1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/backing-dev.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 return -EFSCORRUPTED; 40 } 41 return 0; 42 } 43 44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 45 { 46 struct f2fs_nm_info *nm_i = NM_I(sbi); 47 struct sysinfo val; 48 unsigned long avail_ram; 49 unsigned long mem_size = 0; 50 bool res = false; 51 52 si_meminfo(&val); 53 54 /* only uses low memory */ 55 avail_ram = val.totalram - val.totalhigh; 56 57 /* 58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 59 */ 60 if (type == FREE_NIDS) { 61 mem_size = (nm_i->nid_cnt[FREE_NID] * 62 sizeof(struct free_nid)) >> PAGE_SHIFT; 63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 64 } else if (type == NAT_ENTRIES) { 65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 66 PAGE_SHIFT; 67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 68 if (excess_cached_nats(sbi)) 69 res = false; 70 } else if (type == DIRTY_DENTS) { 71 if (sbi->sb->s_bdi->wb.dirty_exceeded) 72 return false; 73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 75 } else if (type == INO_ENTRIES) { 76 int i; 77 78 for (i = 0; i < MAX_INO_ENTRY; i++) 79 mem_size += sbi->im[i].ino_num * 80 sizeof(struct ino_entry); 81 mem_size >>= PAGE_SHIFT; 82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 83 } else if (type == EXTENT_CACHE) { 84 mem_size = (atomic_read(&sbi->total_ext_tree) * 85 sizeof(struct extent_tree) + 86 atomic_read(&sbi->total_ext_node) * 87 sizeof(struct extent_node)) >> PAGE_SHIFT; 88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 89 } else if (type == INMEM_PAGES) { 90 /* it allows 20% / total_ram for inmemory pages */ 91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 92 res = mem_size < (val.totalram / 5); 93 } else { 94 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 95 return true; 96 } 97 return res; 98 } 99 100 static void clear_node_page_dirty(struct page *page) 101 { 102 if (PageDirty(page)) { 103 f2fs_clear_page_cache_dirty_tag(page); 104 clear_page_dirty_for_io(page); 105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 106 } 107 ClearPageUptodate(page); 108 } 109 110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 111 { 112 return f2fs_get_meta_page(sbi, current_nat_addr(sbi, nid)); 113 } 114 115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 116 { 117 struct page *src_page; 118 struct page *dst_page; 119 pgoff_t dst_off; 120 void *src_addr; 121 void *dst_addr; 122 struct f2fs_nm_info *nm_i = NM_I(sbi); 123 124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 125 126 /* get current nat block page with lock */ 127 src_page = get_current_nat_page(sbi, nid); 128 if (IS_ERR(src_page)) 129 return src_page; 130 dst_page = f2fs_grab_meta_page(sbi, dst_off); 131 f2fs_bug_on(sbi, PageDirty(src_page)); 132 133 src_addr = page_address(src_page); 134 dst_addr = page_address(dst_page); 135 memcpy(dst_addr, src_addr, PAGE_SIZE); 136 set_page_dirty(dst_page); 137 f2fs_put_page(src_page, 1); 138 139 set_to_next_nat(nm_i, nid); 140 141 return dst_page; 142 } 143 144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 145 { 146 struct nat_entry *new; 147 148 if (no_fail) 149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 150 else 151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 152 if (new) { 153 nat_set_nid(new, nid); 154 nat_reset_flag(new); 155 } 156 return new; 157 } 158 159 static void __free_nat_entry(struct nat_entry *e) 160 { 161 kmem_cache_free(nat_entry_slab, e); 162 } 163 164 /* must be locked by nat_tree_lock */ 165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 167 { 168 if (no_fail) 169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 171 return NULL; 172 173 if (raw_ne) 174 node_info_from_raw_nat(&ne->ni, raw_ne); 175 176 spin_lock(&nm_i->nat_list_lock); 177 list_add_tail(&ne->list, &nm_i->nat_entries); 178 spin_unlock(&nm_i->nat_list_lock); 179 180 nm_i->nat_cnt++; 181 return ne; 182 } 183 184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 185 { 186 struct nat_entry *ne; 187 188 ne = radix_tree_lookup(&nm_i->nat_root, n); 189 190 /* for recent accessed nat entry, move it to tail of lru list */ 191 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 192 spin_lock(&nm_i->nat_list_lock); 193 if (!list_empty(&ne->list)) 194 list_move_tail(&ne->list, &nm_i->nat_entries); 195 spin_unlock(&nm_i->nat_list_lock); 196 } 197 198 return ne; 199 } 200 201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 202 nid_t start, unsigned int nr, struct nat_entry **ep) 203 { 204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 205 } 206 207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 208 { 209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 210 nm_i->nat_cnt--; 211 __free_nat_entry(e); 212 } 213 214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 215 struct nat_entry *ne) 216 { 217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 218 struct nat_entry_set *head; 219 220 head = radix_tree_lookup(&nm_i->nat_set_root, set); 221 if (!head) { 222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 223 224 INIT_LIST_HEAD(&head->entry_list); 225 INIT_LIST_HEAD(&head->set_list); 226 head->set = set; 227 head->entry_cnt = 0; 228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 229 } 230 return head; 231 } 232 233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 234 struct nat_entry *ne) 235 { 236 struct nat_entry_set *head; 237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 238 239 if (!new_ne) 240 head = __grab_nat_entry_set(nm_i, ne); 241 242 /* 243 * update entry_cnt in below condition: 244 * 1. update NEW_ADDR to valid block address; 245 * 2. update old block address to new one; 246 */ 247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 248 !get_nat_flag(ne, IS_DIRTY))) 249 head->entry_cnt++; 250 251 set_nat_flag(ne, IS_PREALLOC, new_ne); 252 253 if (get_nat_flag(ne, IS_DIRTY)) 254 goto refresh_list; 255 256 nm_i->dirty_nat_cnt++; 257 set_nat_flag(ne, IS_DIRTY, true); 258 refresh_list: 259 spin_lock(&nm_i->nat_list_lock); 260 if (new_ne) 261 list_del_init(&ne->list); 262 else 263 list_move_tail(&ne->list, &head->entry_list); 264 spin_unlock(&nm_i->nat_list_lock); 265 } 266 267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 268 struct nat_entry_set *set, struct nat_entry *ne) 269 { 270 spin_lock(&nm_i->nat_list_lock); 271 list_move_tail(&ne->list, &nm_i->nat_entries); 272 spin_unlock(&nm_i->nat_list_lock); 273 274 set_nat_flag(ne, IS_DIRTY, false); 275 set->entry_cnt--; 276 nm_i->dirty_nat_cnt--; 277 } 278 279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 280 nid_t start, unsigned int nr, struct nat_entry_set **ep) 281 { 282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 283 start, nr); 284 } 285 286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 287 { 288 return NODE_MAPPING(sbi) == page->mapping && 289 IS_DNODE(page) && is_cold_node(page); 290 } 291 292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 293 { 294 spin_lock_init(&sbi->fsync_node_lock); 295 INIT_LIST_HEAD(&sbi->fsync_node_list); 296 sbi->fsync_seg_id = 0; 297 sbi->fsync_node_num = 0; 298 } 299 300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 301 struct page *page) 302 { 303 struct fsync_node_entry *fn; 304 unsigned long flags; 305 unsigned int seq_id; 306 307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); 308 309 get_page(page); 310 fn->page = page; 311 INIT_LIST_HEAD(&fn->list); 312 313 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 314 list_add_tail(&fn->list, &sbi->fsync_node_list); 315 fn->seq_id = sbi->fsync_seg_id++; 316 seq_id = fn->seq_id; 317 sbi->fsync_node_num++; 318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 319 320 return seq_id; 321 } 322 323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 324 { 325 struct fsync_node_entry *fn; 326 unsigned long flags; 327 328 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 329 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 330 if (fn->page == page) { 331 list_del(&fn->list); 332 sbi->fsync_node_num--; 333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 334 kmem_cache_free(fsync_node_entry_slab, fn); 335 put_page(page); 336 return; 337 } 338 } 339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 340 f2fs_bug_on(sbi, 1); 341 } 342 343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 344 { 345 unsigned long flags; 346 347 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 348 sbi->fsync_seg_id = 0; 349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 350 } 351 352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 353 { 354 struct f2fs_nm_info *nm_i = NM_I(sbi); 355 struct nat_entry *e; 356 bool need = false; 357 358 down_read(&nm_i->nat_tree_lock); 359 e = __lookup_nat_cache(nm_i, nid); 360 if (e) { 361 if (!get_nat_flag(e, IS_CHECKPOINTED) && 362 !get_nat_flag(e, HAS_FSYNCED_INODE)) 363 need = true; 364 } 365 up_read(&nm_i->nat_tree_lock); 366 return need; 367 } 368 369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 370 { 371 struct f2fs_nm_info *nm_i = NM_I(sbi); 372 struct nat_entry *e; 373 bool is_cp = true; 374 375 down_read(&nm_i->nat_tree_lock); 376 e = __lookup_nat_cache(nm_i, nid); 377 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 378 is_cp = false; 379 up_read(&nm_i->nat_tree_lock); 380 return is_cp; 381 } 382 383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 384 { 385 struct f2fs_nm_info *nm_i = NM_I(sbi); 386 struct nat_entry *e; 387 bool need_update = true; 388 389 down_read(&nm_i->nat_tree_lock); 390 e = __lookup_nat_cache(nm_i, ino); 391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 392 (get_nat_flag(e, IS_CHECKPOINTED) || 393 get_nat_flag(e, HAS_FSYNCED_INODE))) 394 need_update = false; 395 up_read(&nm_i->nat_tree_lock); 396 return need_update; 397 } 398 399 /* must be locked by nat_tree_lock */ 400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 401 struct f2fs_nat_entry *ne) 402 { 403 struct f2fs_nm_info *nm_i = NM_I(sbi); 404 struct nat_entry *new, *e; 405 406 new = __alloc_nat_entry(nid, false); 407 if (!new) 408 return; 409 410 down_write(&nm_i->nat_tree_lock); 411 e = __lookup_nat_cache(nm_i, nid); 412 if (!e) 413 e = __init_nat_entry(nm_i, new, ne, false); 414 else 415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 416 nat_get_blkaddr(e) != 417 le32_to_cpu(ne->block_addr) || 418 nat_get_version(e) != ne->version); 419 up_write(&nm_i->nat_tree_lock); 420 if (e != new) 421 __free_nat_entry(new); 422 } 423 424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 425 block_t new_blkaddr, bool fsync_done) 426 { 427 struct f2fs_nm_info *nm_i = NM_I(sbi); 428 struct nat_entry *e; 429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 430 431 down_write(&nm_i->nat_tree_lock); 432 e = __lookup_nat_cache(nm_i, ni->nid); 433 if (!e) { 434 e = __init_nat_entry(nm_i, new, NULL, true); 435 copy_node_info(&e->ni, ni); 436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 437 } else if (new_blkaddr == NEW_ADDR) { 438 /* 439 * when nid is reallocated, 440 * previous nat entry can be remained in nat cache. 441 * So, reinitialize it with new information. 442 */ 443 copy_node_info(&e->ni, ni); 444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 445 } 446 /* let's free early to reduce memory consumption */ 447 if (e != new) 448 __free_nat_entry(new); 449 450 /* sanity check */ 451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 453 new_blkaddr == NULL_ADDR); 454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 455 new_blkaddr == NEW_ADDR); 456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 457 new_blkaddr == NEW_ADDR); 458 459 /* increment version no as node is removed */ 460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 461 unsigned char version = nat_get_version(e); 462 nat_set_version(e, inc_node_version(version)); 463 } 464 465 /* change address */ 466 nat_set_blkaddr(e, new_blkaddr); 467 if (!__is_valid_data_blkaddr(new_blkaddr)) 468 set_nat_flag(e, IS_CHECKPOINTED, false); 469 __set_nat_cache_dirty(nm_i, e); 470 471 /* update fsync_mark if its inode nat entry is still alive */ 472 if (ni->nid != ni->ino) 473 e = __lookup_nat_cache(nm_i, ni->ino); 474 if (e) { 475 if (fsync_done && ni->nid == ni->ino) 476 set_nat_flag(e, HAS_FSYNCED_INODE, true); 477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 478 } 479 up_write(&nm_i->nat_tree_lock); 480 } 481 482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 483 { 484 struct f2fs_nm_info *nm_i = NM_I(sbi); 485 int nr = nr_shrink; 486 487 if (!down_write_trylock(&nm_i->nat_tree_lock)) 488 return 0; 489 490 spin_lock(&nm_i->nat_list_lock); 491 while (nr_shrink) { 492 struct nat_entry *ne; 493 494 if (list_empty(&nm_i->nat_entries)) 495 break; 496 497 ne = list_first_entry(&nm_i->nat_entries, 498 struct nat_entry, list); 499 list_del(&ne->list); 500 spin_unlock(&nm_i->nat_list_lock); 501 502 __del_from_nat_cache(nm_i, ne); 503 nr_shrink--; 504 505 spin_lock(&nm_i->nat_list_lock); 506 } 507 spin_unlock(&nm_i->nat_list_lock); 508 509 up_write(&nm_i->nat_tree_lock); 510 return nr - nr_shrink; 511 } 512 513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 514 struct node_info *ni) 515 { 516 struct f2fs_nm_info *nm_i = NM_I(sbi); 517 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 518 struct f2fs_journal *journal = curseg->journal; 519 nid_t start_nid = START_NID(nid); 520 struct f2fs_nat_block *nat_blk; 521 struct page *page = NULL; 522 struct f2fs_nat_entry ne; 523 struct nat_entry *e; 524 pgoff_t index; 525 block_t blkaddr; 526 int i; 527 528 ni->nid = nid; 529 530 /* Check nat cache */ 531 down_read(&nm_i->nat_tree_lock); 532 e = __lookup_nat_cache(nm_i, nid); 533 if (e) { 534 ni->ino = nat_get_ino(e); 535 ni->blk_addr = nat_get_blkaddr(e); 536 ni->version = nat_get_version(e); 537 up_read(&nm_i->nat_tree_lock); 538 return 0; 539 } 540 541 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 542 543 /* Check current segment summary */ 544 down_read(&curseg->journal_rwsem); 545 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 546 if (i >= 0) { 547 ne = nat_in_journal(journal, i); 548 node_info_from_raw_nat(ni, &ne); 549 } 550 up_read(&curseg->journal_rwsem); 551 if (i >= 0) { 552 up_read(&nm_i->nat_tree_lock); 553 goto cache; 554 } 555 556 /* Fill node_info from nat page */ 557 index = current_nat_addr(sbi, nid); 558 up_read(&nm_i->nat_tree_lock); 559 560 page = f2fs_get_meta_page(sbi, index); 561 if (IS_ERR(page)) 562 return PTR_ERR(page); 563 564 nat_blk = (struct f2fs_nat_block *)page_address(page); 565 ne = nat_blk->entries[nid - start_nid]; 566 node_info_from_raw_nat(ni, &ne); 567 f2fs_put_page(page, 1); 568 cache: 569 blkaddr = le32_to_cpu(ne.block_addr); 570 if (__is_valid_data_blkaddr(blkaddr) && 571 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 572 return -EFAULT; 573 574 /* cache nat entry */ 575 cache_nat_entry(sbi, nid, &ne); 576 return 0; 577 } 578 579 /* 580 * readahead MAX_RA_NODE number of node pages. 581 */ 582 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 583 { 584 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 585 struct blk_plug plug; 586 int i, end; 587 nid_t nid; 588 589 blk_start_plug(&plug); 590 591 /* Then, try readahead for siblings of the desired node */ 592 end = start + n; 593 end = min(end, NIDS_PER_BLOCK); 594 for (i = start; i < end; i++) { 595 nid = get_nid(parent, i, false); 596 f2fs_ra_node_page(sbi, nid); 597 } 598 599 blk_finish_plug(&plug); 600 } 601 602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 603 { 604 const long direct_index = ADDRS_PER_INODE(dn->inode); 605 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 606 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 607 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 608 int cur_level = dn->cur_level; 609 int max_level = dn->max_level; 610 pgoff_t base = 0; 611 612 if (!dn->max_level) 613 return pgofs + 1; 614 615 while (max_level-- > cur_level) 616 skipped_unit *= NIDS_PER_BLOCK; 617 618 switch (dn->max_level) { 619 case 3: 620 base += 2 * indirect_blks; 621 fallthrough; 622 case 2: 623 base += 2 * direct_blks; 624 fallthrough; 625 case 1: 626 base += direct_index; 627 break; 628 default: 629 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 630 } 631 632 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 633 } 634 635 /* 636 * The maximum depth is four. 637 * Offset[0] will have raw inode offset. 638 */ 639 static int get_node_path(struct inode *inode, long block, 640 int offset[4], unsigned int noffset[4]) 641 { 642 const long direct_index = ADDRS_PER_INODE(inode); 643 const long direct_blks = ADDRS_PER_BLOCK(inode); 644 const long dptrs_per_blk = NIDS_PER_BLOCK; 645 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 646 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 647 int n = 0; 648 int level = 0; 649 650 noffset[0] = 0; 651 652 if (block < direct_index) { 653 offset[n] = block; 654 goto got; 655 } 656 block -= direct_index; 657 if (block < direct_blks) { 658 offset[n++] = NODE_DIR1_BLOCK; 659 noffset[n] = 1; 660 offset[n] = block; 661 level = 1; 662 goto got; 663 } 664 block -= direct_blks; 665 if (block < direct_blks) { 666 offset[n++] = NODE_DIR2_BLOCK; 667 noffset[n] = 2; 668 offset[n] = block; 669 level = 1; 670 goto got; 671 } 672 block -= direct_blks; 673 if (block < indirect_blks) { 674 offset[n++] = NODE_IND1_BLOCK; 675 noffset[n] = 3; 676 offset[n++] = block / direct_blks; 677 noffset[n] = 4 + offset[n - 1]; 678 offset[n] = block % direct_blks; 679 level = 2; 680 goto got; 681 } 682 block -= indirect_blks; 683 if (block < indirect_blks) { 684 offset[n++] = NODE_IND2_BLOCK; 685 noffset[n] = 4 + dptrs_per_blk; 686 offset[n++] = block / direct_blks; 687 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 688 offset[n] = block % direct_blks; 689 level = 2; 690 goto got; 691 } 692 block -= indirect_blks; 693 if (block < dindirect_blks) { 694 offset[n++] = NODE_DIND_BLOCK; 695 noffset[n] = 5 + (dptrs_per_blk * 2); 696 offset[n++] = block / indirect_blks; 697 noffset[n] = 6 + (dptrs_per_blk * 2) + 698 offset[n - 1] * (dptrs_per_blk + 1); 699 offset[n++] = (block / direct_blks) % dptrs_per_blk; 700 noffset[n] = 7 + (dptrs_per_blk * 2) + 701 offset[n - 2] * (dptrs_per_blk + 1) + 702 offset[n - 1]; 703 offset[n] = block % direct_blks; 704 level = 3; 705 goto got; 706 } else { 707 return -E2BIG; 708 } 709 got: 710 return level; 711 } 712 713 /* 714 * Caller should call f2fs_put_dnode(dn). 715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 717 */ 718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 719 { 720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 721 struct page *npage[4]; 722 struct page *parent = NULL; 723 int offset[4]; 724 unsigned int noffset[4]; 725 nid_t nids[4]; 726 int level, i = 0; 727 int err = 0; 728 729 level = get_node_path(dn->inode, index, offset, noffset); 730 if (level < 0) 731 return level; 732 733 nids[0] = dn->inode->i_ino; 734 npage[0] = dn->inode_page; 735 736 if (!npage[0]) { 737 npage[0] = f2fs_get_node_page(sbi, nids[0]); 738 if (IS_ERR(npage[0])) 739 return PTR_ERR(npage[0]); 740 } 741 742 /* if inline_data is set, should not report any block indices */ 743 if (f2fs_has_inline_data(dn->inode) && index) { 744 err = -ENOENT; 745 f2fs_put_page(npage[0], 1); 746 goto release_out; 747 } 748 749 parent = npage[0]; 750 if (level != 0) 751 nids[1] = get_nid(parent, offset[0], true); 752 dn->inode_page = npage[0]; 753 dn->inode_page_locked = true; 754 755 /* get indirect or direct nodes */ 756 for (i = 1; i <= level; i++) { 757 bool done = false; 758 759 if (!nids[i] && mode == ALLOC_NODE) { 760 /* alloc new node */ 761 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 762 err = -ENOSPC; 763 goto release_pages; 764 } 765 766 dn->nid = nids[i]; 767 npage[i] = f2fs_new_node_page(dn, noffset[i]); 768 if (IS_ERR(npage[i])) { 769 f2fs_alloc_nid_failed(sbi, nids[i]); 770 err = PTR_ERR(npage[i]); 771 goto release_pages; 772 } 773 774 set_nid(parent, offset[i - 1], nids[i], i == 1); 775 f2fs_alloc_nid_done(sbi, nids[i]); 776 done = true; 777 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 778 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 779 if (IS_ERR(npage[i])) { 780 err = PTR_ERR(npage[i]); 781 goto release_pages; 782 } 783 done = true; 784 } 785 if (i == 1) { 786 dn->inode_page_locked = false; 787 unlock_page(parent); 788 } else { 789 f2fs_put_page(parent, 1); 790 } 791 792 if (!done) { 793 npage[i] = f2fs_get_node_page(sbi, nids[i]); 794 if (IS_ERR(npage[i])) { 795 err = PTR_ERR(npage[i]); 796 f2fs_put_page(npage[0], 0); 797 goto release_out; 798 } 799 } 800 if (i < level) { 801 parent = npage[i]; 802 nids[i + 1] = get_nid(parent, offset[i], false); 803 } 804 } 805 dn->nid = nids[level]; 806 dn->ofs_in_node = offset[level]; 807 dn->node_page = npage[level]; 808 dn->data_blkaddr = f2fs_data_blkaddr(dn); 809 return 0; 810 811 release_pages: 812 f2fs_put_page(parent, 1); 813 if (i > 1) 814 f2fs_put_page(npage[0], 0); 815 release_out: 816 dn->inode_page = NULL; 817 dn->node_page = NULL; 818 if (err == -ENOENT) { 819 dn->cur_level = i; 820 dn->max_level = level; 821 dn->ofs_in_node = offset[level]; 822 } 823 return err; 824 } 825 826 static int truncate_node(struct dnode_of_data *dn) 827 { 828 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 829 struct node_info ni; 830 int err; 831 pgoff_t index; 832 833 err = f2fs_get_node_info(sbi, dn->nid, &ni); 834 if (err) 835 return err; 836 837 /* Deallocate node address */ 838 f2fs_invalidate_blocks(sbi, ni.blk_addr); 839 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 840 set_node_addr(sbi, &ni, NULL_ADDR, false); 841 842 if (dn->nid == dn->inode->i_ino) { 843 f2fs_remove_orphan_inode(sbi, dn->nid); 844 dec_valid_inode_count(sbi); 845 f2fs_inode_synced(dn->inode); 846 } 847 848 clear_node_page_dirty(dn->node_page); 849 set_sbi_flag(sbi, SBI_IS_DIRTY); 850 851 index = dn->node_page->index; 852 f2fs_put_page(dn->node_page, 1); 853 854 invalidate_mapping_pages(NODE_MAPPING(sbi), 855 index, index); 856 857 dn->node_page = NULL; 858 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 859 860 return 0; 861 } 862 863 static int truncate_dnode(struct dnode_of_data *dn) 864 { 865 struct page *page; 866 int err; 867 868 if (dn->nid == 0) 869 return 1; 870 871 /* get direct node */ 872 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 873 if (PTR_ERR(page) == -ENOENT) 874 return 1; 875 else if (IS_ERR(page)) 876 return PTR_ERR(page); 877 878 /* Make dnode_of_data for parameter */ 879 dn->node_page = page; 880 dn->ofs_in_node = 0; 881 f2fs_truncate_data_blocks(dn); 882 err = truncate_node(dn); 883 if (err) 884 return err; 885 886 return 1; 887 } 888 889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 890 int ofs, int depth) 891 { 892 struct dnode_of_data rdn = *dn; 893 struct page *page; 894 struct f2fs_node *rn; 895 nid_t child_nid; 896 unsigned int child_nofs; 897 int freed = 0; 898 int i, ret; 899 900 if (dn->nid == 0) 901 return NIDS_PER_BLOCK + 1; 902 903 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 904 905 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 906 if (IS_ERR(page)) { 907 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 908 return PTR_ERR(page); 909 } 910 911 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 912 913 rn = F2FS_NODE(page); 914 if (depth < 3) { 915 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 916 child_nid = le32_to_cpu(rn->in.nid[i]); 917 if (child_nid == 0) 918 continue; 919 rdn.nid = child_nid; 920 ret = truncate_dnode(&rdn); 921 if (ret < 0) 922 goto out_err; 923 if (set_nid(page, i, 0, false)) 924 dn->node_changed = true; 925 } 926 } else { 927 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 928 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 929 child_nid = le32_to_cpu(rn->in.nid[i]); 930 if (child_nid == 0) { 931 child_nofs += NIDS_PER_BLOCK + 1; 932 continue; 933 } 934 rdn.nid = child_nid; 935 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 936 if (ret == (NIDS_PER_BLOCK + 1)) { 937 if (set_nid(page, i, 0, false)) 938 dn->node_changed = true; 939 child_nofs += ret; 940 } else if (ret < 0 && ret != -ENOENT) { 941 goto out_err; 942 } 943 } 944 freed = child_nofs; 945 } 946 947 if (!ofs) { 948 /* remove current indirect node */ 949 dn->node_page = page; 950 ret = truncate_node(dn); 951 if (ret) 952 goto out_err; 953 freed++; 954 } else { 955 f2fs_put_page(page, 1); 956 } 957 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 958 return freed; 959 960 out_err: 961 f2fs_put_page(page, 1); 962 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 963 return ret; 964 } 965 966 static int truncate_partial_nodes(struct dnode_of_data *dn, 967 struct f2fs_inode *ri, int *offset, int depth) 968 { 969 struct page *pages[2]; 970 nid_t nid[3]; 971 nid_t child_nid; 972 int err = 0; 973 int i; 974 int idx = depth - 2; 975 976 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 977 if (!nid[0]) 978 return 0; 979 980 /* get indirect nodes in the path */ 981 for (i = 0; i < idx + 1; i++) { 982 /* reference count'll be increased */ 983 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 984 if (IS_ERR(pages[i])) { 985 err = PTR_ERR(pages[i]); 986 idx = i - 1; 987 goto fail; 988 } 989 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 990 } 991 992 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 993 994 /* free direct nodes linked to a partial indirect node */ 995 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 996 child_nid = get_nid(pages[idx], i, false); 997 if (!child_nid) 998 continue; 999 dn->nid = child_nid; 1000 err = truncate_dnode(dn); 1001 if (err < 0) 1002 goto fail; 1003 if (set_nid(pages[idx], i, 0, false)) 1004 dn->node_changed = true; 1005 } 1006 1007 if (offset[idx + 1] == 0) { 1008 dn->node_page = pages[idx]; 1009 dn->nid = nid[idx]; 1010 err = truncate_node(dn); 1011 if (err) 1012 goto fail; 1013 } else { 1014 f2fs_put_page(pages[idx], 1); 1015 } 1016 offset[idx]++; 1017 offset[idx + 1] = 0; 1018 idx--; 1019 fail: 1020 for (i = idx; i >= 0; i--) 1021 f2fs_put_page(pages[i], 1); 1022 1023 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1024 1025 return err; 1026 } 1027 1028 /* 1029 * All the block addresses of data and nodes should be nullified. 1030 */ 1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1032 { 1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1034 int err = 0, cont = 1; 1035 int level, offset[4], noffset[4]; 1036 unsigned int nofs = 0; 1037 struct f2fs_inode *ri; 1038 struct dnode_of_data dn; 1039 struct page *page; 1040 1041 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1042 1043 level = get_node_path(inode, from, offset, noffset); 1044 if (level < 0) { 1045 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1046 return level; 1047 } 1048 1049 page = f2fs_get_node_page(sbi, inode->i_ino); 1050 if (IS_ERR(page)) { 1051 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1052 return PTR_ERR(page); 1053 } 1054 1055 set_new_dnode(&dn, inode, page, NULL, 0); 1056 unlock_page(page); 1057 1058 ri = F2FS_INODE(page); 1059 switch (level) { 1060 case 0: 1061 case 1: 1062 nofs = noffset[1]; 1063 break; 1064 case 2: 1065 nofs = noffset[1]; 1066 if (!offset[level - 1]) 1067 goto skip_partial; 1068 err = truncate_partial_nodes(&dn, ri, offset, level); 1069 if (err < 0 && err != -ENOENT) 1070 goto fail; 1071 nofs += 1 + NIDS_PER_BLOCK; 1072 break; 1073 case 3: 1074 nofs = 5 + 2 * NIDS_PER_BLOCK; 1075 if (!offset[level - 1]) 1076 goto skip_partial; 1077 err = truncate_partial_nodes(&dn, ri, offset, level); 1078 if (err < 0 && err != -ENOENT) 1079 goto fail; 1080 break; 1081 default: 1082 BUG(); 1083 } 1084 1085 skip_partial: 1086 while (cont) { 1087 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1088 switch (offset[0]) { 1089 case NODE_DIR1_BLOCK: 1090 case NODE_DIR2_BLOCK: 1091 err = truncate_dnode(&dn); 1092 break; 1093 1094 case NODE_IND1_BLOCK: 1095 case NODE_IND2_BLOCK: 1096 err = truncate_nodes(&dn, nofs, offset[1], 2); 1097 break; 1098 1099 case NODE_DIND_BLOCK: 1100 err = truncate_nodes(&dn, nofs, offset[1], 3); 1101 cont = 0; 1102 break; 1103 1104 default: 1105 BUG(); 1106 } 1107 if (err < 0 && err != -ENOENT) 1108 goto fail; 1109 if (offset[1] == 0 && 1110 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1111 lock_page(page); 1112 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1113 f2fs_wait_on_page_writeback(page, NODE, true, true); 1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1115 set_page_dirty(page); 1116 unlock_page(page); 1117 } 1118 offset[1] = 0; 1119 offset[0]++; 1120 nofs += err; 1121 } 1122 fail: 1123 f2fs_put_page(page, 0); 1124 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1125 return err > 0 ? 0 : err; 1126 } 1127 1128 /* caller must lock inode page */ 1129 int f2fs_truncate_xattr_node(struct inode *inode) 1130 { 1131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1132 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1133 struct dnode_of_data dn; 1134 struct page *npage; 1135 int err; 1136 1137 if (!nid) 1138 return 0; 1139 1140 npage = f2fs_get_node_page(sbi, nid); 1141 if (IS_ERR(npage)) 1142 return PTR_ERR(npage); 1143 1144 set_new_dnode(&dn, inode, NULL, npage, nid); 1145 err = truncate_node(&dn); 1146 if (err) { 1147 f2fs_put_page(npage, 1); 1148 return err; 1149 } 1150 1151 f2fs_i_xnid_write(inode, 0); 1152 1153 return 0; 1154 } 1155 1156 /* 1157 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1158 * f2fs_unlock_op(). 1159 */ 1160 int f2fs_remove_inode_page(struct inode *inode) 1161 { 1162 struct dnode_of_data dn; 1163 int err; 1164 1165 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1166 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1167 if (err) 1168 return err; 1169 1170 err = f2fs_truncate_xattr_node(inode); 1171 if (err) { 1172 f2fs_put_dnode(&dn); 1173 return err; 1174 } 1175 1176 /* remove potential inline_data blocks */ 1177 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1178 S_ISLNK(inode->i_mode)) 1179 f2fs_truncate_data_blocks_range(&dn, 1); 1180 1181 /* 0 is possible, after f2fs_new_inode() has failed */ 1182 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1183 f2fs_put_dnode(&dn); 1184 return -EIO; 1185 } 1186 1187 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1188 f2fs_warn(F2FS_I_SB(inode), 1189 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1190 inode->i_ino, (unsigned long long)inode->i_blocks); 1191 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1192 } 1193 1194 /* will put inode & node pages */ 1195 err = truncate_node(&dn); 1196 if (err) { 1197 f2fs_put_dnode(&dn); 1198 return err; 1199 } 1200 return 0; 1201 } 1202 1203 struct page *f2fs_new_inode_page(struct inode *inode) 1204 { 1205 struct dnode_of_data dn; 1206 1207 /* allocate inode page for new inode */ 1208 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1209 1210 /* caller should f2fs_put_page(page, 1); */ 1211 return f2fs_new_node_page(&dn, 0); 1212 } 1213 1214 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1215 { 1216 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1217 struct node_info new_ni; 1218 struct page *page; 1219 int err; 1220 1221 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1222 return ERR_PTR(-EPERM); 1223 1224 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1225 if (!page) 1226 return ERR_PTR(-ENOMEM); 1227 1228 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1229 goto fail; 1230 1231 #ifdef CONFIG_F2FS_CHECK_FS 1232 err = f2fs_get_node_info(sbi, dn->nid, &new_ni); 1233 if (err) { 1234 dec_valid_node_count(sbi, dn->inode, !ofs); 1235 goto fail; 1236 } 1237 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1238 #endif 1239 new_ni.nid = dn->nid; 1240 new_ni.ino = dn->inode->i_ino; 1241 new_ni.blk_addr = NULL_ADDR; 1242 new_ni.flag = 0; 1243 new_ni.version = 0; 1244 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1245 1246 f2fs_wait_on_page_writeback(page, NODE, true, true); 1247 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1248 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1249 if (!PageUptodate(page)) 1250 SetPageUptodate(page); 1251 if (set_page_dirty(page)) 1252 dn->node_changed = true; 1253 1254 if (f2fs_has_xattr_block(ofs)) 1255 f2fs_i_xnid_write(dn->inode, dn->nid); 1256 1257 if (ofs == 0) 1258 inc_valid_inode_count(sbi); 1259 return page; 1260 1261 fail: 1262 clear_node_page_dirty(page); 1263 f2fs_put_page(page, 1); 1264 return ERR_PTR(err); 1265 } 1266 1267 /* 1268 * Caller should do after getting the following values. 1269 * 0: f2fs_put_page(page, 0) 1270 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1271 */ 1272 static int read_node_page(struct page *page, int op_flags) 1273 { 1274 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1275 struct node_info ni; 1276 struct f2fs_io_info fio = { 1277 .sbi = sbi, 1278 .type = NODE, 1279 .op = REQ_OP_READ, 1280 .op_flags = op_flags, 1281 .page = page, 1282 .encrypted_page = NULL, 1283 }; 1284 int err; 1285 1286 if (PageUptodate(page)) { 1287 if (!f2fs_inode_chksum_verify(sbi, page)) { 1288 ClearPageUptodate(page); 1289 return -EFSBADCRC; 1290 } 1291 return LOCKED_PAGE; 1292 } 1293 1294 err = f2fs_get_node_info(sbi, page->index, &ni); 1295 if (err) 1296 return err; 1297 1298 if (unlikely(ni.blk_addr == NULL_ADDR) || 1299 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1300 ClearPageUptodate(page); 1301 return -ENOENT; 1302 } 1303 1304 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1305 1306 err = f2fs_submit_page_bio(&fio); 1307 1308 if (!err) 1309 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE); 1310 1311 return err; 1312 } 1313 1314 /* 1315 * Readahead a node page 1316 */ 1317 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1318 { 1319 struct page *apage; 1320 int err; 1321 1322 if (!nid) 1323 return; 1324 if (f2fs_check_nid_range(sbi, nid)) 1325 return; 1326 1327 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1328 if (apage) 1329 return; 1330 1331 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1332 if (!apage) 1333 return; 1334 1335 err = read_node_page(apage, REQ_RAHEAD); 1336 f2fs_put_page(apage, err ? 1 : 0); 1337 } 1338 1339 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1340 struct page *parent, int start) 1341 { 1342 struct page *page; 1343 int err; 1344 1345 if (!nid) 1346 return ERR_PTR(-ENOENT); 1347 if (f2fs_check_nid_range(sbi, nid)) 1348 return ERR_PTR(-EINVAL); 1349 repeat: 1350 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1351 if (!page) 1352 return ERR_PTR(-ENOMEM); 1353 1354 err = read_node_page(page, 0); 1355 if (err < 0) { 1356 f2fs_put_page(page, 1); 1357 return ERR_PTR(err); 1358 } else if (err == LOCKED_PAGE) { 1359 err = 0; 1360 goto page_hit; 1361 } 1362 1363 if (parent) 1364 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1365 1366 lock_page(page); 1367 1368 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1369 f2fs_put_page(page, 1); 1370 goto repeat; 1371 } 1372 1373 if (unlikely(!PageUptodate(page))) { 1374 err = -EIO; 1375 goto out_err; 1376 } 1377 1378 if (!f2fs_inode_chksum_verify(sbi, page)) { 1379 err = -EFSBADCRC; 1380 goto out_err; 1381 } 1382 page_hit: 1383 if(unlikely(nid != nid_of_node(page))) { 1384 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1385 nid, nid_of_node(page), ino_of_node(page), 1386 ofs_of_node(page), cpver_of_node(page), 1387 next_blkaddr_of_node(page)); 1388 err = -EINVAL; 1389 out_err: 1390 ClearPageUptodate(page); 1391 f2fs_put_page(page, 1); 1392 return ERR_PTR(err); 1393 } 1394 return page; 1395 } 1396 1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1398 { 1399 return __get_node_page(sbi, nid, NULL, 0); 1400 } 1401 1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1403 { 1404 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1405 nid_t nid = get_nid(parent, start, false); 1406 1407 return __get_node_page(sbi, nid, parent, start); 1408 } 1409 1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1411 { 1412 struct inode *inode; 1413 struct page *page; 1414 int ret; 1415 1416 /* should flush inline_data before evict_inode */ 1417 inode = ilookup(sbi->sb, ino); 1418 if (!inode) 1419 return; 1420 1421 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1422 FGP_LOCK|FGP_NOWAIT, 0); 1423 if (!page) 1424 goto iput_out; 1425 1426 if (!PageUptodate(page)) 1427 goto page_out; 1428 1429 if (!PageDirty(page)) 1430 goto page_out; 1431 1432 if (!clear_page_dirty_for_io(page)) 1433 goto page_out; 1434 1435 ret = f2fs_write_inline_data(inode, page); 1436 inode_dec_dirty_pages(inode); 1437 f2fs_remove_dirty_inode(inode); 1438 if (ret) 1439 set_page_dirty(page); 1440 page_out: 1441 f2fs_put_page(page, 1); 1442 iput_out: 1443 iput(inode); 1444 } 1445 1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1447 { 1448 pgoff_t index; 1449 struct pagevec pvec; 1450 struct page *last_page = NULL; 1451 int nr_pages; 1452 1453 pagevec_init(&pvec); 1454 index = 0; 1455 1456 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1457 PAGECACHE_TAG_DIRTY))) { 1458 int i; 1459 1460 for (i = 0; i < nr_pages; i++) { 1461 struct page *page = pvec.pages[i]; 1462 1463 if (unlikely(f2fs_cp_error(sbi))) { 1464 f2fs_put_page(last_page, 0); 1465 pagevec_release(&pvec); 1466 return ERR_PTR(-EIO); 1467 } 1468 1469 if (!IS_DNODE(page) || !is_cold_node(page)) 1470 continue; 1471 if (ino_of_node(page) != ino) 1472 continue; 1473 1474 lock_page(page); 1475 1476 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1477 continue_unlock: 1478 unlock_page(page); 1479 continue; 1480 } 1481 if (ino_of_node(page) != ino) 1482 goto continue_unlock; 1483 1484 if (!PageDirty(page)) { 1485 /* someone wrote it for us */ 1486 goto continue_unlock; 1487 } 1488 1489 if (last_page) 1490 f2fs_put_page(last_page, 0); 1491 1492 get_page(page); 1493 last_page = page; 1494 unlock_page(page); 1495 } 1496 pagevec_release(&pvec); 1497 cond_resched(); 1498 } 1499 return last_page; 1500 } 1501 1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1503 struct writeback_control *wbc, bool do_balance, 1504 enum iostat_type io_type, unsigned int *seq_id) 1505 { 1506 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1507 nid_t nid; 1508 struct node_info ni; 1509 struct f2fs_io_info fio = { 1510 .sbi = sbi, 1511 .ino = ino_of_node(page), 1512 .type = NODE, 1513 .op = REQ_OP_WRITE, 1514 .op_flags = wbc_to_write_flags(wbc), 1515 .page = page, 1516 .encrypted_page = NULL, 1517 .submitted = false, 1518 .io_type = io_type, 1519 .io_wbc = wbc, 1520 }; 1521 unsigned int seq; 1522 1523 trace_f2fs_writepage(page, NODE); 1524 1525 if (unlikely(f2fs_cp_error(sbi))) { 1526 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 1527 ClearPageUptodate(page); 1528 dec_page_count(sbi, F2FS_DIRTY_NODES); 1529 unlock_page(page); 1530 return 0; 1531 } 1532 goto redirty_out; 1533 } 1534 1535 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1536 goto redirty_out; 1537 1538 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1539 wbc->sync_mode == WB_SYNC_NONE && 1540 IS_DNODE(page) && is_cold_node(page)) 1541 goto redirty_out; 1542 1543 /* get old block addr of this node page */ 1544 nid = nid_of_node(page); 1545 f2fs_bug_on(sbi, page->index != nid); 1546 1547 if (f2fs_get_node_info(sbi, nid, &ni)) 1548 goto redirty_out; 1549 1550 if (wbc->for_reclaim) { 1551 if (!down_read_trylock(&sbi->node_write)) 1552 goto redirty_out; 1553 } else { 1554 down_read(&sbi->node_write); 1555 } 1556 1557 /* This page is already truncated */ 1558 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1559 ClearPageUptodate(page); 1560 dec_page_count(sbi, F2FS_DIRTY_NODES); 1561 up_read(&sbi->node_write); 1562 unlock_page(page); 1563 return 0; 1564 } 1565 1566 if (__is_valid_data_blkaddr(ni.blk_addr) && 1567 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1568 DATA_GENERIC_ENHANCE)) { 1569 up_read(&sbi->node_write); 1570 goto redirty_out; 1571 } 1572 1573 if (atomic && !test_opt(sbi, NOBARRIER)) 1574 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1575 1576 /* should add to global list before clearing PAGECACHE status */ 1577 if (f2fs_in_warm_node_list(sbi, page)) { 1578 seq = f2fs_add_fsync_node_entry(sbi, page); 1579 if (seq_id) 1580 *seq_id = seq; 1581 } 1582 1583 set_page_writeback(page); 1584 ClearPageError(page); 1585 1586 fio.old_blkaddr = ni.blk_addr; 1587 f2fs_do_write_node_page(nid, &fio); 1588 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1589 dec_page_count(sbi, F2FS_DIRTY_NODES); 1590 up_read(&sbi->node_write); 1591 1592 if (wbc->for_reclaim) { 1593 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1594 submitted = NULL; 1595 } 1596 1597 unlock_page(page); 1598 1599 if (unlikely(f2fs_cp_error(sbi))) { 1600 f2fs_submit_merged_write(sbi, NODE); 1601 submitted = NULL; 1602 } 1603 if (submitted) 1604 *submitted = fio.submitted; 1605 1606 if (do_balance) 1607 f2fs_balance_fs(sbi, false); 1608 return 0; 1609 1610 redirty_out: 1611 redirty_page_for_writepage(wbc, page); 1612 return AOP_WRITEPAGE_ACTIVATE; 1613 } 1614 1615 int f2fs_move_node_page(struct page *node_page, int gc_type) 1616 { 1617 int err = 0; 1618 1619 if (gc_type == FG_GC) { 1620 struct writeback_control wbc = { 1621 .sync_mode = WB_SYNC_ALL, 1622 .nr_to_write = 1, 1623 .for_reclaim = 0, 1624 }; 1625 1626 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1627 1628 set_page_dirty(node_page); 1629 1630 if (!clear_page_dirty_for_io(node_page)) { 1631 err = -EAGAIN; 1632 goto out_page; 1633 } 1634 1635 if (__write_node_page(node_page, false, NULL, 1636 &wbc, false, FS_GC_NODE_IO, NULL)) { 1637 err = -EAGAIN; 1638 unlock_page(node_page); 1639 } 1640 goto release_page; 1641 } else { 1642 /* set page dirty and write it */ 1643 if (!PageWriteback(node_page)) 1644 set_page_dirty(node_page); 1645 } 1646 out_page: 1647 unlock_page(node_page); 1648 release_page: 1649 f2fs_put_page(node_page, 0); 1650 return err; 1651 } 1652 1653 static int f2fs_write_node_page(struct page *page, 1654 struct writeback_control *wbc) 1655 { 1656 return __write_node_page(page, false, NULL, wbc, false, 1657 FS_NODE_IO, NULL); 1658 } 1659 1660 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1661 struct writeback_control *wbc, bool atomic, 1662 unsigned int *seq_id) 1663 { 1664 pgoff_t index; 1665 struct pagevec pvec; 1666 int ret = 0; 1667 struct page *last_page = NULL; 1668 bool marked = false; 1669 nid_t ino = inode->i_ino; 1670 int nr_pages; 1671 int nwritten = 0; 1672 1673 if (atomic) { 1674 last_page = last_fsync_dnode(sbi, ino); 1675 if (IS_ERR_OR_NULL(last_page)) 1676 return PTR_ERR_OR_ZERO(last_page); 1677 } 1678 retry: 1679 pagevec_init(&pvec); 1680 index = 0; 1681 1682 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1683 PAGECACHE_TAG_DIRTY))) { 1684 int i; 1685 1686 for (i = 0; i < nr_pages; i++) { 1687 struct page *page = pvec.pages[i]; 1688 bool submitted = false; 1689 1690 if (unlikely(f2fs_cp_error(sbi))) { 1691 f2fs_put_page(last_page, 0); 1692 pagevec_release(&pvec); 1693 ret = -EIO; 1694 goto out; 1695 } 1696 1697 if (!IS_DNODE(page) || !is_cold_node(page)) 1698 continue; 1699 if (ino_of_node(page) != ino) 1700 continue; 1701 1702 lock_page(page); 1703 1704 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1705 continue_unlock: 1706 unlock_page(page); 1707 continue; 1708 } 1709 if (ino_of_node(page) != ino) 1710 goto continue_unlock; 1711 1712 if (!PageDirty(page) && page != last_page) { 1713 /* someone wrote it for us */ 1714 goto continue_unlock; 1715 } 1716 1717 f2fs_wait_on_page_writeback(page, NODE, true, true); 1718 1719 set_fsync_mark(page, 0); 1720 set_dentry_mark(page, 0); 1721 1722 if (!atomic || page == last_page) { 1723 set_fsync_mark(page, 1); 1724 if (IS_INODE(page)) { 1725 if (is_inode_flag_set(inode, 1726 FI_DIRTY_INODE)) 1727 f2fs_update_inode(inode, page); 1728 set_dentry_mark(page, 1729 f2fs_need_dentry_mark(sbi, ino)); 1730 } 1731 /* may be written by other thread */ 1732 if (!PageDirty(page)) 1733 set_page_dirty(page); 1734 } 1735 1736 if (!clear_page_dirty_for_io(page)) 1737 goto continue_unlock; 1738 1739 ret = __write_node_page(page, atomic && 1740 page == last_page, 1741 &submitted, wbc, true, 1742 FS_NODE_IO, seq_id); 1743 if (ret) { 1744 unlock_page(page); 1745 f2fs_put_page(last_page, 0); 1746 break; 1747 } else if (submitted) { 1748 nwritten++; 1749 } 1750 1751 if (page == last_page) { 1752 f2fs_put_page(page, 0); 1753 marked = true; 1754 break; 1755 } 1756 } 1757 pagevec_release(&pvec); 1758 cond_resched(); 1759 1760 if (ret || marked) 1761 break; 1762 } 1763 if (!ret && atomic && !marked) { 1764 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1765 ino, last_page->index); 1766 lock_page(last_page); 1767 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1768 set_page_dirty(last_page); 1769 unlock_page(last_page); 1770 goto retry; 1771 } 1772 out: 1773 if (nwritten) 1774 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1775 return ret ? -EIO: 0; 1776 } 1777 1778 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1779 { 1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1781 bool clean; 1782 1783 if (inode->i_ino != ino) 1784 return 0; 1785 1786 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1787 return 0; 1788 1789 spin_lock(&sbi->inode_lock[DIRTY_META]); 1790 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1791 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1792 1793 if (clean) 1794 return 0; 1795 1796 inode = igrab(inode); 1797 if (!inode) 1798 return 0; 1799 return 1; 1800 } 1801 1802 static bool flush_dirty_inode(struct page *page) 1803 { 1804 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1805 struct inode *inode; 1806 nid_t ino = ino_of_node(page); 1807 1808 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1809 if (!inode) 1810 return false; 1811 1812 f2fs_update_inode(inode, page); 1813 unlock_page(page); 1814 1815 iput(inode); 1816 return true; 1817 } 1818 1819 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1820 { 1821 pgoff_t index = 0; 1822 struct pagevec pvec; 1823 int nr_pages; 1824 1825 pagevec_init(&pvec); 1826 1827 while ((nr_pages = pagevec_lookup_tag(&pvec, 1828 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1829 int i; 1830 1831 for (i = 0; i < nr_pages; i++) { 1832 struct page *page = pvec.pages[i]; 1833 1834 if (!IS_DNODE(page)) 1835 continue; 1836 1837 lock_page(page); 1838 1839 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1840 continue_unlock: 1841 unlock_page(page); 1842 continue; 1843 } 1844 1845 if (!PageDirty(page)) { 1846 /* someone wrote it for us */ 1847 goto continue_unlock; 1848 } 1849 1850 /* flush inline_data, if it's async context. */ 1851 if (is_inline_node(page)) { 1852 clear_inline_node(page); 1853 unlock_page(page); 1854 flush_inline_data(sbi, ino_of_node(page)); 1855 continue; 1856 } 1857 unlock_page(page); 1858 } 1859 pagevec_release(&pvec); 1860 cond_resched(); 1861 } 1862 } 1863 1864 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1865 struct writeback_control *wbc, 1866 bool do_balance, enum iostat_type io_type) 1867 { 1868 pgoff_t index; 1869 struct pagevec pvec; 1870 int step = 0; 1871 int nwritten = 0; 1872 int ret = 0; 1873 int nr_pages, done = 0; 1874 1875 pagevec_init(&pvec); 1876 1877 next_step: 1878 index = 0; 1879 1880 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1881 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1882 int i; 1883 1884 for (i = 0; i < nr_pages; i++) { 1885 struct page *page = pvec.pages[i]; 1886 bool submitted = false; 1887 bool may_dirty = true; 1888 1889 /* give a priority to WB_SYNC threads */ 1890 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1891 wbc->sync_mode == WB_SYNC_NONE) { 1892 done = 1; 1893 break; 1894 } 1895 1896 /* 1897 * flushing sequence with step: 1898 * 0. indirect nodes 1899 * 1. dentry dnodes 1900 * 2. file dnodes 1901 */ 1902 if (step == 0 && IS_DNODE(page)) 1903 continue; 1904 if (step == 1 && (!IS_DNODE(page) || 1905 is_cold_node(page))) 1906 continue; 1907 if (step == 2 && (!IS_DNODE(page) || 1908 !is_cold_node(page))) 1909 continue; 1910 lock_node: 1911 if (wbc->sync_mode == WB_SYNC_ALL) 1912 lock_page(page); 1913 else if (!trylock_page(page)) 1914 continue; 1915 1916 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1917 continue_unlock: 1918 unlock_page(page); 1919 continue; 1920 } 1921 1922 if (!PageDirty(page)) { 1923 /* someone wrote it for us */ 1924 goto continue_unlock; 1925 } 1926 1927 /* flush inline_data/inode, if it's async context. */ 1928 if (!do_balance) 1929 goto write_node; 1930 1931 /* flush inline_data */ 1932 if (is_inline_node(page)) { 1933 clear_inline_node(page); 1934 unlock_page(page); 1935 flush_inline_data(sbi, ino_of_node(page)); 1936 goto lock_node; 1937 } 1938 1939 /* flush dirty inode */ 1940 if (IS_INODE(page) && may_dirty) { 1941 may_dirty = false; 1942 if (flush_dirty_inode(page)) 1943 goto lock_node; 1944 } 1945 write_node: 1946 f2fs_wait_on_page_writeback(page, NODE, true, true); 1947 1948 if (!clear_page_dirty_for_io(page)) 1949 goto continue_unlock; 1950 1951 set_fsync_mark(page, 0); 1952 set_dentry_mark(page, 0); 1953 1954 ret = __write_node_page(page, false, &submitted, 1955 wbc, do_balance, io_type, NULL); 1956 if (ret) 1957 unlock_page(page); 1958 else if (submitted) 1959 nwritten++; 1960 1961 if (--wbc->nr_to_write == 0) 1962 break; 1963 } 1964 pagevec_release(&pvec); 1965 cond_resched(); 1966 1967 if (wbc->nr_to_write == 0) { 1968 step = 2; 1969 break; 1970 } 1971 } 1972 1973 if (step < 2) { 1974 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1975 wbc->sync_mode == WB_SYNC_NONE && step == 1) 1976 goto out; 1977 step++; 1978 goto next_step; 1979 } 1980 out: 1981 if (nwritten) 1982 f2fs_submit_merged_write(sbi, NODE); 1983 1984 if (unlikely(f2fs_cp_error(sbi))) 1985 return -EIO; 1986 return ret; 1987 } 1988 1989 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 1990 unsigned int seq_id) 1991 { 1992 struct fsync_node_entry *fn; 1993 struct page *page; 1994 struct list_head *head = &sbi->fsync_node_list; 1995 unsigned long flags; 1996 unsigned int cur_seq_id = 0; 1997 int ret2, ret = 0; 1998 1999 while (seq_id && cur_seq_id < seq_id) { 2000 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2001 if (list_empty(head)) { 2002 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2003 break; 2004 } 2005 fn = list_first_entry(head, struct fsync_node_entry, list); 2006 if (fn->seq_id > seq_id) { 2007 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2008 break; 2009 } 2010 cur_seq_id = fn->seq_id; 2011 page = fn->page; 2012 get_page(page); 2013 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2014 2015 f2fs_wait_on_page_writeback(page, NODE, true, false); 2016 if (TestClearPageError(page)) 2017 ret = -EIO; 2018 2019 put_page(page); 2020 2021 if (ret) 2022 break; 2023 } 2024 2025 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2026 if (!ret) 2027 ret = ret2; 2028 2029 return ret; 2030 } 2031 2032 static int f2fs_write_node_pages(struct address_space *mapping, 2033 struct writeback_control *wbc) 2034 { 2035 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2036 struct blk_plug plug; 2037 long diff; 2038 2039 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2040 goto skip_write; 2041 2042 /* balancing f2fs's metadata in background */ 2043 f2fs_balance_fs_bg(sbi, true); 2044 2045 /* collect a number of dirty node pages and write together */ 2046 if (wbc->sync_mode != WB_SYNC_ALL && 2047 get_pages(sbi, F2FS_DIRTY_NODES) < 2048 nr_pages_to_skip(sbi, NODE)) 2049 goto skip_write; 2050 2051 if (wbc->sync_mode == WB_SYNC_ALL) 2052 atomic_inc(&sbi->wb_sync_req[NODE]); 2053 else if (atomic_read(&sbi->wb_sync_req[NODE])) 2054 goto skip_write; 2055 2056 trace_f2fs_writepages(mapping->host, wbc, NODE); 2057 2058 diff = nr_pages_to_write(sbi, NODE, wbc); 2059 blk_start_plug(&plug); 2060 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2061 blk_finish_plug(&plug); 2062 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2063 2064 if (wbc->sync_mode == WB_SYNC_ALL) 2065 atomic_dec(&sbi->wb_sync_req[NODE]); 2066 return 0; 2067 2068 skip_write: 2069 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2070 trace_f2fs_writepages(mapping->host, wbc, NODE); 2071 return 0; 2072 } 2073 2074 static int f2fs_set_node_page_dirty(struct page *page) 2075 { 2076 trace_f2fs_set_page_dirty(page, NODE); 2077 2078 if (!PageUptodate(page)) 2079 SetPageUptodate(page); 2080 #ifdef CONFIG_F2FS_CHECK_FS 2081 if (IS_INODE(page)) 2082 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 2083 #endif 2084 if (!PageDirty(page)) { 2085 __set_page_dirty_nobuffers(page); 2086 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 2087 f2fs_set_page_private(page, 0); 2088 f2fs_trace_pid(page); 2089 return 1; 2090 } 2091 return 0; 2092 } 2093 2094 /* 2095 * Structure of the f2fs node operations 2096 */ 2097 const struct address_space_operations f2fs_node_aops = { 2098 .writepage = f2fs_write_node_page, 2099 .writepages = f2fs_write_node_pages, 2100 .set_page_dirty = f2fs_set_node_page_dirty, 2101 .invalidatepage = f2fs_invalidate_page, 2102 .releasepage = f2fs_release_page, 2103 #ifdef CONFIG_MIGRATION 2104 .migratepage = f2fs_migrate_page, 2105 #endif 2106 }; 2107 2108 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2109 nid_t n) 2110 { 2111 return radix_tree_lookup(&nm_i->free_nid_root, n); 2112 } 2113 2114 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2115 struct free_nid *i) 2116 { 2117 struct f2fs_nm_info *nm_i = NM_I(sbi); 2118 2119 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2120 if (err) 2121 return err; 2122 2123 nm_i->nid_cnt[FREE_NID]++; 2124 list_add_tail(&i->list, &nm_i->free_nid_list); 2125 return 0; 2126 } 2127 2128 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2129 struct free_nid *i, enum nid_state state) 2130 { 2131 struct f2fs_nm_info *nm_i = NM_I(sbi); 2132 2133 f2fs_bug_on(sbi, state != i->state); 2134 nm_i->nid_cnt[state]--; 2135 if (state == FREE_NID) 2136 list_del(&i->list); 2137 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2138 } 2139 2140 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2141 enum nid_state org_state, enum nid_state dst_state) 2142 { 2143 struct f2fs_nm_info *nm_i = NM_I(sbi); 2144 2145 f2fs_bug_on(sbi, org_state != i->state); 2146 i->state = dst_state; 2147 nm_i->nid_cnt[org_state]--; 2148 nm_i->nid_cnt[dst_state]++; 2149 2150 switch (dst_state) { 2151 case PREALLOC_NID: 2152 list_del(&i->list); 2153 break; 2154 case FREE_NID: 2155 list_add_tail(&i->list, &nm_i->free_nid_list); 2156 break; 2157 default: 2158 BUG_ON(1); 2159 } 2160 } 2161 2162 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2163 bool set, bool build) 2164 { 2165 struct f2fs_nm_info *nm_i = NM_I(sbi); 2166 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2167 unsigned int nid_ofs = nid - START_NID(nid); 2168 2169 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2170 return; 2171 2172 if (set) { 2173 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2174 return; 2175 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2176 nm_i->free_nid_count[nat_ofs]++; 2177 } else { 2178 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2179 return; 2180 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2181 if (!build) 2182 nm_i->free_nid_count[nat_ofs]--; 2183 } 2184 } 2185 2186 /* return if the nid is recognized as free */ 2187 static bool add_free_nid(struct f2fs_sb_info *sbi, 2188 nid_t nid, bool build, bool update) 2189 { 2190 struct f2fs_nm_info *nm_i = NM_I(sbi); 2191 struct free_nid *i, *e; 2192 struct nat_entry *ne; 2193 int err = -EINVAL; 2194 bool ret = false; 2195 2196 /* 0 nid should not be used */ 2197 if (unlikely(nid == 0)) 2198 return false; 2199 2200 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2201 return false; 2202 2203 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 2204 i->nid = nid; 2205 i->state = FREE_NID; 2206 2207 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2208 2209 spin_lock(&nm_i->nid_list_lock); 2210 2211 if (build) { 2212 /* 2213 * Thread A Thread B 2214 * - f2fs_create 2215 * - f2fs_new_inode 2216 * - f2fs_alloc_nid 2217 * - __insert_nid_to_list(PREALLOC_NID) 2218 * - f2fs_balance_fs_bg 2219 * - f2fs_build_free_nids 2220 * - __f2fs_build_free_nids 2221 * - scan_nat_page 2222 * - add_free_nid 2223 * - __lookup_nat_cache 2224 * - f2fs_add_link 2225 * - f2fs_init_inode_metadata 2226 * - f2fs_new_inode_page 2227 * - f2fs_new_node_page 2228 * - set_node_addr 2229 * - f2fs_alloc_nid_done 2230 * - __remove_nid_from_list(PREALLOC_NID) 2231 * - __insert_nid_to_list(FREE_NID) 2232 */ 2233 ne = __lookup_nat_cache(nm_i, nid); 2234 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2235 nat_get_blkaddr(ne) != NULL_ADDR)) 2236 goto err_out; 2237 2238 e = __lookup_free_nid_list(nm_i, nid); 2239 if (e) { 2240 if (e->state == FREE_NID) 2241 ret = true; 2242 goto err_out; 2243 } 2244 } 2245 ret = true; 2246 err = __insert_free_nid(sbi, i); 2247 err_out: 2248 if (update) { 2249 update_free_nid_bitmap(sbi, nid, ret, build); 2250 if (!build) 2251 nm_i->available_nids++; 2252 } 2253 spin_unlock(&nm_i->nid_list_lock); 2254 radix_tree_preload_end(); 2255 2256 if (err) 2257 kmem_cache_free(free_nid_slab, i); 2258 return ret; 2259 } 2260 2261 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2262 { 2263 struct f2fs_nm_info *nm_i = NM_I(sbi); 2264 struct free_nid *i; 2265 bool need_free = false; 2266 2267 spin_lock(&nm_i->nid_list_lock); 2268 i = __lookup_free_nid_list(nm_i, nid); 2269 if (i && i->state == FREE_NID) { 2270 __remove_free_nid(sbi, i, FREE_NID); 2271 need_free = true; 2272 } 2273 spin_unlock(&nm_i->nid_list_lock); 2274 2275 if (need_free) 2276 kmem_cache_free(free_nid_slab, i); 2277 } 2278 2279 static int scan_nat_page(struct f2fs_sb_info *sbi, 2280 struct page *nat_page, nid_t start_nid) 2281 { 2282 struct f2fs_nm_info *nm_i = NM_I(sbi); 2283 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2284 block_t blk_addr; 2285 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2286 int i; 2287 2288 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2289 2290 i = start_nid % NAT_ENTRY_PER_BLOCK; 2291 2292 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2293 if (unlikely(start_nid >= nm_i->max_nid)) 2294 break; 2295 2296 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2297 2298 if (blk_addr == NEW_ADDR) 2299 return -EINVAL; 2300 2301 if (blk_addr == NULL_ADDR) { 2302 add_free_nid(sbi, start_nid, true, true); 2303 } else { 2304 spin_lock(&NM_I(sbi)->nid_list_lock); 2305 update_free_nid_bitmap(sbi, start_nid, false, true); 2306 spin_unlock(&NM_I(sbi)->nid_list_lock); 2307 } 2308 } 2309 2310 return 0; 2311 } 2312 2313 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2314 { 2315 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2316 struct f2fs_journal *journal = curseg->journal; 2317 int i; 2318 2319 down_read(&curseg->journal_rwsem); 2320 for (i = 0; i < nats_in_cursum(journal); i++) { 2321 block_t addr; 2322 nid_t nid; 2323 2324 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2325 nid = le32_to_cpu(nid_in_journal(journal, i)); 2326 if (addr == NULL_ADDR) 2327 add_free_nid(sbi, nid, true, false); 2328 else 2329 remove_free_nid(sbi, nid); 2330 } 2331 up_read(&curseg->journal_rwsem); 2332 } 2333 2334 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2335 { 2336 struct f2fs_nm_info *nm_i = NM_I(sbi); 2337 unsigned int i, idx; 2338 nid_t nid; 2339 2340 down_read(&nm_i->nat_tree_lock); 2341 2342 for (i = 0; i < nm_i->nat_blocks; i++) { 2343 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2344 continue; 2345 if (!nm_i->free_nid_count[i]) 2346 continue; 2347 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2348 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2349 NAT_ENTRY_PER_BLOCK, idx); 2350 if (idx >= NAT_ENTRY_PER_BLOCK) 2351 break; 2352 2353 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2354 add_free_nid(sbi, nid, true, false); 2355 2356 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2357 goto out; 2358 } 2359 } 2360 out: 2361 scan_curseg_cache(sbi); 2362 2363 up_read(&nm_i->nat_tree_lock); 2364 } 2365 2366 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2367 bool sync, bool mount) 2368 { 2369 struct f2fs_nm_info *nm_i = NM_I(sbi); 2370 int i = 0, ret; 2371 nid_t nid = nm_i->next_scan_nid; 2372 2373 if (unlikely(nid >= nm_i->max_nid)) 2374 nid = 0; 2375 2376 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2377 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2378 2379 /* Enough entries */ 2380 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2381 return 0; 2382 2383 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2384 return 0; 2385 2386 if (!mount) { 2387 /* try to find free nids in free_nid_bitmap */ 2388 scan_free_nid_bits(sbi); 2389 2390 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2391 return 0; 2392 } 2393 2394 /* readahead nat pages to be scanned */ 2395 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2396 META_NAT, true); 2397 2398 down_read(&nm_i->nat_tree_lock); 2399 2400 while (1) { 2401 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2402 nm_i->nat_block_bitmap)) { 2403 struct page *page = get_current_nat_page(sbi, nid); 2404 2405 if (IS_ERR(page)) { 2406 ret = PTR_ERR(page); 2407 } else { 2408 ret = scan_nat_page(sbi, page, nid); 2409 f2fs_put_page(page, 1); 2410 } 2411 2412 if (ret) { 2413 up_read(&nm_i->nat_tree_lock); 2414 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2415 return ret; 2416 } 2417 } 2418 2419 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2420 if (unlikely(nid >= nm_i->max_nid)) 2421 nid = 0; 2422 2423 if (++i >= FREE_NID_PAGES) 2424 break; 2425 } 2426 2427 /* go to the next free nat pages to find free nids abundantly */ 2428 nm_i->next_scan_nid = nid; 2429 2430 /* find free nids from current sum_pages */ 2431 scan_curseg_cache(sbi); 2432 2433 up_read(&nm_i->nat_tree_lock); 2434 2435 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2436 nm_i->ra_nid_pages, META_NAT, false); 2437 2438 return 0; 2439 } 2440 2441 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2442 { 2443 int ret; 2444 2445 mutex_lock(&NM_I(sbi)->build_lock); 2446 ret = __f2fs_build_free_nids(sbi, sync, mount); 2447 mutex_unlock(&NM_I(sbi)->build_lock); 2448 2449 return ret; 2450 } 2451 2452 /* 2453 * If this function returns success, caller can obtain a new nid 2454 * from second parameter of this function. 2455 * The returned nid could be used ino as well as nid when inode is created. 2456 */ 2457 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2458 { 2459 struct f2fs_nm_info *nm_i = NM_I(sbi); 2460 struct free_nid *i = NULL; 2461 retry: 2462 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2463 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2464 return false; 2465 } 2466 2467 spin_lock(&nm_i->nid_list_lock); 2468 2469 if (unlikely(nm_i->available_nids == 0)) { 2470 spin_unlock(&nm_i->nid_list_lock); 2471 return false; 2472 } 2473 2474 /* We should not use stale free nids created by f2fs_build_free_nids */ 2475 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2476 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2477 i = list_first_entry(&nm_i->free_nid_list, 2478 struct free_nid, list); 2479 *nid = i->nid; 2480 2481 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2482 nm_i->available_nids--; 2483 2484 update_free_nid_bitmap(sbi, *nid, false, false); 2485 2486 spin_unlock(&nm_i->nid_list_lock); 2487 return true; 2488 } 2489 spin_unlock(&nm_i->nid_list_lock); 2490 2491 /* Let's scan nat pages and its caches to get free nids */ 2492 if (!f2fs_build_free_nids(sbi, true, false)) 2493 goto retry; 2494 return false; 2495 } 2496 2497 /* 2498 * f2fs_alloc_nid() should be called prior to this function. 2499 */ 2500 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2501 { 2502 struct f2fs_nm_info *nm_i = NM_I(sbi); 2503 struct free_nid *i; 2504 2505 spin_lock(&nm_i->nid_list_lock); 2506 i = __lookup_free_nid_list(nm_i, nid); 2507 f2fs_bug_on(sbi, !i); 2508 __remove_free_nid(sbi, i, PREALLOC_NID); 2509 spin_unlock(&nm_i->nid_list_lock); 2510 2511 kmem_cache_free(free_nid_slab, i); 2512 } 2513 2514 /* 2515 * f2fs_alloc_nid() should be called prior to this function. 2516 */ 2517 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2518 { 2519 struct f2fs_nm_info *nm_i = NM_I(sbi); 2520 struct free_nid *i; 2521 bool need_free = false; 2522 2523 if (!nid) 2524 return; 2525 2526 spin_lock(&nm_i->nid_list_lock); 2527 i = __lookup_free_nid_list(nm_i, nid); 2528 f2fs_bug_on(sbi, !i); 2529 2530 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2531 __remove_free_nid(sbi, i, PREALLOC_NID); 2532 need_free = true; 2533 } else { 2534 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2535 } 2536 2537 nm_i->available_nids++; 2538 2539 update_free_nid_bitmap(sbi, nid, true, false); 2540 2541 spin_unlock(&nm_i->nid_list_lock); 2542 2543 if (need_free) 2544 kmem_cache_free(free_nid_slab, i); 2545 } 2546 2547 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2548 { 2549 struct f2fs_nm_info *nm_i = NM_I(sbi); 2550 int nr = nr_shrink; 2551 2552 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2553 return 0; 2554 2555 if (!mutex_trylock(&nm_i->build_lock)) 2556 return 0; 2557 2558 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2559 struct free_nid *i, *next; 2560 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2561 2562 spin_lock(&nm_i->nid_list_lock); 2563 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2564 if (!nr_shrink || !batch || 2565 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2566 break; 2567 __remove_free_nid(sbi, i, FREE_NID); 2568 kmem_cache_free(free_nid_slab, i); 2569 nr_shrink--; 2570 batch--; 2571 } 2572 spin_unlock(&nm_i->nid_list_lock); 2573 } 2574 2575 mutex_unlock(&nm_i->build_lock); 2576 2577 return nr - nr_shrink; 2578 } 2579 2580 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2581 { 2582 void *src_addr, *dst_addr; 2583 size_t inline_size; 2584 struct page *ipage; 2585 struct f2fs_inode *ri; 2586 2587 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2588 if (IS_ERR(ipage)) 2589 return PTR_ERR(ipage); 2590 2591 ri = F2FS_INODE(page); 2592 if (ri->i_inline & F2FS_INLINE_XATTR) { 2593 set_inode_flag(inode, FI_INLINE_XATTR); 2594 } else { 2595 clear_inode_flag(inode, FI_INLINE_XATTR); 2596 goto update_inode; 2597 } 2598 2599 dst_addr = inline_xattr_addr(inode, ipage); 2600 src_addr = inline_xattr_addr(inode, page); 2601 inline_size = inline_xattr_size(inode); 2602 2603 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2604 memcpy(dst_addr, src_addr, inline_size); 2605 update_inode: 2606 f2fs_update_inode(inode, ipage); 2607 f2fs_put_page(ipage, 1); 2608 return 0; 2609 } 2610 2611 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2612 { 2613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2614 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2615 nid_t new_xnid; 2616 struct dnode_of_data dn; 2617 struct node_info ni; 2618 struct page *xpage; 2619 int err; 2620 2621 if (!prev_xnid) 2622 goto recover_xnid; 2623 2624 /* 1: invalidate the previous xattr nid */ 2625 err = f2fs_get_node_info(sbi, prev_xnid, &ni); 2626 if (err) 2627 return err; 2628 2629 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2630 dec_valid_node_count(sbi, inode, false); 2631 set_node_addr(sbi, &ni, NULL_ADDR, false); 2632 2633 recover_xnid: 2634 /* 2: update xattr nid in inode */ 2635 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2636 return -ENOSPC; 2637 2638 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2639 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2640 if (IS_ERR(xpage)) { 2641 f2fs_alloc_nid_failed(sbi, new_xnid); 2642 return PTR_ERR(xpage); 2643 } 2644 2645 f2fs_alloc_nid_done(sbi, new_xnid); 2646 f2fs_update_inode_page(inode); 2647 2648 /* 3: update and set xattr node page dirty */ 2649 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2650 2651 set_page_dirty(xpage); 2652 f2fs_put_page(xpage, 1); 2653 2654 return 0; 2655 } 2656 2657 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2658 { 2659 struct f2fs_inode *src, *dst; 2660 nid_t ino = ino_of_node(page); 2661 struct node_info old_ni, new_ni; 2662 struct page *ipage; 2663 int err; 2664 2665 err = f2fs_get_node_info(sbi, ino, &old_ni); 2666 if (err) 2667 return err; 2668 2669 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2670 return -EINVAL; 2671 retry: 2672 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2673 if (!ipage) { 2674 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2675 goto retry; 2676 } 2677 2678 /* Should not use this inode from free nid list */ 2679 remove_free_nid(sbi, ino); 2680 2681 if (!PageUptodate(ipage)) 2682 SetPageUptodate(ipage); 2683 fill_node_footer(ipage, ino, ino, 0, true); 2684 set_cold_node(ipage, false); 2685 2686 src = F2FS_INODE(page); 2687 dst = F2FS_INODE(ipage); 2688 2689 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2690 dst->i_size = 0; 2691 dst->i_blocks = cpu_to_le64(1); 2692 dst->i_links = cpu_to_le32(1); 2693 dst->i_xattr_nid = 0; 2694 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2695 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2696 dst->i_extra_isize = src->i_extra_isize; 2697 2698 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2699 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2700 i_inline_xattr_size)) 2701 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2702 2703 if (f2fs_sb_has_project_quota(sbi) && 2704 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2705 i_projid)) 2706 dst->i_projid = src->i_projid; 2707 2708 if (f2fs_sb_has_inode_crtime(sbi) && 2709 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2710 i_crtime_nsec)) { 2711 dst->i_crtime = src->i_crtime; 2712 dst->i_crtime_nsec = src->i_crtime_nsec; 2713 } 2714 } 2715 2716 new_ni = old_ni; 2717 new_ni.ino = ino; 2718 2719 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2720 WARN_ON(1); 2721 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2722 inc_valid_inode_count(sbi); 2723 set_page_dirty(ipage); 2724 f2fs_put_page(ipage, 1); 2725 return 0; 2726 } 2727 2728 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2729 unsigned int segno, struct f2fs_summary_block *sum) 2730 { 2731 struct f2fs_node *rn; 2732 struct f2fs_summary *sum_entry; 2733 block_t addr; 2734 int i, idx, last_offset, nrpages; 2735 2736 /* scan the node segment */ 2737 last_offset = sbi->blocks_per_seg; 2738 addr = START_BLOCK(sbi, segno); 2739 sum_entry = &sum->entries[0]; 2740 2741 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2742 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2743 2744 /* readahead node pages */ 2745 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2746 2747 for (idx = addr; idx < addr + nrpages; idx++) { 2748 struct page *page = f2fs_get_tmp_page(sbi, idx); 2749 2750 if (IS_ERR(page)) 2751 return PTR_ERR(page); 2752 2753 rn = F2FS_NODE(page); 2754 sum_entry->nid = rn->footer.nid; 2755 sum_entry->version = 0; 2756 sum_entry->ofs_in_node = 0; 2757 sum_entry++; 2758 f2fs_put_page(page, 1); 2759 } 2760 2761 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2762 addr + nrpages); 2763 } 2764 return 0; 2765 } 2766 2767 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2768 { 2769 struct f2fs_nm_info *nm_i = NM_I(sbi); 2770 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2771 struct f2fs_journal *journal = curseg->journal; 2772 int i; 2773 2774 down_write(&curseg->journal_rwsem); 2775 for (i = 0; i < nats_in_cursum(journal); i++) { 2776 struct nat_entry *ne; 2777 struct f2fs_nat_entry raw_ne; 2778 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2779 2780 raw_ne = nat_in_journal(journal, i); 2781 2782 ne = __lookup_nat_cache(nm_i, nid); 2783 if (!ne) { 2784 ne = __alloc_nat_entry(nid, true); 2785 __init_nat_entry(nm_i, ne, &raw_ne, true); 2786 } 2787 2788 /* 2789 * if a free nat in journal has not been used after last 2790 * checkpoint, we should remove it from available nids, 2791 * since later we will add it again. 2792 */ 2793 if (!get_nat_flag(ne, IS_DIRTY) && 2794 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2795 spin_lock(&nm_i->nid_list_lock); 2796 nm_i->available_nids--; 2797 spin_unlock(&nm_i->nid_list_lock); 2798 } 2799 2800 __set_nat_cache_dirty(nm_i, ne); 2801 } 2802 update_nats_in_cursum(journal, -i); 2803 up_write(&curseg->journal_rwsem); 2804 } 2805 2806 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2807 struct list_head *head, int max) 2808 { 2809 struct nat_entry_set *cur; 2810 2811 if (nes->entry_cnt >= max) 2812 goto add_out; 2813 2814 list_for_each_entry(cur, head, set_list) { 2815 if (cur->entry_cnt >= nes->entry_cnt) { 2816 list_add(&nes->set_list, cur->set_list.prev); 2817 return; 2818 } 2819 } 2820 add_out: 2821 list_add_tail(&nes->set_list, head); 2822 } 2823 2824 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2825 struct page *page) 2826 { 2827 struct f2fs_nm_info *nm_i = NM_I(sbi); 2828 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2829 struct f2fs_nat_block *nat_blk = page_address(page); 2830 int valid = 0; 2831 int i = 0; 2832 2833 if (!enabled_nat_bits(sbi, NULL)) 2834 return; 2835 2836 if (nat_index == 0) { 2837 valid = 1; 2838 i = 1; 2839 } 2840 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2841 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2842 valid++; 2843 } 2844 if (valid == 0) { 2845 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2846 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2847 return; 2848 } 2849 2850 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2851 if (valid == NAT_ENTRY_PER_BLOCK) 2852 __set_bit_le(nat_index, nm_i->full_nat_bits); 2853 else 2854 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2855 } 2856 2857 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2858 struct nat_entry_set *set, struct cp_control *cpc) 2859 { 2860 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2861 struct f2fs_journal *journal = curseg->journal; 2862 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2863 bool to_journal = true; 2864 struct f2fs_nat_block *nat_blk; 2865 struct nat_entry *ne, *cur; 2866 struct page *page = NULL; 2867 2868 /* 2869 * there are two steps to flush nat entries: 2870 * #1, flush nat entries to journal in current hot data summary block. 2871 * #2, flush nat entries to nat page. 2872 */ 2873 if (enabled_nat_bits(sbi, cpc) || 2874 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2875 to_journal = false; 2876 2877 if (to_journal) { 2878 down_write(&curseg->journal_rwsem); 2879 } else { 2880 page = get_next_nat_page(sbi, start_nid); 2881 if (IS_ERR(page)) 2882 return PTR_ERR(page); 2883 2884 nat_blk = page_address(page); 2885 f2fs_bug_on(sbi, !nat_blk); 2886 } 2887 2888 /* flush dirty nats in nat entry set */ 2889 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2890 struct f2fs_nat_entry *raw_ne; 2891 nid_t nid = nat_get_nid(ne); 2892 int offset; 2893 2894 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2895 2896 if (to_journal) { 2897 offset = f2fs_lookup_journal_in_cursum(journal, 2898 NAT_JOURNAL, nid, 1); 2899 f2fs_bug_on(sbi, offset < 0); 2900 raw_ne = &nat_in_journal(journal, offset); 2901 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2902 } else { 2903 raw_ne = &nat_blk->entries[nid - start_nid]; 2904 } 2905 raw_nat_from_node_info(raw_ne, &ne->ni); 2906 nat_reset_flag(ne); 2907 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2908 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2909 add_free_nid(sbi, nid, false, true); 2910 } else { 2911 spin_lock(&NM_I(sbi)->nid_list_lock); 2912 update_free_nid_bitmap(sbi, nid, false, false); 2913 spin_unlock(&NM_I(sbi)->nid_list_lock); 2914 } 2915 } 2916 2917 if (to_journal) { 2918 up_write(&curseg->journal_rwsem); 2919 } else { 2920 __update_nat_bits(sbi, start_nid, page); 2921 f2fs_put_page(page, 1); 2922 } 2923 2924 /* Allow dirty nats by node block allocation in write_begin */ 2925 if (!set->entry_cnt) { 2926 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2927 kmem_cache_free(nat_entry_set_slab, set); 2928 } 2929 return 0; 2930 } 2931 2932 /* 2933 * This function is called during the checkpointing process. 2934 */ 2935 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2936 { 2937 struct f2fs_nm_info *nm_i = NM_I(sbi); 2938 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2939 struct f2fs_journal *journal = curseg->journal; 2940 struct nat_entry_set *setvec[SETVEC_SIZE]; 2941 struct nat_entry_set *set, *tmp; 2942 unsigned int found; 2943 nid_t set_idx = 0; 2944 LIST_HEAD(sets); 2945 int err = 0; 2946 2947 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */ 2948 if (enabled_nat_bits(sbi, cpc)) { 2949 down_write(&nm_i->nat_tree_lock); 2950 remove_nats_in_journal(sbi); 2951 up_write(&nm_i->nat_tree_lock); 2952 } 2953 2954 if (!nm_i->dirty_nat_cnt) 2955 return 0; 2956 2957 down_write(&nm_i->nat_tree_lock); 2958 2959 /* 2960 * if there are no enough space in journal to store dirty nat 2961 * entries, remove all entries from journal and merge them 2962 * into nat entry set. 2963 */ 2964 if (enabled_nat_bits(sbi, cpc) || 2965 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2966 remove_nats_in_journal(sbi); 2967 2968 while ((found = __gang_lookup_nat_set(nm_i, 2969 set_idx, SETVEC_SIZE, setvec))) { 2970 unsigned idx; 2971 set_idx = setvec[found - 1]->set + 1; 2972 for (idx = 0; idx < found; idx++) 2973 __adjust_nat_entry_set(setvec[idx], &sets, 2974 MAX_NAT_JENTRIES(journal)); 2975 } 2976 2977 /* flush dirty nats in nat entry set */ 2978 list_for_each_entry_safe(set, tmp, &sets, set_list) { 2979 err = __flush_nat_entry_set(sbi, set, cpc); 2980 if (err) 2981 break; 2982 } 2983 2984 up_write(&nm_i->nat_tree_lock); 2985 /* Allow dirty nats by node block allocation in write_begin */ 2986 2987 return err; 2988 } 2989 2990 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2991 { 2992 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2993 struct f2fs_nm_info *nm_i = NM_I(sbi); 2994 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2995 unsigned int i; 2996 __u64 cp_ver = cur_cp_version(ckpt); 2997 block_t nat_bits_addr; 2998 2999 if (!enabled_nat_bits(sbi, NULL)) 3000 return 0; 3001 3002 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3003 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3004 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3005 if (!nm_i->nat_bits) 3006 return -ENOMEM; 3007 3008 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3009 nm_i->nat_bits_blocks; 3010 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3011 struct page *page; 3012 3013 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3014 if (IS_ERR(page)) 3015 return PTR_ERR(page); 3016 3017 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3018 page_address(page), F2FS_BLKSIZE); 3019 f2fs_put_page(page, 1); 3020 } 3021 3022 cp_ver |= (cur_cp_crc(ckpt) << 32); 3023 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3024 disable_nat_bits(sbi, true); 3025 return 0; 3026 } 3027 3028 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3029 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3030 3031 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3032 return 0; 3033 } 3034 3035 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3036 { 3037 struct f2fs_nm_info *nm_i = NM_I(sbi); 3038 unsigned int i = 0; 3039 nid_t nid, last_nid; 3040 3041 if (!enabled_nat_bits(sbi, NULL)) 3042 return; 3043 3044 for (i = 0; i < nm_i->nat_blocks; i++) { 3045 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3046 if (i >= nm_i->nat_blocks) 3047 break; 3048 3049 __set_bit_le(i, nm_i->nat_block_bitmap); 3050 3051 nid = i * NAT_ENTRY_PER_BLOCK; 3052 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3053 3054 spin_lock(&NM_I(sbi)->nid_list_lock); 3055 for (; nid < last_nid; nid++) 3056 update_free_nid_bitmap(sbi, nid, true, true); 3057 spin_unlock(&NM_I(sbi)->nid_list_lock); 3058 } 3059 3060 for (i = 0; i < nm_i->nat_blocks; i++) { 3061 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3062 if (i >= nm_i->nat_blocks) 3063 break; 3064 3065 __set_bit_le(i, nm_i->nat_block_bitmap); 3066 } 3067 } 3068 3069 static int init_node_manager(struct f2fs_sb_info *sbi) 3070 { 3071 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3072 struct f2fs_nm_info *nm_i = NM_I(sbi); 3073 unsigned char *version_bitmap; 3074 unsigned int nat_segs; 3075 int err; 3076 3077 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3078 3079 /* segment_count_nat includes pair segment so divide to 2. */ 3080 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3081 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3082 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3083 3084 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3085 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3086 F2FS_RESERVED_NODE_NUM; 3087 nm_i->nid_cnt[FREE_NID] = 0; 3088 nm_i->nid_cnt[PREALLOC_NID] = 0; 3089 nm_i->nat_cnt = 0; 3090 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3091 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3092 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3093 3094 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3095 INIT_LIST_HEAD(&nm_i->free_nid_list); 3096 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3097 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3098 INIT_LIST_HEAD(&nm_i->nat_entries); 3099 spin_lock_init(&nm_i->nat_list_lock); 3100 3101 mutex_init(&nm_i->build_lock); 3102 spin_lock_init(&nm_i->nid_list_lock); 3103 init_rwsem(&nm_i->nat_tree_lock); 3104 3105 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3106 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3107 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3108 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3109 GFP_KERNEL); 3110 if (!nm_i->nat_bitmap) 3111 return -ENOMEM; 3112 3113 err = __get_nat_bitmaps(sbi); 3114 if (err) 3115 return err; 3116 3117 #ifdef CONFIG_F2FS_CHECK_FS 3118 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3119 GFP_KERNEL); 3120 if (!nm_i->nat_bitmap_mir) 3121 return -ENOMEM; 3122 #endif 3123 3124 return 0; 3125 } 3126 3127 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3128 { 3129 struct f2fs_nm_info *nm_i = NM_I(sbi); 3130 int i; 3131 3132 nm_i->free_nid_bitmap = 3133 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3134 nm_i->nat_blocks), 3135 GFP_KERNEL); 3136 if (!nm_i->free_nid_bitmap) 3137 return -ENOMEM; 3138 3139 for (i = 0; i < nm_i->nat_blocks; i++) { 3140 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3141 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3142 if (!nm_i->free_nid_bitmap[i]) 3143 return -ENOMEM; 3144 } 3145 3146 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3147 GFP_KERNEL); 3148 if (!nm_i->nat_block_bitmap) 3149 return -ENOMEM; 3150 3151 nm_i->free_nid_count = 3152 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3153 nm_i->nat_blocks), 3154 GFP_KERNEL); 3155 if (!nm_i->free_nid_count) 3156 return -ENOMEM; 3157 return 0; 3158 } 3159 3160 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3161 { 3162 int err; 3163 3164 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3165 GFP_KERNEL); 3166 if (!sbi->nm_info) 3167 return -ENOMEM; 3168 3169 err = init_node_manager(sbi); 3170 if (err) 3171 return err; 3172 3173 err = init_free_nid_cache(sbi); 3174 if (err) 3175 return err; 3176 3177 /* load free nid status from nat_bits table */ 3178 load_free_nid_bitmap(sbi); 3179 3180 return f2fs_build_free_nids(sbi, true, true); 3181 } 3182 3183 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3184 { 3185 struct f2fs_nm_info *nm_i = NM_I(sbi); 3186 struct free_nid *i, *next_i; 3187 struct nat_entry *natvec[NATVEC_SIZE]; 3188 struct nat_entry_set *setvec[SETVEC_SIZE]; 3189 nid_t nid = 0; 3190 unsigned int found; 3191 3192 if (!nm_i) 3193 return; 3194 3195 /* destroy free nid list */ 3196 spin_lock(&nm_i->nid_list_lock); 3197 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3198 __remove_free_nid(sbi, i, FREE_NID); 3199 spin_unlock(&nm_i->nid_list_lock); 3200 kmem_cache_free(free_nid_slab, i); 3201 spin_lock(&nm_i->nid_list_lock); 3202 } 3203 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3204 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3205 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3206 spin_unlock(&nm_i->nid_list_lock); 3207 3208 /* destroy nat cache */ 3209 down_write(&nm_i->nat_tree_lock); 3210 while ((found = __gang_lookup_nat_cache(nm_i, 3211 nid, NATVEC_SIZE, natvec))) { 3212 unsigned idx; 3213 3214 nid = nat_get_nid(natvec[found - 1]) + 1; 3215 for (idx = 0; idx < found; idx++) { 3216 spin_lock(&nm_i->nat_list_lock); 3217 list_del(&natvec[idx]->list); 3218 spin_unlock(&nm_i->nat_list_lock); 3219 3220 __del_from_nat_cache(nm_i, natvec[idx]); 3221 } 3222 } 3223 f2fs_bug_on(sbi, nm_i->nat_cnt); 3224 3225 /* destroy nat set cache */ 3226 nid = 0; 3227 while ((found = __gang_lookup_nat_set(nm_i, 3228 nid, SETVEC_SIZE, setvec))) { 3229 unsigned idx; 3230 3231 nid = setvec[found - 1]->set + 1; 3232 for (idx = 0; idx < found; idx++) { 3233 /* entry_cnt is not zero, when cp_error was occurred */ 3234 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3235 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3236 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3237 } 3238 } 3239 up_write(&nm_i->nat_tree_lock); 3240 3241 kvfree(nm_i->nat_block_bitmap); 3242 if (nm_i->free_nid_bitmap) { 3243 int i; 3244 3245 for (i = 0; i < nm_i->nat_blocks; i++) 3246 kvfree(nm_i->free_nid_bitmap[i]); 3247 kvfree(nm_i->free_nid_bitmap); 3248 } 3249 kvfree(nm_i->free_nid_count); 3250 3251 kvfree(nm_i->nat_bitmap); 3252 kvfree(nm_i->nat_bits); 3253 #ifdef CONFIG_F2FS_CHECK_FS 3254 kvfree(nm_i->nat_bitmap_mir); 3255 #endif 3256 sbi->nm_info = NULL; 3257 kfree(nm_i); 3258 } 3259 3260 int __init f2fs_create_node_manager_caches(void) 3261 { 3262 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3263 sizeof(struct nat_entry)); 3264 if (!nat_entry_slab) 3265 goto fail; 3266 3267 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3268 sizeof(struct free_nid)); 3269 if (!free_nid_slab) 3270 goto destroy_nat_entry; 3271 3272 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3273 sizeof(struct nat_entry_set)); 3274 if (!nat_entry_set_slab) 3275 goto destroy_free_nid; 3276 3277 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3278 sizeof(struct fsync_node_entry)); 3279 if (!fsync_node_entry_slab) 3280 goto destroy_nat_entry_set; 3281 return 0; 3282 3283 destroy_nat_entry_set: 3284 kmem_cache_destroy(nat_entry_set_slab); 3285 destroy_free_nid: 3286 kmem_cache_destroy(free_nid_slab); 3287 destroy_nat_entry: 3288 kmem_cache_destroy(nat_entry_slab); 3289 fail: 3290 return -ENOMEM; 3291 } 3292 3293 void f2fs_destroy_node_manager_caches(void) 3294 { 3295 kmem_cache_destroy(fsync_node_entry_slab); 3296 kmem_cache_destroy(nat_entry_set_slab); 3297 kmem_cache_destroy(free_nid_slab); 3298 kmem_cache_destroy(nat_entry_slab); 3299 } 3300