1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 49 PAGE_CACHE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_CACHE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 } else if (type == DIRTY_DENTS) { 56 if (sbi->sb->s_bdi->wb.dirty_exceeded) 57 return false; 58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 60 } else if (type == INO_ENTRIES) { 61 int i; 62 63 for (i = 0; i <= UPDATE_INO; i++) 64 mem_size += (sbi->im[i].ino_num * 65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 67 } else if (type == EXTENT_CACHE) { 68 mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) + 69 atomic_read(&sbi->total_ext_node) * 70 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT; 71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 72 } else { 73 if (sbi->sb->s_bdi->wb.dirty_exceeded) 74 return false; 75 } 76 return res; 77 } 78 79 static void clear_node_page_dirty(struct page *page) 80 { 81 struct address_space *mapping = page->mapping; 82 unsigned int long flags; 83 84 if (PageDirty(page)) { 85 spin_lock_irqsave(&mapping->tree_lock, flags); 86 radix_tree_tag_clear(&mapping->page_tree, 87 page_index(page), 88 PAGECACHE_TAG_DIRTY); 89 spin_unlock_irqrestore(&mapping->tree_lock, flags); 90 91 clear_page_dirty_for_io(page); 92 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 93 } 94 ClearPageUptodate(page); 95 } 96 97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 98 { 99 pgoff_t index = current_nat_addr(sbi, nid); 100 return get_meta_page(sbi, index); 101 } 102 103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 104 { 105 struct page *src_page; 106 struct page *dst_page; 107 pgoff_t src_off; 108 pgoff_t dst_off; 109 void *src_addr; 110 void *dst_addr; 111 struct f2fs_nm_info *nm_i = NM_I(sbi); 112 113 src_off = current_nat_addr(sbi, nid); 114 dst_off = next_nat_addr(sbi, src_off); 115 116 /* get current nat block page with lock */ 117 src_page = get_meta_page(sbi, src_off); 118 dst_page = grab_meta_page(sbi, dst_off); 119 f2fs_bug_on(sbi, PageDirty(src_page)); 120 121 src_addr = page_address(src_page); 122 dst_addr = page_address(dst_page); 123 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 124 set_page_dirty(dst_page); 125 f2fs_put_page(src_page, 1); 126 127 set_to_next_nat(nm_i, nid); 128 129 return dst_page; 130 } 131 132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 133 { 134 return radix_tree_lookup(&nm_i->nat_root, n); 135 } 136 137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 138 nid_t start, unsigned int nr, struct nat_entry **ep) 139 { 140 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 141 } 142 143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 144 { 145 list_del(&e->list); 146 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 147 nm_i->nat_cnt--; 148 kmem_cache_free(nat_entry_slab, e); 149 } 150 151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 152 struct nat_entry *ne) 153 { 154 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 155 struct nat_entry_set *head; 156 157 if (get_nat_flag(ne, IS_DIRTY)) 158 return; 159 160 head = radix_tree_lookup(&nm_i->nat_set_root, set); 161 if (!head) { 162 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 163 164 INIT_LIST_HEAD(&head->entry_list); 165 INIT_LIST_HEAD(&head->set_list); 166 head->set = set; 167 head->entry_cnt = 0; 168 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 169 } 170 list_move_tail(&ne->list, &head->entry_list); 171 nm_i->dirty_nat_cnt++; 172 head->entry_cnt++; 173 set_nat_flag(ne, IS_DIRTY, true); 174 } 175 176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 177 struct nat_entry *ne) 178 { 179 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 180 struct nat_entry_set *head; 181 182 head = radix_tree_lookup(&nm_i->nat_set_root, set); 183 if (head) { 184 list_move_tail(&ne->list, &nm_i->nat_entries); 185 set_nat_flag(ne, IS_DIRTY, false); 186 head->entry_cnt--; 187 nm_i->dirty_nat_cnt--; 188 } 189 } 190 191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 192 nid_t start, unsigned int nr, struct nat_entry_set **ep) 193 { 194 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 195 start, nr); 196 } 197 198 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 199 { 200 struct f2fs_nm_info *nm_i = NM_I(sbi); 201 struct nat_entry *e; 202 bool need = false; 203 204 down_read(&nm_i->nat_tree_lock); 205 e = __lookup_nat_cache(nm_i, nid); 206 if (e) { 207 if (!get_nat_flag(e, IS_CHECKPOINTED) && 208 !get_nat_flag(e, HAS_FSYNCED_INODE)) 209 need = true; 210 } 211 up_read(&nm_i->nat_tree_lock); 212 return need; 213 } 214 215 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 216 { 217 struct f2fs_nm_info *nm_i = NM_I(sbi); 218 struct nat_entry *e; 219 bool is_cp = true; 220 221 down_read(&nm_i->nat_tree_lock); 222 e = __lookup_nat_cache(nm_i, nid); 223 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 224 is_cp = false; 225 up_read(&nm_i->nat_tree_lock); 226 return is_cp; 227 } 228 229 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 230 { 231 struct f2fs_nm_info *nm_i = NM_I(sbi); 232 struct nat_entry *e; 233 bool need_update = true; 234 235 down_read(&nm_i->nat_tree_lock); 236 e = __lookup_nat_cache(nm_i, ino); 237 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 238 (get_nat_flag(e, IS_CHECKPOINTED) || 239 get_nat_flag(e, HAS_FSYNCED_INODE))) 240 need_update = false; 241 up_read(&nm_i->nat_tree_lock); 242 return need_update; 243 } 244 245 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 246 { 247 struct nat_entry *new; 248 249 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 250 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 251 memset(new, 0, sizeof(struct nat_entry)); 252 nat_set_nid(new, nid); 253 nat_reset_flag(new); 254 list_add_tail(&new->list, &nm_i->nat_entries); 255 nm_i->nat_cnt++; 256 return new; 257 } 258 259 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 260 struct f2fs_nat_entry *ne) 261 { 262 struct nat_entry *e; 263 264 down_write(&nm_i->nat_tree_lock); 265 e = __lookup_nat_cache(nm_i, nid); 266 if (!e) { 267 e = grab_nat_entry(nm_i, nid); 268 node_info_from_raw_nat(&e->ni, ne); 269 } 270 up_write(&nm_i->nat_tree_lock); 271 } 272 273 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 274 block_t new_blkaddr, bool fsync_done) 275 { 276 struct f2fs_nm_info *nm_i = NM_I(sbi); 277 struct nat_entry *e; 278 279 down_write(&nm_i->nat_tree_lock); 280 e = __lookup_nat_cache(nm_i, ni->nid); 281 if (!e) { 282 e = grab_nat_entry(nm_i, ni->nid); 283 copy_node_info(&e->ni, ni); 284 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 285 } else if (new_blkaddr == NEW_ADDR) { 286 /* 287 * when nid is reallocated, 288 * previous nat entry can be remained in nat cache. 289 * So, reinitialize it with new information. 290 */ 291 copy_node_info(&e->ni, ni); 292 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 293 } 294 295 /* sanity check */ 296 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 297 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 298 new_blkaddr == NULL_ADDR); 299 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 300 new_blkaddr == NEW_ADDR); 301 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 302 nat_get_blkaddr(e) != NULL_ADDR && 303 new_blkaddr == NEW_ADDR); 304 305 /* increment version no as node is removed */ 306 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 307 unsigned char version = nat_get_version(e); 308 nat_set_version(e, inc_node_version(version)); 309 310 /* in order to reuse the nid */ 311 if (nm_i->next_scan_nid > ni->nid) 312 nm_i->next_scan_nid = ni->nid; 313 } 314 315 /* change address */ 316 nat_set_blkaddr(e, new_blkaddr); 317 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 318 set_nat_flag(e, IS_CHECKPOINTED, false); 319 __set_nat_cache_dirty(nm_i, e); 320 321 /* update fsync_mark if its inode nat entry is still alive */ 322 if (ni->nid != ni->ino) 323 e = __lookup_nat_cache(nm_i, ni->ino); 324 if (e) { 325 if (fsync_done && ni->nid == ni->ino) 326 set_nat_flag(e, HAS_FSYNCED_INODE, true); 327 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 328 } 329 up_write(&nm_i->nat_tree_lock); 330 } 331 332 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 333 { 334 struct f2fs_nm_info *nm_i = NM_I(sbi); 335 int nr = nr_shrink; 336 337 if (!down_write_trylock(&nm_i->nat_tree_lock)) 338 return 0; 339 340 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 341 struct nat_entry *ne; 342 ne = list_first_entry(&nm_i->nat_entries, 343 struct nat_entry, list); 344 __del_from_nat_cache(nm_i, ne); 345 nr_shrink--; 346 } 347 up_write(&nm_i->nat_tree_lock); 348 return nr - nr_shrink; 349 } 350 351 /* 352 * This function always returns success 353 */ 354 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 355 { 356 struct f2fs_nm_info *nm_i = NM_I(sbi); 357 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 358 struct f2fs_summary_block *sum = curseg->sum_blk; 359 nid_t start_nid = START_NID(nid); 360 struct f2fs_nat_block *nat_blk; 361 struct page *page = NULL; 362 struct f2fs_nat_entry ne; 363 struct nat_entry *e; 364 int i; 365 366 ni->nid = nid; 367 368 /* Check nat cache */ 369 down_read(&nm_i->nat_tree_lock); 370 e = __lookup_nat_cache(nm_i, nid); 371 if (e) { 372 ni->ino = nat_get_ino(e); 373 ni->blk_addr = nat_get_blkaddr(e); 374 ni->version = nat_get_version(e); 375 } 376 up_read(&nm_i->nat_tree_lock); 377 if (e) 378 return; 379 380 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 381 382 /* Check current segment summary */ 383 mutex_lock(&curseg->curseg_mutex); 384 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 385 if (i >= 0) { 386 ne = nat_in_journal(sum, i); 387 node_info_from_raw_nat(ni, &ne); 388 } 389 mutex_unlock(&curseg->curseg_mutex); 390 if (i >= 0) 391 goto cache; 392 393 /* Fill node_info from nat page */ 394 page = get_current_nat_page(sbi, start_nid); 395 nat_blk = (struct f2fs_nat_block *)page_address(page); 396 ne = nat_blk->entries[nid - start_nid]; 397 node_info_from_raw_nat(ni, &ne); 398 f2fs_put_page(page, 1); 399 cache: 400 /* cache nat entry */ 401 cache_nat_entry(NM_I(sbi), nid, &ne); 402 } 403 404 /* 405 * The maximum depth is four. 406 * Offset[0] will have raw inode offset. 407 */ 408 static int get_node_path(struct f2fs_inode_info *fi, long block, 409 int offset[4], unsigned int noffset[4]) 410 { 411 const long direct_index = ADDRS_PER_INODE(fi); 412 const long direct_blks = ADDRS_PER_BLOCK; 413 const long dptrs_per_blk = NIDS_PER_BLOCK; 414 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 415 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 416 int n = 0; 417 int level = 0; 418 419 noffset[0] = 0; 420 421 if (block < direct_index) { 422 offset[n] = block; 423 goto got; 424 } 425 block -= direct_index; 426 if (block < direct_blks) { 427 offset[n++] = NODE_DIR1_BLOCK; 428 noffset[n] = 1; 429 offset[n] = block; 430 level = 1; 431 goto got; 432 } 433 block -= direct_blks; 434 if (block < direct_blks) { 435 offset[n++] = NODE_DIR2_BLOCK; 436 noffset[n] = 2; 437 offset[n] = block; 438 level = 1; 439 goto got; 440 } 441 block -= direct_blks; 442 if (block < indirect_blks) { 443 offset[n++] = NODE_IND1_BLOCK; 444 noffset[n] = 3; 445 offset[n++] = block / direct_blks; 446 noffset[n] = 4 + offset[n - 1]; 447 offset[n] = block % direct_blks; 448 level = 2; 449 goto got; 450 } 451 block -= indirect_blks; 452 if (block < indirect_blks) { 453 offset[n++] = NODE_IND2_BLOCK; 454 noffset[n] = 4 + dptrs_per_blk; 455 offset[n++] = block / direct_blks; 456 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 457 offset[n] = block % direct_blks; 458 level = 2; 459 goto got; 460 } 461 block -= indirect_blks; 462 if (block < dindirect_blks) { 463 offset[n++] = NODE_DIND_BLOCK; 464 noffset[n] = 5 + (dptrs_per_blk * 2); 465 offset[n++] = block / indirect_blks; 466 noffset[n] = 6 + (dptrs_per_blk * 2) + 467 offset[n - 1] * (dptrs_per_blk + 1); 468 offset[n++] = (block / direct_blks) % dptrs_per_blk; 469 noffset[n] = 7 + (dptrs_per_blk * 2) + 470 offset[n - 2] * (dptrs_per_blk + 1) + 471 offset[n - 1]; 472 offset[n] = block % direct_blks; 473 level = 3; 474 goto got; 475 } else { 476 BUG(); 477 } 478 got: 479 return level; 480 } 481 482 /* 483 * Caller should call f2fs_put_dnode(dn). 484 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 485 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 486 * In the case of RDONLY_NODE, we don't need to care about mutex. 487 */ 488 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 489 { 490 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 491 struct page *npage[4]; 492 struct page *parent = NULL; 493 int offset[4]; 494 unsigned int noffset[4]; 495 nid_t nids[4]; 496 int level, i; 497 int err = 0; 498 499 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); 500 501 nids[0] = dn->inode->i_ino; 502 npage[0] = dn->inode_page; 503 504 if (!npage[0]) { 505 npage[0] = get_node_page(sbi, nids[0]); 506 if (IS_ERR(npage[0])) 507 return PTR_ERR(npage[0]); 508 } 509 510 /* if inline_data is set, should not report any block indices */ 511 if (f2fs_has_inline_data(dn->inode) && index) { 512 err = -ENOENT; 513 f2fs_put_page(npage[0], 1); 514 goto release_out; 515 } 516 517 parent = npage[0]; 518 if (level != 0) 519 nids[1] = get_nid(parent, offset[0], true); 520 dn->inode_page = npage[0]; 521 dn->inode_page_locked = true; 522 523 /* get indirect or direct nodes */ 524 for (i = 1; i <= level; i++) { 525 bool done = false; 526 527 if (!nids[i] && mode == ALLOC_NODE) { 528 /* alloc new node */ 529 if (!alloc_nid(sbi, &(nids[i]))) { 530 err = -ENOSPC; 531 goto release_pages; 532 } 533 534 dn->nid = nids[i]; 535 npage[i] = new_node_page(dn, noffset[i], NULL); 536 if (IS_ERR(npage[i])) { 537 alloc_nid_failed(sbi, nids[i]); 538 err = PTR_ERR(npage[i]); 539 goto release_pages; 540 } 541 542 set_nid(parent, offset[i - 1], nids[i], i == 1); 543 alloc_nid_done(sbi, nids[i]); 544 done = true; 545 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 546 npage[i] = get_node_page_ra(parent, offset[i - 1]); 547 if (IS_ERR(npage[i])) { 548 err = PTR_ERR(npage[i]); 549 goto release_pages; 550 } 551 done = true; 552 } 553 if (i == 1) { 554 dn->inode_page_locked = false; 555 unlock_page(parent); 556 } else { 557 f2fs_put_page(parent, 1); 558 } 559 560 if (!done) { 561 npage[i] = get_node_page(sbi, nids[i]); 562 if (IS_ERR(npage[i])) { 563 err = PTR_ERR(npage[i]); 564 f2fs_put_page(npage[0], 0); 565 goto release_out; 566 } 567 } 568 if (i < level) { 569 parent = npage[i]; 570 nids[i + 1] = get_nid(parent, offset[i], false); 571 } 572 } 573 dn->nid = nids[level]; 574 dn->ofs_in_node = offset[level]; 575 dn->node_page = npage[level]; 576 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 577 return 0; 578 579 release_pages: 580 f2fs_put_page(parent, 1); 581 if (i > 1) 582 f2fs_put_page(npage[0], 0); 583 release_out: 584 dn->inode_page = NULL; 585 dn->node_page = NULL; 586 return err; 587 } 588 589 static void truncate_node(struct dnode_of_data *dn) 590 { 591 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 592 struct node_info ni; 593 594 get_node_info(sbi, dn->nid, &ni); 595 if (dn->inode->i_blocks == 0) { 596 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 597 goto invalidate; 598 } 599 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 600 601 /* Deallocate node address */ 602 invalidate_blocks(sbi, ni.blk_addr); 603 dec_valid_node_count(sbi, dn->inode); 604 set_node_addr(sbi, &ni, NULL_ADDR, false); 605 606 if (dn->nid == dn->inode->i_ino) { 607 remove_orphan_inode(sbi, dn->nid); 608 dec_valid_inode_count(sbi); 609 } else { 610 sync_inode_page(dn); 611 } 612 invalidate: 613 clear_node_page_dirty(dn->node_page); 614 set_sbi_flag(sbi, SBI_IS_DIRTY); 615 616 f2fs_put_page(dn->node_page, 1); 617 618 invalidate_mapping_pages(NODE_MAPPING(sbi), 619 dn->node_page->index, dn->node_page->index); 620 621 dn->node_page = NULL; 622 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 623 } 624 625 static int truncate_dnode(struct dnode_of_data *dn) 626 { 627 struct page *page; 628 629 if (dn->nid == 0) 630 return 1; 631 632 /* get direct node */ 633 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 634 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 635 return 1; 636 else if (IS_ERR(page)) 637 return PTR_ERR(page); 638 639 /* Make dnode_of_data for parameter */ 640 dn->node_page = page; 641 dn->ofs_in_node = 0; 642 truncate_data_blocks(dn); 643 truncate_node(dn); 644 return 1; 645 } 646 647 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 648 int ofs, int depth) 649 { 650 struct dnode_of_data rdn = *dn; 651 struct page *page; 652 struct f2fs_node *rn; 653 nid_t child_nid; 654 unsigned int child_nofs; 655 int freed = 0; 656 int i, ret; 657 658 if (dn->nid == 0) 659 return NIDS_PER_BLOCK + 1; 660 661 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 662 663 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 664 if (IS_ERR(page)) { 665 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 666 return PTR_ERR(page); 667 } 668 669 rn = F2FS_NODE(page); 670 if (depth < 3) { 671 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 672 child_nid = le32_to_cpu(rn->in.nid[i]); 673 if (child_nid == 0) 674 continue; 675 rdn.nid = child_nid; 676 ret = truncate_dnode(&rdn); 677 if (ret < 0) 678 goto out_err; 679 set_nid(page, i, 0, false); 680 } 681 } else { 682 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 683 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 684 child_nid = le32_to_cpu(rn->in.nid[i]); 685 if (child_nid == 0) { 686 child_nofs += NIDS_PER_BLOCK + 1; 687 continue; 688 } 689 rdn.nid = child_nid; 690 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 691 if (ret == (NIDS_PER_BLOCK + 1)) { 692 set_nid(page, i, 0, false); 693 child_nofs += ret; 694 } else if (ret < 0 && ret != -ENOENT) { 695 goto out_err; 696 } 697 } 698 freed = child_nofs; 699 } 700 701 if (!ofs) { 702 /* remove current indirect node */ 703 dn->node_page = page; 704 truncate_node(dn); 705 freed++; 706 } else { 707 f2fs_put_page(page, 1); 708 } 709 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 710 return freed; 711 712 out_err: 713 f2fs_put_page(page, 1); 714 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 715 return ret; 716 } 717 718 static int truncate_partial_nodes(struct dnode_of_data *dn, 719 struct f2fs_inode *ri, int *offset, int depth) 720 { 721 struct page *pages[2]; 722 nid_t nid[3]; 723 nid_t child_nid; 724 int err = 0; 725 int i; 726 int idx = depth - 2; 727 728 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 729 if (!nid[0]) 730 return 0; 731 732 /* get indirect nodes in the path */ 733 for (i = 0; i < idx + 1; i++) { 734 /* reference count'll be increased */ 735 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 736 if (IS_ERR(pages[i])) { 737 err = PTR_ERR(pages[i]); 738 idx = i - 1; 739 goto fail; 740 } 741 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 742 } 743 744 /* free direct nodes linked to a partial indirect node */ 745 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 746 child_nid = get_nid(pages[idx], i, false); 747 if (!child_nid) 748 continue; 749 dn->nid = child_nid; 750 err = truncate_dnode(dn); 751 if (err < 0) 752 goto fail; 753 set_nid(pages[idx], i, 0, false); 754 } 755 756 if (offset[idx + 1] == 0) { 757 dn->node_page = pages[idx]; 758 dn->nid = nid[idx]; 759 truncate_node(dn); 760 } else { 761 f2fs_put_page(pages[idx], 1); 762 } 763 offset[idx]++; 764 offset[idx + 1] = 0; 765 idx--; 766 fail: 767 for (i = idx; i >= 0; i--) 768 f2fs_put_page(pages[i], 1); 769 770 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 771 772 return err; 773 } 774 775 /* 776 * All the block addresses of data and nodes should be nullified. 777 */ 778 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 779 { 780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 781 int err = 0, cont = 1; 782 int level, offset[4], noffset[4]; 783 unsigned int nofs = 0; 784 struct f2fs_inode *ri; 785 struct dnode_of_data dn; 786 struct page *page; 787 788 trace_f2fs_truncate_inode_blocks_enter(inode, from); 789 790 level = get_node_path(F2FS_I(inode), from, offset, noffset); 791 restart: 792 page = get_node_page(sbi, inode->i_ino); 793 if (IS_ERR(page)) { 794 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 795 return PTR_ERR(page); 796 } 797 798 set_new_dnode(&dn, inode, page, NULL, 0); 799 unlock_page(page); 800 801 ri = F2FS_INODE(page); 802 switch (level) { 803 case 0: 804 case 1: 805 nofs = noffset[1]; 806 break; 807 case 2: 808 nofs = noffset[1]; 809 if (!offset[level - 1]) 810 goto skip_partial; 811 err = truncate_partial_nodes(&dn, ri, offset, level); 812 if (err < 0 && err != -ENOENT) 813 goto fail; 814 nofs += 1 + NIDS_PER_BLOCK; 815 break; 816 case 3: 817 nofs = 5 + 2 * NIDS_PER_BLOCK; 818 if (!offset[level - 1]) 819 goto skip_partial; 820 err = truncate_partial_nodes(&dn, ri, offset, level); 821 if (err < 0 && err != -ENOENT) 822 goto fail; 823 break; 824 default: 825 BUG(); 826 } 827 828 skip_partial: 829 while (cont) { 830 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 831 switch (offset[0]) { 832 case NODE_DIR1_BLOCK: 833 case NODE_DIR2_BLOCK: 834 err = truncate_dnode(&dn); 835 break; 836 837 case NODE_IND1_BLOCK: 838 case NODE_IND2_BLOCK: 839 err = truncate_nodes(&dn, nofs, offset[1], 2); 840 break; 841 842 case NODE_DIND_BLOCK: 843 err = truncate_nodes(&dn, nofs, offset[1], 3); 844 cont = 0; 845 break; 846 847 default: 848 BUG(); 849 } 850 if (err < 0 && err != -ENOENT) 851 goto fail; 852 if (offset[1] == 0 && 853 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 854 lock_page(page); 855 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 856 f2fs_put_page(page, 1); 857 goto restart; 858 } 859 f2fs_wait_on_page_writeback(page, NODE); 860 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 861 set_page_dirty(page); 862 unlock_page(page); 863 } 864 offset[1] = 0; 865 offset[0]++; 866 nofs += err; 867 } 868 fail: 869 f2fs_put_page(page, 0); 870 trace_f2fs_truncate_inode_blocks_exit(inode, err); 871 return err > 0 ? 0 : err; 872 } 873 874 int truncate_xattr_node(struct inode *inode, struct page *page) 875 { 876 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 877 nid_t nid = F2FS_I(inode)->i_xattr_nid; 878 struct dnode_of_data dn; 879 struct page *npage; 880 881 if (!nid) 882 return 0; 883 884 npage = get_node_page(sbi, nid); 885 if (IS_ERR(npage)) 886 return PTR_ERR(npage); 887 888 F2FS_I(inode)->i_xattr_nid = 0; 889 890 /* need to do checkpoint during fsync */ 891 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 892 893 set_new_dnode(&dn, inode, page, npage, nid); 894 895 if (page) 896 dn.inode_page_locked = true; 897 truncate_node(&dn); 898 return 0; 899 } 900 901 /* 902 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 903 * f2fs_unlock_op(). 904 */ 905 int remove_inode_page(struct inode *inode) 906 { 907 struct dnode_of_data dn; 908 int err; 909 910 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 911 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 912 if (err) 913 return err; 914 915 err = truncate_xattr_node(inode, dn.inode_page); 916 if (err) { 917 f2fs_put_dnode(&dn); 918 return err; 919 } 920 921 /* remove potential inline_data blocks */ 922 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 923 S_ISLNK(inode->i_mode)) 924 truncate_data_blocks_range(&dn, 1); 925 926 /* 0 is possible, after f2fs_new_inode() has failed */ 927 f2fs_bug_on(F2FS_I_SB(inode), 928 inode->i_blocks != 0 && inode->i_blocks != 1); 929 930 /* will put inode & node pages */ 931 truncate_node(&dn); 932 return 0; 933 } 934 935 struct page *new_inode_page(struct inode *inode) 936 { 937 struct dnode_of_data dn; 938 939 /* allocate inode page for new inode */ 940 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 941 942 /* caller should f2fs_put_page(page, 1); */ 943 return new_node_page(&dn, 0, NULL); 944 } 945 946 struct page *new_node_page(struct dnode_of_data *dn, 947 unsigned int ofs, struct page *ipage) 948 { 949 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 950 struct node_info old_ni, new_ni; 951 struct page *page; 952 int err; 953 954 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 955 return ERR_PTR(-EPERM); 956 957 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); 958 if (!page) 959 return ERR_PTR(-ENOMEM); 960 961 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 962 err = -ENOSPC; 963 goto fail; 964 } 965 966 get_node_info(sbi, dn->nid, &old_ni); 967 968 /* Reinitialize old_ni with new node page */ 969 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); 970 new_ni = old_ni; 971 new_ni.ino = dn->inode->i_ino; 972 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 973 974 f2fs_wait_on_page_writeback(page, NODE); 975 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 976 set_cold_node(dn->inode, page); 977 SetPageUptodate(page); 978 set_page_dirty(page); 979 980 if (f2fs_has_xattr_block(ofs)) 981 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 982 983 dn->node_page = page; 984 if (ipage) 985 update_inode(dn->inode, ipage); 986 else 987 sync_inode_page(dn); 988 if (ofs == 0) 989 inc_valid_inode_count(sbi); 990 991 return page; 992 993 fail: 994 clear_node_page_dirty(page); 995 f2fs_put_page(page, 1); 996 return ERR_PTR(err); 997 } 998 999 /* 1000 * Caller should do after getting the following values. 1001 * 0: f2fs_put_page(page, 0) 1002 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1003 */ 1004 static int read_node_page(struct page *page, int rw) 1005 { 1006 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1007 struct node_info ni; 1008 struct f2fs_io_info fio = { 1009 .sbi = sbi, 1010 .type = NODE, 1011 .rw = rw, 1012 .page = page, 1013 .encrypted_page = NULL, 1014 }; 1015 1016 get_node_info(sbi, page->index, &ni); 1017 1018 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1019 ClearPageUptodate(page); 1020 return -ENOENT; 1021 } 1022 1023 if (PageUptodate(page)) 1024 return LOCKED_PAGE; 1025 1026 fio.blk_addr = ni.blk_addr; 1027 return f2fs_submit_page_bio(&fio); 1028 } 1029 1030 /* 1031 * Readahead a node page 1032 */ 1033 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1034 { 1035 struct page *apage; 1036 int err; 1037 1038 apage = find_get_page(NODE_MAPPING(sbi), nid); 1039 if (apage && PageUptodate(apage)) { 1040 f2fs_put_page(apage, 0); 1041 return; 1042 } 1043 f2fs_put_page(apage, 0); 1044 1045 apage = grab_cache_page(NODE_MAPPING(sbi), nid); 1046 if (!apage) 1047 return; 1048 1049 err = read_node_page(apage, READA); 1050 f2fs_put_page(apage, err ? 1 : 0); 1051 } 1052 1053 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1054 { 1055 struct page *page; 1056 int err; 1057 repeat: 1058 page = grab_cache_page(NODE_MAPPING(sbi), nid); 1059 if (!page) 1060 return ERR_PTR(-ENOMEM); 1061 1062 err = read_node_page(page, READ_SYNC); 1063 if (err < 0) { 1064 f2fs_put_page(page, 1); 1065 return ERR_PTR(err); 1066 } else if (err != LOCKED_PAGE) { 1067 lock_page(page); 1068 } 1069 1070 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) { 1071 ClearPageUptodate(page); 1072 f2fs_put_page(page, 1); 1073 return ERR_PTR(-EIO); 1074 } 1075 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1076 f2fs_put_page(page, 1); 1077 goto repeat; 1078 } 1079 return page; 1080 } 1081 1082 /* 1083 * Return a locked page for the desired node page. 1084 * And, readahead MAX_RA_NODE number of node pages. 1085 */ 1086 struct page *get_node_page_ra(struct page *parent, int start) 1087 { 1088 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1089 struct blk_plug plug; 1090 struct page *page; 1091 int err, i, end; 1092 nid_t nid; 1093 1094 /* First, try getting the desired direct node. */ 1095 nid = get_nid(parent, start, false); 1096 if (!nid) 1097 return ERR_PTR(-ENOENT); 1098 repeat: 1099 page = grab_cache_page(NODE_MAPPING(sbi), nid); 1100 if (!page) 1101 return ERR_PTR(-ENOMEM); 1102 1103 err = read_node_page(page, READ_SYNC); 1104 if (err < 0) { 1105 f2fs_put_page(page, 1); 1106 return ERR_PTR(err); 1107 } else if (err == LOCKED_PAGE) { 1108 goto page_hit; 1109 } 1110 1111 blk_start_plug(&plug); 1112 1113 /* Then, try readahead for siblings of the desired node */ 1114 end = start + MAX_RA_NODE; 1115 end = min(end, NIDS_PER_BLOCK); 1116 for (i = start + 1; i < end; i++) { 1117 nid = get_nid(parent, i, false); 1118 if (!nid) 1119 continue; 1120 ra_node_page(sbi, nid); 1121 } 1122 1123 blk_finish_plug(&plug); 1124 1125 lock_page(page); 1126 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1127 f2fs_put_page(page, 1); 1128 goto repeat; 1129 } 1130 page_hit: 1131 if (unlikely(!PageUptodate(page))) { 1132 f2fs_put_page(page, 1); 1133 return ERR_PTR(-EIO); 1134 } 1135 return page; 1136 } 1137 1138 void sync_inode_page(struct dnode_of_data *dn) 1139 { 1140 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1141 update_inode(dn->inode, dn->node_page); 1142 } else if (dn->inode_page) { 1143 if (!dn->inode_page_locked) 1144 lock_page(dn->inode_page); 1145 update_inode(dn->inode, dn->inode_page); 1146 if (!dn->inode_page_locked) 1147 unlock_page(dn->inode_page); 1148 } else { 1149 update_inode_page(dn->inode); 1150 } 1151 } 1152 1153 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1154 struct writeback_control *wbc) 1155 { 1156 pgoff_t index, end; 1157 struct pagevec pvec; 1158 int step = ino ? 2 : 0; 1159 int nwritten = 0, wrote = 0; 1160 1161 pagevec_init(&pvec, 0); 1162 1163 next_step: 1164 index = 0; 1165 end = LONG_MAX; 1166 1167 while (index <= end) { 1168 int i, nr_pages; 1169 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1170 PAGECACHE_TAG_DIRTY, 1171 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1172 if (nr_pages == 0) 1173 break; 1174 1175 for (i = 0; i < nr_pages; i++) { 1176 struct page *page = pvec.pages[i]; 1177 1178 /* 1179 * flushing sequence with step: 1180 * 0. indirect nodes 1181 * 1. dentry dnodes 1182 * 2. file dnodes 1183 */ 1184 if (step == 0 && IS_DNODE(page)) 1185 continue; 1186 if (step == 1 && (!IS_DNODE(page) || 1187 is_cold_node(page))) 1188 continue; 1189 if (step == 2 && (!IS_DNODE(page) || 1190 !is_cold_node(page))) 1191 continue; 1192 1193 /* 1194 * If an fsync mode, 1195 * we should not skip writing node pages. 1196 */ 1197 if (ino && ino_of_node(page) == ino) 1198 lock_page(page); 1199 else if (!trylock_page(page)) 1200 continue; 1201 1202 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1203 continue_unlock: 1204 unlock_page(page); 1205 continue; 1206 } 1207 if (ino && ino_of_node(page) != ino) 1208 goto continue_unlock; 1209 1210 if (!PageDirty(page)) { 1211 /* someone wrote it for us */ 1212 goto continue_unlock; 1213 } 1214 1215 if (!clear_page_dirty_for_io(page)) 1216 goto continue_unlock; 1217 1218 /* called by fsync() */ 1219 if (ino && IS_DNODE(page)) { 1220 set_fsync_mark(page, 1); 1221 if (IS_INODE(page)) 1222 set_dentry_mark(page, 1223 need_dentry_mark(sbi, ino)); 1224 nwritten++; 1225 } else { 1226 set_fsync_mark(page, 0); 1227 set_dentry_mark(page, 0); 1228 } 1229 1230 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1231 unlock_page(page); 1232 else 1233 wrote++; 1234 1235 if (--wbc->nr_to_write == 0) 1236 break; 1237 } 1238 pagevec_release(&pvec); 1239 cond_resched(); 1240 1241 if (wbc->nr_to_write == 0) { 1242 step = 2; 1243 break; 1244 } 1245 } 1246 1247 if (step < 2) { 1248 step++; 1249 goto next_step; 1250 } 1251 1252 if (wrote) 1253 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1254 return nwritten; 1255 } 1256 1257 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1258 { 1259 pgoff_t index = 0, end = LONG_MAX; 1260 struct pagevec pvec; 1261 int ret2 = 0, ret = 0; 1262 1263 pagevec_init(&pvec, 0); 1264 1265 while (index <= end) { 1266 int i, nr_pages; 1267 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1268 PAGECACHE_TAG_WRITEBACK, 1269 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1270 if (nr_pages == 0) 1271 break; 1272 1273 for (i = 0; i < nr_pages; i++) { 1274 struct page *page = pvec.pages[i]; 1275 1276 /* until radix tree lookup accepts end_index */ 1277 if (unlikely(page->index > end)) 1278 continue; 1279 1280 if (ino && ino_of_node(page) == ino) { 1281 f2fs_wait_on_page_writeback(page, NODE); 1282 if (TestClearPageError(page)) 1283 ret = -EIO; 1284 } 1285 } 1286 pagevec_release(&pvec); 1287 cond_resched(); 1288 } 1289 1290 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) 1291 ret2 = -ENOSPC; 1292 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) 1293 ret2 = -EIO; 1294 if (!ret) 1295 ret = ret2; 1296 return ret; 1297 } 1298 1299 static int f2fs_write_node_page(struct page *page, 1300 struct writeback_control *wbc) 1301 { 1302 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1303 nid_t nid; 1304 struct node_info ni; 1305 struct f2fs_io_info fio = { 1306 .sbi = sbi, 1307 .type = NODE, 1308 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1309 .page = page, 1310 .encrypted_page = NULL, 1311 }; 1312 1313 trace_f2fs_writepage(page, NODE); 1314 1315 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1316 goto redirty_out; 1317 if (unlikely(f2fs_cp_error(sbi))) 1318 goto redirty_out; 1319 1320 f2fs_wait_on_page_writeback(page, NODE); 1321 1322 /* get old block addr of this node page */ 1323 nid = nid_of_node(page); 1324 f2fs_bug_on(sbi, page->index != nid); 1325 1326 if (wbc->for_reclaim) { 1327 if (!down_read_trylock(&sbi->node_write)) 1328 goto redirty_out; 1329 } else { 1330 down_read(&sbi->node_write); 1331 } 1332 1333 get_node_info(sbi, nid, &ni); 1334 1335 /* This page is already truncated */ 1336 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1337 ClearPageUptodate(page); 1338 dec_page_count(sbi, F2FS_DIRTY_NODES); 1339 up_read(&sbi->node_write); 1340 unlock_page(page); 1341 return 0; 1342 } 1343 1344 set_page_writeback(page); 1345 fio.blk_addr = ni.blk_addr; 1346 write_node_page(nid, &fio); 1347 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page)); 1348 dec_page_count(sbi, F2FS_DIRTY_NODES); 1349 up_read(&sbi->node_write); 1350 unlock_page(page); 1351 1352 if (wbc->for_reclaim) 1353 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1354 1355 return 0; 1356 1357 redirty_out: 1358 redirty_page_for_writepage(wbc, page); 1359 return AOP_WRITEPAGE_ACTIVATE; 1360 } 1361 1362 static int f2fs_write_node_pages(struct address_space *mapping, 1363 struct writeback_control *wbc) 1364 { 1365 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1366 long diff; 1367 1368 trace_f2fs_writepages(mapping->host, wbc, NODE); 1369 1370 /* balancing f2fs's metadata in background */ 1371 f2fs_balance_fs_bg(sbi); 1372 1373 /* collect a number of dirty node pages and write together */ 1374 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1375 goto skip_write; 1376 1377 diff = nr_pages_to_write(sbi, NODE, wbc); 1378 wbc->sync_mode = WB_SYNC_NONE; 1379 sync_node_pages(sbi, 0, wbc); 1380 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1381 return 0; 1382 1383 skip_write: 1384 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1385 return 0; 1386 } 1387 1388 static int f2fs_set_node_page_dirty(struct page *page) 1389 { 1390 trace_f2fs_set_page_dirty(page, NODE); 1391 1392 SetPageUptodate(page); 1393 if (!PageDirty(page)) { 1394 __set_page_dirty_nobuffers(page); 1395 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1396 SetPagePrivate(page); 1397 f2fs_trace_pid(page); 1398 return 1; 1399 } 1400 return 0; 1401 } 1402 1403 /* 1404 * Structure of the f2fs node operations 1405 */ 1406 const struct address_space_operations f2fs_node_aops = { 1407 .writepage = f2fs_write_node_page, 1408 .writepages = f2fs_write_node_pages, 1409 .set_page_dirty = f2fs_set_node_page_dirty, 1410 .invalidatepage = f2fs_invalidate_page, 1411 .releasepage = f2fs_release_page, 1412 }; 1413 1414 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1415 nid_t n) 1416 { 1417 return radix_tree_lookup(&nm_i->free_nid_root, n); 1418 } 1419 1420 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, 1421 struct free_nid *i) 1422 { 1423 list_del(&i->list); 1424 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1425 } 1426 1427 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1428 { 1429 struct f2fs_nm_info *nm_i = NM_I(sbi); 1430 struct free_nid *i; 1431 struct nat_entry *ne; 1432 bool allocated = false; 1433 1434 if (!available_free_memory(sbi, FREE_NIDS)) 1435 return -1; 1436 1437 /* 0 nid should not be used */ 1438 if (unlikely(nid == 0)) 1439 return 0; 1440 1441 if (build) { 1442 /* do not add allocated nids */ 1443 down_read(&nm_i->nat_tree_lock); 1444 ne = __lookup_nat_cache(nm_i, nid); 1445 if (ne && 1446 (!get_nat_flag(ne, IS_CHECKPOINTED) || 1447 nat_get_blkaddr(ne) != NULL_ADDR)) 1448 allocated = true; 1449 up_read(&nm_i->nat_tree_lock); 1450 if (allocated) 1451 return 0; 1452 } 1453 1454 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1455 i->nid = nid; 1456 i->state = NID_NEW; 1457 1458 if (radix_tree_preload(GFP_NOFS)) { 1459 kmem_cache_free(free_nid_slab, i); 1460 return 0; 1461 } 1462 1463 spin_lock(&nm_i->free_nid_list_lock); 1464 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { 1465 spin_unlock(&nm_i->free_nid_list_lock); 1466 radix_tree_preload_end(); 1467 kmem_cache_free(free_nid_slab, i); 1468 return 0; 1469 } 1470 list_add_tail(&i->list, &nm_i->free_nid_list); 1471 nm_i->fcnt++; 1472 spin_unlock(&nm_i->free_nid_list_lock); 1473 radix_tree_preload_end(); 1474 return 1; 1475 } 1476 1477 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1478 { 1479 struct free_nid *i; 1480 bool need_free = false; 1481 1482 spin_lock(&nm_i->free_nid_list_lock); 1483 i = __lookup_free_nid_list(nm_i, nid); 1484 if (i && i->state == NID_NEW) { 1485 __del_from_free_nid_list(nm_i, i); 1486 nm_i->fcnt--; 1487 need_free = true; 1488 } 1489 spin_unlock(&nm_i->free_nid_list_lock); 1490 1491 if (need_free) 1492 kmem_cache_free(free_nid_slab, i); 1493 } 1494 1495 static void scan_nat_page(struct f2fs_sb_info *sbi, 1496 struct page *nat_page, nid_t start_nid) 1497 { 1498 struct f2fs_nm_info *nm_i = NM_I(sbi); 1499 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1500 block_t blk_addr; 1501 int i; 1502 1503 i = start_nid % NAT_ENTRY_PER_BLOCK; 1504 1505 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1506 1507 if (unlikely(start_nid >= nm_i->max_nid)) 1508 break; 1509 1510 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1511 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1512 if (blk_addr == NULL_ADDR) { 1513 if (add_free_nid(sbi, start_nid, true) < 0) 1514 break; 1515 } 1516 } 1517 } 1518 1519 static void build_free_nids(struct f2fs_sb_info *sbi) 1520 { 1521 struct f2fs_nm_info *nm_i = NM_I(sbi); 1522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1523 struct f2fs_summary_block *sum = curseg->sum_blk; 1524 int i = 0; 1525 nid_t nid = nm_i->next_scan_nid; 1526 1527 /* Enough entries */ 1528 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1529 return; 1530 1531 /* readahead nat pages to be scanned */ 1532 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1533 META_NAT, true); 1534 1535 while (1) { 1536 struct page *page = get_current_nat_page(sbi, nid); 1537 1538 scan_nat_page(sbi, page, nid); 1539 f2fs_put_page(page, 1); 1540 1541 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1542 if (unlikely(nid >= nm_i->max_nid)) 1543 nid = 0; 1544 1545 if (++i >= FREE_NID_PAGES) 1546 break; 1547 } 1548 1549 /* go to the next free nat pages to find free nids abundantly */ 1550 nm_i->next_scan_nid = nid; 1551 1552 /* find free nids from current sum_pages */ 1553 mutex_lock(&curseg->curseg_mutex); 1554 for (i = 0; i < nats_in_cursum(sum); i++) { 1555 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1556 nid = le32_to_cpu(nid_in_journal(sum, i)); 1557 if (addr == NULL_ADDR) 1558 add_free_nid(sbi, nid, true); 1559 else 1560 remove_free_nid(nm_i, nid); 1561 } 1562 mutex_unlock(&curseg->curseg_mutex); 1563 1564 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 1565 nm_i->ra_nid_pages, META_NAT, false); 1566 } 1567 1568 /* 1569 * If this function returns success, caller can obtain a new nid 1570 * from second parameter of this function. 1571 * The returned nid could be used ino as well as nid when inode is created. 1572 */ 1573 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1574 { 1575 struct f2fs_nm_info *nm_i = NM_I(sbi); 1576 struct free_nid *i = NULL; 1577 retry: 1578 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1579 return false; 1580 1581 spin_lock(&nm_i->free_nid_list_lock); 1582 1583 /* We should not use stale free nids created by build_free_nids */ 1584 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { 1585 struct node_info ni; 1586 1587 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 1588 list_for_each_entry(i, &nm_i->free_nid_list, list) 1589 if (i->state == NID_NEW) 1590 break; 1591 1592 f2fs_bug_on(sbi, i->state != NID_NEW); 1593 *nid = i->nid; 1594 i->state = NID_ALLOC; 1595 nm_i->fcnt--; 1596 spin_unlock(&nm_i->free_nid_list_lock); 1597 1598 /* check nid is allocated already */ 1599 get_node_info(sbi, *nid, &ni); 1600 if (ni.blk_addr != NULL_ADDR) { 1601 alloc_nid_done(sbi, *nid); 1602 goto retry; 1603 } 1604 return true; 1605 } 1606 spin_unlock(&nm_i->free_nid_list_lock); 1607 1608 /* Let's scan nat pages and its caches to get free nids */ 1609 mutex_lock(&nm_i->build_lock); 1610 build_free_nids(sbi); 1611 mutex_unlock(&nm_i->build_lock); 1612 goto retry; 1613 } 1614 1615 /* 1616 * alloc_nid() should be called prior to this function. 1617 */ 1618 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1619 { 1620 struct f2fs_nm_info *nm_i = NM_I(sbi); 1621 struct free_nid *i; 1622 1623 spin_lock(&nm_i->free_nid_list_lock); 1624 i = __lookup_free_nid_list(nm_i, nid); 1625 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1626 __del_from_free_nid_list(nm_i, i); 1627 spin_unlock(&nm_i->free_nid_list_lock); 1628 1629 kmem_cache_free(free_nid_slab, i); 1630 } 1631 1632 /* 1633 * alloc_nid() should be called prior to this function. 1634 */ 1635 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1636 { 1637 struct f2fs_nm_info *nm_i = NM_I(sbi); 1638 struct free_nid *i; 1639 bool need_free = false; 1640 1641 if (!nid) 1642 return; 1643 1644 spin_lock(&nm_i->free_nid_list_lock); 1645 i = __lookup_free_nid_list(nm_i, nid); 1646 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1647 if (!available_free_memory(sbi, FREE_NIDS)) { 1648 __del_from_free_nid_list(nm_i, i); 1649 need_free = true; 1650 } else { 1651 i->state = NID_NEW; 1652 nm_i->fcnt++; 1653 } 1654 spin_unlock(&nm_i->free_nid_list_lock); 1655 1656 if (need_free) 1657 kmem_cache_free(free_nid_slab, i); 1658 } 1659 1660 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 1661 { 1662 struct f2fs_nm_info *nm_i = NM_I(sbi); 1663 struct free_nid *i, *next; 1664 int nr = nr_shrink; 1665 1666 if (!mutex_trylock(&nm_i->build_lock)) 1667 return 0; 1668 1669 spin_lock(&nm_i->free_nid_list_lock); 1670 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 1671 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK) 1672 break; 1673 if (i->state == NID_ALLOC) 1674 continue; 1675 __del_from_free_nid_list(nm_i, i); 1676 kmem_cache_free(free_nid_slab, i); 1677 nm_i->fcnt--; 1678 nr_shrink--; 1679 } 1680 spin_unlock(&nm_i->free_nid_list_lock); 1681 mutex_unlock(&nm_i->build_lock); 1682 1683 return nr - nr_shrink; 1684 } 1685 1686 void recover_inline_xattr(struct inode *inode, struct page *page) 1687 { 1688 void *src_addr, *dst_addr; 1689 size_t inline_size; 1690 struct page *ipage; 1691 struct f2fs_inode *ri; 1692 1693 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 1694 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 1695 1696 ri = F2FS_INODE(page); 1697 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1698 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1699 goto update_inode; 1700 } 1701 1702 dst_addr = inline_xattr_addr(ipage); 1703 src_addr = inline_xattr_addr(page); 1704 inline_size = inline_xattr_size(inode); 1705 1706 f2fs_wait_on_page_writeback(ipage, NODE); 1707 memcpy(dst_addr, src_addr, inline_size); 1708 update_inode: 1709 update_inode(inode, ipage); 1710 f2fs_put_page(ipage, 1); 1711 } 1712 1713 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1714 { 1715 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1716 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1717 nid_t new_xnid = nid_of_node(page); 1718 struct node_info ni; 1719 1720 /* 1: invalidate the previous xattr nid */ 1721 if (!prev_xnid) 1722 goto recover_xnid; 1723 1724 /* Deallocate node address */ 1725 get_node_info(sbi, prev_xnid, &ni); 1726 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 1727 invalidate_blocks(sbi, ni.blk_addr); 1728 dec_valid_node_count(sbi, inode); 1729 set_node_addr(sbi, &ni, NULL_ADDR, false); 1730 1731 recover_xnid: 1732 /* 2: allocate new xattr nid */ 1733 if (unlikely(!inc_valid_node_count(sbi, inode))) 1734 f2fs_bug_on(sbi, 1); 1735 1736 remove_free_nid(NM_I(sbi), new_xnid); 1737 get_node_info(sbi, new_xnid, &ni); 1738 ni.ino = inode->i_ino; 1739 set_node_addr(sbi, &ni, NEW_ADDR, false); 1740 F2FS_I(inode)->i_xattr_nid = new_xnid; 1741 1742 /* 3: update xattr blkaddr */ 1743 refresh_sit_entry(sbi, NEW_ADDR, blkaddr); 1744 set_node_addr(sbi, &ni, blkaddr, false); 1745 1746 update_inode_page(inode); 1747 } 1748 1749 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1750 { 1751 struct f2fs_inode *src, *dst; 1752 nid_t ino = ino_of_node(page); 1753 struct node_info old_ni, new_ni; 1754 struct page *ipage; 1755 1756 get_node_info(sbi, ino, &old_ni); 1757 1758 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 1759 return -EINVAL; 1760 1761 ipage = grab_cache_page(NODE_MAPPING(sbi), ino); 1762 if (!ipage) 1763 return -ENOMEM; 1764 1765 /* Should not use this inode from free nid list */ 1766 remove_free_nid(NM_I(sbi), ino); 1767 1768 SetPageUptodate(ipage); 1769 fill_node_footer(ipage, ino, ino, 0, true); 1770 1771 src = F2FS_INODE(page); 1772 dst = F2FS_INODE(ipage); 1773 1774 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 1775 dst->i_size = 0; 1776 dst->i_blocks = cpu_to_le64(1); 1777 dst->i_links = cpu_to_le32(1); 1778 dst->i_xattr_nid = 0; 1779 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 1780 1781 new_ni = old_ni; 1782 new_ni.ino = ino; 1783 1784 if (unlikely(!inc_valid_node_count(sbi, NULL))) 1785 WARN_ON(1); 1786 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1787 inc_valid_inode_count(sbi); 1788 set_page_dirty(ipage); 1789 f2fs_put_page(ipage, 1); 1790 return 0; 1791 } 1792 1793 int restore_node_summary(struct f2fs_sb_info *sbi, 1794 unsigned int segno, struct f2fs_summary_block *sum) 1795 { 1796 struct f2fs_node *rn; 1797 struct f2fs_summary *sum_entry; 1798 block_t addr; 1799 int bio_blocks = MAX_BIO_BLOCKS(sbi); 1800 int i, idx, last_offset, nrpages; 1801 1802 /* scan the node segment */ 1803 last_offset = sbi->blocks_per_seg; 1804 addr = START_BLOCK(sbi, segno); 1805 sum_entry = &sum->entries[0]; 1806 1807 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 1808 nrpages = min(last_offset - i, bio_blocks); 1809 1810 /* readahead node pages */ 1811 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 1812 1813 for (idx = addr; idx < addr + nrpages; idx++) { 1814 struct page *page = get_tmp_page(sbi, idx); 1815 1816 rn = F2FS_NODE(page); 1817 sum_entry->nid = rn->footer.nid; 1818 sum_entry->version = 0; 1819 sum_entry->ofs_in_node = 0; 1820 sum_entry++; 1821 f2fs_put_page(page, 1); 1822 } 1823 1824 invalidate_mapping_pages(META_MAPPING(sbi), addr, 1825 addr + nrpages); 1826 } 1827 return 0; 1828 } 1829 1830 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 1831 { 1832 struct f2fs_nm_info *nm_i = NM_I(sbi); 1833 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1834 struct f2fs_summary_block *sum = curseg->sum_blk; 1835 int i; 1836 1837 mutex_lock(&curseg->curseg_mutex); 1838 for (i = 0; i < nats_in_cursum(sum); i++) { 1839 struct nat_entry *ne; 1840 struct f2fs_nat_entry raw_ne; 1841 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1842 1843 raw_ne = nat_in_journal(sum, i); 1844 1845 down_write(&nm_i->nat_tree_lock); 1846 ne = __lookup_nat_cache(nm_i, nid); 1847 if (!ne) { 1848 ne = grab_nat_entry(nm_i, nid); 1849 node_info_from_raw_nat(&ne->ni, &raw_ne); 1850 } 1851 __set_nat_cache_dirty(nm_i, ne); 1852 up_write(&nm_i->nat_tree_lock); 1853 } 1854 update_nats_in_cursum(sum, -i); 1855 mutex_unlock(&curseg->curseg_mutex); 1856 } 1857 1858 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 1859 struct list_head *head, int max) 1860 { 1861 struct nat_entry_set *cur; 1862 1863 if (nes->entry_cnt >= max) 1864 goto add_out; 1865 1866 list_for_each_entry(cur, head, set_list) { 1867 if (cur->entry_cnt >= nes->entry_cnt) { 1868 list_add(&nes->set_list, cur->set_list.prev); 1869 return; 1870 } 1871 } 1872 add_out: 1873 list_add_tail(&nes->set_list, head); 1874 } 1875 1876 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 1877 struct nat_entry_set *set) 1878 { 1879 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1880 struct f2fs_summary_block *sum = curseg->sum_blk; 1881 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 1882 bool to_journal = true; 1883 struct f2fs_nat_block *nat_blk; 1884 struct nat_entry *ne, *cur; 1885 struct page *page = NULL; 1886 struct f2fs_nm_info *nm_i = NM_I(sbi); 1887 1888 /* 1889 * there are two steps to flush nat entries: 1890 * #1, flush nat entries to journal in current hot data summary block. 1891 * #2, flush nat entries to nat page. 1892 */ 1893 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL)) 1894 to_journal = false; 1895 1896 if (to_journal) { 1897 mutex_lock(&curseg->curseg_mutex); 1898 } else { 1899 page = get_next_nat_page(sbi, start_nid); 1900 nat_blk = page_address(page); 1901 f2fs_bug_on(sbi, !nat_blk); 1902 } 1903 1904 /* flush dirty nats in nat entry set */ 1905 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 1906 struct f2fs_nat_entry *raw_ne; 1907 nid_t nid = nat_get_nid(ne); 1908 int offset; 1909 1910 if (nat_get_blkaddr(ne) == NEW_ADDR) 1911 continue; 1912 1913 if (to_journal) { 1914 offset = lookup_journal_in_cursum(sum, 1915 NAT_JOURNAL, nid, 1); 1916 f2fs_bug_on(sbi, offset < 0); 1917 raw_ne = &nat_in_journal(sum, offset); 1918 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1919 } else { 1920 raw_ne = &nat_blk->entries[nid - start_nid]; 1921 } 1922 raw_nat_from_node_info(raw_ne, &ne->ni); 1923 1924 down_write(&NM_I(sbi)->nat_tree_lock); 1925 nat_reset_flag(ne); 1926 __clear_nat_cache_dirty(NM_I(sbi), ne); 1927 up_write(&NM_I(sbi)->nat_tree_lock); 1928 1929 if (nat_get_blkaddr(ne) == NULL_ADDR) 1930 add_free_nid(sbi, nid, false); 1931 } 1932 1933 if (to_journal) 1934 mutex_unlock(&curseg->curseg_mutex); 1935 else 1936 f2fs_put_page(page, 1); 1937 1938 f2fs_bug_on(sbi, set->entry_cnt); 1939 1940 down_write(&nm_i->nat_tree_lock); 1941 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 1942 up_write(&nm_i->nat_tree_lock); 1943 kmem_cache_free(nat_entry_set_slab, set); 1944 } 1945 1946 /* 1947 * This function is called during the checkpointing process. 1948 */ 1949 void flush_nat_entries(struct f2fs_sb_info *sbi) 1950 { 1951 struct f2fs_nm_info *nm_i = NM_I(sbi); 1952 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1953 struct f2fs_summary_block *sum = curseg->sum_blk; 1954 struct nat_entry_set *setvec[SETVEC_SIZE]; 1955 struct nat_entry_set *set, *tmp; 1956 unsigned int found; 1957 nid_t set_idx = 0; 1958 LIST_HEAD(sets); 1959 1960 if (!nm_i->dirty_nat_cnt) 1961 return; 1962 /* 1963 * if there are no enough space in journal to store dirty nat 1964 * entries, remove all entries from journal and merge them 1965 * into nat entry set. 1966 */ 1967 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 1968 remove_nats_in_journal(sbi); 1969 1970 down_write(&nm_i->nat_tree_lock); 1971 while ((found = __gang_lookup_nat_set(nm_i, 1972 set_idx, SETVEC_SIZE, setvec))) { 1973 unsigned idx; 1974 set_idx = setvec[found - 1]->set + 1; 1975 for (idx = 0; idx < found; idx++) 1976 __adjust_nat_entry_set(setvec[idx], &sets, 1977 MAX_NAT_JENTRIES(sum)); 1978 } 1979 up_write(&nm_i->nat_tree_lock); 1980 1981 /* flush dirty nats in nat entry set */ 1982 list_for_each_entry_safe(set, tmp, &sets, set_list) 1983 __flush_nat_entry_set(sbi, set); 1984 1985 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 1986 } 1987 1988 static int init_node_manager(struct f2fs_sb_info *sbi) 1989 { 1990 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1991 struct f2fs_nm_info *nm_i = NM_I(sbi); 1992 unsigned char *version_bitmap; 1993 unsigned int nat_segs, nat_blocks; 1994 1995 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1996 1997 /* segment_count_nat includes pair segment so divide to 2. */ 1998 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1999 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2000 2001 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 2002 2003 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2004 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 2005 nm_i->fcnt = 0; 2006 nm_i->nat_cnt = 0; 2007 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2008 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2009 2010 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2011 INIT_LIST_HEAD(&nm_i->free_nid_list); 2012 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2013 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2014 INIT_LIST_HEAD(&nm_i->nat_entries); 2015 2016 mutex_init(&nm_i->build_lock); 2017 spin_lock_init(&nm_i->free_nid_list_lock); 2018 init_rwsem(&nm_i->nat_tree_lock); 2019 2020 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2021 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2022 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2023 if (!version_bitmap) 2024 return -EFAULT; 2025 2026 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2027 GFP_KERNEL); 2028 if (!nm_i->nat_bitmap) 2029 return -ENOMEM; 2030 return 0; 2031 } 2032 2033 int build_node_manager(struct f2fs_sb_info *sbi) 2034 { 2035 int err; 2036 2037 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2038 if (!sbi->nm_info) 2039 return -ENOMEM; 2040 2041 err = init_node_manager(sbi); 2042 if (err) 2043 return err; 2044 2045 build_free_nids(sbi); 2046 return 0; 2047 } 2048 2049 void destroy_node_manager(struct f2fs_sb_info *sbi) 2050 { 2051 struct f2fs_nm_info *nm_i = NM_I(sbi); 2052 struct free_nid *i, *next_i; 2053 struct nat_entry *natvec[NATVEC_SIZE]; 2054 struct nat_entry_set *setvec[SETVEC_SIZE]; 2055 nid_t nid = 0; 2056 unsigned int found; 2057 2058 if (!nm_i) 2059 return; 2060 2061 /* destroy free nid list */ 2062 spin_lock(&nm_i->free_nid_list_lock); 2063 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2064 f2fs_bug_on(sbi, i->state == NID_ALLOC); 2065 __del_from_free_nid_list(nm_i, i); 2066 nm_i->fcnt--; 2067 spin_unlock(&nm_i->free_nid_list_lock); 2068 kmem_cache_free(free_nid_slab, i); 2069 spin_lock(&nm_i->free_nid_list_lock); 2070 } 2071 f2fs_bug_on(sbi, nm_i->fcnt); 2072 spin_unlock(&nm_i->free_nid_list_lock); 2073 2074 /* destroy nat cache */ 2075 down_write(&nm_i->nat_tree_lock); 2076 while ((found = __gang_lookup_nat_cache(nm_i, 2077 nid, NATVEC_SIZE, natvec))) { 2078 unsigned idx; 2079 2080 nid = nat_get_nid(natvec[found - 1]) + 1; 2081 for (idx = 0; idx < found; idx++) 2082 __del_from_nat_cache(nm_i, natvec[idx]); 2083 } 2084 f2fs_bug_on(sbi, nm_i->nat_cnt); 2085 2086 /* destroy nat set cache */ 2087 nid = 0; 2088 while ((found = __gang_lookup_nat_set(nm_i, 2089 nid, SETVEC_SIZE, setvec))) { 2090 unsigned idx; 2091 2092 nid = setvec[found - 1]->set + 1; 2093 for (idx = 0; idx < found; idx++) { 2094 /* entry_cnt is not zero, when cp_error was occurred */ 2095 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2096 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2097 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2098 } 2099 } 2100 up_write(&nm_i->nat_tree_lock); 2101 2102 kfree(nm_i->nat_bitmap); 2103 sbi->nm_info = NULL; 2104 kfree(nm_i); 2105 } 2106 2107 int __init create_node_manager_caches(void) 2108 { 2109 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2110 sizeof(struct nat_entry)); 2111 if (!nat_entry_slab) 2112 goto fail; 2113 2114 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2115 sizeof(struct free_nid)); 2116 if (!free_nid_slab) 2117 goto destroy_nat_entry; 2118 2119 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2120 sizeof(struct nat_entry_set)); 2121 if (!nat_entry_set_slab) 2122 goto destroy_free_nid; 2123 return 0; 2124 2125 destroy_free_nid: 2126 kmem_cache_destroy(free_nid_slab); 2127 destroy_nat_entry: 2128 kmem_cache_destroy(nat_entry_slab); 2129 fail: 2130 return -ENOMEM; 2131 } 2132 2133 void destroy_node_manager_caches(void) 2134 { 2135 kmem_cache_destroy(nat_entry_set_slab); 2136 kmem_cache_destroy(free_nid_slab); 2137 kmem_cache_destroy(nat_entry_slab); 2138 } 2139