xref: /openbmc/linux/fs/f2fs/node.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27 
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31 
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34 	struct f2fs_nm_info *nm_i = NM_I(sbi);
35 	struct sysinfo val;
36 	unsigned long avail_ram;
37 	unsigned long mem_size = 0;
38 	bool res = false;
39 
40 	si_meminfo(&val);
41 
42 	/* only uses low memory */
43 	avail_ram = val.totalram - val.totalhigh;
44 
45 	/*
46 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 	 */
48 	if (type == FREE_NIDS) {
49 		mem_size = (nm_i->nid_cnt[FREE_NID] *
50 				sizeof(struct free_nid)) >> PAGE_SHIFT;
51 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 	} else if (type == NAT_ENTRIES) {
53 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 							PAGE_SHIFT;
55 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 		if (excess_cached_nats(sbi))
57 			res = false;
58 	} else if (type == DIRTY_DENTS) {
59 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 			return false;
61 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 	} else if (type == INO_ENTRIES) {
64 		int i;
65 
66 		for (i = 0; i < MAX_INO_ENTRY; i++)
67 			mem_size += sbi->im[i].ino_num *
68 						sizeof(struct ino_entry);
69 		mem_size >>= PAGE_SHIFT;
70 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 	} else if (type == EXTENT_CACHE) {
72 		mem_size = (atomic_read(&sbi->total_ext_tree) *
73 				sizeof(struct extent_tree) +
74 				atomic_read(&sbi->total_ext_node) *
75 				sizeof(struct extent_node)) >> PAGE_SHIFT;
76 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 	} else if (type == INMEM_PAGES) {
78 		/* it allows 20% / total_ram for inmemory pages */
79 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80 		res = mem_size < (val.totalram / 5);
81 	} else {
82 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83 			return true;
84 	}
85 	return res;
86 }
87 
88 static void clear_node_page_dirty(struct page *page)
89 {
90 	struct address_space *mapping = page->mapping;
91 	unsigned int long flags;
92 
93 	if (PageDirty(page)) {
94 		spin_lock_irqsave(&mapping->tree_lock, flags);
95 		radix_tree_tag_clear(&mapping->page_tree,
96 				page_index(page),
97 				PAGECACHE_TAG_DIRTY);
98 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
99 
100 		clear_page_dirty_for_io(page);
101 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102 	}
103 	ClearPageUptodate(page);
104 }
105 
106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 	pgoff_t index = current_nat_addr(sbi, nid);
109 	return get_meta_page(sbi, index);
110 }
111 
112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114 	struct page *src_page;
115 	struct page *dst_page;
116 	pgoff_t src_off;
117 	pgoff_t dst_off;
118 	void *src_addr;
119 	void *dst_addr;
120 	struct f2fs_nm_info *nm_i = NM_I(sbi);
121 
122 	src_off = current_nat_addr(sbi, nid);
123 	dst_off = next_nat_addr(sbi, src_off);
124 
125 	/* get current nat block page with lock */
126 	src_page = get_meta_page(sbi, src_off);
127 	dst_page = grab_meta_page(sbi, dst_off);
128 	f2fs_bug_on(sbi, PageDirty(src_page));
129 
130 	src_addr = page_address(src_page);
131 	dst_addr = page_address(dst_page);
132 	memcpy(dst_addr, src_addr, PAGE_SIZE);
133 	set_page_dirty(dst_page);
134 	f2fs_put_page(src_page, 1);
135 
136 	set_to_next_nat(nm_i, nid);
137 
138 	return dst_page;
139 }
140 
141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142 {
143 	struct nat_entry *new;
144 
145 	if (no_fail)
146 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
147 	else
148 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149 	if (new) {
150 		nat_set_nid(new, nid);
151 		nat_reset_flag(new);
152 	}
153 	return new;
154 }
155 
156 static void __free_nat_entry(struct nat_entry *e)
157 {
158 	kmem_cache_free(nat_entry_slab, e);
159 }
160 
161 /* must be locked by nat_tree_lock */
162 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
163 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
164 {
165 	if (no_fail)
166 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
167 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
168 		return NULL;
169 
170 	if (raw_ne)
171 		node_info_from_raw_nat(&ne->ni, raw_ne);
172 	list_add_tail(&ne->list, &nm_i->nat_entries);
173 	nm_i->nat_cnt++;
174 	return ne;
175 }
176 
177 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
178 {
179 	return radix_tree_lookup(&nm_i->nat_root, n);
180 }
181 
182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
183 		nid_t start, unsigned int nr, struct nat_entry **ep)
184 {
185 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
186 }
187 
188 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
189 {
190 	list_del(&e->list);
191 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
192 	nm_i->nat_cnt--;
193 	__free_nat_entry(e);
194 }
195 
196 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
197 							struct nat_entry *ne)
198 {
199 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
200 	struct nat_entry_set *head;
201 
202 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
203 	if (!head) {
204 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
205 
206 		INIT_LIST_HEAD(&head->entry_list);
207 		INIT_LIST_HEAD(&head->set_list);
208 		head->set = set;
209 		head->entry_cnt = 0;
210 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
211 	}
212 	return head;
213 }
214 
215 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
216 						struct nat_entry *ne)
217 {
218 	struct nat_entry_set *head;
219 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
220 
221 	if (!new_ne)
222 		head = __grab_nat_entry_set(nm_i, ne);
223 
224 	/*
225 	 * update entry_cnt in below condition:
226 	 * 1. update NEW_ADDR to valid block address;
227 	 * 2. update old block address to new one;
228 	 */
229 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
230 				!get_nat_flag(ne, IS_DIRTY)))
231 		head->entry_cnt++;
232 
233 	set_nat_flag(ne, IS_PREALLOC, new_ne);
234 
235 	if (get_nat_flag(ne, IS_DIRTY))
236 		goto refresh_list;
237 
238 	nm_i->dirty_nat_cnt++;
239 	set_nat_flag(ne, IS_DIRTY, true);
240 refresh_list:
241 	if (new_ne)
242 		list_del_init(&ne->list);
243 	else
244 		list_move_tail(&ne->list, &head->entry_list);
245 }
246 
247 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
248 		struct nat_entry_set *set, struct nat_entry *ne)
249 {
250 	list_move_tail(&ne->list, &nm_i->nat_entries);
251 	set_nat_flag(ne, IS_DIRTY, false);
252 	set->entry_cnt--;
253 	nm_i->dirty_nat_cnt--;
254 }
255 
256 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
257 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
258 {
259 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
260 							start, nr);
261 }
262 
263 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
264 {
265 	struct f2fs_nm_info *nm_i = NM_I(sbi);
266 	struct nat_entry *e;
267 	bool need = false;
268 
269 	down_read(&nm_i->nat_tree_lock);
270 	e = __lookup_nat_cache(nm_i, nid);
271 	if (e) {
272 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
273 				!get_nat_flag(e, HAS_FSYNCED_INODE))
274 			need = true;
275 	}
276 	up_read(&nm_i->nat_tree_lock);
277 	return need;
278 }
279 
280 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
281 {
282 	struct f2fs_nm_info *nm_i = NM_I(sbi);
283 	struct nat_entry *e;
284 	bool is_cp = true;
285 
286 	down_read(&nm_i->nat_tree_lock);
287 	e = __lookup_nat_cache(nm_i, nid);
288 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
289 		is_cp = false;
290 	up_read(&nm_i->nat_tree_lock);
291 	return is_cp;
292 }
293 
294 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
295 {
296 	struct f2fs_nm_info *nm_i = NM_I(sbi);
297 	struct nat_entry *e;
298 	bool need_update = true;
299 
300 	down_read(&nm_i->nat_tree_lock);
301 	e = __lookup_nat_cache(nm_i, ino);
302 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
303 			(get_nat_flag(e, IS_CHECKPOINTED) ||
304 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
305 		need_update = false;
306 	up_read(&nm_i->nat_tree_lock);
307 	return need_update;
308 }
309 
310 /* must be locked by nat_tree_lock */
311 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
312 						struct f2fs_nat_entry *ne)
313 {
314 	struct f2fs_nm_info *nm_i = NM_I(sbi);
315 	struct nat_entry *new, *e;
316 
317 	new = __alloc_nat_entry(nid, false);
318 	if (!new)
319 		return;
320 
321 	down_write(&nm_i->nat_tree_lock);
322 	e = __lookup_nat_cache(nm_i, nid);
323 	if (!e)
324 		e = __init_nat_entry(nm_i, new, ne, false);
325 	else
326 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
327 				nat_get_blkaddr(e) !=
328 					le32_to_cpu(ne->block_addr) ||
329 				nat_get_version(e) != ne->version);
330 	up_write(&nm_i->nat_tree_lock);
331 	if (e != new)
332 		__free_nat_entry(new);
333 }
334 
335 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
336 			block_t new_blkaddr, bool fsync_done)
337 {
338 	struct f2fs_nm_info *nm_i = NM_I(sbi);
339 	struct nat_entry *e;
340 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
341 
342 	down_write(&nm_i->nat_tree_lock);
343 	e = __lookup_nat_cache(nm_i, ni->nid);
344 	if (!e) {
345 		e = __init_nat_entry(nm_i, new, NULL, true);
346 		copy_node_info(&e->ni, ni);
347 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
348 	} else if (new_blkaddr == NEW_ADDR) {
349 		/*
350 		 * when nid is reallocated,
351 		 * previous nat entry can be remained in nat cache.
352 		 * So, reinitialize it with new information.
353 		 */
354 		copy_node_info(&e->ni, ni);
355 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
356 	}
357 	/* let's free early to reduce memory consumption */
358 	if (e != new)
359 		__free_nat_entry(new);
360 
361 	/* sanity check */
362 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
363 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
364 			new_blkaddr == NULL_ADDR);
365 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
366 			new_blkaddr == NEW_ADDR);
367 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
368 			nat_get_blkaddr(e) != NULL_ADDR &&
369 			new_blkaddr == NEW_ADDR);
370 
371 	/* increment version no as node is removed */
372 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
373 		unsigned char version = nat_get_version(e);
374 		nat_set_version(e, inc_node_version(version));
375 	}
376 
377 	/* change address */
378 	nat_set_blkaddr(e, new_blkaddr);
379 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
380 		set_nat_flag(e, IS_CHECKPOINTED, false);
381 	__set_nat_cache_dirty(nm_i, e);
382 
383 	/* update fsync_mark if its inode nat entry is still alive */
384 	if (ni->nid != ni->ino)
385 		e = __lookup_nat_cache(nm_i, ni->ino);
386 	if (e) {
387 		if (fsync_done && ni->nid == ni->ino)
388 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
389 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
390 	}
391 	up_write(&nm_i->nat_tree_lock);
392 }
393 
394 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
395 {
396 	struct f2fs_nm_info *nm_i = NM_I(sbi);
397 	int nr = nr_shrink;
398 
399 	if (!down_write_trylock(&nm_i->nat_tree_lock))
400 		return 0;
401 
402 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
403 		struct nat_entry *ne;
404 		ne = list_first_entry(&nm_i->nat_entries,
405 					struct nat_entry, list);
406 		__del_from_nat_cache(nm_i, ne);
407 		nr_shrink--;
408 	}
409 	up_write(&nm_i->nat_tree_lock);
410 	return nr - nr_shrink;
411 }
412 
413 /*
414  * This function always returns success
415  */
416 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
417 {
418 	struct f2fs_nm_info *nm_i = NM_I(sbi);
419 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
420 	struct f2fs_journal *journal = curseg->journal;
421 	nid_t start_nid = START_NID(nid);
422 	struct f2fs_nat_block *nat_blk;
423 	struct page *page = NULL;
424 	struct f2fs_nat_entry ne;
425 	struct nat_entry *e;
426 	pgoff_t index;
427 	int i;
428 
429 	ni->nid = nid;
430 
431 	/* Check nat cache */
432 	down_read(&nm_i->nat_tree_lock);
433 	e = __lookup_nat_cache(nm_i, nid);
434 	if (e) {
435 		ni->ino = nat_get_ino(e);
436 		ni->blk_addr = nat_get_blkaddr(e);
437 		ni->version = nat_get_version(e);
438 		up_read(&nm_i->nat_tree_lock);
439 		return;
440 	}
441 
442 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
443 
444 	/* Check current segment summary */
445 	down_read(&curseg->journal_rwsem);
446 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
447 	if (i >= 0) {
448 		ne = nat_in_journal(journal, i);
449 		node_info_from_raw_nat(ni, &ne);
450 	}
451 	up_read(&curseg->journal_rwsem);
452 	if (i >= 0) {
453 		up_read(&nm_i->nat_tree_lock);
454 		goto cache;
455 	}
456 
457 	/* Fill node_info from nat page */
458 	index = current_nat_addr(sbi, nid);
459 	up_read(&nm_i->nat_tree_lock);
460 
461 	page = get_meta_page(sbi, index);
462 	nat_blk = (struct f2fs_nat_block *)page_address(page);
463 	ne = nat_blk->entries[nid - start_nid];
464 	node_info_from_raw_nat(ni, &ne);
465 	f2fs_put_page(page, 1);
466 cache:
467 	/* cache nat entry */
468 	cache_nat_entry(sbi, nid, &ne);
469 }
470 
471 /*
472  * readahead MAX_RA_NODE number of node pages.
473  */
474 static void ra_node_pages(struct page *parent, int start, int n)
475 {
476 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
477 	struct blk_plug plug;
478 	int i, end;
479 	nid_t nid;
480 
481 	blk_start_plug(&plug);
482 
483 	/* Then, try readahead for siblings of the desired node */
484 	end = start + n;
485 	end = min(end, NIDS_PER_BLOCK);
486 	for (i = start; i < end; i++) {
487 		nid = get_nid(parent, i, false);
488 		ra_node_page(sbi, nid);
489 	}
490 
491 	blk_finish_plug(&plug);
492 }
493 
494 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
495 {
496 	const long direct_index = ADDRS_PER_INODE(dn->inode);
497 	const long direct_blks = ADDRS_PER_BLOCK;
498 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
499 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
500 	int cur_level = dn->cur_level;
501 	int max_level = dn->max_level;
502 	pgoff_t base = 0;
503 
504 	if (!dn->max_level)
505 		return pgofs + 1;
506 
507 	while (max_level-- > cur_level)
508 		skipped_unit *= NIDS_PER_BLOCK;
509 
510 	switch (dn->max_level) {
511 	case 3:
512 		base += 2 * indirect_blks;
513 	case 2:
514 		base += 2 * direct_blks;
515 	case 1:
516 		base += direct_index;
517 		break;
518 	default:
519 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
520 	}
521 
522 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
523 }
524 
525 /*
526  * The maximum depth is four.
527  * Offset[0] will have raw inode offset.
528  */
529 static int get_node_path(struct inode *inode, long block,
530 				int offset[4], unsigned int noffset[4])
531 {
532 	const long direct_index = ADDRS_PER_INODE(inode);
533 	const long direct_blks = ADDRS_PER_BLOCK;
534 	const long dptrs_per_blk = NIDS_PER_BLOCK;
535 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
536 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
537 	int n = 0;
538 	int level = 0;
539 
540 	noffset[0] = 0;
541 
542 	if (block < direct_index) {
543 		offset[n] = block;
544 		goto got;
545 	}
546 	block -= direct_index;
547 	if (block < direct_blks) {
548 		offset[n++] = NODE_DIR1_BLOCK;
549 		noffset[n] = 1;
550 		offset[n] = block;
551 		level = 1;
552 		goto got;
553 	}
554 	block -= direct_blks;
555 	if (block < direct_blks) {
556 		offset[n++] = NODE_DIR2_BLOCK;
557 		noffset[n] = 2;
558 		offset[n] = block;
559 		level = 1;
560 		goto got;
561 	}
562 	block -= direct_blks;
563 	if (block < indirect_blks) {
564 		offset[n++] = NODE_IND1_BLOCK;
565 		noffset[n] = 3;
566 		offset[n++] = block / direct_blks;
567 		noffset[n] = 4 + offset[n - 1];
568 		offset[n] = block % direct_blks;
569 		level = 2;
570 		goto got;
571 	}
572 	block -= indirect_blks;
573 	if (block < indirect_blks) {
574 		offset[n++] = NODE_IND2_BLOCK;
575 		noffset[n] = 4 + dptrs_per_blk;
576 		offset[n++] = block / direct_blks;
577 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
578 		offset[n] = block % direct_blks;
579 		level = 2;
580 		goto got;
581 	}
582 	block -= indirect_blks;
583 	if (block < dindirect_blks) {
584 		offset[n++] = NODE_DIND_BLOCK;
585 		noffset[n] = 5 + (dptrs_per_blk * 2);
586 		offset[n++] = block / indirect_blks;
587 		noffset[n] = 6 + (dptrs_per_blk * 2) +
588 			      offset[n - 1] * (dptrs_per_blk + 1);
589 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
590 		noffset[n] = 7 + (dptrs_per_blk * 2) +
591 			      offset[n - 2] * (dptrs_per_blk + 1) +
592 			      offset[n - 1];
593 		offset[n] = block % direct_blks;
594 		level = 3;
595 		goto got;
596 	} else {
597 		return -E2BIG;
598 	}
599 got:
600 	return level;
601 }
602 
603 /*
604  * Caller should call f2fs_put_dnode(dn).
605  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
606  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
607  * In the case of RDONLY_NODE, we don't need to care about mutex.
608  */
609 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
610 {
611 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
612 	struct page *npage[4];
613 	struct page *parent = NULL;
614 	int offset[4];
615 	unsigned int noffset[4];
616 	nid_t nids[4];
617 	int level, i = 0;
618 	int err = 0;
619 
620 	level = get_node_path(dn->inode, index, offset, noffset);
621 	if (level < 0)
622 		return level;
623 
624 	nids[0] = dn->inode->i_ino;
625 	npage[0] = dn->inode_page;
626 
627 	if (!npage[0]) {
628 		npage[0] = get_node_page(sbi, nids[0]);
629 		if (IS_ERR(npage[0]))
630 			return PTR_ERR(npage[0]);
631 	}
632 
633 	/* if inline_data is set, should not report any block indices */
634 	if (f2fs_has_inline_data(dn->inode) && index) {
635 		err = -ENOENT;
636 		f2fs_put_page(npage[0], 1);
637 		goto release_out;
638 	}
639 
640 	parent = npage[0];
641 	if (level != 0)
642 		nids[1] = get_nid(parent, offset[0], true);
643 	dn->inode_page = npage[0];
644 	dn->inode_page_locked = true;
645 
646 	/* get indirect or direct nodes */
647 	for (i = 1; i <= level; i++) {
648 		bool done = false;
649 
650 		if (!nids[i] && mode == ALLOC_NODE) {
651 			/* alloc new node */
652 			if (!alloc_nid(sbi, &(nids[i]))) {
653 				err = -ENOSPC;
654 				goto release_pages;
655 			}
656 
657 			dn->nid = nids[i];
658 			npage[i] = new_node_page(dn, noffset[i]);
659 			if (IS_ERR(npage[i])) {
660 				alloc_nid_failed(sbi, nids[i]);
661 				err = PTR_ERR(npage[i]);
662 				goto release_pages;
663 			}
664 
665 			set_nid(parent, offset[i - 1], nids[i], i == 1);
666 			alloc_nid_done(sbi, nids[i]);
667 			done = true;
668 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
669 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
670 			if (IS_ERR(npage[i])) {
671 				err = PTR_ERR(npage[i]);
672 				goto release_pages;
673 			}
674 			done = true;
675 		}
676 		if (i == 1) {
677 			dn->inode_page_locked = false;
678 			unlock_page(parent);
679 		} else {
680 			f2fs_put_page(parent, 1);
681 		}
682 
683 		if (!done) {
684 			npage[i] = get_node_page(sbi, nids[i]);
685 			if (IS_ERR(npage[i])) {
686 				err = PTR_ERR(npage[i]);
687 				f2fs_put_page(npage[0], 0);
688 				goto release_out;
689 			}
690 		}
691 		if (i < level) {
692 			parent = npage[i];
693 			nids[i + 1] = get_nid(parent, offset[i], false);
694 		}
695 	}
696 	dn->nid = nids[level];
697 	dn->ofs_in_node = offset[level];
698 	dn->node_page = npage[level];
699 	dn->data_blkaddr = datablock_addr(dn->inode,
700 				dn->node_page, dn->ofs_in_node);
701 	return 0;
702 
703 release_pages:
704 	f2fs_put_page(parent, 1);
705 	if (i > 1)
706 		f2fs_put_page(npage[0], 0);
707 release_out:
708 	dn->inode_page = NULL;
709 	dn->node_page = NULL;
710 	if (err == -ENOENT) {
711 		dn->cur_level = i;
712 		dn->max_level = level;
713 		dn->ofs_in_node = offset[level];
714 	}
715 	return err;
716 }
717 
718 static void truncate_node(struct dnode_of_data *dn)
719 {
720 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 	struct node_info ni;
722 
723 	get_node_info(sbi, dn->nid, &ni);
724 
725 	/* Deallocate node address */
726 	invalidate_blocks(sbi, ni.blk_addr);
727 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
728 	set_node_addr(sbi, &ni, NULL_ADDR, false);
729 
730 	if (dn->nid == dn->inode->i_ino) {
731 		remove_orphan_inode(sbi, dn->nid);
732 		dec_valid_inode_count(sbi);
733 		f2fs_inode_synced(dn->inode);
734 	}
735 
736 	clear_node_page_dirty(dn->node_page);
737 	set_sbi_flag(sbi, SBI_IS_DIRTY);
738 
739 	f2fs_put_page(dn->node_page, 1);
740 
741 	invalidate_mapping_pages(NODE_MAPPING(sbi),
742 			dn->node_page->index, dn->node_page->index);
743 
744 	dn->node_page = NULL;
745 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
746 }
747 
748 static int truncate_dnode(struct dnode_of_data *dn)
749 {
750 	struct page *page;
751 
752 	if (dn->nid == 0)
753 		return 1;
754 
755 	/* get direct node */
756 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
757 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
758 		return 1;
759 	else if (IS_ERR(page))
760 		return PTR_ERR(page);
761 
762 	/* Make dnode_of_data for parameter */
763 	dn->node_page = page;
764 	dn->ofs_in_node = 0;
765 	truncate_data_blocks(dn);
766 	truncate_node(dn);
767 	return 1;
768 }
769 
770 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
771 						int ofs, int depth)
772 {
773 	struct dnode_of_data rdn = *dn;
774 	struct page *page;
775 	struct f2fs_node *rn;
776 	nid_t child_nid;
777 	unsigned int child_nofs;
778 	int freed = 0;
779 	int i, ret;
780 
781 	if (dn->nid == 0)
782 		return NIDS_PER_BLOCK + 1;
783 
784 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
785 
786 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
787 	if (IS_ERR(page)) {
788 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
789 		return PTR_ERR(page);
790 	}
791 
792 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
793 
794 	rn = F2FS_NODE(page);
795 	if (depth < 3) {
796 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
797 			child_nid = le32_to_cpu(rn->in.nid[i]);
798 			if (child_nid == 0)
799 				continue;
800 			rdn.nid = child_nid;
801 			ret = truncate_dnode(&rdn);
802 			if (ret < 0)
803 				goto out_err;
804 			if (set_nid(page, i, 0, false))
805 				dn->node_changed = true;
806 		}
807 	} else {
808 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
809 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
810 			child_nid = le32_to_cpu(rn->in.nid[i]);
811 			if (child_nid == 0) {
812 				child_nofs += NIDS_PER_BLOCK + 1;
813 				continue;
814 			}
815 			rdn.nid = child_nid;
816 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
817 			if (ret == (NIDS_PER_BLOCK + 1)) {
818 				if (set_nid(page, i, 0, false))
819 					dn->node_changed = true;
820 				child_nofs += ret;
821 			} else if (ret < 0 && ret != -ENOENT) {
822 				goto out_err;
823 			}
824 		}
825 		freed = child_nofs;
826 	}
827 
828 	if (!ofs) {
829 		/* remove current indirect node */
830 		dn->node_page = page;
831 		truncate_node(dn);
832 		freed++;
833 	} else {
834 		f2fs_put_page(page, 1);
835 	}
836 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
837 	return freed;
838 
839 out_err:
840 	f2fs_put_page(page, 1);
841 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
842 	return ret;
843 }
844 
845 static int truncate_partial_nodes(struct dnode_of_data *dn,
846 			struct f2fs_inode *ri, int *offset, int depth)
847 {
848 	struct page *pages[2];
849 	nid_t nid[3];
850 	nid_t child_nid;
851 	int err = 0;
852 	int i;
853 	int idx = depth - 2;
854 
855 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
856 	if (!nid[0])
857 		return 0;
858 
859 	/* get indirect nodes in the path */
860 	for (i = 0; i < idx + 1; i++) {
861 		/* reference count'll be increased */
862 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
863 		if (IS_ERR(pages[i])) {
864 			err = PTR_ERR(pages[i]);
865 			idx = i - 1;
866 			goto fail;
867 		}
868 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
869 	}
870 
871 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
872 
873 	/* free direct nodes linked to a partial indirect node */
874 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
875 		child_nid = get_nid(pages[idx], i, false);
876 		if (!child_nid)
877 			continue;
878 		dn->nid = child_nid;
879 		err = truncate_dnode(dn);
880 		if (err < 0)
881 			goto fail;
882 		if (set_nid(pages[idx], i, 0, false))
883 			dn->node_changed = true;
884 	}
885 
886 	if (offset[idx + 1] == 0) {
887 		dn->node_page = pages[idx];
888 		dn->nid = nid[idx];
889 		truncate_node(dn);
890 	} else {
891 		f2fs_put_page(pages[idx], 1);
892 	}
893 	offset[idx]++;
894 	offset[idx + 1] = 0;
895 	idx--;
896 fail:
897 	for (i = idx; i >= 0; i--)
898 		f2fs_put_page(pages[i], 1);
899 
900 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
901 
902 	return err;
903 }
904 
905 /*
906  * All the block addresses of data and nodes should be nullified.
907  */
908 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
909 {
910 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
911 	int err = 0, cont = 1;
912 	int level, offset[4], noffset[4];
913 	unsigned int nofs = 0;
914 	struct f2fs_inode *ri;
915 	struct dnode_of_data dn;
916 	struct page *page;
917 
918 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
919 
920 	level = get_node_path(inode, from, offset, noffset);
921 	if (level < 0)
922 		return level;
923 
924 	page = get_node_page(sbi, inode->i_ino);
925 	if (IS_ERR(page)) {
926 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
927 		return PTR_ERR(page);
928 	}
929 
930 	set_new_dnode(&dn, inode, page, NULL, 0);
931 	unlock_page(page);
932 
933 	ri = F2FS_INODE(page);
934 	switch (level) {
935 	case 0:
936 	case 1:
937 		nofs = noffset[1];
938 		break;
939 	case 2:
940 		nofs = noffset[1];
941 		if (!offset[level - 1])
942 			goto skip_partial;
943 		err = truncate_partial_nodes(&dn, ri, offset, level);
944 		if (err < 0 && err != -ENOENT)
945 			goto fail;
946 		nofs += 1 + NIDS_PER_BLOCK;
947 		break;
948 	case 3:
949 		nofs = 5 + 2 * NIDS_PER_BLOCK;
950 		if (!offset[level - 1])
951 			goto skip_partial;
952 		err = truncate_partial_nodes(&dn, ri, offset, level);
953 		if (err < 0 && err != -ENOENT)
954 			goto fail;
955 		break;
956 	default:
957 		BUG();
958 	}
959 
960 skip_partial:
961 	while (cont) {
962 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
963 		switch (offset[0]) {
964 		case NODE_DIR1_BLOCK:
965 		case NODE_DIR2_BLOCK:
966 			err = truncate_dnode(&dn);
967 			break;
968 
969 		case NODE_IND1_BLOCK:
970 		case NODE_IND2_BLOCK:
971 			err = truncate_nodes(&dn, nofs, offset[1], 2);
972 			break;
973 
974 		case NODE_DIND_BLOCK:
975 			err = truncate_nodes(&dn, nofs, offset[1], 3);
976 			cont = 0;
977 			break;
978 
979 		default:
980 			BUG();
981 		}
982 		if (err < 0 && err != -ENOENT)
983 			goto fail;
984 		if (offset[1] == 0 &&
985 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
986 			lock_page(page);
987 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
988 			f2fs_wait_on_page_writeback(page, NODE, true);
989 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
990 			set_page_dirty(page);
991 			unlock_page(page);
992 		}
993 		offset[1] = 0;
994 		offset[0]++;
995 		nofs += err;
996 	}
997 fail:
998 	f2fs_put_page(page, 0);
999 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000 	return err > 0 ? 0 : err;
1001 }
1002 
1003 /* caller must lock inode page */
1004 int truncate_xattr_node(struct inode *inode)
1005 {
1006 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008 	struct dnode_of_data dn;
1009 	struct page *npage;
1010 
1011 	if (!nid)
1012 		return 0;
1013 
1014 	npage = get_node_page(sbi, nid);
1015 	if (IS_ERR(npage))
1016 		return PTR_ERR(npage);
1017 
1018 	f2fs_i_xnid_write(inode, 0);
1019 
1020 	set_new_dnode(&dn, inode, NULL, npage, nid);
1021 	truncate_node(&dn);
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027  * f2fs_unlock_op().
1028  */
1029 int remove_inode_page(struct inode *inode)
1030 {
1031 	struct dnode_of_data dn;
1032 	int err;
1033 
1034 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036 	if (err)
1037 		return err;
1038 
1039 	err = truncate_xattr_node(inode);
1040 	if (err) {
1041 		f2fs_put_dnode(&dn);
1042 		return err;
1043 	}
1044 
1045 	/* remove potential inline_data blocks */
1046 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047 				S_ISLNK(inode->i_mode))
1048 		truncate_data_blocks_range(&dn, 1);
1049 
1050 	/* 0 is possible, after f2fs_new_inode() has failed */
1051 	f2fs_bug_on(F2FS_I_SB(inode),
1052 			inode->i_blocks != 0 && inode->i_blocks != 8);
1053 
1054 	/* will put inode & node pages */
1055 	truncate_node(&dn);
1056 	return 0;
1057 }
1058 
1059 struct page *new_inode_page(struct inode *inode)
1060 {
1061 	struct dnode_of_data dn;
1062 
1063 	/* allocate inode page for new inode */
1064 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065 
1066 	/* caller should f2fs_put_page(page, 1); */
1067 	return new_node_page(&dn, 0);
1068 }
1069 
1070 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071 {
1072 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073 	struct node_info new_ni;
1074 	struct page *page;
1075 	int err;
1076 
1077 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078 		return ERR_PTR(-EPERM);
1079 
1080 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081 	if (!page)
1082 		return ERR_PTR(-ENOMEM);
1083 
1084 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085 		goto fail;
1086 
1087 #ifdef CONFIG_F2FS_CHECK_FS
1088 	get_node_info(sbi, dn->nid, &new_ni);
1089 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1090 #endif
1091 	new_ni.nid = dn->nid;
1092 	new_ni.ino = dn->inode->i_ino;
1093 	new_ni.blk_addr = NULL_ADDR;
1094 	new_ni.flag = 0;
1095 	new_ni.version = 0;
1096 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097 
1098 	f2fs_wait_on_page_writeback(page, NODE, true);
1099 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101 	if (!PageUptodate(page))
1102 		SetPageUptodate(page);
1103 	if (set_page_dirty(page))
1104 		dn->node_changed = true;
1105 
1106 	if (f2fs_has_xattr_block(ofs))
1107 		f2fs_i_xnid_write(dn->inode, dn->nid);
1108 
1109 	if (ofs == 0)
1110 		inc_valid_inode_count(sbi);
1111 	return page;
1112 
1113 fail:
1114 	clear_node_page_dirty(page);
1115 	f2fs_put_page(page, 1);
1116 	return ERR_PTR(err);
1117 }
1118 
1119 /*
1120  * Caller should do after getting the following values.
1121  * 0: f2fs_put_page(page, 0)
1122  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123  */
1124 static int read_node_page(struct page *page, int op_flags)
1125 {
1126 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127 	struct node_info ni;
1128 	struct f2fs_io_info fio = {
1129 		.sbi = sbi,
1130 		.type = NODE,
1131 		.op = REQ_OP_READ,
1132 		.op_flags = op_flags,
1133 		.page = page,
1134 		.encrypted_page = NULL,
1135 	};
1136 
1137 	if (PageUptodate(page))
1138 		return LOCKED_PAGE;
1139 
1140 	get_node_info(sbi, page->index, &ni);
1141 
1142 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1143 		ClearPageUptodate(page);
1144 		return -ENOENT;
1145 	}
1146 
1147 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148 	return f2fs_submit_page_bio(&fio);
1149 }
1150 
1151 /*
1152  * Readahead a node page
1153  */
1154 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155 {
1156 	struct page *apage;
1157 	int err;
1158 
1159 	if (!nid)
1160 		return;
1161 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1162 
1163 	rcu_read_lock();
1164 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1165 	rcu_read_unlock();
1166 	if (apage)
1167 		return;
1168 
1169 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170 	if (!apage)
1171 		return;
1172 
1173 	err = read_node_page(apage, REQ_RAHEAD);
1174 	f2fs_put_page(apage, err ? 1 : 0);
1175 }
1176 
1177 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178 					struct page *parent, int start)
1179 {
1180 	struct page *page;
1181 	int err;
1182 
1183 	if (!nid)
1184 		return ERR_PTR(-ENOENT);
1185 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1186 repeat:
1187 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188 	if (!page)
1189 		return ERR_PTR(-ENOMEM);
1190 
1191 	err = read_node_page(page, 0);
1192 	if (err < 0) {
1193 		f2fs_put_page(page, 1);
1194 		return ERR_PTR(err);
1195 	} else if (err == LOCKED_PAGE) {
1196 		err = 0;
1197 		goto page_hit;
1198 	}
1199 
1200 	if (parent)
1201 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202 
1203 	lock_page(page);
1204 
1205 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206 		f2fs_put_page(page, 1);
1207 		goto repeat;
1208 	}
1209 
1210 	if (unlikely(!PageUptodate(page))) {
1211 		err = -EIO;
1212 		goto out_err;
1213 	}
1214 
1215 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1216 		err = -EBADMSG;
1217 		goto out_err;
1218 	}
1219 page_hit:
1220 	if(unlikely(nid != nid_of_node(page))) {
1221 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223 			nid, nid_of_node(page), ino_of_node(page),
1224 			ofs_of_node(page), cpver_of_node(page),
1225 			next_blkaddr_of_node(page));
1226 		err = -EINVAL;
1227 out_err:
1228 		ClearPageUptodate(page);
1229 		f2fs_put_page(page, 1);
1230 		return ERR_PTR(err);
1231 	}
1232 	return page;
1233 }
1234 
1235 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236 {
1237 	return __get_node_page(sbi, nid, NULL, 0);
1238 }
1239 
1240 struct page *get_node_page_ra(struct page *parent, int start)
1241 {
1242 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243 	nid_t nid = get_nid(parent, start, false);
1244 
1245 	return __get_node_page(sbi, nid, parent, start);
1246 }
1247 
1248 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249 {
1250 	struct inode *inode;
1251 	struct page *page;
1252 	int ret;
1253 
1254 	/* should flush inline_data before evict_inode */
1255 	inode = ilookup(sbi->sb, ino);
1256 	if (!inode)
1257 		return;
1258 
1259 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260 					FGP_LOCK|FGP_NOWAIT, 0);
1261 	if (!page)
1262 		goto iput_out;
1263 
1264 	if (!PageUptodate(page))
1265 		goto page_out;
1266 
1267 	if (!PageDirty(page))
1268 		goto page_out;
1269 
1270 	if (!clear_page_dirty_for_io(page))
1271 		goto page_out;
1272 
1273 	ret = f2fs_write_inline_data(inode, page);
1274 	inode_dec_dirty_pages(inode);
1275 	remove_dirty_inode(inode);
1276 	if (ret)
1277 		set_page_dirty(page);
1278 page_out:
1279 	f2fs_put_page(page, 1);
1280 iput_out:
1281 	iput(inode);
1282 }
1283 
1284 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285 {
1286 	pgoff_t index;
1287 	struct pagevec pvec;
1288 	struct page *last_page = NULL;
1289 	int nr_pages;
1290 
1291 	pagevec_init(&pvec);
1292 	index = 0;
1293 
1294 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295 				PAGECACHE_TAG_DIRTY))) {
1296 		int i;
1297 
1298 		for (i = 0; i < nr_pages; i++) {
1299 			struct page *page = pvec.pages[i];
1300 
1301 			if (unlikely(f2fs_cp_error(sbi))) {
1302 				f2fs_put_page(last_page, 0);
1303 				pagevec_release(&pvec);
1304 				return ERR_PTR(-EIO);
1305 			}
1306 
1307 			if (!IS_DNODE(page) || !is_cold_node(page))
1308 				continue;
1309 			if (ino_of_node(page) != ino)
1310 				continue;
1311 
1312 			lock_page(page);
1313 
1314 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315 continue_unlock:
1316 				unlock_page(page);
1317 				continue;
1318 			}
1319 			if (ino_of_node(page) != ino)
1320 				goto continue_unlock;
1321 
1322 			if (!PageDirty(page)) {
1323 				/* someone wrote it for us */
1324 				goto continue_unlock;
1325 			}
1326 
1327 			if (last_page)
1328 				f2fs_put_page(last_page, 0);
1329 
1330 			get_page(page);
1331 			last_page = page;
1332 			unlock_page(page);
1333 		}
1334 		pagevec_release(&pvec);
1335 		cond_resched();
1336 	}
1337 	return last_page;
1338 }
1339 
1340 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341 				struct writeback_control *wbc, bool do_balance,
1342 				enum iostat_type io_type)
1343 {
1344 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345 	nid_t nid;
1346 	struct node_info ni;
1347 	struct f2fs_io_info fio = {
1348 		.sbi = sbi,
1349 		.ino = ino_of_node(page),
1350 		.type = NODE,
1351 		.op = REQ_OP_WRITE,
1352 		.op_flags = wbc_to_write_flags(wbc),
1353 		.page = page,
1354 		.encrypted_page = NULL,
1355 		.submitted = false,
1356 		.io_type = io_type,
1357 		.io_wbc = wbc,
1358 	};
1359 
1360 	trace_f2fs_writepage(page, NODE);
1361 
1362 	if (unlikely(f2fs_cp_error(sbi))) {
1363 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1364 		unlock_page(page);
1365 		return 0;
1366 	}
1367 
1368 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369 		goto redirty_out;
1370 
1371 	/* get old block addr of this node page */
1372 	nid = nid_of_node(page);
1373 	f2fs_bug_on(sbi, page->index != nid);
1374 
1375 	if (wbc->for_reclaim) {
1376 		if (!down_read_trylock(&sbi->node_write))
1377 			goto redirty_out;
1378 	} else {
1379 		down_read(&sbi->node_write);
1380 	}
1381 
1382 	get_node_info(sbi, nid, &ni);
1383 
1384 	/* This page is already truncated */
1385 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386 		ClearPageUptodate(page);
1387 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1388 		up_read(&sbi->node_write);
1389 		unlock_page(page);
1390 		return 0;
1391 	}
1392 
1393 	if (atomic && !test_opt(sbi, NOBARRIER))
1394 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395 
1396 	set_page_writeback(page);
1397 	fio.old_blkaddr = ni.blk_addr;
1398 	write_node_page(nid, &fio);
1399 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1401 	up_read(&sbi->node_write);
1402 
1403 	if (wbc->for_reclaim) {
1404 		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405 						page->index, NODE);
1406 		submitted = NULL;
1407 	}
1408 
1409 	unlock_page(page);
1410 
1411 	if (unlikely(f2fs_cp_error(sbi))) {
1412 		f2fs_submit_merged_write(sbi, NODE);
1413 		submitted = NULL;
1414 	}
1415 	if (submitted)
1416 		*submitted = fio.submitted;
1417 
1418 	if (do_balance)
1419 		f2fs_balance_fs(sbi, false);
1420 	return 0;
1421 
1422 redirty_out:
1423 	redirty_page_for_writepage(wbc, page);
1424 	return AOP_WRITEPAGE_ACTIVATE;
1425 }
1426 
1427 void move_node_page(struct page *node_page, int gc_type)
1428 {
1429 	if (gc_type == FG_GC) {
1430 		struct writeback_control wbc = {
1431 			.sync_mode = WB_SYNC_ALL,
1432 			.nr_to_write = 1,
1433 			.for_reclaim = 0,
1434 		};
1435 
1436 		set_page_dirty(node_page);
1437 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1438 
1439 		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440 		if (!clear_page_dirty_for_io(node_page))
1441 			goto out_page;
1442 
1443 		if (__write_node_page(node_page, false, NULL,
1444 					&wbc, false, FS_GC_NODE_IO))
1445 			unlock_page(node_page);
1446 		goto release_page;
1447 	} else {
1448 		/* set page dirty and write it */
1449 		if (!PageWriteback(node_page))
1450 			set_page_dirty(node_page);
1451 	}
1452 out_page:
1453 	unlock_page(node_page);
1454 release_page:
1455 	f2fs_put_page(node_page, 0);
1456 }
1457 
1458 static int f2fs_write_node_page(struct page *page,
1459 				struct writeback_control *wbc)
1460 {
1461 	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1462 }
1463 
1464 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465 			struct writeback_control *wbc, bool atomic)
1466 {
1467 	pgoff_t index;
1468 	pgoff_t last_idx = ULONG_MAX;
1469 	struct pagevec pvec;
1470 	int ret = 0;
1471 	struct page *last_page = NULL;
1472 	bool marked = false;
1473 	nid_t ino = inode->i_ino;
1474 	int nr_pages;
1475 
1476 	if (atomic) {
1477 		last_page = last_fsync_dnode(sbi, ino);
1478 		if (IS_ERR_OR_NULL(last_page))
1479 			return PTR_ERR_OR_ZERO(last_page);
1480 	}
1481 retry:
1482 	pagevec_init(&pvec);
1483 	index = 0;
1484 
1485 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486 				PAGECACHE_TAG_DIRTY))) {
1487 		int i;
1488 
1489 		for (i = 0; i < nr_pages; i++) {
1490 			struct page *page = pvec.pages[i];
1491 			bool submitted = false;
1492 
1493 			if (unlikely(f2fs_cp_error(sbi))) {
1494 				f2fs_put_page(last_page, 0);
1495 				pagevec_release(&pvec);
1496 				ret = -EIO;
1497 				goto out;
1498 			}
1499 
1500 			if (!IS_DNODE(page) || !is_cold_node(page))
1501 				continue;
1502 			if (ino_of_node(page) != ino)
1503 				continue;
1504 
1505 			lock_page(page);
1506 
1507 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508 continue_unlock:
1509 				unlock_page(page);
1510 				continue;
1511 			}
1512 			if (ino_of_node(page) != ino)
1513 				goto continue_unlock;
1514 
1515 			if (!PageDirty(page) && page != last_page) {
1516 				/* someone wrote it for us */
1517 				goto continue_unlock;
1518 			}
1519 
1520 			f2fs_wait_on_page_writeback(page, NODE, true);
1521 			BUG_ON(PageWriteback(page));
1522 
1523 			set_fsync_mark(page, 0);
1524 			set_dentry_mark(page, 0);
1525 
1526 			if (!atomic || page == last_page) {
1527 				set_fsync_mark(page, 1);
1528 				if (IS_INODE(page)) {
1529 					if (is_inode_flag_set(inode,
1530 								FI_DIRTY_INODE))
1531 						update_inode(inode, page);
1532 					set_dentry_mark(page,
1533 						need_dentry_mark(sbi, ino));
1534 				}
1535 				/*  may be written by other thread */
1536 				if (!PageDirty(page))
1537 					set_page_dirty(page);
1538 			}
1539 
1540 			if (!clear_page_dirty_for_io(page))
1541 				goto continue_unlock;
1542 
1543 			ret = __write_node_page(page, atomic &&
1544 						page == last_page,
1545 						&submitted, wbc, true,
1546 						FS_NODE_IO);
1547 			if (ret) {
1548 				unlock_page(page);
1549 				f2fs_put_page(last_page, 0);
1550 				break;
1551 			} else if (submitted) {
1552 				last_idx = page->index;
1553 			}
1554 
1555 			if (page == last_page) {
1556 				f2fs_put_page(page, 0);
1557 				marked = true;
1558 				break;
1559 			}
1560 		}
1561 		pagevec_release(&pvec);
1562 		cond_resched();
1563 
1564 		if (ret || marked)
1565 			break;
1566 	}
1567 	if (!ret && atomic && !marked) {
1568 		f2fs_msg(sbi->sb, KERN_DEBUG,
1569 			"Retry to write fsync mark: ino=%u, idx=%lx",
1570 					ino, last_page->index);
1571 		lock_page(last_page);
1572 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1573 		set_page_dirty(last_page);
1574 		unlock_page(last_page);
1575 		goto retry;
1576 	}
1577 out:
1578 	if (last_idx != ULONG_MAX)
1579 		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580 	return ret ? -EIO: 0;
1581 }
1582 
1583 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1584 				bool do_balance, enum iostat_type io_type)
1585 {
1586 	pgoff_t index;
1587 	struct pagevec pvec;
1588 	int step = 0;
1589 	int nwritten = 0;
1590 	int ret = 0;
1591 	int nr_pages;
1592 
1593 	pagevec_init(&pvec);
1594 
1595 next_step:
1596 	index = 0;
1597 
1598 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599 				PAGECACHE_TAG_DIRTY))) {
1600 		int i;
1601 
1602 		for (i = 0; i < nr_pages; i++) {
1603 			struct page *page = pvec.pages[i];
1604 			bool submitted = false;
1605 
1606 			/*
1607 			 * flushing sequence with step:
1608 			 * 0. indirect nodes
1609 			 * 1. dentry dnodes
1610 			 * 2. file dnodes
1611 			 */
1612 			if (step == 0 && IS_DNODE(page))
1613 				continue;
1614 			if (step == 1 && (!IS_DNODE(page) ||
1615 						is_cold_node(page)))
1616 				continue;
1617 			if (step == 2 && (!IS_DNODE(page) ||
1618 						!is_cold_node(page)))
1619 				continue;
1620 lock_node:
1621 			if (!trylock_page(page))
1622 				continue;
1623 
1624 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625 continue_unlock:
1626 				unlock_page(page);
1627 				continue;
1628 			}
1629 
1630 			if (!PageDirty(page)) {
1631 				/* someone wrote it for us */
1632 				goto continue_unlock;
1633 			}
1634 
1635 			/* flush inline_data */
1636 			if (is_inline_node(page)) {
1637 				clear_inline_node(page);
1638 				unlock_page(page);
1639 				flush_inline_data(sbi, ino_of_node(page));
1640 				goto lock_node;
1641 			}
1642 
1643 			f2fs_wait_on_page_writeback(page, NODE, true);
1644 
1645 			BUG_ON(PageWriteback(page));
1646 			if (!clear_page_dirty_for_io(page))
1647 				goto continue_unlock;
1648 
1649 			set_fsync_mark(page, 0);
1650 			set_dentry_mark(page, 0);
1651 
1652 			ret = __write_node_page(page, false, &submitted,
1653 						wbc, do_balance, io_type);
1654 			if (ret)
1655 				unlock_page(page);
1656 			else if (submitted)
1657 				nwritten++;
1658 
1659 			if (--wbc->nr_to_write == 0)
1660 				break;
1661 		}
1662 		pagevec_release(&pvec);
1663 		cond_resched();
1664 
1665 		if (wbc->nr_to_write == 0) {
1666 			step = 2;
1667 			break;
1668 		}
1669 	}
1670 
1671 	if (step < 2) {
1672 		step++;
1673 		goto next_step;
1674 	}
1675 
1676 	if (nwritten)
1677 		f2fs_submit_merged_write(sbi, NODE);
1678 
1679 	if (unlikely(f2fs_cp_error(sbi)))
1680 		return -EIO;
1681 	return ret;
1682 }
1683 
1684 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1685 {
1686 	pgoff_t index = 0;
1687 	struct pagevec pvec;
1688 	int ret2, ret = 0;
1689 	int nr_pages;
1690 
1691 	pagevec_init(&pvec);
1692 
1693 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694 				PAGECACHE_TAG_WRITEBACK))) {
1695 		int i;
1696 
1697 		for (i = 0; i < nr_pages; i++) {
1698 			struct page *page = pvec.pages[i];
1699 
1700 			if (ino && ino_of_node(page) == ino) {
1701 				f2fs_wait_on_page_writeback(page, NODE, true);
1702 				if (TestClearPageError(page))
1703 					ret = -EIO;
1704 			}
1705 		}
1706 		pagevec_release(&pvec);
1707 		cond_resched();
1708 	}
1709 
1710 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1711 	if (!ret)
1712 		ret = ret2;
1713 	return ret;
1714 }
1715 
1716 static int f2fs_write_node_pages(struct address_space *mapping,
1717 			    struct writeback_control *wbc)
1718 {
1719 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720 	struct blk_plug plug;
1721 	long diff;
1722 
1723 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724 		goto skip_write;
1725 
1726 	/* balancing f2fs's metadata in background */
1727 	f2fs_balance_fs_bg(sbi);
1728 
1729 	/* collect a number of dirty node pages and write together */
1730 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1731 		goto skip_write;
1732 
1733 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1734 
1735 	diff = nr_pages_to_write(sbi, NODE, wbc);
1736 	wbc->sync_mode = WB_SYNC_NONE;
1737 	blk_start_plug(&plug);
1738 	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739 	blk_finish_plug(&plug);
1740 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1741 	return 0;
1742 
1743 skip_write:
1744 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1746 	return 0;
1747 }
1748 
1749 static int f2fs_set_node_page_dirty(struct page *page)
1750 {
1751 	trace_f2fs_set_page_dirty(page, NODE);
1752 
1753 	if (!PageUptodate(page))
1754 		SetPageUptodate(page);
1755 	if (!PageDirty(page)) {
1756 		f2fs_set_page_dirty_nobuffers(page);
1757 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758 		SetPagePrivate(page);
1759 		f2fs_trace_pid(page);
1760 		return 1;
1761 	}
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Structure of the f2fs node operations
1767  */
1768 const struct address_space_operations f2fs_node_aops = {
1769 	.writepage	= f2fs_write_node_page,
1770 	.writepages	= f2fs_write_node_pages,
1771 	.set_page_dirty	= f2fs_set_node_page_dirty,
1772 	.invalidatepage	= f2fs_invalidate_page,
1773 	.releasepage	= f2fs_release_page,
1774 #ifdef CONFIG_MIGRATION
1775 	.migratepage    = f2fs_migrate_page,
1776 #endif
1777 };
1778 
1779 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780 						nid_t n)
1781 {
1782 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1783 }
1784 
1785 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786 			struct free_nid *i, enum nid_state state)
1787 {
1788 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1789 
1790 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1791 	if (err)
1792 		return err;
1793 
1794 	f2fs_bug_on(sbi, state != i->state);
1795 	nm_i->nid_cnt[state]++;
1796 	if (state == FREE_NID)
1797 		list_add_tail(&i->list, &nm_i->free_nid_list);
1798 	return 0;
1799 }
1800 
1801 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802 			struct free_nid *i, enum nid_state state)
1803 {
1804 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1805 
1806 	f2fs_bug_on(sbi, state != i->state);
1807 	nm_i->nid_cnt[state]--;
1808 	if (state == FREE_NID)
1809 		list_del(&i->list);
1810 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811 }
1812 
1813 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814 			enum nid_state org_state, enum nid_state dst_state)
1815 {
1816 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1817 
1818 	f2fs_bug_on(sbi, org_state != i->state);
1819 	i->state = dst_state;
1820 	nm_i->nid_cnt[org_state]--;
1821 	nm_i->nid_cnt[dst_state]++;
1822 
1823 	switch (dst_state) {
1824 	case PREALLOC_NID:
1825 		list_del(&i->list);
1826 		break;
1827 	case FREE_NID:
1828 		list_add_tail(&i->list, &nm_i->free_nid_list);
1829 		break;
1830 	default:
1831 		BUG_ON(1);
1832 	}
1833 }
1834 
1835 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836 							bool set, bool build)
1837 {
1838 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1839 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840 	unsigned int nid_ofs = nid - START_NID(nid);
1841 
1842 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843 		return;
1844 
1845 	if (set) {
1846 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847 			return;
1848 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849 		nm_i->free_nid_count[nat_ofs]++;
1850 	} else {
1851 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852 			return;
1853 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854 		if (!build)
1855 			nm_i->free_nid_count[nat_ofs]--;
1856 	}
1857 }
1858 
1859 /* return if the nid is recognized as free */
1860 static bool add_free_nid(struct f2fs_sb_info *sbi,
1861 				nid_t nid, bool build, bool update)
1862 {
1863 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1864 	struct free_nid *i, *e;
1865 	struct nat_entry *ne;
1866 	int err = -EINVAL;
1867 	bool ret = false;
1868 
1869 	/* 0 nid should not be used */
1870 	if (unlikely(nid == 0))
1871 		return false;
1872 
1873 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1874 	i->nid = nid;
1875 	i->state = FREE_NID;
1876 
1877 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878 
1879 	spin_lock(&nm_i->nid_list_lock);
1880 
1881 	if (build) {
1882 		/*
1883 		 *   Thread A             Thread B
1884 		 *  - f2fs_create
1885 		 *   - f2fs_new_inode
1886 		 *    - alloc_nid
1887 		 *     - __insert_nid_to_list(PREALLOC_NID)
1888 		 *                     - f2fs_balance_fs_bg
1889 		 *                      - build_free_nids
1890 		 *                       - __build_free_nids
1891 		 *                        - scan_nat_page
1892 		 *                         - add_free_nid
1893 		 *                          - __lookup_nat_cache
1894 		 *  - f2fs_add_link
1895 		 *   - init_inode_metadata
1896 		 *    - new_inode_page
1897 		 *     - new_node_page
1898 		 *      - set_node_addr
1899 		 *  - alloc_nid_done
1900 		 *   - __remove_nid_from_list(PREALLOC_NID)
1901 		 *                         - __insert_nid_to_list(FREE_NID)
1902 		 */
1903 		ne = __lookup_nat_cache(nm_i, nid);
1904 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905 				nat_get_blkaddr(ne) != NULL_ADDR))
1906 			goto err_out;
1907 
1908 		e = __lookup_free_nid_list(nm_i, nid);
1909 		if (e) {
1910 			if (e->state == FREE_NID)
1911 				ret = true;
1912 			goto err_out;
1913 		}
1914 	}
1915 	ret = true;
1916 	err = __insert_free_nid(sbi, i, FREE_NID);
1917 err_out:
1918 	if (update) {
1919 		update_free_nid_bitmap(sbi, nid, ret, build);
1920 		if (!build)
1921 			nm_i->available_nids++;
1922 	}
1923 	spin_unlock(&nm_i->nid_list_lock);
1924 	radix_tree_preload_end();
1925 
1926 	if (err)
1927 		kmem_cache_free(free_nid_slab, i);
1928 	return ret;
1929 }
1930 
1931 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932 {
1933 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1934 	struct free_nid *i;
1935 	bool need_free = false;
1936 
1937 	spin_lock(&nm_i->nid_list_lock);
1938 	i = __lookup_free_nid_list(nm_i, nid);
1939 	if (i && i->state == FREE_NID) {
1940 		__remove_free_nid(sbi, i, FREE_NID);
1941 		need_free = true;
1942 	}
1943 	spin_unlock(&nm_i->nid_list_lock);
1944 
1945 	if (need_free)
1946 		kmem_cache_free(free_nid_slab, i);
1947 }
1948 
1949 static void scan_nat_page(struct f2fs_sb_info *sbi,
1950 			struct page *nat_page, nid_t start_nid)
1951 {
1952 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1953 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954 	block_t blk_addr;
1955 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956 	int i;
1957 
1958 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959 
1960 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1961 
1962 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1963 		if (unlikely(start_nid >= nm_i->max_nid))
1964 			break;
1965 
1966 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1968 		if (blk_addr == NULL_ADDR) {
1969 			add_free_nid(sbi, start_nid, true, true);
1970 		} else {
1971 			spin_lock(&NM_I(sbi)->nid_list_lock);
1972 			update_free_nid_bitmap(sbi, start_nid, false, true);
1973 			spin_unlock(&NM_I(sbi)->nid_list_lock);
1974 		}
1975 	}
1976 }
1977 
1978 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979 {
1980 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981 	struct f2fs_journal *journal = curseg->journal;
1982 	int i;
1983 
1984 	down_read(&curseg->journal_rwsem);
1985 	for (i = 0; i < nats_in_cursum(journal); i++) {
1986 		block_t addr;
1987 		nid_t nid;
1988 
1989 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990 		nid = le32_to_cpu(nid_in_journal(journal, i));
1991 		if (addr == NULL_ADDR)
1992 			add_free_nid(sbi, nid, true, false);
1993 		else
1994 			remove_free_nid(sbi, nid);
1995 	}
1996 	up_read(&curseg->journal_rwsem);
1997 }
1998 
1999 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000 {
2001 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2002 	unsigned int i, idx;
2003 	nid_t nid;
2004 
2005 	down_read(&nm_i->nat_tree_lock);
2006 
2007 	for (i = 0; i < nm_i->nat_blocks; i++) {
2008 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009 			continue;
2010 		if (!nm_i->free_nid_count[i])
2011 			continue;
2012 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014 						NAT_ENTRY_PER_BLOCK, idx);
2015 			if (idx >= NAT_ENTRY_PER_BLOCK)
2016 				break;
2017 
2018 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019 			add_free_nid(sbi, nid, true, false);
2020 
2021 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022 				goto out;
2023 		}
2024 	}
2025 out:
2026 	scan_curseg_cache(sbi);
2027 
2028 	up_read(&nm_i->nat_tree_lock);
2029 }
2030 
2031 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2032 {
2033 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2034 	int i = 0;
2035 	nid_t nid = nm_i->next_scan_nid;
2036 
2037 	if (unlikely(nid >= nm_i->max_nid))
2038 		nid = 0;
2039 
2040 	/* Enough entries */
2041 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042 		return;
2043 
2044 	if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045 		return;
2046 
2047 	if (!mount) {
2048 		/* try to find free nids in free_nid_bitmap */
2049 		scan_free_nid_bits(sbi);
2050 
2051 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052 			return;
2053 	}
2054 
2055 	/* readahead nat pages to be scanned */
2056 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057 							META_NAT, true);
2058 
2059 	down_read(&nm_i->nat_tree_lock);
2060 
2061 	while (1) {
2062 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063 						nm_i->nat_block_bitmap)) {
2064 			struct page *page = get_current_nat_page(sbi, nid);
2065 
2066 			scan_nat_page(sbi, page, nid);
2067 			f2fs_put_page(page, 1);
2068 		}
2069 
2070 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071 		if (unlikely(nid >= nm_i->max_nid))
2072 			nid = 0;
2073 
2074 		if (++i >= FREE_NID_PAGES)
2075 			break;
2076 	}
2077 
2078 	/* go to the next free nat pages to find free nids abundantly */
2079 	nm_i->next_scan_nid = nid;
2080 
2081 	/* find free nids from current sum_pages */
2082 	scan_curseg_cache(sbi);
2083 
2084 	up_read(&nm_i->nat_tree_lock);
2085 
2086 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087 					nm_i->ra_nid_pages, META_NAT, false);
2088 }
2089 
2090 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091 {
2092 	mutex_lock(&NM_I(sbi)->build_lock);
2093 	__build_free_nids(sbi, sync, mount);
2094 	mutex_unlock(&NM_I(sbi)->build_lock);
2095 }
2096 
2097 /*
2098  * If this function returns success, caller can obtain a new nid
2099  * from second parameter of this function.
2100  * The returned nid could be used ino as well as nid when inode is created.
2101  */
2102 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103 {
2104 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105 	struct free_nid *i = NULL;
2106 retry:
2107 #ifdef CONFIG_F2FS_FAULT_INJECTION
2108 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2110 		return false;
2111 	}
2112 #endif
2113 	spin_lock(&nm_i->nid_list_lock);
2114 
2115 	if (unlikely(nm_i->available_nids == 0)) {
2116 		spin_unlock(&nm_i->nid_list_lock);
2117 		return false;
2118 	}
2119 
2120 	/* We should not use stale free nids created by build_free_nids */
2121 	if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123 		i = list_first_entry(&nm_i->free_nid_list,
2124 					struct free_nid, list);
2125 		*nid = i->nid;
2126 
2127 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128 		nm_i->available_nids--;
2129 
2130 		update_free_nid_bitmap(sbi, *nid, false, false);
2131 
2132 		spin_unlock(&nm_i->nid_list_lock);
2133 		return true;
2134 	}
2135 	spin_unlock(&nm_i->nid_list_lock);
2136 
2137 	/* Let's scan nat pages and its caches to get free nids */
2138 	build_free_nids(sbi, true, false);
2139 	goto retry;
2140 }
2141 
2142 /*
2143  * alloc_nid() should be called prior to this function.
2144  */
2145 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146 {
2147 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2148 	struct free_nid *i;
2149 
2150 	spin_lock(&nm_i->nid_list_lock);
2151 	i = __lookup_free_nid_list(nm_i, nid);
2152 	f2fs_bug_on(sbi, !i);
2153 	__remove_free_nid(sbi, i, PREALLOC_NID);
2154 	spin_unlock(&nm_i->nid_list_lock);
2155 
2156 	kmem_cache_free(free_nid_slab, i);
2157 }
2158 
2159 /*
2160  * alloc_nid() should be called prior to this function.
2161  */
2162 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163 {
2164 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2165 	struct free_nid *i;
2166 	bool need_free = false;
2167 
2168 	if (!nid)
2169 		return;
2170 
2171 	spin_lock(&nm_i->nid_list_lock);
2172 	i = __lookup_free_nid_list(nm_i, nid);
2173 	f2fs_bug_on(sbi, !i);
2174 
2175 	if (!available_free_memory(sbi, FREE_NIDS)) {
2176 		__remove_free_nid(sbi, i, PREALLOC_NID);
2177 		need_free = true;
2178 	} else {
2179 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2180 	}
2181 
2182 	nm_i->available_nids++;
2183 
2184 	update_free_nid_bitmap(sbi, nid, true, false);
2185 
2186 	spin_unlock(&nm_i->nid_list_lock);
2187 
2188 	if (need_free)
2189 		kmem_cache_free(free_nid_slab, i);
2190 }
2191 
2192 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193 {
2194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2195 	struct free_nid *i, *next;
2196 	int nr = nr_shrink;
2197 
2198 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199 		return 0;
2200 
2201 	if (!mutex_trylock(&nm_i->build_lock))
2202 		return 0;
2203 
2204 	spin_lock(&nm_i->nid_list_lock);
2205 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206 		if (nr_shrink <= 0 ||
2207 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208 			break;
2209 
2210 		__remove_free_nid(sbi, i, FREE_NID);
2211 		kmem_cache_free(free_nid_slab, i);
2212 		nr_shrink--;
2213 	}
2214 	spin_unlock(&nm_i->nid_list_lock);
2215 	mutex_unlock(&nm_i->build_lock);
2216 
2217 	return nr - nr_shrink;
2218 }
2219 
2220 void recover_inline_xattr(struct inode *inode, struct page *page)
2221 {
2222 	void *src_addr, *dst_addr;
2223 	size_t inline_size;
2224 	struct page *ipage;
2225 	struct f2fs_inode *ri;
2226 
2227 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2229 
2230 	ri = F2FS_INODE(page);
2231 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2232 		set_inode_flag(inode, FI_INLINE_XATTR);
2233 	} else {
2234 		clear_inode_flag(inode, FI_INLINE_XATTR);
2235 		goto update_inode;
2236 	}
2237 
2238 	dst_addr = inline_xattr_addr(inode, ipage);
2239 	src_addr = inline_xattr_addr(inode, page);
2240 	inline_size = inline_xattr_size(inode);
2241 
2242 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2243 	memcpy(dst_addr, src_addr, inline_size);
2244 update_inode:
2245 	update_inode(inode, ipage);
2246 	f2fs_put_page(ipage, 1);
2247 }
2248 
2249 int recover_xattr_data(struct inode *inode, struct page *page)
2250 {
2251 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253 	nid_t new_xnid;
2254 	struct dnode_of_data dn;
2255 	struct node_info ni;
2256 	struct page *xpage;
2257 
2258 	if (!prev_xnid)
2259 		goto recover_xnid;
2260 
2261 	/* 1: invalidate the previous xattr nid */
2262 	get_node_info(sbi, prev_xnid, &ni);
2263 	invalidate_blocks(sbi, ni.blk_addr);
2264 	dec_valid_node_count(sbi, inode, false);
2265 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2266 
2267 recover_xnid:
2268 	/* 2: update xattr nid in inode */
2269 	if (!alloc_nid(sbi, &new_xnid))
2270 		return -ENOSPC;
2271 
2272 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273 	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274 	if (IS_ERR(xpage)) {
2275 		alloc_nid_failed(sbi, new_xnid);
2276 		return PTR_ERR(xpage);
2277 	}
2278 
2279 	alloc_nid_done(sbi, new_xnid);
2280 	update_inode_page(inode);
2281 
2282 	/* 3: update and set xattr node page dirty */
2283 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284 
2285 	set_page_dirty(xpage);
2286 	f2fs_put_page(xpage, 1);
2287 
2288 	return 0;
2289 }
2290 
2291 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292 {
2293 	struct f2fs_inode *src, *dst;
2294 	nid_t ino = ino_of_node(page);
2295 	struct node_info old_ni, new_ni;
2296 	struct page *ipage;
2297 
2298 	get_node_info(sbi, ino, &old_ni);
2299 
2300 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301 		return -EINVAL;
2302 retry:
2303 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304 	if (!ipage) {
2305 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2306 		goto retry;
2307 	}
2308 
2309 	/* Should not use this inode from free nid list */
2310 	remove_free_nid(sbi, ino);
2311 
2312 	if (!PageUptodate(ipage))
2313 		SetPageUptodate(ipage);
2314 	fill_node_footer(ipage, ino, ino, 0, true);
2315 	set_cold_node(page, false);
2316 
2317 	src = F2FS_INODE(page);
2318 	dst = F2FS_INODE(ipage);
2319 
2320 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321 	dst->i_size = 0;
2322 	dst->i_blocks = cpu_to_le64(1);
2323 	dst->i_links = cpu_to_le32(1);
2324 	dst->i_xattr_nid = 0;
2325 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327 		dst->i_extra_isize = src->i_extra_isize;
2328 
2329 		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331 							i_inline_xattr_size))
2332 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333 
2334 		if (f2fs_sb_has_project_quota(sbi->sb) &&
2335 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336 								i_projid))
2337 			dst->i_projid = src->i_projid;
2338 	}
2339 
2340 	new_ni = old_ni;
2341 	new_ni.ino = ino;
2342 
2343 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344 		WARN_ON(1);
2345 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346 	inc_valid_inode_count(sbi);
2347 	set_page_dirty(ipage);
2348 	f2fs_put_page(ipage, 1);
2349 	return 0;
2350 }
2351 
2352 void restore_node_summary(struct f2fs_sb_info *sbi,
2353 			unsigned int segno, struct f2fs_summary_block *sum)
2354 {
2355 	struct f2fs_node *rn;
2356 	struct f2fs_summary *sum_entry;
2357 	block_t addr;
2358 	int i, idx, last_offset, nrpages;
2359 
2360 	/* scan the node segment */
2361 	last_offset = sbi->blocks_per_seg;
2362 	addr = START_BLOCK(sbi, segno);
2363 	sum_entry = &sum->entries[0];
2364 
2365 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367 
2368 		/* readahead node pages */
2369 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370 
2371 		for (idx = addr; idx < addr + nrpages; idx++) {
2372 			struct page *page = get_tmp_page(sbi, idx);
2373 
2374 			rn = F2FS_NODE(page);
2375 			sum_entry->nid = rn->footer.nid;
2376 			sum_entry->version = 0;
2377 			sum_entry->ofs_in_node = 0;
2378 			sum_entry++;
2379 			f2fs_put_page(page, 1);
2380 		}
2381 
2382 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383 							addr + nrpages);
2384 	}
2385 }
2386 
2387 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388 {
2389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2390 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391 	struct f2fs_journal *journal = curseg->journal;
2392 	int i;
2393 
2394 	down_write(&curseg->journal_rwsem);
2395 	for (i = 0; i < nats_in_cursum(journal); i++) {
2396 		struct nat_entry *ne;
2397 		struct f2fs_nat_entry raw_ne;
2398 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399 
2400 		raw_ne = nat_in_journal(journal, i);
2401 
2402 		ne = __lookup_nat_cache(nm_i, nid);
2403 		if (!ne) {
2404 			ne = __alloc_nat_entry(nid, true);
2405 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2406 		}
2407 
2408 		/*
2409 		 * if a free nat in journal has not been used after last
2410 		 * checkpoint, we should remove it from available nids,
2411 		 * since later we will add it again.
2412 		 */
2413 		if (!get_nat_flag(ne, IS_DIRTY) &&
2414 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415 			spin_lock(&nm_i->nid_list_lock);
2416 			nm_i->available_nids--;
2417 			spin_unlock(&nm_i->nid_list_lock);
2418 		}
2419 
2420 		__set_nat_cache_dirty(nm_i, ne);
2421 	}
2422 	update_nats_in_cursum(journal, -i);
2423 	up_write(&curseg->journal_rwsem);
2424 }
2425 
2426 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427 						struct list_head *head, int max)
2428 {
2429 	struct nat_entry_set *cur;
2430 
2431 	if (nes->entry_cnt >= max)
2432 		goto add_out;
2433 
2434 	list_for_each_entry(cur, head, set_list) {
2435 		if (cur->entry_cnt >= nes->entry_cnt) {
2436 			list_add(&nes->set_list, cur->set_list.prev);
2437 			return;
2438 		}
2439 	}
2440 add_out:
2441 	list_add_tail(&nes->set_list, head);
2442 }
2443 
2444 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2445 						struct page *page)
2446 {
2447 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2448 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449 	struct f2fs_nat_block *nat_blk = page_address(page);
2450 	int valid = 0;
2451 	int i = 0;
2452 
2453 	if (!enabled_nat_bits(sbi, NULL))
2454 		return;
2455 
2456 	if (nat_index == 0) {
2457 		valid = 1;
2458 		i = 1;
2459 	}
2460 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461 		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462 			valid++;
2463 	}
2464 	if (valid == 0) {
2465 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2466 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2467 		return;
2468 	}
2469 
2470 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471 	if (valid == NAT_ENTRY_PER_BLOCK)
2472 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2473 	else
2474 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2475 }
2476 
2477 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478 		struct nat_entry_set *set, struct cp_control *cpc)
2479 {
2480 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481 	struct f2fs_journal *journal = curseg->journal;
2482 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483 	bool to_journal = true;
2484 	struct f2fs_nat_block *nat_blk;
2485 	struct nat_entry *ne, *cur;
2486 	struct page *page = NULL;
2487 
2488 	/*
2489 	 * there are two steps to flush nat entries:
2490 	 * #1, flush nat entries to journal in current hot data summary block.
2491 	 * #2, flush nat entries to nat page.
2492 	 */
2493 	if (enabled_nat_bits(sbi, cpc) ||
2494 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495 		to_journal = false;
2496 
2497 	if (to_journal) {
2498 		down_write(&curseg->journal_rwsem);
2499 	} else {
2500 		page = get_next_nat_page(sbi, start_nid);
2501 		nat_blk = page_address(page);
2502 		f2fs_bug_on(sbi, !nat_blk);
2503 	}
2504 
2505 	/* flush dirty nats in nat entry set */
2506 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507 		struct f2fs_nat_entry *raw_ne;
2508 		nid_t nid = nat_get_nid(ne);
2509 		int offset;
2510 
2511 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2512 
2513 		if (to_journal) {
2514 			offset = lookup_journal_in_cursum(journal,
2515 							NAT_JOURNAL, nid, 1);
2516 			f2fs_bug_on(sbi, offset < 0);
2517 			raw_ne = &nat_in_journal(journal, offset);
2518 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519 		} else {
2520 			raw_ne = &nat_blk->entries[nid - start_nid];
2521 		}
2522 		raw_nat_from_node_info(raw_ne, &ne->ni);
2523 		nat_reset_flag(ne);
2524 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526 			add_free_nid(sbi, nid, false, true);
2527 		} else {
2528 			spin_lock(&NM_I(sbi)->nid_list_lock);
2529 			update_free_nid_bitmap(sbi, nid, false, false);
2530 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2531 		}
2532 	}
2533 
2534 	if (to_journal) {
2535 		up_write(&curseg->journal_rwsem);
2536 	} else {
2537 		__update_nat_bits(sbi, start_nid, page);
2538 		f2fs_put_page(page, 1);
2539 	}
2540 
2541 	/* Allow dirty nats by node block allocation in write_begin */
2542 	if (!set->entry_cnt) {
2543 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544 		kmem_cache_free(nat_entry_set_slab, set);
2545 	}
2546 }
2547 
2548 /*
2549  * This function is called during the checkpointing process.
2550  */
2551 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552 {
2553 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2554 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555 	struct f2fs_journal *journal = curseg->journal;
2556 	struct nat_entry_set *setvec[SETVEC_SIZE];
2557 	struct nat_entry_set *set, *tmp;
2558 	unsigned int found;
2559 	nid_t set_idx = 0;
2560 	LIST_HEAD(sets);
2561 
2562 	if (!nm_i->dirty_nat_cnt)
2563 		return;
2564 
2565 	down_write(&nm_i->nat_tree_lock);
2566 
2567 	/*
2568 	 * if there are no enough space in journal to store dirty nat
2569 	 * entries, remove all entries from journal and merge them
2570 	 * into nat entry set.
2571 	 */
2572 	if (enabled_nat_bits(sbi, cpc) ||
2573 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2574 		remove_nats_in_journal(sbi);
2575 
2576 	while ((found = __gang_lookup_nat_set(nm_i,
2577 					set_idx, SETVEC_SIZE, setvec))) {
2578 		unsigned idx;
2579 		set_idx = setvec[found - 1]->set + 1;
2580 		for (idx = 0; idx < found; idx++)
2581 			__adjust_nat_entry_set(setvec[idx], &sets,
2582 						MAX_NAT_JENTRIES(journal));
2583 	}
2584 
2585 	/* flush dirty nats in nat entry set */
2586 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2587 		__flush_nat_entry_set(sbi, set, cpc);
2588 
2589 	up_write(&nm_i->nat_tree_lock);
2590 	/* Allow dirty nats by node block allocation in write_begin */
2591 }
2592 
2593 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594 {
2595 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2597 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598 	unsigned int i;
2599 	__u64 cp_ver = cur_cp_version(ckpt);
2600 	block_t nat_bits_addr;
2601 
2602 	if (!enabled_nat_bits(sbi, NULL))
2603 		return 0;
2604 
2605 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2607 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608 	if (!nm_i->nat_bits)
2609 		return -ENOMEM;
2610 
2611 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2612 						nm_i->nat_bits_blocks;
2613 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614 		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2615 
2616 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2617 					page_address(page), F2FS_BLKSIZE);
2618 		f2fs_put_page(page, 1);
2619 	}
2620 
2621 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2622 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623 		disable_nat_bits(sbi, true);
2624 		return 0;
2625 	}
2626 
2627 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629 
2630 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631 	return 0;
2632 }
2633 
2634 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635 {
2636 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2637 	unsigned int i = 0;
2638 	nid_t nid, last_nid;
2639 
2640 	if (!enabled_nat_bits(sbi, NULL))
2641 		return;
2642 
2643 	for (i = 0; i < nm_i->nat_blocks; i++) {
2644 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645 		if (i >= nm_i->nat_blocks)
2646 			break;
2647 
2648 		__set_bit_le(i, nm_i->nat_block_bitmap);
2649 
2650 		nid = i * NAT_ENTRY_PER_BLOCK;
2651 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652 
2653 		spin_lock(&NM_I(sbi)->nid_list_lock);
2654 		for (; nid < last_nid; nid++)
2655 			update_free_nid_bitmap(sbi, nid, true, true);
2656 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2657 	}
2658 
2659 	for (i = 0; i < nm_i->nat_blocks; i++) {
2660 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661 		if (i >= nm_i->nat_blocks)
2662 			break;
2663 
2664 		__set_bit_le(i, nm_i->nat_block_bitmap);
2665 	}
2666 }
2667 
2668 static int init_node_manager(struct f2fs_sb_info *sbi)
2669 {
2670 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2672 	unsigned char *version_bitmap;
2673 	unsigned int nat_segs;
2674 	int err;
2675 
2676 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677 
2678 	/* segment_count_nat includes pair segment so divide to 2. */
2679 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2682 
2683 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2684 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685 				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686 	nm_i->nid_cnt[FREE_NID] = 0;
2687 	nm_i->nid_cnt[PREALLOC_NID] = 0;
2688 	nm_i->nat_cnt = 0;
2689 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2692 
2693 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2695 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697 	INIT_LIST_HEAD(&nm_i->nat_entries);
2698 
2699 	mutex_init(&nm_i->build_lock);
2700 	spin_lock_init(&nm_i->nid_list_lock);
2701 	init_rwsem(&nm_i->nat_tree_lock);
2702 
2703 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706 	if (!version_bitmap)
2707 		return -EFAULT;
2708 
2709 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710 					GFP_KERNEL);
2711 	if (!nm_i->nat_bitmap)
2712 		return -ENOMEM;
2713 
2714 	err = __get_nat_bitmaps(sbi);
2715 	if (err)
2716 		return err;
2717 
2718 #ifdef CONFIG_F2FS_CHECK_FS
2719 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720 					GFP_KERNEL);
2721 	if (!nm_i->nat_bitmap_mir)
2722 		return -ENOMEM;
2723 #endif
2724 
2725 	return 0;
2726 }
2727 
2728 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729 {
2730 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2731 	int i;
2732 
2733 	nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734 				sizeof(unsigned char *), GFP_KERNEL);
2735 	if (!nm_i->free_nid_bitmap)
2736 		return -ENOMEM;
2737 
2738 	for (i = 0; i < nm_i->nat_blocks; i++) {
2739 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740 				NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741 		if (!nm_i->free_nid_bitmap)
2742 			return -ENOMEM;
2743 	}
2744 
2745 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746 								GFP_KERNEL);
2747 	if (!nm_i->nat_block_bitmap)
2748 		return -ENOMEM;
2749 
2750 	nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751 					sizeof(unsigned short), GFP_KERNEL);
2752 	if (!nm_i->free_nid_count)
2753 		return -ENOMEM;
2754 	return 0;
2755 }
2756 
2757 int build_node_manager(struct f2fs_sb_info *sbi)
2758 {
2759 	int err;
2760 
2761 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762 							GFP_KERNEL);
2763 	if (!sbi->nm_info)
2764 		return -ENOMEM;
2765 
2766 	err = init_node_manager(sbi);
2767 	if (err)
2768 		return err;
2769 
2770 	err = init_free_nid_cache(sbi);
2771 	if (err)
2772 		return err;
2773 
2774 	/* load free nid status from nat_bits table */
2775 	load_free_nid_bitmap(sbi);
2776 
2777 	build_free_nids(sbi, true, true);
2778 	return 0;
2779 }
2780 
2781 void destroy_node_manager(struct f2fs_sb_info *sbi)
2782 {
2783 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2784 	struct free_nid *i, *next_i;
2785 	struct nat_entry *natvec[NATVEC_SIZE];
2786 	struct nat_entry_set *setvec[SETVEC_SIZE];
2787 	nid_t nid = 0;
2788 	unsigned int found;
2789 
2790 	if (!nm_i)
2791 		return;
2792 
2793 	/* destroy free nid list */
2794 	spin_lock(&nm_i->nid_list_lock);
2795 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796 		__remove_free_nid(sbi, i, FREE_NID);
2797 		spin_unlock(&nm_i->nid_list_lock);
2798 		kmem_cache_free(free_nid_slab, i);
2799 		spin_lock(&nm_i->nid_list_lock);
2800 	}
2801 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804 	spin_unlock(&nm_i->nid_list_lock);
2805 
2806 	/* destroy nat cache */
2807 	down_write(&nm_i->nat_tree_lock);
2808 	while ((found = __gang_lookup_nat_cache(nm_i,
2809 					nid, NATVEC_SIZE, natvec))) {
2810 		unsigned idx;
2811 
2812 		nid = nat_get_nid(natvec[found - 1]) + 1;
2813 		for (idx = 0; idx < found; idx++)
2814 			__del_from_nat_cache(nm_i, natvec[idx]);
2815 	}
2816 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2817 
2818 	/* destroy nat set cache */
2819 	nid = 0;
2820 	while ((found = __gang_lookup_nat_set(nm_i,
2821 					nid, SETVEC_SIZE, setvec))) {
2822 		unsigned idx;
2823 
2824 		nid = setvec[found - 1]->set + 1;
2825 		for (idx = 0; idx < found; idx++) {
2826 			/* entry_cnt is not zero, when cp_error was occurred */
2827 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830 		}
2831 	}
2832 	up_write(&nm_i->nat_tree_lock);
2833 
2834 	kvfree(nm_i->nat_block_bitmap);
2835 	if (nm_i->free_nid_bitmap) {
2836 		int i;
2837 
2838 		for (i = 0; i < nm_i->nat_blocks; i++)
2839 			kvfree(nm_i->free_nid_bitmap[i]);
2840 		kfree(nm_i->free_nid_bitmap);
2841 	}
2842 	kvfree(nm_i->free_nid_count);
2843 
2844 	kfree(nm_i->nat_bitmap);
2845 	kfree(nm_i->nat_bits);
2846 #ifdef CONFIG_F2FS_CHECK_FS
2847 	kfree(nm_i->nat_bitmap_mir);
2848 #endif
2849 	sbi->nm_info = NULL;
2850 	kfree(nm_i);
2851 }
2852 
2853 int __init create_node_manager_caches(void)
2854 {
2855 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856 			sizeof(struct nat_entry));
2857 	if (!nat_entry_slab)
2858 		goto fail;
2859 
2860 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861 			sizeof(struct free_nid));
2862 	if (!free_nid_slab)
2863 		goto destroy_nat_entry;
2864 
2865 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866 			sizeof(struct nat_entry_set));
2867 	if (!nat_entry_set_slab)
2868 		goto destroy_free_nid;
2869 	return 0;
2870 
2871 destroy_free_nid:
2872 	kmem_cache_destroy(free_nid_slab);
2873 destroy_nat_entry:
2874 	kmem_cache_destroy(nat_entry_slab);
2875 fail:
2876 	return -ENOMEM;
2877 }
2878 
2879 void destroy_node_manager_caches(void)
2880 {
2881 	kmem_cache_destroy(nat_entry_set_slab);
2882 	kmem_cache_destroy(free_nid_slab);
2883 	kmem_cache_destroy(nat_entry_slab);
2884 }
2885