry_slab) 3427 goto fail; 3428 3429 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3430 sizeof(struct free_nid)); 3431 if (!free_nid_slab) 3432 goto destroy_nat_entry; 3433 3434 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3435 sizeof(struct nat_entry_set)); 3436 if (!nat_entry_set_slab) 3437 goto destroy_free_nid; 3438 3439 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3440 sizeof(struct fsync_node_entry)); 3441 if (!fsync_node_entry_slab) 3442 goto destroy_nat_entry_set; 3443 return 0; 3444 3445 destroy_nat_entry_set: 3446 kmem_cache_destroy(nat_entry_set_slab); 3447 destroy_free_nid: 3448 kmem_cache_destroy(free_nid_slab); 3449 destroy_nat_entry: 3450 kmem_cache_destroy(nat_entry_slab); 3451 fail: 3452 return -ENOMEM; 3453 } 3454 3455 void f2fs_destroy_node_manager_caches(void) 3456 { 3457 kmem_cache_destroy(fsync_node_entry_slab); 3458 kmem_cache_destroy(nat_entry_set_slab); 3459 kmem_cache_destroy(free_nid_slab); 3460 kmem_cache_destroy(nat_entry_slab); 3461 } 3462