1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] * 49 sizeof(struct free_nid)) >> PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 if (excess_cached_nats(sbi)) 56 res = false; 57 } else if (type == DIRTY_DENTS) { 58 if (sbi->sb->s_bdi->wb.dirty_exceeded) 59 return false; 60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 62 } else if (type == INO_ENTRIES) { 63 int i; 64 65 for (i = 0; i <= UPDATE_INO; i++) 66 mem_size += sbi->im[i].ino_num * 67 sizeof(struct ino_entry); 68 mem_size >>= PAGE_SHIFT; 69 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 70 } else if (type == EXTENT_CACHE) { 71 mem_size = (atomic_read(&sbi->total_ext_tree) * 72 sizeof(struct extent_tree) + 73 atomic_read(&sbi->total_ext_node) * 74 sizeof(struct extent_node)) >> PAGE_SHIFT; 75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 76 } else { 77 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 78 return true; 79 } 80 return res; 81 } 82 83 static void clear_node_page_dirty(struct page *page) 84 { 85 struct address_space *mapping = page->mapping; 86 unsigned int long flags; 87 88 if (PageDirty(page)) { 89 spin_lock_irqsave(&mapping->tree_lock, flags); 90 radix_tree_tag_clear(&mapping->page_tree, 91 page_index(page), 92 PAGECACHE_TAG_DIRTY); 93 spin_unlock_irqrestore(&mapping->tree_lock, flags); 94 95 clear_page_dirty_for_io(page); 96 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 97 } 98 ClearPageUptodate(page); 99 } 100 101 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 102 { 103 pgoff_t index = current_nat_addr(sbi, nid); 104 return get_meta_page(sbi, index); 105 } 106 107 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 108 { 109 struct page *src_page; 110 struct page *dst_page; 111 pgoff_t src_off; 112 pgoff_t dst_off; 113 void *src_addr; 114 void *dst_addr; 115 struct f2fs_nm_info *nm_i = NM_I(sbi); 116 117 src_off = current_nat_addr(sbi, nid); 118 dst_off = next_nat_addr(sbi, src_off); 119 120 /* get current nat block page with lock */ 121 src_page = get_meta_page(sbi, src_off); 122 dst_page = grab_meta_page(sbi, dst_off); 123 f2fs_bug_on(sbi, PageDirty(src_page)); 124 125 src_addr = page_address(src_page); 126 dst_addr = page_address(dst_page); 127 memcpy(dst_addr, src_addr, PAGE_SIZE); 128 set_page_dirty(dst_page); 129 f2fs_put_page(src_page, 1); 130 131 set_to_next_nat(nm_i, nid); 132 133 return dst_page; 134 } 135 136 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 137 { 138 return radix_tree_lookup(&nm_i->nat_root, n); 139 } 140 141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 142 nid_t start, unsigned int nr, struct nat_entry **ep) 143 { 144 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 145 } 146 147 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 148 { 149 list_del(&e->list); 150 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 151 nm_i->nat_cnt--; 152 kmem_cache_free(nat_entry_slab, e); 153 } 154 155 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 156 struct nat_entry *ne) 157 { 158 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 159 struct nat_entry_set *head; 160 161 head = radix_tree_lookup(&nm_i->nat_set_root, set); 162 if (!head) { 163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 164 165 INIT_LIST_HEAD(&head->entry_list); 166 INIT_LIST_HEAD(&head->set_list); 167 head->set = set; 168 head->entry_cnt = 0; 169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 170 } 171 172 if (get_nat_flag(ne, IS_DIRTY)) 173 goto refresh_list; 174 175 nm_i->dirty_nat_cnt++; 176 head->entry_cnt++; 177 set_nat_flag(ne, IS_DIRTY, true); 178 refresh_list: 179 if (nat_get_blkaddr(ne) == NEW_ADDR) 180 list_del_init(&ne->list); 181 else 182 list_move_tail(&ne->list, &head->entry_list); 183 } 184 185 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 186 struct nat_entry_set *set, struct nat_entry *ne) 187 { 188 list_move_tail(&ne->list, &nm_i->nat_entries); 189 set_nat_flag(ne, IS_DIRTY, false); 190 set->entry_cnt--; 191 nm_i->dirty_nat_cnt--; 192 } 193 194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 195 nid_t start, unsigned int nr, struct nat_entry_set **ep) 196 { 197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 198 start, nr); 199 } 200 201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 202 { 203 struct f2fs_nm_info *nm_i = NM_I(sbi); 204 struct nat_entry *e; 205 bool need = false; 206 207 down_read(&nm_i->nat_tree_lock); 208 e = __lookup_nat_cache(nm_i, nid); 209 if (e) { 210 if (!get_nat_flag(e, IS_CHECKPOINTED) && 211 !get_nat_flag(e, HAS_FSYNCED_INODE)) 212 need = true; 213 } 214 up_read(&nm_i->nat_tree_lock); 215 return need; 216 } 217 218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 219 { 220 struct f2fs_nm_info *nm_i = NM_I(sbi); 221 struct nat_entry *e; 222 bool is_cp = true; 223 224 down_read(&nm_i->nat_tree_lock); 225 e = __lookup_nat_cache(nm_i, nid); 226 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 227 is_cp = false; 228 up_read(&nm_i->nat_tree_lock); 229 return is_cp; 230 } 231 232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 233 { 234 struct f2fs_nm_info *nm_i = NM_I(sbi); 235 struct nat_entry *e; 236 bool need_update = true; 237 238 down_read(&nm_i->nat_tree_lock); 239 e = __lookup_nat_cache(nm_i, ino); 240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 241 (get_nat_flag(e, IS_CHECKPOINTED) || 242 get_nat_flag(e, HAS_FSYNCED_INODE))) 243 need_update = false; 244 up_read(&nm_i->nat_tree_lock); 245 return need_update; 246 } 247 248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 249 bool no_fail) 250 { 251 struct nat_entry *new; 252 253 if (no_fail) { 254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 256 } else { 257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 258 if (!new) 259 return NULL; 260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 261 kmem_cache_free(nat_entry_slab, new); 262 return NULL; 263 } 264 } 265 266 memset(new, 0, sizeof(struct nat_entry)); 267 nat_set_nid(new, nid); 268 nat_reset_flag(new); 269 list_add_tail(&new->list, &nm_i->nat_entries); 270 nm_i->nat_cnt++; 271 return new; 272 } 273 274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 275 struct f2fs_nat_entry *ne) 276 { 277 struct f2fs_nm_info *nm_i = NM_I(sbi); 278 struct nat_entry *e; 279 280 e = __lookup_nat_cache(nm_i, nid); 281 if (!e) { 282 e = grab_nat_entry(nm_i, nid, false); 283 if (e) 284 node_info_from_raw_nat(&e->ni, ne); 285 } else { 286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 287 nat_get_blkaddr(e) != 288 le32_to_cpu(ne->block_addr) || 289 nat_get_version(e) != ne->version); 290 } 291 } 292 293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 294 block_t new_blkaddr, bool fsync_done) 295 { 296 struct f2fs_nm_info *nm_i = NM_I(sbi); 297 struct nat_entry *e; 298 299 down_write(&nm_i->nat_tree_lock); 300 e = __lookup_nat_cache(nm_i, ni->nid); 301 if (!e) { 302 e = grab_nat_entry(nm_i, ni->nid, true); 303 copy_node_info(&e->ni, ni); 304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 305 } else if (new_blkaddr == NEW_ADDR) { 306 /* 307 * when nid is reallocated, 308 * previous nat entry can be remained in nat cache. 309 * So, reinitialize it with new information. 310 */ 311 copy_node_info(&e->ni, ni); 312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 313 } 314 315 /* sanity check */ 316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 318 new_blkaddr == NULL_ADDR); 319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 320 new_blkaddr == NEW_ADDR); 321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 322 nat_get_blkaddr(e) != NULL_ADDR && 323 new_blkaddr == NEW_ADDR); 324 325 /* increment version no as node is removed */ 326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 327 unsigned char version = nat_get_version(e); 328 nat_set_version(e, inc_node_version(version)); 329 330 /* in order to reuse the nid */ 331 if (nm_i->next_scan_nid > ni->nid) 332 nm_i->next_scan_nid = ni->nid; 333 } 334 335 /* change address */ 336 nat_set_blkaddr(e, new_blkaddr); 337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 338 set_nat_flag(e, IS_CHECKPOINTED, false); 339 __set_nat_cache_dirty(nm_i, e); 340 341 /* update fsync_mark if its inode nat entry is still alive */ 342 if (ni->nid != ni->ino) 343 e = __lookup_nat_cache(nm_i, ni->ino); 344 if (e) { 345 if (fsync_done && ni->nid == ni->ino) 346 set_nat_flag(e, HAS_FSYNCED_INODE, true); 347 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 348 } 349 up_write(&nm_i->nat_tree_lock); 350 } 351 352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 353 { 354 struct f2fs_nm_info *nm_i = NM_I(sbi); 355 int nr = nr_shrink; 356 357 if (!down_write_trylock(&nm_i->nat_tree_lock)) 358 return 0; 359 360 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 361 struct nat_entry *ne; 362 ne = list_first_entry(&nm_i->nat_entries, 363 struct nat_entry, list); 364 __del_from_nat_cache(nm_i, ne); 365 nr_shrink--; 366 } 367 up_write(&nm_i->nat_tree_lock); 368 return nr - nr_shrink; 369 } 370 371 /* 372 * This function always returns success 373 */ 374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 375 { 376 struct f2fs_nm_info *nm_i = NM_I(sbi); 377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 378 struct f2fs_journal *journal = curseg->journal; 379 nid_t start_nid = START_NID(nid); 380 struct f2fs_nat_block *nat_blk; 381 struct page *page = NULL; 382 struct f2fs_nat_entry ne; 383 struct nat_entry *e; 384 pgoff_t index; 385 int i; 386 387 ni->nid = nid; 388 389 /* Check nat cache */ 390 down_read(&nm_i->nat_tree_lock); 391 e = __lookup_nat_cache(nm_i, nid); 392 if (e) { 393 ni->ino = nat_get_ino(e); 394 ni->blk_addr = nat_get_blkaddr(e); 395 ni->version = nat_get_version(e); 396 up_read(&nm_i->nat_tree_lock); 397 return; 398 } 399 400 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 401 402 /* Check current segment summary */ 403 down_read(&curseg->journal_rwsem); 404 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 405 if (i >= 0) { 406 ne = nat_in_journal(journal, i); 407 node_info_from_raw_nat(ni, &ne); 408 } 409 up_read(&curseg->journal_rwsem); 410 if (i >= 0) { 411 up_read(&nm_i->nat_tree_lock); 412 goto cache; 413 } 414 415 /* Fill node_info from nat page */ 416 index = current_nat_addr(sbi, nid); 417 up_read(&nm_i->nat_tree_lock); 418 419 page = get_meta_page(sbi, index); 420 nat_blk = (struct f2fs_nat_block *)page_address(page); 421 ne = nat_blk->entries[nid - start_nid]; 422 node_info_from_raw_nat(ni, &ne); 423 f2fs_put_page(page, 1); 424 cache: 425 /* cache nat entry */ 426 down_write(&nm_i->nat_tree_lock); 427 cache_nat_entry(sbi, nid, &ne); 428 up_write(&nm_i->nat_tree_lock); 429 } 430 431 /* 432 * readahead MAX_RA_NODE number of node pages. 433 */ 434 static void ra_node_pages(struct page *parent, int start, int n) 435 { 436 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 437 struct blk_plug plug; 438 int i, end; 439 nid_t nid; 440 441 blk_start_plug(&plug); 442 443 /* Then, try readahead for siblings of the desired node */ 444 end = start + n; 445 end = min(end, NIDS_PER_BLOCK); 446 for (i = start; i < end; i++) { 447 nid = get_nid(parent, i, false); 448 ra_node_page(sbi, nid); 449 } 450 451 blk_finish_plug(&plug); 452 } 453 454 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 455 { 456 const long direct_index = ADDRS_PER_INODE(dn->inode); 457 const long direct_blks = ADDRS_PER_BLOCK; 458 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 459 unsigned int skipped_unit = ADDRS_PER_BLOCK; 460 int cur_level = dn->cur_level; 461 int max_level = dn->max_level; 462 pgoff_t base = 0; 463 464 if (!dn->max_level) 465 return pgofs + 1; 466 467 while (max_level-- > cur_level) 468 skipped_unit *= NIDS_PER_BLOCK; 469 470 switch (dn->max_level) { 471 case 3: 472 base += 2 * indirect_blks; 473 case 2: 474 base += 2 * direct_blks; 475 case 1: 476 base += direct_index; 477 break; 478 default: 479 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 480 } 481 482 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 483 } 484 485 /* 486 * The maximum depth is four. 487 * Offset[0] will have raw inode offset. 488 */ 489 static int get_node_path(struct inode *inode, long block, 490 int offset[4], unsigned int noffset[4]) 491 { 492 const long direct_index = ADDRS_PER_INODE(inode); 493 const long direct_blks = ADDRS_PER_BLOCK; 494 const long dptrs_per_blk = NIDS_PER_BLOCK; 495 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 496 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 497 int n = 0; 498 int level = 0; 499 500 noffset[0] = 0; 501 502 if (block < direct_index) { 503 offset[n] = block; 504 goto got; 505 } 506 block -= direct_index; 507 if (block < direct_blks) { 508 offset[n++] = NODE_DIR1_BLOCK; 509 noffset[n] = 1; 510 offset[n] = block; 511 level = 1; 512 goto got; 513 } 514 block -= direct_blks; 515 if (block < direct_blks) { 516 offset[n++] = NODE_DIR2_BLOCK; 517 noffset[n] = 2; 518 offset[n] = block; 519 level = 1; 520 goto got; 521 } 522 block -= direct_blks; 523 if (block < indirect_blks) { 524 offset[n++] = NODE_IND1_BLOCK; 525 noffset[n] = 3; 526 offset[n++] = block / direct_blks; 527 noffset[n] = 4 + offset[n - 1]; 528 offset[n] = block % direct_blks; 529 level = 2; 530 goto got; 531 } 532 block -= indirect_blks; 533 if (block < indirect_blks) { 534 offset[n++] = NODE_IND2_BLOCK; 535 noffset[n] = 4 + dptrs_per_blk; 536 offset[n++] = block / direct_blks; 537 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 538 offset[n] = block % direct_blks; 539 level = 2; 540 goto got; 541 } 542 block -= indirect_blks; 543 if (block < dindirect_blks) { 544 offset[n++] = NODE_DIND_BLOCK; 545 noffset[n] = 5 + (dptrs_per_blk * 2); 546 offset[n++] = block / indirect_blks; 547 noffset[n] = 6 + (dptrs_per_blk * 2) + 548 offset[n - 1] * (dptrs_per_blk + 1); 549 offset[n++] = (block / direct_blks) % dptrs_per_blk; 550 noffset[n] = 7 + (dptrs_per_blk * 2) + 551 offset[n - 2] * (dptrs_per_blk + 1) + 552 offset[n - 1]; 553 offset[n] = block % direct_blks; 554 level = 3; 555 goto got; 556 } else { 557 BUG(); 558 } 559 got: 560 return level; 561 } 562 563 /* 564 * Caller should call f2fs_put_dnode(dn). 565 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 566 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 567 * In the case of RDONLY_NODE, we don't need to care about mutex. 568 */ 569 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 570 { 571 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 572 struct page *npage[4]; 573 struct page *parent = NULL; 574 int offset[4]; 575 unsigned int noffset[4]; 576 nid_t nids[4]; 577 int level, i = 0; 578 int err = 0; 579 580 level = get_node_path(dn->inode, index, offset, noffset); 581 582 nids[0] = dn->inode->i_ino; 583 npage[0] = dn->inode_page; 584 585 if (!npage[0]) { 586 npage[0] = get_node_page(sbi, nids[0]); 587 if (IS_ERR(npage[0])) 588 return PTR_ERR(npage[0]); 589 } 590 591 /* if inline_data is set, should not report any block indices */ 592 if (f2fs_has_inline_data(dn->inode) && index) { 593 err = -ENOENT; 594 f2fs_put_page(npage[0], 1); 595 goto release_out; 596 } 597 598 parent = npage[0]; 599 if (level != 0) 600 nids[1] = get_nid(parent, offset[0], true); 601 dn->inode_page = npage[0]; 602 dn->inode_page_locked = true; 603 604 /* get indirect or direct nodes */ 605 for (i = 1; i <= level; i++) { 606 bool done = false; 607 608 if (!nids[i] && mode == ALLOC_NODE) { 609 /* alloc new node */ 610 if (!alloc_nid(sbi, &(nids[i]))) { 611 err = -ENOSPC; 612 goto release_pages; 613 } 614 615 dn->nid = nids[i]; 616 npage[i] = new_node_page(dn, noffset[i], NULL); 617 if (IS_ERR(npage[i])) { 618 alloc_nid_failed(sbi, nids[i]); 619 err = PTR_ERR(npage[i]); 620 goto release_pages; 621 } 622 623 set_nid(parent, offset[i - 1], nids[i], i == 1); 624 alloc_nid_done(sbi, nids[i]); 625 done = true; 626 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 627 npage[i] = get_node_page_ra(parent, offset[i - 1]); 628 if (IS_ERR(npage[i])) { 629 err = PTR_ERR(npage[i]); 630 goto release_pages; 631 } 632 done = true; 633 } 634 if (i == 1) { 635 dn->inode_page_locked = false; 636 unlock_page(parent); 637 } else { 638 f2fs_put_page(parent, 1); 639 } 640 641 if (!done) { 642 npage[i] = get_node_page(sbi, nids[i]); 643 if (IS_ERR(npage[i])) { 644 err = PTR_ERR(npage[i]); 645 f2fs_put_page(npage[0], 0); 646 goto release_out; 647 } 648 } 649 if (i < level) { 650 parent = npage[i]; 651 nids[i + 1] = get_nid(parent, offset[i], false); 652 } 653 } 654 dn->nid = nids[level]; 655 dn->ofs_in_node = offset[level]; 656 dn->node_page = npage[level]; 657 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 658 return 0; 659 660 release_pages: 661 f2fs_put_page(parent, 1); 662 if (i > 1) 663 f2fs_put_page(npage[0], 0); 664 release_out: 665 dn->inode_page = NULL; 666 dn->node_page = NULL; 667 if (err == -ENOENT) { 668 dn->cur_level = i; 669 dn->max_level = level; 670 dn->ofs_in_node = offset[level]; 671 } 672 return err; 673 } 674 675 static void truncate_node(struct dnode_of_data *dn) 676 { 677 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 678 struct node_info ni; 679 680 get_node_info(sbi, dn->nid, &ni); 681 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 682 683 /* Deallocate node address */ 684 invalidate_blocks(sbi, ni.blk_addr); 685 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 686 set_node_addr(sbi, &ni, NULL_ADDR, false); 687 688 if (dn->nid == dn->inode->i_ino) { 689 remove_orphan_inode(sbi, dn->nid); 690 dec_valid_inode_count(sbi); 691 f2fs_inode_synced(dn->inode); 692 } 693 694 clear_node_page_dirty(dn->node_page); 695 set_sbi_flag(sbi, SBI_IS_DIRTY); 696 697 f2fs_put_page(dn->node_page, 1); 698 699 invalidate_mapping_pages(NODE_MAPPING(sbi), 700 dn->node_page->index, dn->node_page->index); 701 702 dn->node_page = NULL; 703 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 704 } 705 706 static int truncate_dnode(struct dnode_of_data *dn) 707 { 708 struct page *page; 709 710 if (dn->nid == 0) 711 return 1; 712 713 /* get direct node */ 714 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 715 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 716 return 1; 717 else if (IS_ERR(page)) 718 return PTR_ERR(page); 719 720 /* Make dnode_of_data for parameter */ 721 dn->node_page = page; 722 dn->ofs_in_node = 0; 723 truncate_data_blocks(dn); 724 truncate_node(dn); 725 return 1; 726 } 727 728 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 729 int ofs, int depth) 730 { 731 struct dnode_of_data rdn = *dn; 732 struct page *page; 733 struct f2fs_node *rn; 734 nid_t child_nid; 735 unsigned int child_nofs; 736 int freed = 0; 737 int i, ret; 738 739 if (dn->nid == 0) 740 return NIDS_PER_BLOCK + 1; 741 742 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 743 744 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 745 if (IS_ERR(page)) { 746 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 747 return PTR_ERR(page); 748 } 749 750 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 751 752 rn = F2FS_NODE(page); 753 if (depth < 3) { 754 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 755 child_nid = le32_to_cpu(rn->in.nid[i]); 756 if (child_nid == 0) 757 continue; 758 rdn.nid = child_nid; 759 ret = truncate_dnode(&rdn); 760 if (ret < 0) 761 goto out_err; 762 if (set_nid(page, i, 0, false)) 763 dn->node_changed = true; 764 } 765 } else { 766 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 767 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 768 child_nid = le32_to_cpu(rn->in.nid[i]); 769 if (child_nid == 0) { 770 child_nofs += NIDS_PER_BLOCK + 1; 771 continue; 772 } 773 rdn.nid = child_nid; 774 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 775 if (ret == (NIDS_PER_BLOCK + 1)) { 776 if (set_nid(page, i, 0, false)) 777 dn->node_changed = true; 778 child_nofs += ret; 779 } else if (ret < 0 && ret != -ENOENT) { 780 goto out_err; 781 } 782 } 783 freed = child_nofs; 784 } 785 786 if (!ofs) { 787 /* remove current indirect node */ 788 dn->node_page = page; 789 truncate_node(dn); 790 freed++; 791 } else { 792 f2fs_put_page(page, 1); 793 } 794 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 795 return freed; 796 797 out_err: 798 f2fs_put_page(page, 1); 799 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 800 return ret; 801 } 802 803 static int truncate_partial_nodes(struct dnode_of_data *dn, 804 struct f2fs_inode *ri, int *offset, int depth) 805 { 806 struct page *pages[2]; 807 nid_t nid[3]; 808 nid_t child_nid; 809 int err = 0; 810 int i; 811 int idx = depth - 2; 812 813 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 814 if (!nid[0]) 815 return 0; 816 817 /* get indirect nodes in the path */ 818 for (i = 0; i < idx + 1; i++) { 819 /* reference count'll be increased */ 820 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 821 if (IS_ERR(pages[i])) { 822 err = PTR_ERR(pages[i]); 823 idx = i - 1; 824 goto fail; 825 } 826 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 827 } 828 829 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 830 831 /* free direct nodes linked to a partial indirect node */ 832 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 833 child_nid = get_nid(pages[idx], i, false); 834 if (!child_nid) 835 continue; 836 dn->nid = child_nid; 837 err = truncate_dnode(dn); 838 if (err < 0) 839 goto fail; 840 if (set_nid(pages[idx], i, 0, false)) 841 dn->node_changed = true; 842 } 843 844 if (offset[idx + 1] == 0) { 845 dn->node_page = pages[idx]; 846 dn->nid = nid[idx]; 847 truncate_node(dn); 848 } else { 849 f2fs_put_page(pages[idx], 1); 850 } 851 offset[idx]++; 852 offset[idx + 1] = 0; 853 idx--; 854 fail: 855 for (i = idx; i >= 0; i--) 856 f2fs_put_page(pages[i], 1); 857 858 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 859 860 return err; 861 } 862 863 /* 864 * All the block addresses of data and nodes should be nullified. 865 */ 866 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 867 { 868 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 869 int err = 0, cont = 1; 870 int level, offset[4], noffset[4]; 871 unsigned int nofs = 0; 872 struct f2fs_inode *ri; 873 struct dnode_of_data dn; 874 struct page *page; 875 876 trace_f2fs_truncate_inode_blocks_enter(inode, from); 877 878 level = get_node_path(inode, from, offset, noffset); 879 880 page = get_node_page(sbi, inode->i_ino); 881 if (IS_ERR(page)) { 882 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 883 return PTR_ERR(page); 884 } 885 886 set_new_dnode(&dn, inode, page, NULL, 0); 887 unlock_page(page); 888 889 ri = F2FS_INODE(page); 890 switch (level) { 891 case 0: 892 case 1: 893 nofs = noffset[1]; 894 break; 895 case 2: 896 nofs = noffset[1]; 897 if (!offset[level - 1]) 898 goto skip_partial; 899 err = truncate_partial_nodes(&dn, ri, offset, level); 900 if (err < 0 && err != -ENOENT) 901 goto fail; 902 nofs += 1 + NIDS_PER_BLOCK; 903 break; 904 case 3: 905 nofs = 5 + 2 * NIDS_PER_BLOCK; 906 if (!offset[level - 1]) 907 goto skip_partial; 908 err = truncate_partial_nodes(&dn, ri, offset, level); 909 if (err < 0 && err != -ENOENT) 910 goto fail; 911 break; 912 default: 913 BUG(); 914 } 915 916 skip_partial: 917 while (cont) { 918 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 919 switch (offset[0]) { 920 case NODE_DIR1_BLOCK: 921 case NODE_DIR2_BLOCK: 922 err = truncate_dnode(&dn); 923 break; 924 925 case NODE_IND1_BLOCK: 926 case NODE_IND2_BLOCK: 927 err = truncate_nodes(&dn, nofs, offset[1], 2); 928 break; 929 930 case NODE_DIND_BLOCK: 931 err = truncate_nodes(&dn, nofs, offset[1], 3); 932 cont = 0; 933 break; 934 935 default: 936 BUG(); 937 } 938 if (err < 0 && err != -ENOENT) 939 goto fail; 940 if (offset[1] == 0 && 941 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 942 lock_page(page); 943 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 944 f2fs_wait_on_page_writeback(page, NODE, true); 945 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 946 set_page_dirty(page); 947 unlock_page(page); 948 } 949 offset[1] = 0; 950 offset[0]++; 951 nofs += err; 952 } 953 fail: 954 f2fs_put_page(page, 0); 955 trace_f2fs_truncate_inode_blocks_exit(inode, err); 956 return err > 0 ? 0 : err; 957 } 958 959 int truncate_xattr_node(struct inode *inode, struct page *page) 960 { 961 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 962 nid_t nid = F2FS_I(inode)->i_xattr_nid; 963 struct dnode_of_data dn; 964 struct page *npage; 965 966 if (!nid) 967 return 0; 968 969 npage = get_node_page(sbi, nid); 970 if (IS_ERR(npage)) 971 return PTR_ERR(npage); 972 973 f2fs_i_xnid_write(inode, 0); 974 975 set_new_dnode(&dn, inode, page, npage, nid); 976 977 if (page) 978 dn.inode_page_locked = true; 979 truncate_node(&dn); 980 return 0; 981 } 982 983 /* 984 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 985 * f2fs_unlock_op(). 986 */ 987 int remove_inode_page(struct inode *inode) 988 { 989 struct dnode_of_data dn; 990 int err; 991 992 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 993 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 994 if (err) 995 return err; 996 997 err = truncate_xattr_node(inode, dn.inode_page); 998 if (err) { 999 f2fs_put_dnode(&dn); 1000 return err; 1001 } 1002 1003 /* remove potential inline_data blocks */ 1004 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1005 S_ISLNK(inode->i_mode)) 1006 truncate_data_blocks_range(&dn, 1); 1007 1008 /* 0 is possible, after f2fs_new_inode() has failed */ 1009 f2fs_bug_on(F2FS_I_SB(inode), 1010 inode->i_blocks != 0 && inode->i_blocks != 8); 1011 1012 /* will put inode & node pages */ 1013 truncate_node(&dn); 1014 return 0; 1015 } 1016 1017 struct page *new_inode_page(struct inode *inode) 1018 { 1019 struct dnode_of_data dn; 1020 1021 /* allocate inode page for new inode */ 1022 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1023 1024 /* caller should f2fs_put_page(page, 1); */ 1025 return new_node_page(&dn, 0, NULL); 1026 } 1027 1028 struct page *new_node_page(struct dnode_of_data *dn, 1029 unsigned int ofs, struct page *ipage) 1030 { 1031 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1032 struct node_info new_ni; 1033 struct page *page; 1034 int err; 1035 1036 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1037 return ERR_PTR(-EPERM); 1038 1039 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1040 if (!page) 1041 return ERR_PTR(-ENOMEM); 1042 1043 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1044 goto fail; 1045 1046 #ifdef CONFIG_F2FS_CHECK_FS 1047 get_node_info(sbi, dn->nid, &new_ni); 1048 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1049 #endif 1050 new_ni.nid = dn->nid; 1051 new_ni.ino = dn->inode->i_ino; 1052 new_ni.blk_addr = NULL_ADDR; 1053 new_ni.flag = 0; 1054 new_ni.version = 0; 1055 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1056 1057 f2fs_wait_on_page_writeback(page, NODE, true); 1058 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1059 set_cold_node(dn->inode, page); 1060 if (!PageUptodate(page)) 1061 SetPageUptodate(page); 1062 if (set_page_dirty(page)) 1063 dn->node_changed = true; 1064 1065 if (f2fs_has_xattr_block(ofs)) 1066 f2fs_i_xnid_write(dn->inode, dn->nid); 1067 1068 if (ofs == 0) 1069 inc_valid_inode_count(sbi); 1070 return page; 1071 1072 fail: 1073 clear_node_page_dirty(page); 1074 f2fs_put_page(page, 1); 1075 return ERR_PTR(err); 1076 } 1077 1078 /* 1079 * Caller should do after getting the following values. 1080 * 0: f2fs_put_page(page, 0) 1081 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1082 */ 1083 static int read_node_page(struct page *page, int op_flags) 1084 { 1085 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1086 struct node_info ni; 1087 struct f2fs_io_info fio = { 1088 .sbi = sbi, 1089 .type = NODE, 1090 .op = REQ_OP_READ, 1091 .op_flags = op_flags, 1092 .page = page, 1093 .encrypted_page = NULL, 1094 }; 1095 1096 if (PageUptodate(page)) 1097 return LOCKED_PAGE; 1098 1099 get_node_info(sbi, page->index, &ni); 1100 1101 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1102 ClearPageUptodate(page); 1103 return -ENOENT; 1104 } 1105 1106 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1107 return f2fs_submit_page_bio(&fio); 1108 } 1109 1110 /* 1111 * Readahead a node page 1112 */ 1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1114 { 1115 struct page *apage; 1116 int err; 1117 1118 if (!nid) 1119 return; 1120 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1121 1122 rcu_read_lock(); 1123 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1124 rcu_read_unlock(); 1125 if (apage) 1126 return; 1127 1128 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1129 if (!apage) 1130 return; 1131 1132 err = read_node_page(apage, REQ_RAHEAD); 1133 f2fs_put_page(apage, err ? 1 : 0); 1134 } 1135 1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1137 struct page *parent, int start) 1138 { 1139 struct page *page; 1140 int err; 1141 1142 if (!nid) 1143 return ERR_PTR(-ENOENT); 1144 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1145 repeat: 1146 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1147 if (!page) 1148 return ERR_PTR(-ENOMEM); 1149 1150 err = read_node_page(page, 0); 1151 if (err < 0) { 1152 f2fs_put_page(page, 1); 1153 return ERR_PTR(err); 1154 } else if (err == LOCKED_PAGE) { 1155 err = 0; 1156 goto page_hit; 1157 } 1158 1159 if (parent) 1160 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1161 1162 lock_page(page); 1163 1164 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1165 f2fs_put_page(page, 1); 1166 goto repeat; 1167 } 1168 1169 if (unlikely(!PageUptodate(page))) { 1170 err = -EIO; 1171 goto out_err; 1172 } 1173 page_hit: 1174 if(unlikely(nid != nid_of_node(page))) { 1175 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1176 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1177 nid, nid_of_node(page), ino_of_node(page), 1178 ofs_of_node(page), cpver_of_node(page), 1179 next_blkaddr_of_node(page)); 1180 ClearPageUptodate(page); 1181 err = -EINVAL; 1182 out_err: 1183 f2fs_put_page(page, 1); 1184 return ERR_PTR(err); 1185 } 1186 return page; 1187 } 1188 1189 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1190 { 1191 return __get_node_page(sbi, nid, NULL, 0); 1192 } 1193 1194 struct page *get_node_page_ra(struct page *parent, int start) 1195 { 1196 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1197 nid_t nid = get_nid(parent, start, false); 1198 1199 return __get_node_page(sbi, nid, parent, start); 1200 } 1201 1202 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1203 { 1204 struct inode *inode; 1205 struct page *page; 1206 int ret; 1207 1208 /* should flush inline_data before evict_inode */ 1209 inode = ilookup(sbi->sb, ino); 1210 if (!inode) 1211 return; 1212 1213 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1214 if (!page) 1215 goto iput_out; 1216 1217 if (!PageUptodate(page)) 1218 goto page_out; 1219 1220 if (!PageDirty(page)) 1221 goto page_out; 1222 1223 if (!clear_page_dirty_for_io(page)) 1224 goto page_out; 1225 1226 ret = f2fs_write_inline_data(inode, page); 1227 inode_dec_dirty_pages(inode); 1228 remove_dirty_inode(inode); 1229 if (ret) 1230 set_page_dirty(page); 1231 page_out: 1232 f2fs_put_page(page, 1); 1233 iput_out: 1234 iput(inode); 1235 } 1236 1237 void move_node_page(struct page *node_page, int gc_type) 1238 { 1239 if (gc_type == FG_GC) { 1240 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1241 struct writeback_control wbc = { 1242 .sync_mode = WB_SYNC_ALL, 1243 .nr_to_write = 1, 1244 .for_reclaim = 0, 1245 }; 1246 1247 set_page_dirty(node_page); 1248 f2fs_wait_on_page_writeback(node_page, NODE, true); 1249 1250 f2fs_bug_on(sbi, PageWriteback(node_page)); 1251 if (!clear_page_dirty_for_io(node_page)) 1252 goto out_page; 1253 1254 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1255 unlock_page(node_page); 1256 goto release_page; 1257 } else { 1258 /* set page dirty and write it */ 1259 if (!PageWriteback(node_page)) 1260 set_page_dirty(node_page); 1261 } 1262 out_page: 1263 unlock_page(node_page); 1264 release_page: 1265 f2fs_put_page(node_page, 0); 1266 } 1267 1268 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1269 { 1270 pgoff_t index, end; 1271 struct pagevec pvec; 1272 struct page *last_page = NULL; 1273 1274 pagevec_init(&pvec, 0); 1275 index = 0; 1276 end = ULONG_MAX; 1277 1278 while (index <= end) { 1279 int i, nr_pages; 1280 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1281 PAGECACHE_TAG_DIRTY, 1282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1283 if (nr_pages == 0) 1284 break; 1285 1286 for (i = 0; i < nr_pages; i++) { 1287 struct page *page = pvec.pages[i]; 1288 1289 if (unlikely(f2fs_cp_error(sbi))) { 1290 f2fs_put_page(last_page, 0); 1291 pagevec_release(&pvec); 1292 return ERR_PTR(-EIO); 1293 } 1294 1295 if (!IS_DNODE(page) || !is_cold_node(page)) 1296 continue; 1297 if (ino_of_node(page) != ino) 1298 continue; 1299 1300 lock_page(page); 1301 1302 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1303 continue_unlock: 1304 unlock_page(page); 1305 continue; 1306 } 1307 if (ino_of_node(page) != ino) 1308 goto continue_unlock; 1309 1310 if (!PageDirty(page)) { 1311 /* someone wrote it for us */ 1312 goto continue_unlock; 1313 } 1314 1315 if (last_page) 1316 f2fs_put_page(last_page, 0); 1317 1318 get_page(page); 1319 last_page = page; 1320 unlock_page(page); 1321 } 1322 pagevec_release(&pvec); 1323 cond_resched(); 1324 } 1325 return last_page; 1326 } 1327 1328 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1329 struct writeback_control *wbc) 1330 { 1331 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1332 nid_t nid; 1333 struct node_info ni; 1334 struct f2fs_io_info fio = { 1335 .sbi = sbi, 1336 .type = NODE, 1337 .op = REQ_OP_WRITE, 1338 .op_flags = wbc_to_write_flags(wbc), 1339 .page = page, 1340 .encrypted_page = NULL, 1341 .submitted = false, 1342 }; 1343 1344 trace_f2fs_writepage(page, NODE); 1345 1346 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1347 goto redirty_out; 1348 if (unlikely(f2fs_cp_error(sbi))) 1349 goto redirty_out; 1350 1351 /* get old block addr of this node page */ 1352 nid = nid_of_node(page); 1353 f2fs_bug_on(sbi, page->index != nid); 1354 1355 if (wbc->for_reclaim) { 1356 if (!down_read_trylock(&sbi->node_write)) 1357 goto redirty_out; 1358 } else { 1359 down_read(&sbi->node_write); 1360 } 1361 1362 get_node_info(sbi, nid, &ni); 1363 1364 /* This page is already truncated */ 1365 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1366 ClearPageUptodate(page); 1367 dec_page_count(sbi, F2FS_DIRTY_NODES); 1368 up_read(&sbi->node_write); 1369 unlock_page(page); 1370 return 0; 1371 } 1372 1373 if (atomic && !test_opt(sbi, NOBARRIER)) 1374 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1375 1376 set_page_writeback(page); 1377 fio.old_blkaddr = ni.blk_addr; 1378 write_node_page(nid, &fio); 1379 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1380 dec_page_count(sbi, F2FS_DIRTY_NODES); 1381 up_read(&sbi->node_write); 1382 1383 if (wbc->for_reclaim) { 1384 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0, 1385 page->index, NODE); 1386 submitted = NULL; 1387 } 1388 1389 unlock_page(page); 1390 1391 if (unlikely(f2fs_cp_error(sbi))) { 1392 f2fs_submit_merged_write(sbi, NODE); 1393 submitted = NULL; 1394 } 1395 if (submitted) 1396 *submitted = fio.submitted; 1397 1398 return 0; 1399 1400 redirty_out: 1401 redirty_page_for_writepage(wbc, page); 1402 return AOP_WRITEPAGE_ACTIVATE; 1403 } 1404 1405 static int f2fs_write_node_page(struct page *page, 1406 struct writeback_control *wbc) 1407 { 1408 return __write_node_page(page, false, NULL, wbc); 1409 } 1410 1411 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1412 struct writeback_control *wbc, bool atomic) 1413 { 1414 pgoff_t index, end; 1415 pgoff_t last_idx = ULONG_MAX; 1416 struct pagevec pvec; 1417 int ret = 0; 1418 struct page *last_page = NULL; 1419 bool marked = false; 1420 nid_t ino = inode->i_ino; 1421 1422 if (atomic) { 1423 last_page = last_fsync_dnode(sbi, ino); 1424 if (IS_ERR_OR_NULL(last_page)) 1425 return PTR_ERR_OR_ZERO(last_page); 1426 } 1427 retry: 1428 pagevec_init(&pvec, 0); 1429 index = 0; 1430 end = ULONG_MAX; 1431 1432 while (index <= end) { 1433 int i, nr_pages; 1434 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1435 PAGECACHE_TAG_DIRTY, 1436 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1437 if (nr_pages == 0) 1438 break; 1439 1440 for (i = 0; i < nr_pages; i++) { 1441 struct page *page = pvec.pages[i]; 1442 bool submitted = false; 1443 1444 if (unlikely(f2fs_cp_error(sbi))) { 1445 f2fs_put_page(last_page, 0); 1446 pagevec_release(&pvec); 1447 ret = -EIO; 1448 goto out; 1449 } 1450 1451 if (!IS_DNODE(page) || !is_cold_node(page)) 1452 continue; 1453 if (ino_of_node(page) != ino) 1454 continue; 1455 1456 lock_page(page); 1457 1458 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1459 continue_unlock: 1460 unlock_page(page); 1461 continue; 1462 } 1463 if (ino_of_node(page) != ino) 1464 goto continue_unlock; 1465 1466 if (!PageDirty(page) && page != last_page) { 1467 /* someone wrote it for us */ 1468 goto continue_unlock; 1469 } 1470 1471 f2fs_wait_on_page_writeback(page, NODE, true); 1472 BUG_ON(PageWriteback(page)); 1473 1474 set_fsync_mark(page, 0); 1475 set_dentry_mark(page, 0); 1476 1477 if (!atomic || page == last_page) { 1478 set_fsync_mark(page, 1); 1479 if (IS_INODE(page)) { 1480 if (is_inode_flag_set(inode, 1481 FI_DIRTY_INODE)) 1482 update_inode(inode, page); 1483 set_dentry_mark(page, 1484 need_dentry_mark(sbi, ino)); 1485 } 1486 /* may be written by other thread */ 1487 if (!PageDirty(page)) 1488 set_page_dirty(page); 1489 } 1490 1491 if (!clear_page_dirty_for_io(page)) 1492 goto continue_unlock; 1493 1494 ret = __write_node_page(page, atomic && 1495 page == last_page, 1496 &submitted, wbc); 1497 if (ret) { 1498 unlock_page(page); 1499 f2fs_put_page(last_page, 0); 1500 break; 1501 } else if (submitted) { 1502 last_idx = page->index; 1503 } 1504 1505 if (page == last_page) { 1506 f2fs_put_page(page, 0); 1507 marked = true; 1508 break; 1509 } 1510 } 1511 pagevec_release(&pvec); 1512 cond_resched(); 1513 1514 if (ret || marked) 1515 break; 1516 } 1517 if (!ret && atomic && !marked) { 1518 f2fs_msg(sbi->sb, KERN_DEBUG, 1519 "Retry to write fsync mark: ino=%u, idx=%lx", 1520 ino, last_page->index); 1521 lock_page(last_page); 1522 f2fs_wait_on_page_writeback(last_page, NODE, true); 1523 set_page_dirty(last_page); 1524 unlock_page(last_page); 1525 goto retry; 1526 } 1527 out: 1528 if (last_idx != ULONG_MAX) 1529 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE); 1530 return ret ? -EIO: 0; 1531 } 1532 1533 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1534 { 1535 pgoff_t index, end; 1536 struct pagevec pvec; 1537 int step = 0; 1538 int nwritten = 0; 1539 int ret = 0; 1540 1541 pagevec_init(&pvec, 0); 1542 1543 next_step: 1544 index = 0; 1545 end = ULONG_MAX; 1546 1547 while (index <= end) { 1548 int i, nr_pages; 1549 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1550 PAGECACHE_TAG_DIRTY, 1551 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1552 if (nr_pages == 0) 1553 break; 1554 1555 for (i = 0; i < nr_pages; i++) { 1556 struct page *page = pvec.pages[i]; 1557 bool submitted = false; 1558 1559 if (unlikely(f2fs_cp_error(sbi))) { 1560 pagevec_release(&pvec); 1561 ret = -EIO; 1562 goto out; 1563 } 1564 1565 /* 1566 * flushing sequence with step: 1567 * 0. indirect nodes 1568 * 1. dentry dnodes 1569 * 2. file dnodes 1570 */ 1571 if (step == 0 && IS_DNODE(page)) 1572 continue; 1573 if (step == 1 && (!IS_DNODE(page) || 1574 is_cold_node(page))) 1575 continue; 1576 if (step == 2 && (!IS_DNODE(page) || 1577 !is_cold_node(page))) 1578 continue; 1579 lock_node: 1580 if (!trylock_page(page)) 1581 continue; 1582 1583 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1584 continue_unlock: 1585 unlock_page(page); 1586 continue; 1587 } 1588 1589 if (!PageDirty(page)) { 1590 /* someone wrote it for us */ 1591 goto continue_unlock; 1592 } 1593 1594 /* flush inline_data */ 1595 if (is_inline_node(page)) { 1596 clear_inline_node(page); 1597 unlock_page(page); 1598 flush_inline_data(sbi, ino_of_node(page)); 1599 goto lock_node; 1600 } 1601 1602 f2fs_wait_on_page_writeback(page, NODE, true); 1603 1604 BUG_ON(PageWriteback(page)); 1605 if (!clear_page_dirty_for_io(page)) 1606 goto continue_unlock; 1607 1608 set_fsync_mark(page, 0); 1609 set_dentry_mark(page, 0); 1610 1611 ret = __write_node_page(page, false, &submitted, wbc); 1612 if (ret) 1613 unlock_page(page); 1614 else if (submitted) 1615 nwritten++; 1616 1617 if (--wbc->nr_to_write == 0) 1618 break; 1619 } 1620 pagevec_release(&pvec); 1621 cond_resched(); 1622 1623 if (wbc->nr_to_write == 0) { 1624 step = 2; 1625 break; 1626 } 1627 } 1628 1629 if (step < 2) { 1630 step++; 1631 goto next_step; 1632 } 1633 out: 1634 if (nwritten) 1635 f2fs_submit_merged_write(sbi, NODE); 1636 return ret; 1637 } 1638 1639 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1640 { 1641 pgoff_t index = 0, end = ULONG_MAX; 1642 struct pagevec pvec; 1643 int ret2, ret = 0; 1644 1645 pagevec_init(&pvec, 0); 1646 1647 while (index <= end) { 1648 int i, nr_pages; 1649 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1650 PAGECACHE_TAG_WRITEBACK, 1651 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1652 if (nr_pages == 0) 1653 break; 1654 1655 for (i = 0; i < nr_pages; i++) { 1656 struct page *page = pvec.pages[i]; 1657 1658 /* until radix tree lookup accepts end_index */ 1659 if (unlikely(page->index > end)) 1660 continue; 1661 1662 if (ino && ino_of_node(page) == ino) { 1663 f2fs_wait_on_page_writeback(page, NODE, true); 1664 if (TestClearPageError(page)) 1665 ret = -EIO; 1666 } 1667 } 1668 pagevec_release(&pvec); 1669 cond_resched(); 1670 } 1671 1672 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1673 if (!ret) 1674 ret = ret2; 1675 return ret; 1676 } 1677 1678 static int f2fs_write_node_pages(struct address_space *mapping, 1679 struct writeback_control *wbc) 1680 { 1681 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1682 struct blk_plug plug; 1683 long diff; 1684 1685 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1686 goto skip_write; 1687 1688 /* balancing f2fs's metadata in background */ 1689 f2fs_balance_fs_bg(sbi); 1690 1691 /* collect a number of dirty node pages and write together */ 1692 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1693 goto skip_write; 1694 1695 trace_f2fs_writepages(mapping->host, wbc, NODE); 1696 1697 diff = nr_pages_to_write(sbi, NODE, wbc); 1698 wbc->sync_mode = WB_SYNC_NONE; 1699 blk_start_plug(&plug); 1700 sync_node_pages(sbi, wbc); 1701 blk_finish_plug(&plug); 1702 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1703 return 0; 1704 1705 skip_write: 1706 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1707 trace_f2fs_writepages(mapping->host, wbc, NODE); 1708 return 0; 1709 } 1710 1711 static int f2fs_set_node_page_dirty(struct page *page) 1712 { 1713 trace_f2fs_set_page_dirty(page, NODE); 1714 1715 if (!PageUptodate(page)) 1716 SetPageUptodate(page); 1717 if (!PageDirty(page)) { 1718 f2fs_set_page_dirty_nobuffers(page); 1719 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1720 SetPagePrivate(page); 1721 f2fs_trace_pid(page); 1722 return 1; 1723 } 1724 return 0; 1725 } 1726 1727 /* 1728 * Structure of the f2fs node operations 1729 */ 1730 const struct address_space_operations f2fs_node_aops = { 1731 .writepage = f2fs_write_node_page, 1732 .writepages = f2fs_write_node_pages, 1733 .set_page_dirty = f2fs_set_node_page_dirty, 1734 .invalidatepage = f2fs_invalidate_page, 1735 .releasepage = f2fs_release_page, 1736 #ifdef CONFIG_MIGRATION 1737 .migratepage = f2fs_migrate_page, 1738 #endif 1739 }; 1740 1741 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1742 nid_t n) 1743 { 1744 return radix_tree_lookup(&nm_i->free_nid_root, n); 1745 } 1746 1747 static int __insert_nid_to_list(struct f2fs_sb_info *sbi, 1748 struct free_nid *i, enum nid_list list, bool new) 1749 { 1750 struct f2fs_nm_info *nm_i = NM_I(sbi); 1751 1752 if (new) { 1753 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1754 if (err) 1755 return err; 1756 } 1757 1758 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1759 i->state != NID_ALLOC); 1760 nm_i->nid_cnt[list]++; 1761 list_add_tail(&i->list, &nm_i->nid_list[list]); 1762 return 0; 1763 } 1764 1765 static void __remove_nid_from_list(struct f2fs_sb_info *sbi, 1766 struct free_nid *i, enum nid_list list, bool reuse) 1767 { 1768 struct f2fs_nm_info *nm_i = NM_I(sbi); 1769 1770 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1771 i->state != NID_ALLOC); 1772 nm_i->nid_cnt[list]--; 1773 list_del(&i->list); 1774 if (!reuse) 1775 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1776 } 1777 1778 /* return if the nid is recognized as free */ 1779 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1780 { 1781 struct f2fs_nm_info *nm_i = NM_I(sbi); 1782 struct free_nid *i, *e; 1783 struct nat_entry *ne; 1784 int err = -EINVAL; 1785 bool ret = false; 1786 1787 /* 0 nid should not be used */ 1788 if (unlikely(nid == 0)) 1789 return false; 1790 1791 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1792 i->nid = nid; 1793 i->state = NID_NEW; 1794 1795 if (radix_tree_preload(GFP_NOFS)) 1796 goto err; 1797 1798 spin_lock(&nm_i->nid_list_lock); 1799 1800 if (build) { 1801 /* 1802 * Thread A Thread B 1803 * - f2fs_create 1804 * - f2fs_new_inode 1805 * - alloc_nid 1806 * - __insert_nid_to_list(ALLOC_NID_LIST) 1807 * - f2fs_balance_fs_bg 1808 * - build_free_nids 1809 * - __build_free_nids 1810 * - scan_nat_page 1811 * - add_free_nid 1812 * - __lookup_nat_cache 1813 * - f2fs_add_link 1814 * - init_inode_metadata 1815 * - new_inode_page 1816 * - new_node_page 1817 * - set_node_addr 1818 * - alloc_nid_done 1819 * - __remove_nid_from_list(ALLOC_NID_LIST) 1820 * - __insert_nid_to_list(FREE_NID_LIST) 1821 */ 1822 ne = __lookup_nat_cache(nm_i, nid); 1823 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1824 nat_get_blkaddr(ne) != NULL_ADDR)) 1825 goto err_out; 1826 1827 e = __lookup_free_nid_list(nm_i, nid); 1828 if (e) { 1829 if (e->state == NID_NEW) 1830 ret = true; 1831 goto err_out; 1832 } 1833 } 1834 ret = true; 1835 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); 1836 err_out: 1837 spin_unlock(&nm_i->nid_list_lock); 1838 radix_tree_preload_end(); 1839 err: 1840 if (err) 1841 kmem_cache_free(free_nid_slab, i); 1842 return ret; 1843 } 1844 1845 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1846 { 1847 struct f2fs_nm_info *nm_i = NM_I(sbi); 1848 struct free_nid *i; 1849 bool need_free = false; 1850 1851 spin_lock(&nm_i->nid_list_lock); 1852 i = __lookup_free_nid_list(nm_i, nid); 1853 if (i && i->state == NID_NEW) { 1854 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1855 need_free = true; 1856 } 1857 spin_unlock(&nm_i->nid_list_lock); 1858 1859 if (need_free) 1860 kmem_cache_free(free_nid_slab, i); 1861 } 1862 1863 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 1864 bool set, bool build) 1865 { 1866 struct f2fs_nm_info *nm_i = NM_I(sbi); 1867 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1868 unsigned int nid_ofs = nid - START_NID(nid); 1869 1870 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1871 return; 1872 1873 if (set) 1874 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1875 else 1876 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1877 1878 if (set) 1879 nm_i->free_nid_count[nat_ofs]++; 1880 else if (!build) 1881 nm_i->free_nid_count[nat_ofs]--; 1882 } 1883 1884 static void scan_nat_page(struct f2fs_sb_info *sbi, 1885 struct page *nat_page, nid_t start_nid) 1886 { 1887 struct f2fs_nm_info *nm_i = NM_I(sbi); 1888 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1889 block_t blk_addr; 1890 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1891 int i; 1892 1893 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1894 return; 1895 1896 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1897 1898 i = start_nid % NAT_ENTRY_PER_BLOCK; 1899 1900 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1901 bool freed = false; 1902 1903 if (unlikely(start_nid >= nm_i->max_nid)) 1904 break; 1905 1906 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1907 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1908 if (blk_addr == NULL_ADDR) 1909 freed = add_free_nid(sbi, start_nid, true); 1910 spin_lock(&NM_I(sbi)->nid_list_lock); 1911 update_free_nid_bitmap(sbi, start_nid, freed, true); 1912 spin_unlock(&NM_I(sbi)->nid_list_lock); 1913 } 1914 } 1915 1916 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 1917 { 1918 struct f2fs_nm_info *nm_i = NM_I(sbi); 1919 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1920 struct f2fs_journal *journal = curseg->journal; 1921 unsigned int i, idx; 1922 1923 down_read(&nm_i->nat_tree_lock); 1924 1925 for (i = 0; i < nm_i->nat_blocks; i++) { 1926 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 1927 continue; 1928 if (!nm_i->free_nid_count[i]) 1929 continue; 1930 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 1931 nid_t nid; 1932 1933 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i])) 1934 continue; 1935 1936 nid = i * NAT_ENTRY_PER_BLOCK + idx; 1937 add_free_nid(sbi, nid, true); 1938 1939 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS) 1940 goto out; 1941 } 1942 } 1943 out: 1944 down_read(&curseg->journal_rwsem); 1945 for (i = 0; i < nats_in_cursum(journal); i++) { 1946 block_t addr; 1947 nid_t nid; 1948 1949 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1950 nid = le32_to_cpu(nid_in_journal(journal, i)); 1951 if (addr == NULL_ADDR) 1952 add_free_nid(sbi, nid, true); 1953 else 1954 remove_free_nid(sbi, nid); 1955 } 1956 up_read(&curseg->journal_rwsem); 1957 up_read(&nm_i->nat_tree_lock); 1958 } 1959 1960 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 1961 { 1962 struct f2fs_nm_info *nm_i = NM_I(sbi); 1963 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1964 struct f2fs_journal *journal = curseg->journal; 1965 int i = 0; 1966 nid_t nid = nm_i->next_scan_nid; 1967 1968 if (unlikely(nid >= nm_i->max_nid)) 1969 nid = 0; 1970 1971 /* Enough entries */ 1972 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK) 1973 return; 1974 1975 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 1976 return; 1977 1978 if (!mount) { 1979 /* try to find free nids in free_nid_bitmap */ 1980 scan_free_nid_bits(sbi); 1981 1982 if (nm_i->nid_cnt[FREE_NID_LIST]) 1983 return; 1984 } 1985 1986 /* readahead nat pages to be scanned */ 1987 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1988 META_NAT, true); 1989 1990 down_read(&nm_i->nat_tree_lock); 1991 1992 while (1) { 1993 struct page *page = get_current_nat_page(sbi, nid); 1994 1995 scan_nat_page(sbi, page, nid); 1996 f2fs_put_page(page, 1); 1997 1998 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1999 if (unlikely(nid >= nm_i->max_nid)) 2000 nid = 0; 2001 2002 if (++i >= FREE_NID_PAGES) 2003 break; 2004 } 2005 2006 /* go to the next free nat pages to find free nids abundantly */ 2007 nm_i->next_scan_nid = nid; 2008 2009 /* find free nids from current sum_pages */ 2010 down_read(&curseg->journal_rwsem); 2011 for (i = 0; i < nats_in_cursum(journal); i++) { 2012 block_t addr; 2013 2014 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2015 nid = le32_to_cpu(nid_in_journal(journal, i)); 2016 if (addr == NULL_ADDR) 2017 add_free_nid(sbi, nid, true); 2018 else 2019 remove_free_nid(sbi, nid); 2020 } 2021 up_read(&curseg->journal_rwsem); 2022 up_read(&nm_i->nat_tree_lock); 2023 2024 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2025 nm_i->ra_nid_pages, META_NAT, false); 2026 } 2027 2028 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2029 { 2030 mutex_lock(&NM_I(sbi)->build_lock); 2031 __build_free_nids(sbi, sync, mount); 2032 mutex_unlock(&NM_I(sbi)->build_lock); 2033 } 2034 2035 /* 2036 * If this function returns success, caller can obtain a new nid 2037 * from second parameter of this function. 2038 * The returned nid could be used ino as well as nid when inode is created. 2039 */ 2040 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2041 { 2042 struct f2fs_nm_info *nm_i = NM_I(sbi); 2043 struct free_nid *i = NULL; 2044 retry: 2045 #ifdef CONFIG_F2FS_FAULT_INJECTION 2046 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2047 f2fs_show_injection_info(FAULT_ALLOC_NID); 2048 return false; 2049 } 2050 #endif 2051 spin_lock(&nm_i->nid_list_lock); 2052 2053 if (unlikely(nm_i->available_nids == 0)) { 2054 spin_unlock(&nm_i->nid_list_lock); 2055 return false; 2056 } 2057 2058 /* We should not use stale free nids created by build_free_nids */ 2059 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) { 2060 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST])); 2061 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 2062 struct free_nid, list); 2063 *nid = i->nid; 2064 2065 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true); 2066 i->state = NID_ALLOC; 2067 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false); 2068 nm_i->available_nids--; 2069 2070 update_free_nid_bitmap(sbi, *nid, false, false); 2071 2072 spin_unlock(&nm_i->nid_list_lock); 2073 return true; 2074 } 2075 spin_unlock(&nm_i->nid_list_lock); 2076 2077 /* Let's scan nat pages and its caches to get free nids */ 2078 build_free_nids(sbi, true, false); 2079 goto retry; 2080 } 2081 2082 /* 2083 * alloc_nid() should be called prior to this function. 2084 */ 2085 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2086 { 2087 struct f2fs_nm_info *nm_i = NM_I(sbi); 2088 struct free_nid *i; 2089 2090 spin_lock(&nm_i->nid_list_lock); 2091 i = __lookup_free_nid_list(nm_i, nid); 2092 f2fs_bug_on(sbi, !i); 2093 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2094 spin_unlock(&nm_i->nid_list_lock); 2095 2096 kmem_cache_free(free_nid_slab, i); 2097 } 2098 2099 /* 2100 * alloc_nid() should be called prior to this function. 2101 */ 2102 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2103 { 2104 struct f2fs_nm_info *nm_i = NM_I(sbi); 2105 struct free_nid *i; 2106 bool need_free = false; 2107 2108 if (!nid) 2109 return; 2110 2111 spin_lock(&nm_i->nid_list_lock); 2112 i = __lookup_free_nid_list(nm_i, nid); 2113 f2fs_bug_on(sbi, !i); 2114 2115 if (!available_free_memory(sbi, FREE_NIDS)) { 2116 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2117 need_free = true; 2118 } else { 2119 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true); 2120 i->state = NID_NEW; 2121 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false); 2122 } 2123 2124 nm_i->available_nids++; 2125 2126 update_free_nid_bitmap(sbi, nid, true, false); 2127 2128 spin_unlock(&nm_i->nid_list_lock); 2129 2130 if (need_free) 2131 kmem_cache_free(free_nid_slab, i); 2132 } 2133 2134 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2135 { 2136 struct f2fs_nm_info *nm_i = NM_I(sbi); 2137 struct free_nid *i, *next; 2138 int nr = nr_shrink; 2139 2140 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2141 return 0; 2142 2143 if (!mutex_trylock(&nm_i->build_lock)) 2144 return 0; 2145 2146 spin_lock(&nm_i->nid_list_lock); 2147 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST], 2148 list) { 2149 if (nr_shrink <= 0 || 2150 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2151 break; 2152 2153 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2154 kmem_cache_free(free_nid_slab, i); 2155 nr_shrink--; 2156 } 2157 spin_unlock(&nm_i->nid_list_lock); 2158 mutex_unlock(&nm_i->build_lock); 2159 2160 return nr - nr_shrink; 2161 } 2162 2163 void recover_inline_xattr(struct inode *inode, struct page *page) 2164 { 2165 void *src_addr, *dst_addr; 2166 size_t inline_size; 2167 struct page *ipage; 2168 struct f2fs_inode *ri; 2169 2170 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2171 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2172 2173 ri = F2FS_INODE(page); 2174 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 2175 clear_inode_flag(inode, FI_INLINE_XATTR); 2176 goto update_inode; 2177 } 2178 2179 dst_addr = inline_xattr_addr(ipage); 2180 src_addr = inline_xattr_addr(page); 2181 inline_size = inline_xattr_size(inode); 2182 2183 f2fs_wait_on_page_writeback(ipage, NODE, true); 2184 memcpy(dst_addr, src_addr, inline_size); 2185 update_inode: 2186 update_inode(inode, ipage); 2187 f2fs_put_page(ipage, 1); 2188 } 2189 2190 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 2191 { 2192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2193 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2194 nid_t new_xnid = nid_of_node(page); 2195 struct node_info ni; 2196 struct page *xpage; 2197 2198 if (!prev_xnid) 2199 goto recover_xnid; 2200 2201 /* 1: invalidate the previous xattr nid */ 2202 get_node_info(sbi, prev_xnid, &ni); 2203 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 2204 invalidate_blocks(sbi, ni.blk_addr); 2205 dec_valid_node_count(sbi, inode, false); 2206 set_node_addr(sbi, &ni, NULL_ADDR, false); 2207 2208 recover_xnid: 2209 /* 2: update xattr nid in inode */ 2210 remove_free_nid(sbi, new_xnid); 2211 f2fs_i_xnid_write(inode, new_xnid); 2212 if (unlikely(inc_valid_node_count(sbi, inode, false))) 2213 f2fs_bug_on(sbi, 1); 2214 update_inode_page(inode); 2215 2216 /* 3: update and set xattr node page dirty */ 2217 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid); 2218 if (!xpage) 2219 return -ENOMEM; 2220 2221 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE); 2222 2223 get_node_info(sbi, new_xnid, &ni); 2224 ni.ino = inode->i_ino; 2225 set_node_addr(sbi, &ni, NEW_ADDR, false); 2226 set_page_dirty(xpage); 2227 f2fs_put_page(xpage, 1); 2228 2229 return 0; 2230 } 2231 2232 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2233 { 2234 struct f2fs_inode *src, *dst; 2235 nid_t ino = ino_of_node(page); 2236 struct node_info old_ni, new_ni; 2237 struct page *ipage; 2238 2239 get_node_info(sbi, ino, &old_ni); 2240 2241 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2242 return -EINVAL; 2243 retry: 2244 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2245 if (!ipage) { 2246 congestion_wait(BLK_RW_ASYNC, HZ/50); 2247 goto retry; 2248 } 2249 2250 /* Should not use this inode from free nid list */ 2251 remove_free_nid(sbi, ino); 2252 2253 if (!PageUptodate(ipage)) 2254 SetPageUptodate(ipage); 2255 fill_node_footer(ipage, ino, ino, 0, true); 2256 2257 src = F2FS_INODE(page); 2258 dst = F2FS_INODE(ipage); 2259 2260 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2261 dst->i_size = 0; 2262 dst->i_blocks = cpu_to_le64(1); 2263 dst->i_links = cpu_to_le32(1); 2264 dst->i_xattr_nid = 0; 2265 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2266 2267 new_ni = old_ni; 2268 new_ni.ino = ino; 2269 2270 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2271 WARN_ON(1); 2272 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2273 inc_valid_inode_count(sbi); 2274 set_page_dirty(ipage); 2275 f2fs_put_page(ipage, 1); 2276 return 0; 2277 } 2278 2279 int restore_node_summary(struct f2fs_sb_info *sbi, 2280 unsigned int segno, struct f2fs_summary_block *sum) 2281 { 2282 struct f2fs_node *rn; 2283 struct f2fs_summary *sum_entry; 2284 block_t addr; 2285 int i, idx, last_offset, nrpages; 2286 2287 /* scan the node segment */ 2288 last_offset = sbi->blocks_per_seg; 2289 addr = START_BLOCK(sbi, segno); 2290 sum_entry = &sum->entries[0]; 2291 2292 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2293 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2294 2295 /* readahead node pages */ 2296 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2297 2298 for (idx = addr; idx < addr + nrpages; idx++) { 2299 struct page *page = get_tmp_page(sbi, idx); 2300 2301 rn = F2FS_NODE(page); 2302 sum_entry->nid = rn->footer.nid; 2303 sum_entry->version = 0; 2304 sum_entry->ofs_in_node = 0; 2305 sum_entry++; 2306 f2fs_put_page(page, 1); 2307 } 2308 2309 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2310 addr + nrpages); 2311 } 2312 return 0; 2313 } 2314 2315 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2316 { 2317 struct f2fs_nm_info *nm_i = NM_I(sbi); 2318 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2319 struct f2fs_journal *journal = curseg->journal; 2320 int i; 2321 2322 down_write(&curseg->journal_rwsem); 2323 for (i = 0; i < nats_in_cursum(journal); i++) { 2324 struct nat_entry *ne; 2325 struct f2fs_nat_entry raw_ne; 2326 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2327 2328 raw_ne = nat_in_journal(journal, i); 2329 2330 ne = __lookup_nat_cache(nm_i, nid); 2331 if (!ne) { 2332 ne = grab_nat_entry(nm_i, nid, true); 2333 node_info_from_raw_nat(&ne->ni, &raw_ne); 2334 } 2335 2336 /* 2337 * if a free nat in journal has not been used after last 2338 * checkpoint, we should remove it from available nids, 2339 * since later we will add it again. 2340 */ 2341 if (!get_nat_flag(ne, IS_DIRTY) && 2342 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2343 spin_lock(&nm_i->nid_list_lock); 2344 nm_i->available_nids--; 2345 spin_unlock(&nm_i->nid_list_lock); 2346 } 2347 2348 __set_nat_cache_dirty(nm_i, ne); 2349 } 2350 update_nats_in_cursum(journal, -i); 2351 up_write(&curseg->journal_rwsem); 2352 } 2353 2354 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2355 struct list_head *head, int max) 2356 { 2357 struct nat_entry_set *cur; 2358 2359 if (nes->entry_cnt >= max) 2360 goto add_out; 2361 2362 list_for_each_entry(cur, head, set_list) { 2363 if (cur->entry_cnt >= nes->entry_cnt) { 2364 list_add(&nes->set_list, cur->set_list.prev); 2365 return; 2366 } 2367 } 2368 add_out: 2369 list_add_tail(&nes->set_list, head); 2370 } 2371 2372 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2373 struct page *page) 2374 { 2375 struct f2fs_nm_info *nm_i = NM_I(sbi); 2376 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2377 struct f2fs_nat_block *nat_blk = page_address(page); 2378 int valid = 0; 2379 int i; 2380 2381 if (!enabled_nat_bits(sbi, NULL)) 2382 return; 2383 2384 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { 2385 if (start_nid == 0 && i == 0) 2386 valid++; 2387 if (nat_blk->entries[i].block_addr) 2388 valid++; 2389 } 2390 if (valid == 0) { 2391 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2392 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2393 return; 2394 } 2395 2396 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2397 if (valid == NAT_ENTRY_PER_BLOCK) 2398 __set_bit_le(nat_index, nm_i->full_nat_bits); 2399 else 2400 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2401 } 2402 2403 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2404 struct nat_entry_set *set, struct cp_control *cpc) 2405 { 2406 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2407 struct f2fs_journal *journal = curseg->journal; 2408 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2409 bool to_journal = true; 2410 struct f2fs_nat_block *nat_blk; 2411 struct nat_entry *ne, *cur; 2412 struct page *page = NULL; 2413 2414 /* 2415 * there are two steps to flush nat entries: 2416 * #1, flush nat entries to journal in current hot data summary block. 2417 * #2, flush nat entries to nat page. 2418 */ 2419 if (enabled_nat_bits(sbi, cpc) || 2420 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2421 to_journal = false; 2422 2423 if (to_journal) { 2424 down_write(&curseg->journal_rwsem); 2425 } else { 2426 page = get_next_nat_page(sbi, start_nid); 2427 nat_blk = page_address(page); 2428 f2fs_bug_on(sbi, !nat_blk); 2429 } 2430 2431 /* flush dirty nats in nat entry set */ 2432 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2433 struct f2fs_nat_entry *raw_ne; 2434 nid_t nid = nat_get_nid(ne); 2435 int offset; 2436 2437 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2438 2439 if (to_journal) { 2440 offset = lookup_journal_in_cursum(journal, 2441 NAT_JOURNAL, nid, 1); 2442 f2fs_bug_on(sbi, offset < 0); 2443 raw_ne = &nat_in_journal(journal, offset); 2444 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2445 } else { 2446 raw_ne = &nat_blk->entries[nid - start_nid]; 2447 } 2448 raw_nat_from_node_info(raw_ne, &ne->ni); 2449 nat_reset_flag(ne); 2450 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2451 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2452 add_free_nid(sbi, nid, false); 2453 spin_lock(&NM_I(sbi)->nid_list_lock); 2454 NM_I(sbi)->available_nids++; 2455 update_free_nid_bitmap(sbi, nid, true, false); 2456 spin_unlock(&NM_I(sbi)->nid_list_lock); 2457 } else { 2458 spin_lock(&NM_I(sbi)->nid_list_lock); 2459 update_free_nid_bitmap(sbi, nid, false, false); 2460 spin_unlock(&NM_I(sbi)->nid_list_lock); 2461 } 2462 } 2463 2464 if (to_journal) { 2465 up_write(&curseg->journal_rwsem); 2466 } else { 2467 __update_nat_bits(sbi, start_nid, page); 2468 f2fs_put_page(page, 1); 2469 } 2470 2471 /* Allow dirty nats by node block allocation in write_begin */ 2472 if (!set->entry_cnt) { 2473 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2474 kmem_cache_free(nat_entry_set_slab, set); 2475 } 2476 } 2477 2478 /* 2479 * This function is called during the checkpointing process. 2480 */ 2481 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2482 { 2483 struct f2fs_nm_info *nm_i = NM_I(sbi); 2484 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2485 struct f2fs_journal *journal = curseg->journal; 2486 struct nat_entry_set *setvec[SETVEC_SIZE]; 2487 struct nat_entry_set *set, *tmp; 2488 unsigned int found; 2489 nid_t set_idx = 0; 2490 LIST_HEAD(sets); 2491 2492 if (!nm_i->dirty_nat_cnt) 2493 return; 2494 2495 down_write(&nm_i->nat_tree_lock); 2496 2497 /* 2498 * if there are no enough space in journal to store dirty nat 2499 * entries, remove all entries from journal and merge them 2500 * into nat entry set. 2501 */ 2502 if (enabled_nat_bits(sbi, cpc) || 2503 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2504 remove_nats_in_journal(sbi); 2505 2506 while ((found = __gang_lookup_nat_set(nm_i, 2507 set_idx, SETVEC_SIZE, setvec))) { 2508 unsigned idx; 2509 set_idx = setvec[found - 1]->set + 1; 2510 for (idx = 0; idx < found; idx++) 2511 __adjust_nat_entry_set(setvec[idx], &sets, 2512 MAX_NAT_JENTRIES(journal)); 2513 } 2514 2515 /* flush dirty nats in nat entry set */ 2516 list_for_each_entry_safe(set, tmp, &sets, set_list) 2517 __flush_nat_entry_set(sbi, set, cpc); 2518 2519 up_write(&nm_i->nat_tree_lock); 2520 /* Allow dirty nats by node block allocation in write_begin */ 2521 } 2522 2523 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2524 { 2525 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2526 struct f2fs_nm_info *nm_i = NM_I(sbi); 2527 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2528 unsigned int i; 2529 __u64 cp_ver = cur_cp_version(ckpt); 2530 block_t nat_bits_addr; 2531 2532 if (!enabled_nat_bits(sbi, NULL)) 2533 return 0; 2534 2535 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + 2536 F2FS_BLKSIZE - 1); 2537 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, 2538 GFP_KERNEL); 2539 if (!nm_i->nat_bits) 2540 return -ENOMEM; 2541 2542 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2543 nm_i->nat_bits_blocks; 2544 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2545 struct page *page = get_meta_page(sbi, nat_bits_addr++); 2546 2547 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2548 page_address(page), F2FS_BLKSIZE); 2549 f2fs_put_page(page, 1); 2550 } 2551 2552 cp_ver |= (cur_cp_crc(ckpt) << 32); 2553 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2554 disable_nat_bits(sbi, true); 2555 return 0; 2556 } 2557 2558 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2559 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2560 2561 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2562 return 0; 2563 } 2564 2565 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2566 { 2567 struct f2fs_nm_info *nm_i = NM_I(sbi); 2568 unsigned int i = 0; 2569 nid_t nid, last_nid; 2570 2571 if (!enabled_nat_bits(sbi, NULL)) 2572 return; 2573 2574 for (i = 0; i < nm_i->nat_blocks; i++) { 2575 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2576 if (i >= nm_i->nat_blocks) 2577 break; 2578 2579 __set_bit_le(i, nm_i->nat_block_bitmap); 2580 2581 nid = i * NAT_ENTRY_PER_BLOCK; 2582 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK; 2583 2584 spin_lock(&NM_I(sbi)->nid_list_lock); 2585 for (; nid < last_nid; nid++) 2586 update_free_nid_bitmap(sbi, nid, true, true); 2587 spin_unlock(&NM_I(sbi)->nid_list_lock); 2588 } 2589 2590 for (i = 0; i < nm_i->nat_blocks; i++) { 2591 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2592 if (i >= nm_i->nat_blocks) 2593 break; 2594 2595 __set_bit_le(i, nm_i->nat_block_bitmap); 2596 } 2597 } 2598 2599 static int init_node_manager(struct f2fs_sb_info *sbi) 2600 { 2601 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2602 struct f2fs_nm_info *nm_i = NM_I(sbi); 2603 unsigned char *version_bitmap; 2604 unsigned int nat_segs; 2605 int err; 2606 2607 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2608 2609 /* segment_count_nat includes pair segment so divide to 2. */ 2610 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2611 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2612 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2613 2614 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2615 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2616 F2FS_RESERVED_NODE_NUM; 2617 nm_i->nid_cnt[FREE_NID_LIST] = 0; 2618 nm_i->nid_cnt[ALLOC_NID_LIST] = 0; 2619 nm_i->nat_cnt = 0; 2620 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2621 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2622 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2623 2624 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2625 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]); 2626 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]); 2627 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2628 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2629 INIT_LIST_HEAD(&nm_i->nat_entries); 2630 2631 mutex_init(&nm_i->build_lock); 2632 spin_lock_init(&nm_i->nid_list_lock); 2633 init_rwsem(&nm_i->nat_tree_lock); 2634 2635 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2636 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2637 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2638 if (!version_bitmap) 2639 return -EFAULT; 2640 2641 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2642 GFP_KERNEL); 2643 if (!nm_i->nat_bitmap) 2644 return -ENOMEM; 2645 2646 err = __get_nat_bitmaps(sbi); 2647 if (err) 2648 return err; 2649 2650 #ifdef CONFIG_F2FS_CHECK_FS 2651 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2652 GFP_KERNEL); 2653 if (!nm_i->nat_bitmap_mir) 2654 return -ENOMEM; 2655 #endif 2656 2657 return 0; 2658 } 2659 2660 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2661 { 2662 struct f2fs_nm_info *nm_i = NM_I(sbi); 2663 2664 nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks * 2665 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL); 2666 if (!nm_i->free_nid_bitmap) 2667 return -ENOMEM; 2668 2669 nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8, 2670 GFP_KERNEL); 2671 if (!nm_i->nat_block_bitmap) 2672 return -ENOMEM; 2673 2674 nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks * 2675 sizeof(unsigned short), GFP_KERNEL); 2676 if (!nm_i->free_nid_count) 2677 return -ENOMEM; 2678 return 0; 2679 } 2680 2681 int build_node_manager(struct f2fs_sb_info *sbi) 2682 { 2683 int err; 2684 2685 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2686 if (!sbi->nm_info) 2687 return -ENOMEM; 2688 2689 err = init_node_manager(sbi); 2690 if (err) 2691 return err; 2692 2693 err = init_free_nid_cache(sbi); 2694 if (err) 2695 return err; 2696 2697 /* load free nid status from nat_bits table */ 2698 load_free_nid_bitmap(sbi); 2699 2700 build_free_nids(sbi, true, true); 2701 return 0; 2702 } 2703 2704 void destroy_node_manager(struct f2fs_sb_info *sbi) 2705 { 2706 struct f2fs_nm_info *nm_i = NM_I(sbi); 2707 struct free_nid *i, *next_i; 2708 struct nat_entry *natvec[NATVEC_SIZE]; 2709 struct nat_entry_set *setvec[SETVEC_SIZE]; 2710 nid_t nid = 0; 2711 unsigned int found; 2712 2713 if (!nm_i) 2714 return; 2715 2716 /* destroy free nid list */ 2717 spin_lock(&nm_i->nid_list_lock); 2718 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST], 2719 list) { 2720 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2721 spin_unlock(&nm_i->nid_list_lock); 2722 kmem_cache_free(free_nid_slab, i); 2723 spin_lock(&nm_i->nid_list_lock); 2724 } 2725 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]); 2726 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]); 2727 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST])); 2728 spin_unlock(&nm_i->nid_list_lock); 2729 2730 /* destroy nat cache */ 2731 down_write(&nm_i->nat_tree_lock); 2732 while ((found = __gang_lookup_nat_cache(nm_i, 2733 nid, NATVEC_SIZE, natvec))) { 2734 unsigned idx; 2735 2736 nid = nat_get_nid(natvec[found - 1]) + 1; 2737 for (idx = 0; idx < found; idx++) 2738 __del_from_nat_cache(nm_i, natvec[idx]); 2739 } 2740 f2fs_bug_on(sbi, nm_i->nat_cnt); 2741 2742 /* destroy nat set cache */ 2743 nid = 0; 2744 while ((found = __gang_lookup_nat_set(nm_i, 2745 nid, SETVEC_SIZE, setvec))) { 2746 unsigned idx; 2747 2748 nid = setvec[found - 1]->set + 1; 2749 for (idx = 0; idx < found; idx++) { 2750 /* entry_cnt is not zero, when cp_error was occurred */ 2751 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2752 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2753 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2754 } 2755 } 2756 up_write(&nm_i->nat_tree_lock); 2757 2758 kvfree(nm_i->nat_block_bitmap); 2759 kvfree(nm_i->free_nid_bitmap); 2760 kvfree(nm_i->free_nid_count); 2761 2762 kfree(nm_i->nat_bitmap); 2763 kfree(nm_i->nat_bits); 2764 #ifdef CONFIG_F2FS_CHECK_FS 2765 kfree(nm_i->nat_bitmap_mir); 2766 #endif 2767 sbi->nm_info = NULL; 2768 kfree(nm_i); 2769 } 2770 2771 int __init create_node_manager_caches(void) 2772 { 2773 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2774 sizeof(struct nat_entry)); 2775 if (!nat_entry_slab) 2776 goto fail; 2777 2778 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2779 sizeof(struct free_nid)); 2780 if (!free_nid_slab) 2781 goto destroy_nat_entry; 2782 2783 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2784 sizeof(struct nat_entry_set)); 2785 if (!nat_entry_set_slab) 2786 goto destroy_free_nid; 2787 return 0; 2788 2789 destroy_free_nid: 2790 kmem_cache_destroy(free_nid_slab); 2791 destroy_nat_entry: 2792 kmem_cache_destroy(nat_entry_slab); 2793 fail: 2794 return -ENOMEM; 2795 } 2796 2797 void destroy_node_manager_caches(void) 2798 { 2799 kmem_cache_destroy(nat_entry_set_slab); 2800 kmem_cache_destroy(free_nid_slab); 2801 kmem_cache_destroy(nat_entry_slab); 2802 } 2803