xref: /openbmc/linux/fs/f2fs/node.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
48 	struct sysinfo val;
49 	unsigned long avail_ram;
50 	unsigned long mem_size = 0;
51 	bool res = false;
52 
53 	if (!nm_i)
54 		return true;
55 
56 	si_meminfo(&val);
57 
58 	/* only uses low memory */
59 	avail_ram = val.totalram - val.totalhigh;
60 
61 	/*
62 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 	 */
64 	if (type == FREE_NIDS) {
65 		mem_size = (nm_i->nid_cnt[FREE_NID] *
66 				sizeof(struct free_nid)) >> PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 	} else if (type == NAT_ENTRIES) {
69 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
71 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 		if (excess_cached_nats(sbi))
73 			res = false;
74 	} else if (type == DIRTY_DENTS) {
75 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 			return false;
77 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 	} else if (type == INO_ENTRIES) {
80 		int i;
81 
82 		for (i = 0; i < MAX_INO_ENTRY; i++)
83 			mem_size += sbi->im[i].ino_num *
84 						sizeof(struct ino_entry);
85 		mem_size >>= PAGE_SHIFT;
86 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 	} else if (type == EXTENT_CACHE) {
88 		mem_size = (atomic_read(&sbi->total_ext_tree) *
89 				sizeof(struct extent_tree) +
90 				atomic_read(&sbi->total_ext_node) *
91 				sizeof(struct extent_node)) >> PAGE_SHIFT;
92 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 	} else if (type == INMEM_PAGES) {
94 		/* it allows 20% / total_ram for inmemory pages */
95 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 		res = mem_size < (val.totalram / 5);
97 	} else if (type == DISCARD_CACHE) {
98 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
99 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
100 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
101 	} else if (type == COMPRESS_PAGE) {
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 		unsigned long free_ram = val.freeram;
104 
105 		/*
106 		 * free memory is lower than watermark or cached page count
107 		 * exceed threshold, deny caching compress page.
108 		 */
109 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
110 			(COMPRESS_MAPPING(sbi)->nrpages <
111 			 free_ram * sbi->compress_percent / 100);
112 #else
113 		res = false;
114 #endif
115 	} else {
116 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
117 			return true;
118 	}
119 	return res;
120 }
121 
122 static void clear_node_page_dirty(struct page *page)
123 {
124 	if (PageDirty(page)) {
125 		f2fs_clear_page_cache_dirty_tag(page);
126 		clear_page_dirty_for_io(page);
127 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
128 	}
129 	ClearPageUptodate(page);
130 }
131 
132 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
133 {
134 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
135 }
136 
137 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
138 {
139 	struct page *src_page;
140 	struct page *dst_page;
141 	pgoff_t dst_off;
142 	void *src_addr;
143 	void *dst_addr;
144 	struct f2fs_nm_info *nm_i = NM_I(sbi);
145 
146 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
147 
148 	/* get current nat block page with lock */
149 	src_page = get_current_nat_page(sbi, nid);
150 	if (IS_ERR(src_page))
151 		return src_page;
152 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
153 	f2fs_bug_on(sbi, PageDirty(src_page));
154 
155 	src_addr = page_address(src_page);
156 	dst_addr = page_address(dst_page);
157 	memcpy(dst_addr, src_addr, PAGE_SIZE);
158 	set_page_dirty(dst_page);
159 	f2fs_put_page(src_page, 1);
160 
161 	set_to_next_nat(nm_i, nid);
162 
163 	return dst_page;
164 }
165 
166 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
167 						nid_t nid, bool no_fail)
168 {
169 	struct nat_entry *new;
170 
171 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
172 					GFP_F2FS_ZERO, no_fail, sbi);
173 	if (new) {
174 		nat_set_nid(new, nid);
175 		nat_reset_flag(new);
176 	}
177 	return new;
178 }
179 
180 static void __free_nat_entry(struct nat_entry *e)
181 {
182 	kmem_cache_free(nat_entry_slab, e);
183 }
184 
185 /* must be locked by nat_tree_lock */
186 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188 {
189 	if (no_fail)
190 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 		return NULL;
193 
194 	if (raw_ne)
195 		node_info_from_raw_nat(&ne->ni, raw_ne);
196 
197 	spin_lock(&nm_i->nat_list_lock);
198 	list_add_tail(&ne->list, &nm_i->nat_entries);
199 	spin_unlock(&nm_i->nat_list_lock);
200 
201 	nm_i->nat_cnt[TOTAL_NAT]++;
202 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 	return ne;
204 }
205 
206 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207 {
208 	struct nat_entry *ne;
209 
210 	ne = radix_tree_lookup(&nm_i->nat_root, n);
211 
212 	/* for recent accessed nat entry, move it to tail of lru list */
213 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 		spin_lock(&nm_i->nat_list_lock);
215 		if (!list_empty(&ne->list))
216 			list_move_tail(&ne->list, &nm_i->nat_entries);
217 		spin_unlock(&nm_i->nat_list_lock);
218 	}
219 
220 	return ne;
221 }
222 
223 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 		nid_t start, unsigned int nr, struct nat_entry **ep)
225 {
226 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227 }
228 
229 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230 {
231 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 	nm_i->nat_cnt[TOTAL_NAT]--;
233 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 	__free_nat_entry(e);
235 }
236 
237 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 							struct nat_entry *ne)
239 {
240 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 	struct nat_entry_set *head;
242 
243 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 	if (!head) {
245 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
246 						GFP_NOFS, true, NULL);
247 
248 		INIT_LIST_HEAD(&head->entry_list);
249 		INIT_LIST_HEAD(&head->set_list);
250 		head->set = set;
251 		head->entry_cnt = 0;
252 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
253 	}
254 	return head;
255 }
256 
257 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
258 						struct nat_entry *ne)
259 {
260 	struct nat_entry_set *head;
261 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
262 
263 	if (!new_ne)
264 		head = __grab_nat_entry_set(nm_i, ne);
265 
266 	/*
267 	 * update entry_cnt in below condition:
268 	 * 1. update NEW_ADDR to valid block address;
269 	 * 2. update old block address to new one;
270 	 */
271 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
272 				!get_nat_flag(ne, IS_DIRTY)))
273 		head->entry_cnt++;
274 
275 	set_nat_flag(ne, IS_PREALLOC, new_ne);
276 
277 	if (get_nat_flag(ne, IS_DIRTY))
278 		goto refresh_list;
279 
280 	nm_i->nat_cnt[DIRTY_NAT]++;
281 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
282 	set_nat_flag(ne, IS_DIRTY, true);
283 refresh_list:
284 	spin_lock(&nm_i->nat_list_lock);
285 	if (new_ne)
286 		list_del_init(&ne->list);
287 	else
288 		list_move_tail(&ne->list, &head->entry_list);
289 	spin_unlock(&nm_i->nat_list_lock);
290 }
291 
292 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
293 		struct nat_entry_set *set, struct nat_entry *ne)
294 {
295 	spin_lock(&nm_i->nat_list_lock);
296 	list_move_tail(&ne->list, &nm_i->nat_entries);
297 	spin_unlock(&nm_i->nat_list_lock);
298 
299 	set_nat_flag(ne, IS_DIRTY, false);
300 	set->entry_cnt--;
301 	nm_i->nat_cnt[DIRTY_NAT]--;
302 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
303 }
304 
305 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
306 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
307 {
308 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
309 							start, nr);
310 }
311 
312 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
313 {
314 	return NODE_MAPPING(sbi) == page->mapping &&
315 			IS_DNODE(page) && is_cold_node(page);
316 }
317 
318 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
319 {
320 	spin_lock_init(&sbi->fsync_node_lock);
321 	INIT_LIST_HEAD(&sbi->fsync_node_list);
322 	sbi->fsync_seg_id = 0;
323 	sbi->fsync_node_num = 0;
324 }
325 
326 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
327 							struct page *page)
328 {
329 	struct fsync_node_entry *fn;
330 	unsigned long flags;
331 	unsigned int seq_id;
332 
333 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
334 					GFP_NOFS, true, NULL);
335 
336 	get_page(page);
337 	fn->page = page;
338 	INIT_LIST_HEAD(&fn->list);
339 
340 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
341 	list_add_tail(&fn->list, &sbi->fsync_node_list);
342 	fn->seq_id = sbi->fsync_seg_id++;
343 	seq_id = fn->seq_id;
344 	sbi->fsync_node_num++;
345 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
346 
347 	return seq_id;
348 }
349 
350 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
351 {
352 	struct fsync_node_entry *fn;
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
356 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
357 		if (fn->page == page) {
358 			list_del(&fn->list);
359 			sbi->fsync_node_num--;
360 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 			kmem_cache_free(fsync_node_entry_slab, fn);
362 			put_page(page);
363 			return;
364 		}
365 	}
366 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
367 	f2fs_bug_on(sbi, 1);
368 }
369 
370 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
371 {
372 	unsigned long flags;
373 
374 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
375 	sbi->fsync_seg_id = 0;
376 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
377 }
378 
379 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
380 {
381 	struct f2fs_nm_info *nm_i = NM_I(sbi);
382 	struct nat_entry *e;
383 	bool need = false;
384 
385 	down_read(&nm_i->nat_tree_lock);
386 	e = __lookup_nat_cache(nm_i, nid);
387 	if (e) {
388 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
389 				!get_nat_flag(e, HAS_FSYNCED_INODE))
390 			need = true;
391 	}
392 	up_read(&nm_i->nat_tree_lock);
393 	return need;
394 }
395 
396 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
397 {
398 	struct f2fs_nm_info *nm_i = NM_I(sbi);
399 	struct nat_entry *e;
400 	bool is_cp = true;
401 
402 	down_read(&nm_i->nat_tree_lock);
403 	e = __lookup_nat_cache(nm_i, nid);
404 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
405 		is_cp = false;
406 	up_read(&nm_i->nat_tree_lock);
407 	return is_cp;
408 }
409 
410 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
411 {
412 	struct f2fs_nm_info *nm_i = NM_I(sbi);
413 	struct nat_entry *e;
414 	bool need_update = true;
415 
416 	down_read(&nm_i->nat_tree_lock);
417 	e = __lookup_nat_cache(nm_i, ino);
418 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
419 			(get_nat_flag(e, IS_CHECKPOINTED) ||
420 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
421 		need_update = false;
422 	up_read(&nm_i->nat_tree_lock);
423 	return need_update;
424 }
425 
426 /* must be locked by nat_tree_lock */
427 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
428 						struct f2fs_nat_entry *ne)
429 {
430 	struct f2fs_nm_info *nm_i = NM_I(sbi);
431 	struct nat_entry *new, *e;
432 
433 	new = __alloc_nat_entry(sbi, nid, false);
434 	if (!new)
435 		return;
436 
437 	down_write(&nm_i->nat_tree_lock);
438 	e = __lookup_nat_cache(nm_i, nid);
439 	if (!e)
440 		e = __init_nat_entry(nm_i, new, ne, false);
441 	else
442 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
443 				nat_get_blkaddr(e) !=
444 					le32_to_cpu(ne->block_addr) ||
445 				nat_get_version(e) != ne->version);
446 	up_write(&nm_i->nat_tree_lock);
447 	if (e != new)
448 		__free_nat_entry(new);
449 }
450 
451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
452 			block_t new_blkaddr, bool fsync_done)
453 {
454 	struct f2fs_nm_info *nm_i = NM_I(sbi);
455 	struct nat_entry *e;
456 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
457 
458 	down_write(&nm_i->nat_tree_lock);
459 	e = __lookup_nat_cache(nm_i, ni->nid);
460 	if (!e) {
461 		e = __init_nat_entry(nm_i, new, NULL, true);
462 		copy_node_info(&e->ni, ni);
463 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
464 	} else if (new_blkaddr == NEW_ADDR) {
465 		/*
466 		 * when nid is reallocated,
467 		 * previous nat entry can be remained in nat cache.
468 		 * So, reinitialize it with new information.
469 		 */
470 		copy_node_info(&e->ni, ni);
471 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
472 	}
473 	/* let's free early to reduce memory consumption */
474 	if (e != new)
475 		__free_nat_entry(new);
476 
477 	/* sanity check */
478 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
479 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
480 			new_blkaddr == NULL_ADDR);
481 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
482 			new_blkaddr == NEW_ADDR);
483 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
484 			new_blkaddr == NEW_ADDR);
485 
486 	/* increment version no as node is removed */
487 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
488 		unsigned char version = nat_get_version(e);
489 
490 		nat_set_version(e, inc_node_version(version));
491 	}
492 
493 	/* change address */
494 	nat_set_blkaddr(e, new_blkaddr);
495 	if (!__is_valid_data_blkaddr(new_blkaddr))
496 		set_nat_flag(e, IS_CHECKPOINTED, false);
497 	__set_nat_cache_dirty(nm_i, e);
498 
499 	/* update fsync_mark if its inode nat entry is still alive */
500 	if (ni->nid != ni->ino)
501 		e = __lookup_nat_cache(nm_i, ni->ino);
502 	if (e) {
503 		if (fsync_done && ni->nid == ni->ino)
504 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
505 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
506 	}
507 	up_write(&nm_i->nat_tree_lock);
508 }
509 
510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
511 {
512 	struct f2fs_nm_info *nm_i = NM_I(sbi);
513 	int nr = nr_shrink;
514 
515 	if (!down_write_trylock(&nm_i->nat_tree_lock))
516 		return 0;
517 
518 	spin_lock(&nm_i->nat_list_lock);
519 	while (nr_shrink) {
520 		struct nat_entry *ne;
521 
522 		if (list_empty(&nm_i->nat_entries))
523 			break;
524 
525 		ne = list_first_entry(&nm_i->nat_entries,
526 					struct nat_entry, list);
527 		list_del(&ne->list);
528 		spin_unlock(&nm_i->nat_list_lock);
529 
530 		__del_from_nat_cache(nm_i, ne);
531 		nr_shrink--;
532 
533 		spin_lock(&nm_i->nat_list_lock);
534 	}
535 	spin_unlock(&nm_i->nat_list_lock);
536 
537 	up_write(&nm_i->nat_tree_lock);
538 	return nr - nr_shrink;
539 }
540 
541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
542 						struct node_info *ni)
543 {
544 	struct f2fs_nm_info *nm_i = NM_I(sbi);
545 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
546 	struct f2fs_journal *journal = curseg->journal;
547 	nid_t start_nid = START_NID(nid);
548 	struct f2fs_nat_block *nat_blk;
549 	struct page *page = NULL;
550 	struct f2fs_nat_entry ne;
551 	struct nat_entry *e;
552 	pgoff_t index;
553 	block_t blkaddr;
554 	int i;
555 
556 	ni->nid = nid;
557 retry:
558 	/* Check nat cache */
559 	down_read(&nm_i->nat_tree_lock);
560 	e = __lookup_nat_cache(nm_i, nid);
561 	if (e) {
562 		ni->ino = nat_get_ino(e);
563 		ni->blk_addr = nat_get_blkaddr(e);
564 		ni->version = nat_get_version(e);
565 		up_read(&nm_i->nat_tree_lock);
566 		return 0;
567 	}
568 
569 	/*
570 	 * Check current segment summary by trying to grab journal_rwsem first.
571 	 * This sem is on the critical path on the checkpoint requiring the above
572 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
573 	 * while not bothering checkpoint.
574 	 */
575 	if (!rwsem_is_locked(&sbi->cp_global_sem)) {
576 		down_read(&curseg->journal_rwsem);
577 	} else if (!down_read_trylock(&curseg->journal_rwsem)) {
578 		up_read(&nm_i->nat_tree_lock);
579 		goto retry;
580 	}
581 
582 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
583 	if (i >= 0) {
584 		ne = nat_in_journal(journal, i);
585 		node_info_from_raw_nat(ni, &ne);
586 	}
587 	up_read(&curseg->journal_rwsem);
588 	if (i >= 0) {
589 		up_read(&nm_i->nat_tree_lock);
590 		goto cache;
591 	}
592 
593 	/* Fill node_info from nat page */
594 	index = current_nat_addr(sbi, nid);
595 	up_read(&nm_i->nat_tree_lock);
596 
597 	page = f2fs_get_meta_page(sbi, index);
598 	if (IS_ERR(page))
599 		return PTR_ERR(page);
600 
601 	nat_blk = (struct f2fs_nat_block *)page_address(page);
602 	ne = nat_blk->entries[nid - start_nid];
603 	node_info_from_raw_nat(ni, &ne);
604 	f2fs_put_page(page, 1);
605 cache:
606 	blkaddr = le32_to_cpu(ne.block_addr);
607 	if (__is_valid_data_blkaddr(blkaddr) &&
608 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
609 		return -EFAULT;
610 
611 	/* cache nat entry */
612 	cache_nat_entry(sbi, nid, &ne);
613 	return 0;
614 }
615 
616 /*
617  * readahead MAX_RA_NODE number of node pages.
618  */
619 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
620 {
621 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
622 	struct blk_plug plug;
623 	int i, end;
624 	nid_t nid;
625 
626 	blk_start_plug(&plug);
627 
628 	/* Then, try readahead for siblings of the desired node */
629 	end = start + n;
630 	end = min(end, NIDS_PER_BLOCK);
631 	for (i = start; i < end; i++) {
632 		nid = get_nid(parent, i, false);
633 		f2fs_ra_node_page(sbi, nid);
634 	}
635 
636 	blk_finish_plug(&plug);
637 }
638 
639 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
640 {
641 	const long direct_index = ADDRS_PER_INODE(dn->inode);
642 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
643 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
644 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
645 	int cur_level = dn->cur_level;
646 	int max_level = dn->max_level;
647 	pgoff_t base = 0;
648 
649 	if (!dn->max_level)
650 		return pgofs + 1;
651 
652 	while (max_level-- > cur_level)
653 		skipped_unit *= NIDS_PER_BLOCK;
654 
655 	switch (dn->max_level) {
656 	case 3:
657 		base += 2 * indirect_blks;
658 		fallthrough;
659 	case 2:
660 		base += 2 * direct_blks;
661 		fallthrough;
662 	case 1:
663 		base += direct_index;
664 		break;
665 	default:
666 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
667 	}
668 
669 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
670 }
671 
672 /*
673  * The maximum depth is four.
674  * Offset[0] will have raw inode offset.
675  */
676 static int get_node_path(struct inode *inode, long block,
677 				int offset[4], unsigned int noffset[4])
678 {
679 	const long direct_index = ADDRS_PER_INODE(inode);
680 	const long direct_blks = ADDRS_PER_BLOCK(inode);
681 	const long dptrs_per_blk = NIDS_PER_BLOCK;
682 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
683 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
684 	int n = 0;
685 	int level = 0;
686 
687 	noffset[0] = 0;
688 
689 	if (block < direct_index) {
690 		offset[n] = block;
691 		goto got;
692 	}
693 	block -= direct_index;
694 	if (block < direct_blks) {
695 		offset[n++] = NODE_DIR1_BLOCK;
696 		noffset[n] = 1;
697 		offset[n] = block;
698 		level = 1;
699 		goto got;
700 	}
701 	block -= direct_blks;
702 	if (block < direct_blks) {
703 		offset[n++] = NODE_DIR2_BLOCK;
704 		noffset[n] = 2;
705 		offset[n] = block;
706 		level = 1;
707 		goto got;
708 	}
709 	block -= direct_blks;
710 	if (block < indirect_blks) {
711 		offset[n++] = NODE_IND1_BLOCK;
712 		noffset[n] = 3;
713 		offset[n++] = block / direct_blks;
714 		noffset[n] = 4 + offset[n - 1];
715 		offset[n] = block % direct_blks;
716 		level = 2;
717 		goto got;
718 	}
719 	block -= indirect_blks;
720 	if (block < indirect_blks) {
721 		offset[n++] = NODE_IND2_BLOCK;
722 		noffset[n] = 4 + dptrs_per_blk;
723 		offset[n++] = block / direct_blks;
724 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
725 		offset[n] = block % direct_blks;
726 		level = 2;
727 		goto got;
728 	}
729 	block -= indirect_blks;
730 	if (block < dindirect_blks) {
731 		offset[n++] = NODE_DIND_BLOCK;
732 		noffset[n] = 5 + (dptrs_per_blk * 2);
733 		offset[n++] = block / indirect_blks;
734 		noffset[n] = 6 + (dptrs_per_blk * 2) +
735 			      offset[n - 1] * (dptrs_per_blk + 1);
736 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
737 		noffset[n] = 7 + (dptrs_per_blk * 2) +
738 			      offset[n - 2] * (dptrs_per_blk + 1) +
739 			      offset[n - 1];
740 		offset[n] = block % direct_blks;
741 		level = 3;
742 		goto got;
743 	} else {
744 		return -E2BIG;
745 	}
746 got:
747 	return level;
748 }
749 
750 /*
751  * Caller should call f2fs_put_dnode(dn).
752  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
753  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
754  */
755 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
756 {
757 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
758 	struct page *npage[4];
759 	struct page *parent = NULL;
760 	int offset[4];
761 	unsigned int noffset[4];
762 	nid_t nids[4];
763 	int level, i = 0;
764 	int err = 0;
765 
766 	level = get_node_path(dn->inode, index, offset, noffset);
767 	if (level < 0)
768 		return level;
769 
770 	nids[0] = dn->inode->i_ino;
771 	npage[0] = dn->inode_page;
772 
773 	if (!npage[0]) {
774 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
775 		if (IS_ERR(npage[0]))
776 			return PTR_ERR(npage[0]);
777 	}
778 
779 	/* if inline_data is set, should not report any block indices */
780 	if (f2fs_has_inline_data(dn->inode) && index) {
781 		err = -ENOENT;
782 		f2fs_put_page(npage[0], 1);
783 		goto release_out;
784 	}
785 
786 	parent = npage[0];
787 	if (level != 0)
788 		nids[1] = get_nid(parent, offset[0], true);
789 	dn->inode_page = npage[0];
790 	dn->inode_page_locked = true;
791 
792 	/* get indirect or direct nodes */
793 	for (i = 1; i <= level; i++) {
794 		bool done = false;
795 
796 		if (!nids[i] && mode == ALLOC_NODE) {
797 			/* alloc new node */
798 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
799 				err = -ENOSPC;
800 				goto release_pages;
801 			}
802 
803 			dn->nid = nids[i];
804 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
805 			if (IS_ERR(npage[i])) {
806 				f2fs_alloc_nid_failed(sbi, nids[i]);
807 				err = PTR_ERR(npage[i]);
808 				goto release_pages;
809 			}
810 
811 			set_nid(parent, offset[i - 1], nids[i], i == 1);
812 			f2fs_alloc_nid_done(sbi, nids[i]);
813 			done = true;
814 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
815 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
816 			if (IS_ERR(npage[i])) {
817 				err = PTR_ERR(npage[i]);
818 				goto release_pages;
819 			}
820 			done = true;
821 		}
822 		if (i == 1) {
823 			dn->inode_page_locked = false;
824 			unlock_page(parent);
825 		} else {
826 			f2fs_put_page(parent, 1);
827 		}
828 
829 		if (!done) {
830 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
831 			if (IS_ERR(npage[i])) {
832 				err = PTR_ERR(npage[i]);
833 				f2fs_put_page(npage[0], 0);
834 				goto release_out;
835 			}
836 		}
837 		if (i < level) {
838 			parent = npage[i];
839 			nids[i + 1] = get_nid(parent, offset[i], false);
840 		}
841 	}
842 	dn->nid = nids[level];
843 	dn->ofs_in_node = offset[level];
844 	dn->node_page = npage[level];
845 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
846 
847 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
848 					f2fs_sb_has_readonly(sbi)) {
849 		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
850 		block_t blkaddr;
851 
852 		if (!c_len)
853 			goto out;
854 
855 		blkaddr = f2fs_data_blkaddr(dn);
856 		if (blkaddr == COMPRESS_ADDR)
857 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
858 						dn->ofs_in_node + 1);
859 
860 		f2fs_update_extent_tree_range_compressed(dn->inode,
861 					index, blkaddr,
862 					F2FS_I(dn->inode)->i_cluster_size,
863 					c_len);
864 	}
865 out:
866 	return 0;
867 
868 release_pages:
869 	f2fs_put_page(parent, 1);
870 	if (i > 1)
871 		f2fs_put_page(npage[0], 0);
872 release_out:
873 	dn->inode_page = NULL;
874 	dn->node_page = NULL;
875 	if (err == -ENOENT) {
876 		dn->cur_level = i;
877 		dn->max_level = level;
878 		dn->ofs_in_node = offset[level];
879 	}
880 	return err;
881 }
882 
883 static int truncate_node(struct dnode_of_data *dn)
884 {
885 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
886 	struct node_info ni;
887 	int err;
888 	pgoff_t index;
889 
890 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
891 	if (err)
892 		return err;
893 
894 	/* Deallocate node address */
895 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
896 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
897 	set_node_addr(sbi, &ni, NULL_ADDR, false);
898 
899 	if (dn->nid == dn->inode->i_ino) {
900 		f2fs_remove_orphan_inode(sbi, dn->nid);
901 		dec_valid_inode_count(sbi);
902 		f2fs_inode_synced(dn->inode);
903 	}
904 
905 	clear_node_page_dirty(dn->node_page);
906 	set_sbi_flag(sbi, SBI_IS_DIRTY);
907 
908 	index = dn->node_page->index;
909 	f2fs_put_page(dn->node_page, 1);
910 
911 	invalidate_mapping_pages(NODE_MAPPING(sbi),
912 			index, index);
913 
914 	dn->node_page = NULL;
915 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
916 
917 	return 0;
918 }
919 
920 static int truncate_dnode(struct dnode_of_data *dn)
921 {
922 	struct page *page;
923 	int err;
924 
925 	if (dn->nid == 0)
926 		return 1;
927 
928 	/* get direct node */
929 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
930 	if (PTR_ERR(page) == -ENOENT)
931 		return 1;
932 	else if (IS_ERR(page))
933 		return PTR_ERR(page);
934 
935 	/* Make dnode_of_data for parameter */
936 	dn->node_page = page;
937 	dn->ofs_in_node = 0;
938 	f2fs_truncate_data_blocks(dn);
939 	err = truncate_node(dn);
940 	if (err)
941 		return err;
942 
943 	return 1;
944 }
945 
946 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
947 						int ofs, int depth)
948 {
949 	struct dnode_of_data rdn = *dn;
950 	struct page *page;
951 	struct f2fs_node *rn;
952 	nid_t child_nid;
953 	unsigned int child_nofs;
954 	int freed = 0;
955 	int i, ret;
956 
957 	if (dn->nid == 0)
958 		return NIDS_PER_BLOCK + 1;
959 
960 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
961 
962 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
963 	if (IS_ERR(page)) {
964 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
965 		return PTR_ERR(page);
966 	}
967 
968 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
969 
970 	rn = F2FS_NODE(page);
971 	if (depth < 3) {
972 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
973 			child_nid = le32_to_cpu(rn->in.nid[i]);
974 			if (child_nid == 0)
975 				continue;
976 			rdn.nid = child_nid;
977 			ret = truncate_dnode(&rdn);
978 			if (ret < 0)
979 				goto out_err;
980 			if (set_nid(page, i, 0, false))
981 				dn->node_changed = true;
982 		}
983 	} else {
984 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
985 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
986 			child_nid = le32_to_cpu(rn->in.nid[i]);
987 			if (child_nid == 0) {
988 				child_nofs += NIDS_PER_BLOCK + 1;
989 				continue;
990 			}
991 			rdn.nid = child_nid;
992 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
993 			if (ret == (NIDS_PER_BLOCK + 1)) {
994 				if (set_nid(page, i, 0, false))
995 					dn->node_changed = true;
996 				child_nofs += ret;
997 			} else if (ret < 0 && ret != -ENOENT) {
998 				goto out_err;
999 			}
1000 		}
1001 		freed = child_nofs;
1002 	}
1003 
1004 	if (!ofs) {
1005 		/* remove current indirect node */
1006 		dn->node_page = page;
1007 		ret = truncate_node(dn);
1008 		if (ret)
1009 			goto out_err;
1010 		freed++;
1011 	} else {
1012 		f2fs_put_page(page, 1);
1013 	}
1014 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1015 	return freed;
1016 
1017 out_err:
1018 	f2fs_put_page(page, 1);
1019 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1020 	return ret;
1021 }
1022 
1023 static int truncate_partial_nodes(struct dnode_of_data *dn,
1024 			struct f2fs_inode *ri, int *offset, int depth)
1025 {
1026 	struct page *pages[2];
1027 	nid_t nid[3];
1028 	nid_t child_nid;
1029 	int err = 0;
1030 	int i;
1031 	int idx = depth - 2;
1032 
1033 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1034 	if (!nid[0])
1035 		return 0;
1036 
1037 	/* get indirect nodes in the path */
1038 	for (i = 0; i < idx + 1; i++) {
1039 		/* reference count'll be increased */
1040 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1041 		if (IS_ERR(pages[i])) {
1042 			err = PTR_ERR(pages[i]);
1043 			idx = i - 1;
1044 			goto fail;
1045 		}
1046 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1047 	}
1048 
1049 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1050 
1051 	/* free direct nodes linked to a partial indirect node */
1052 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1053 		child_nid = get_nid(pages[idx], i, false);
1054 		if (!child_nid)
1055 			continue;
1056 		dn->nid = child_nid;
1057 		err = truncate_dnode(dn);
1058 		if (err < 0)
1059 			goto fail;
1060 		if (set_nid(pages[idx], i, 0, false))
1061 			dn->node_changed = true;
1062 	}
1063 
1064 	if (offset[idx + 1] == 0) {
1065 		dn->node_page = pages[idx];
1066 		dn->nid = nid[idx];
1067 		err = truncate_node(dn);
1068 		if (err)
1069 			goto fail;
1070 	} else {
1071 		f2fs_put_page(pages[idx], 1);
1072 	}
1073 	offset[idx]++;
1074 	offset[idx + 1] = 0;
1075 	idx--;
1076 fail:
1077 	for (i = idx; i >= 0; i--)
1078 		f2fs_put_page(pages[i], 1);
1079 
1080 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1081 
1082 	return err;
1083 }
1084 
1085 /*
1086  * All the block addresses of data and nodes should be nullified.
1087  */
1088 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1089 {
1090 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1091 	int err = 0, cont = 1;
1092 	int level, offset[4], noffset[4];
1093 	unsigned int nofs = 0;
1094 	struct f2fs_inode *ri;
1095 	struct dnode_of_data dn;
1096 	struct page *page;
1097 
1098 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1099 
1100 	level = get_node_path(inode, from, offset, noffset);
1101 	if (level < 0) {
1102 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1103 		return level;
1104 	}
1105 
1106 	page = f2fs_get_node_page(sbi, inode->i_ino);
1107 	if (IS_ERR(page)) {
1108 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1109 		return PTR_ERR(page);
1110 	}
1111 
1112 	set_new_dnode(&dn, inode, page, NULL, 0);
1113 	unlock_page(page);
1114 
1115 	ri = F2FS_INODE(page);
1116 	switch (level) {
1117 	case 0:
1118 	case 1:
1119 		nofs = noffset[1];
1120 		break;
1121 	case 2:
1122 		nofs = noffset[1];
1123 		if (!offset[level - 1])
1124 			goto skip_partial;
1125 		err = truncate_partial_nodes(&dn, ri, offset, level);
1126 		if (err < 0 && err != -ENOENT)
1127 			goto fail;
1128 		nofs += 1 + NIDS_PER_BLOCK;
1129 		break;
1130 	case 3:
1131 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1132 		if (!offset[level - 1])
1133 			goto skip_partial;
1134 		err = truncate_partial_nodes(&dn, ri, offset, level);
1135 		if (err < 0 && err != -ENOENT)
1136 			goto fail;
1137 		break;
1138 	default:
1139 		BUG();
1140 	}
1141 
1142 skip_partial:
1143 	while (cont) {
1144 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1145 		switch (offset[0]) {
1146 		case NODE_DIR1_BLOCK:
1147 		case NODE_DIR2_BLOCK:
1148 			err = truncate_dnode(&dn);
1149 			break;
1150 
1151 		case NODE_IND1_BLOCK:
1152 		case NODE_IND2_BLOCK:
1153 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1154 			break;
1155 
1156 		case NODE_DIND_BLOCK:
1157 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1158 			cont = 0;
1159 			break;
1160 
1161 		default:
1162 			BUG();
1163 		}
1164 		if (err < 0 && err != -ENOENT)
1165 			goto fail;
1166 		if (offset[1] == 0 &&
1167 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1168 			lock_page(page);
1169 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1170 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1171 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1172 			set_page_dirty(page);
1173 			unlock_page(page);
1174 		}
1175 		offset[1] = 0;
1176 		offset[0]++;
1177 		nofs += err;
1178 	}
1179 fail:
1180 	f2fs_put_page(page, 0);
1181 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1182 	return err > 0 ? 0 : err;
1183 }
1184 
1185 /* caller must lock inode page */
1186 int f2fs_truncate_xattr_node(struct inode *inode)
1187 {
1188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1190 	struct dnode_of_data dn;
1191 	struct page *npage;
1192 	int err;
1193 
1194 	if (!nid)
1195 		return 0;
1196 
1197 	npage = f2fs_get_node_page(sbi, nid);
1198 	if (IS_ERR(npage))
1199 		return PTR_ERR(npage);
1200 
1201 	set_new_dnode(&dn, inode, NULL, npage, nid);
1202 	err = truncate_node(&dn);
1203 	if (err) {
1204 		f2fs_put_page(npage, 1);
1205 		return err;
1206 	}
1207 
1208 	f2fs_i_xnid_write(inode, 0);
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1215  * f2fs_unlock_op().
1216  */
1217 int f2fs_remove_inode_page(struct inode *inode)
1218 {
1219 	struct dnode_of_data dn;
1220 	int err;
1221 
1222 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1223 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1224 	if (err)
1225 		return err;
1226 
1227 	err = f2fs_truncate_xattr_node(inode);
1228 	if (err) {
1229 		f2fs_put_dnode(&dn);
1230 		return err;
1231 	}
1232 
1233 	/* remove potential inline_data blocks */
1234 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235 				S_ISLNK(inode->i_mode))
1236 		f2fs_truncate_data_blocks_range(&dn, 1);
1237 
1238 	/* 0 is possible, after f2fs_new_inode() has failed */
1239 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1240 		f2fs_put_dnode(&dn);
1241 		return -EIO;
1242 	}
1243 
1244 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1245 		f2fs_warn(F2FS_I_SB(inode),
1246 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1247 			inode->i_ino, (unsigned long long)inode->i_blocks);
1248 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1249 	}
1250 
1251 	/* will put inode & node pages */
1252 	err = truncate_node(&dn);
1253 	if (err) {
1254 		f2fs_put_dnode(&dn);
1255 		return err;
1256 	}
1257 	return 0;
1258 }
1259 
1260 struct page *f2fs_new_inode_page(struct inode *inode)
1261 {
1262 	struct dnode_of_data dn;
1263 
1264 	/* allocate inode page for new inode */
1265 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266 
1267 	/* caller should f2fs_put_page(page, 1); */
1268 	return f2fs_new_node_page(&dn, 0);
1269 }
1270 
1271 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1272 {
1273 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1274 	struct node_info new_ni;
1275 	struct page *page;
1276 	int err;
1277 
1278 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1279 		return ERR_PTR(-EPERM);
1280 
1281 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1282 	if (!page)
1283 		return ERR_PTR(-ENOMEM);
1284 
1285 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1286 		goto fail;
1287 
1288 #ifdef CONFIG_F2FS_CHECK_FS
1289 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1290 	if (err) {
1291 		dec_valid_node_count(sbi, dn->inode, !ofs);
1292 		goto fail;
1293 	}
1294 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1295 #endif
1296 	new_ni.nid = dn->nid;
1297 	new_ni.ino = dn->inode->i_ino;
1298 	new_ni.blk_addr = NULL_ADDR;
1299 	new_ni.flag = 0;
1300 	new_ni.version = 0;
1301 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1302 
1303 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1304 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1305 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1306 	if (!PageUptodate(page))
1307 		SetPageUptodate(page);
1308 	if (set_page_dirty(page))
1309 		dn->node_changed = true;
1310 
1311 	if (f2fs_has_xattr_block(ofs))
1312 		f2fs_i_xnid_write(dn->inode, dn->nid);
1313 
1314 	if (ofs == 0)
1315 		inc_valid_inode_count(sbi);
1316 	return page;
1317 
1318 fail:
1319 	clear_node_page_dirty(page);
1320 	f2fs_put_page(page, 1);
1321 	return ERR_PTR(err);
1322 }
1323 
1324 /*
1325  * Caller should do after getting the following values.
1326  * 0: f2fs_put_page(page, 0)
1327  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1328  */
1329 static int read_node_page(struct page *page, int op_flags)
1330 {
1331 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1332 	struct node_info ni;
1333 	struct f2fs_io_info fio = {
1334 		.sbi = sbi,
1335 		.type = NODE,
1336 		.op = REQ_OP_READ,
1337 		.op_flags = op_flags,
1338 		.page = page,
1339 		.encrypted_page = NULL,
1340 	};
1341 	int err;
1342 
1343 	if (PageUptodate(page)) {
1344 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1345 			ClearPageUptodate(page);
1346 			return -EFSBADCRC;
1347 		}
1348 		return LOCKED_PAGE;
1349 	}
1350 
1351 	err = f2fs_get_node_info(sbi, page->index, &ni);
1352 	if (err)
1353 		return err;
1354 
1355 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1356 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1357 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1358 		ClearPageUptodate(page);
1359 		return -ENOENT;
1360 	}
1361 
1362 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1363 
1364 	err = f2fs_submit_page_bio(&fio);
1365 
1366 	if (!err)
1367 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1368 
1369 	return err;
1370 }
1371 
1372 /*
1373  * Readahead a node page
1374  */
1375 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1376 {
1377 	struct page *apage;
1378 	int err;
1379 
1380 	if (!nid)
1381 		return;
1382 	if (f2fs_check_nid_range(sbi, nid))
1383 		return;
1384 
1385 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1386 	if (apage)
1387 		return;
1388 
1389 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1390 	if (!apage)
1391 		return;
1392 
1393 	err = read_node_page(apage, REQ_RAHEAD);
1394 	f2fs_put_page(apage, err ? 1 : 0);
1395 }
1396 
1397 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1398 					struct page *parent, int start)
1399 {
1400 	struct page *page;
1401 	int err;
1402 
1403 	if (!nid)
1404 		return ERR_PTR(-ENOENT);
1405 	if (f2fs_check_nid_range(sbi, nid))
1406 		return ERR_PTR(-EINVAL);
1407 repeat:
1408 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1409 	if (!page)
1410 		return ERR_PTR(-ENOMEM);
1411 
1412 	err = read_node_page(page, 0);
1413 	if (err < 0) {
1414 		f2fs_put_page(page, 1);
1415 		return ERR_PTR(err);
1416 	} else if (err == LOCKED_PAGE) {
1417 		err = 0;
1418 		goto page_hit;
1419 	}
1420 
1421 	if (parent)
1422 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1423 
1424 	lock_page(page);
1425 
1426 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1427 		f2fs_put_page(page, 1);
1428 		goto repeat;
1429 	}
1430 
1431 	if (unlikely(!PageUptodate(page))) {
1432 		err = -EIO;
1433 		goto out_err;
1434 	}
1435 
1436 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1437 		err = -EFSBADCRC;
1438 		goto out_err;
1439 	}
1440 page_hit:
1441 	if (unlikely(nid != nid_of_node(page))) {
1442 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1443 			  nid, nid_of_node(page), ino_of_node(page),
1444 			  ofs_of_node(page), cpver_of_node(page),
1445 			  next_blkaddr_of_node(page));
1446 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1447 		err = -EINVAL;
1448 out_err:
1449 		ClearPageUptodate(page);
1450 		f2fs_put_page(page, 1);
1451 		return ERR_PTR(err);
1452 	}
1453 	return page;
1454 }
1455 
1456 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1457 {
1458 	return __get_node_page(sbi, nid, NULL, 0);
1459 }
1460 
1461 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1462 {
1463 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1464 	nid_t nid = get_nid(parent, start, false);
1465 
1466 	return __get_node_page(sbi, nid, parent, start);
1467 }
1468 
1469 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1470 {
1471 	struct inode *inode;
1472 	struct page *page;
1473 	int ret;
1474 
1475 	/* should flush inline_data before evict_inode */
1476 	inode = ilookup(sbi->sb, ino);
1477 	if (!inode)
1478 		return;
1479 
1480 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1481 					FGP_LOCK|FGP_NOWAIT, 0);
1482 	if (!page)
1483 		goto iput_out;
1484 
1485 	if (!PageUptodate(page))
1486 		goto page_out;
1487 
1488 	if (!PageDirty(page))
1489 		goto page_out;
1490 
1491 	if (!clear_page_dirty_for_io(page))
1492 		goto page_out;
1493 
1494 	ret = f2fs_write_inline_data(inode, page);
1495 	inode_dec_dirty_pages(inode);
1496 	f2fs_remove_dirty_inode(inode);
1497 	if (ret)
1498 		set_page_dirty(page);
1499 page_out:
1500 	f2fs_put_page(page, 1);
1501 iput_out:
1502 	iput(inode);
1503 }
1504 
1505 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1506 {
1507 	pgoff_t index;
1508 	struct pagevec pvec;
1509 	struct page *last_page = NULL;
1510 	int nr_pages;
1511 
1512 	pagevec_init(&pvec);
1513 	index = 0;
1514 
1515 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1516 				PAGECACHE_TAG_DIRTY))) {
1517 		int i;
1518 
1519 		for (i = 0; i < nr_pages; i++) {
1520 			struct page *page = pvec.pages[i];
1521 
1522 			if (unlikely(f2fs_cp_error(sbi))) {
1523 				f2fs_put_page(last_page, 0);
1524 				pagevec_release(&pvec);
1525 				return ERR_PTR(-EIO);
1526 			}
1527 
1528 			if (!IS_DNODE(page) || !is_cold_node(page))
1529 				continue;
1530 			if (ino_of_node(page) != ino)
1531 				continue;
1532 
1533 			lock_page(page);
1534 
1535 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1536 continue_unlock:
1537 				unlock_page(page);
1538 				continue;
1539 			}
1540 			if (ino_of_node(page) != ino)
1541 				goto continue_unlock;
1542 
1543 			if (!PageDirty(page)) {
1544 				/* someone wrote it for us */
1545 				goto continue_unlock;
1546 			}
1547 
1548 			if (last_page)
1549 				f2fs_put_page(last_page, 0);
1550 
1551 			get_page(page);
1552 			last_page = page;
1553 			unlock_page(page);
1554 		}
1555 		pagevec_release(&pvec);
1556 		cond_resched();
1557 	}
1558 	return last_page;
1559 }
1560 
1561 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1562 				struct writeback_control *wbc, bool do_balance,
1563 				enum iostat_type io_type, unsigned int *seq_id)
1564 {
1565 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1566 	nid_t nid;
1567 	struct node_info ni;
1568 	struct f2fs_io_info fio = {
1569 		.sbi = sbi,
1570 		.ino = ino_of_node(page),
1571 		.type = NODE,
1572 		.op = REQ_OP_WRITE,
1573 		.op_flags = wbc_to_write_flags(wbc),
1574 		.page = page,
1575 		.encrypted_page = NULL,
1576 		.submitted = false,
1577 		.io_type = io_type,
1578 		.io_wbc = wbc,
1579 	};
1580 	unsigned int seq;
1581 
1582 	trace_f2fs_writepage(page, NODE);
1583 
1584 	if (unlikely(f2fs_cp_error(sbi))) {
1585 		ClearPageUptodate(page);
1586 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1587 		unlock_page(page);
1588 		return 0;
1589 	}
1590 
1591 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1592 		goto redirty_out;
1593 
1594 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1595 			wbc->sync_mode == WB_SYNC_NONE &&
1596 			IS_DNODE(page) && is_cold_node(page))
1597 		goto redirty_out;
1598 
1599 	/* get old block addr of this node page */
1600 	nid = nid_of_node(page);
1601 	f2fs_bug_on(sbi, page->index != nid);
1602 
1603 	if (f2fs_get_node_info(sbi, nid, &ni))
1604 		goto redirty_out;
1605 
1606 	if (wbc->for_reclaim) {
1607 		if (!down_read_trylock(&sbi->node_write))
1608 			goto redirty_out;
1609 	} else {
1610 		down_read(&sbi->node_write);
1611 	}
1612 
1613 	/* This page is already truncated */
1614 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1615 		ClearPageUptodate(page);
1616 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1617 		up_read(&sbi->node_write);
1618 		unlock_page(page);
1619 		return 0;
1620 	}
1621 
1622 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1623 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1624 					DATA_GENERIC_ENHANCE)) {
1625 		up_read(&sbi->node_write);
1626 		goto redirty_out;
1627 	}
1628 
1629 	if (atomic && !test_opt(sbi, NOBARRIER))
1630 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1631 
1632 	/* should add to global list before clearing PAGECACHE status */
1633 	if (f2fs_in_warm_node_list(sbi, page)) {
1634 		seq = f2fs_add_fsync_node_entry(sbi, page);
1635 		if (seq_id)
1636 			*seq_id = seq;
1637 	}
1638 
1639 	set_page_writeback(page);
1640 	ClearPageError(page);
1641 
1642 	fio.old_blkaddr = ni.blk_addr;
1643 	f2fs_do_write_node_page(nid, &fio);
1644 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1645 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1646 	up_read(&sbi->node_write);
1647 
1648 	if (wbc->for_reclaim) {
1649 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1650 		submitted = NULL;
1651 	}
1652 
1653 	unlock_page(page);
1654 
1655 	if (unlikely(f2fs_cp_error(sbi))) {
1656 		f2fs_submit_merged_write(sbi, NODE);
1657 		submitted = NULL;
1658 	}
1659 	if (submitted)
1660 		*submitted = fio.submitted;
1661 
1662 	if (do_balance)
1663 		f2fs_balance_fs(sbi, false);
1664 	return 0;
1665 
1666 redirty_out:
1667 	redirty_page_for_writepage(wbc, page);
1668 	return AOP_WRITEPAGE_ACTIVATE;
1669 }
1670 
1671 int f2fs_move_node_page(struct page *node_page, int gc_type)
1672 {
1673 	int err = 0;
1674 
1675 	if (gc_type == FG_GC) {
1676 		struct writeback_control wbc = {
1677 			.sync_mode = WB_SYNC_ALL,
1678 			.nr_to_write = 1,
1679 			.for_reclaim = 0,
1680 		};
1681 
1682 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1683 
1684 		set_page_dirty(node_page);
1685 
1686 		if (!clear_page_dirty_for_io(node_page)) {
1687 			err = -EAGAIN;
1688 			goto out_page;
1689 		}
1690 
1691 		if (__write_node_page(node_page, false, NULL,
1692 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1693 			err = -EAGAIN;
1694 			unlock_page(node_page);
1695 		}
1696 		goto release_page;
1697 	} else {
1698 		/* set page dirty and write it */
1699 		if (!PageWriteback(node_page))
1700 			set_page_dirty(node_page);
1701 	}
1702 out_page:
1703 	unlock_page(node_page);
1704 release_page:
1705 	f2fs_put_page(node_page, 0);
1706 	return err;
1707 }
1708 
1709 static int f2fs_write_node_page(struct page *page,
1710 				struct writeback_control *wbc)
1711 {
1712 	return __write_node_page(page, false, NULL, wbc, false,
1713 						FS_NODE_IO, NULL);
1714 }
1715 
1716 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1717 			struct writeback_control *wbc, bool atomic,
1718 			unsigned int *seq_id)
1719 {
1720 	pgoff_t index;
1721 	struct pagevec pvec;
1722 	int ret = 0;
1723 	struct page *last_page = NULL;
1724 	bool marked = false;
1725 	nid_t ino = inode->i_ino;
1726 	int nr_pages;
1727 	int nwritten = 0;
1728 
1729 	if (atomic) {
1730 		last_page = last_fsync_dnode(sbi, ino);
1731 		if (IS_ERR_OR_NULL(last_page))
1732 			return PTR_ERR_OR_ZERO(last_page);
1733 	}
1734 retry:
1735 	pagevec_init(&pvec);
1736 	index = 0;
1737 
1738 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1739 				PAGECACHE_TAG_DIRTY))) {
1740 		int i;
1741 
1742 		for (i = 0; i < nr_pages; i++) {
1743 			struct page *page = pvec.pages[i];
1744 			bool submitted = false;
1745 
1746 			if (unlikely(f2fs_cp_error(sbi))) {
1747 				f2fs_put_page(last_page, 0);
1748 				pagevec_release(&pvec);
1749 				ret = -EIO;
1750 				goto out;
1751 			}
1752 
1753 			if (!IS_DNODE(page) || !is_cold_node(page))
1754 				continue;
1755 			if (ino_of_node(page) != ino)
1756 				continue;
1757 
1758 			lock_page(page);
1759 
1760 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1761 continue_unlock:
1762 				unlock_page(page);
1763 				continue;
1764 			}
1765 			if (ino_of_node(page) != ino)
1766 				goto continue_unlock;
1767 
1768 			if (!PageDirty(page) && page != last_page) {
1769 				/* someone wrote it for us */
1770 				goto continue_unlock;
1771 			}
1772 
1773 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1774 
1775 			set_fsync_mark(page, 0);
1776 			set_dentry_mark(page, 0);
1777 
1778 			if (!atomic || page == last_page) {
1779 				set_fsync_mark(page, 1);
1780 				if (IS_INODE(page)) {
1781 					if (is_inode_flag_set(inode,
1782 								FI_DIRTY_INODE))
1783 						f2fs_update_inode(inode, page);
1784 					set_dentry_mark(page,
1785 						f2fs_need_dentry_mark(sbi, ino));
1786 				}
1787 				/* may be written by other thread */
1788 				if (!PageDirty(page))
1789 					set_page_dirty(page);
1790 			}
1791 
1792 			if (!clear_page_dirty_for_io(page))
1793 				goto continue_unlock;
1794 
1795 			ret = __write_node_page(page, atomic &&
1796 						page == last_page,
1797 						&submitted, wbc, true,
1798 						FS_NODE_IO, seq_id);
1799 			if (ret) {
1800 				unlock_page(page);
1801 				f2fs_put_page(last_page, 0);
1802 				break;
1803 			} else if (submitted) {
1804 				nwritten++;
1805 			}
1806 
1807 			if (page == last_page) {
1808 				f2fs_put_page(page, 0);
1809 				marked = true;
1810 				break;
1811 			}
1812 		}
1813 		pagevec_release(&pvec);
1814 		cond_resched();
1815 
1816 		if (ret || marked)
1817 			break;
1818 	}
1819 	if (!ret && atomic && !marked) {
1820 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1821 			   ino, last_page->index);
1822 		lock_page(last_page);
1823 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1824 		set_page_dirty(last_page);
1825 		unlock_page(last_page);
1826 		goto retry;
1827 	}
1828 out:
1829 	if (nwritten)
1830 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1831 	return ret ? -EIO : 0;
1832 }
1833 
1834 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1835 {
1836 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1837 	bool clean;
1838 
1839 	if (inode->i_ino != ino)
1840 		return 0;
1841 
1842 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1843 		return 0;
1844 
1845 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1846 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1847 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1848 
1849 	if (clean)
1850 		return 0;
1851 
1852 	inode = igrab(inode);
1853 	if (!inode)
1854 		return 0;
1855 	return 1;
1856 }
1857 
1858 static bool flush_dirty_inode(struct page *page)
1859 {
1860 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1861 	struct inode *inode;
1862 	nid_t ino = ino_of_node(page);
1863 
1864 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1865 	if (!inode)
1866 		return false;
1867 
1868 	f2fs_update_inode(inode, page);
1869 	unlock_page(page);
1870 
1871 	iput(inode);
1872 	return true;
1873 }
1874 
1875 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1876 {
1877 	pgoff_t index = 0;
1878 	struct pagevec pvec;
1879 	int nr_pages;
1880 
1881 	pagevec_init(&pvec);
1882 
1883 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1884 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1885 		int i;
1886 
1887 		for (i = 0; i < nr_pages; i++) {
1888 			struct page *page = pvec.pages[i];
1889 
1890 			if (!IS_DNODE(page))
1891 				continue;
1892 
1893 			lock_page(page);
1894 
1895 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1896 continue_unlock:
1897 				unlock_page(page);
1898 				continue;
1899 			}
1900 
1901 			if (!PageDirty(page)) {
1902 				/* someone wrote it for us */
1903 				goto continue_unlock;
1904 			}
1905 
1906 			/* flush inline_data, if it's async context. */
1907 			if (page_private_inline(page)) {
1908 				clear_page_private_inline(page);
1909 				unlock_page(page);
1910 				flush_inline_data(sbi, ino_of_node(page));
1911 				continue;
1912 			}
1913 			unlock_page(page);
1914 		}
1915 		pagevec_release(&pvec);
1916 		cond_resched();
1917 	}
1918 }
1919 
1920 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1921 				struct writeback_control *wbc,
1922 				bool do_balance, enum iostat_type io_type)
1923 {
1924 	pgoff_t index;
1925 	struct pagevec pvec;
1926 	int step = 0;
1927 	int nwritten = 0;
1928 	int ret = 0;
1929 	int nr_pages, done = 0;
1930 
1931 	pagevec_init(&pvec);
1932 
1933 next_step:
1934 	index = 0;
1935 
1936 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1937 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1938 		int i;
1939 
1940 		for (i = 0; i < nr_pages; i++) {
1941 			struct page *page = pvec.pages[i];
1942 			bool submitted = false;
1943 			bool may_dirty = true;
1944 
1945 			/* give a priority to WB_SYNC threads */
1946 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1947 					wbc->sync_mode == WB_SYNC_NONE) {
1948 				done = 1;
1949 				break;
1950 			}
1951 
1952 			/*
1953 			 * flushing sequence with step:
1954 			 * 0. indirect nodes
1955 			 * 1. dentry dnodes
1956 			 * 2. file dnodes
1957 			 */
1958 			if (step == 0 && IS_DNODE(page))
1959 				continue;
1960 			if (step == 1 && (!IS_DNODE(page) ||
1961 						is_cold_node(page)))
1962 				continue;
1963 			if (step == 2 && (!IS_DNODE(page) ||
1964 						!is_cold_node(page)))
1965 				continue;
1966 lock_node:
1967 			if (wbc->sync_mode == WB_SYNC_ALL)
1968 				lock_page(page);
1969 			else if (!trylock_page(page))
1970 				continue;
1971 
1972 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1973 continue_unlock:
1974 				unlock_page(page);
1975 				continue;
1976 			}
1977 
1978 			if (!PageDirty(page)) {
1979 				/* someone wrote it for us */
1980 				goto continue_unlock;
1981 			}
1982 
1983 			/* flush inline_data/inode, if it's async context. */
1984 			if (!do_balance)
1985 				goto write_node;
1986 
1987 			/* flush inline_data */
1988 			if (page_private_inline(page)) {
1989 				clear_page_private_inline(page);
1990 				unlock_page(page);
1991 				flush_inline_data(sbi, ino_of_node(page));
1992 				goto lock_node;
1993 			}
1994 
1995 			/* flush dirty inode */
1996 			if (IS_INODE(page) && may_dirty) {
1997 				may_dirty = false;
1998 				if (flush_dirty_inode(page))
1999 					goto lock_node;
2000 			}
2001 write_node:
2002 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2003 
2004 			if (!clear_page_dirty_for_io(page))
2005 				goto continue_unlock;
2006 
2007 			set_fsync_mark(page, 0);
2008 			set_dentry_mark(page, 0);
2009 
2010 			ret = __write_node_page(page, false, &submitted,
2011 						wbc, do_balance, io_type, NULL);
2012 			if (ret)
2013 				unlock_page(page);
2014 			else if (submitted)
2015 				nwritten++;
2016 
2017 			if (--wbc->nr_to_write == 0)
2018 				break;
2019 		}
2020 		pagevec_release(&pvec);
2021 		cond_resched();
2022 
2023 		if (wbc->nr_to_write == 0) {
2024 			step = 2;
2025 			break;
2026 		}
2027 	}
2028 
2029 	if (step < 2) {
2030 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2031 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2032 			goto out;
2033 		step++;
2034 		goto next_step;
2035 	}
2036 out:
2037 	if (nwritten)
2038 		f2fs_submit_merged_write(sbi, NODE);
2039 
2040 	if (unlikely(f2fs_cp_error(sbi)))
2041 		return -EIO;
2042 	return ret;
2043 }
2044 
2045 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2046 						unsigned int seq_id)
2047 {
2048 	struct fsync_node_entry *fn;
2049 	struct page *page;
2050 	struct list_head *head = &sbi->fsync_node_list;
2051 	unsigned long flags;
2052 	unsigned int cur_seq_id = 0;
2053 	int ret2, ret = 0;
2054 
2055 	while (seq_id && cur_seq_id < seq_id) {
2056 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2057 		if (list_empty(head)) {
2058 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2059 			break;
2060 		}
2061 		fn = list_first_entry(head, struct fsync_node_entry, list);
2062 		if (fn->seq_id > seq_id) {
2063 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2064 			break;
2065 		}
2066 		cur_seq_id = fn->seq_id;
2067 		page = fn->page;
2068 		get_page(page);
2069 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2070 
2071 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2072 		if (TestClearPageError(page))
2073 			ret = -EIO;
2074 
2075 		put_page(page);
2076 
2077 		if (ret)
2078 			break;
2079 	}
2080 
2081 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2082 	if (!ret)
2083 		ret = ret2;
2084 
2085 	return ret;
2086 }
2087 
2088 static int f2fs_write_node_pages(struct address_space *mapping,
2089 			    struct writeback_control *wbc)
2090 {
2091 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2092 	struct blk_plug plug;
2093 	long diff;
2094 
2095 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2096 		goto skip_write;
2097 
2098 	/* balancing f2fs's metadata in background */
2099 	f2fs_balance_fs_bg(sbi, true);
2100 
2101 	/* collect a number of dirty node pages and write together */
2102 	if (wbc->sync_mode != WB_SYNC_ALL &&
2103 			get_pages(sbi, F2FS_DIRTY_NODES) <
2104 					nr_pages_to_skip(sbi, NODE))
2105 		goto skip_write;
2106 
2107 	if (wbc->sync_mode == WB_SYNC_ALL)
2108 		atomic_inc(&sbi->wb_sync_req[NODE]);
2109 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
2110 		goto skip_write;
2111 
2112 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2113 
2114 	diff = nr_pages_to_write(sbi, NODE, wbc);
2115 	blk_start_plug(&plug);
2116 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2117 	blk_finish_plug(&plug);
2118 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2119 
2120 	if (wbc->sync_mode == WB_SYNC_ALL)
2121 		atomic_dec(&sbi->wb_sync_req[NODE]);
2122 	return 0;
2123 
2124 skip_write:
2125 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2126 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2127 	return 0;
2128 }
2129 
2130 static int f2fs_set_node_page_dirty(struct page *page)
2131 {
2132 	trace_f2fs_set_page_dirty(page, NODE);
2133 
2134 	if (!PageUptodate(page))
2135 		SetPageUptodate(page);
2136 #ifdef CONFIG_F2FS_CHECK_FS
2137 	if (IS_INODE(page))
2138 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2139 #endif
2140 	if (!PageDirty(page)) {
2141 		__set_page_dirty_nobuffers(page);
2142 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2143 		set_page_private_reference(page);
2144 		return 1;
2145 	}
2146 	return 0;
2147 }
2148 
2149 /*
2150  * Structure of the f2fs node operations
2151  */
2152 const struct address_space_operations f2fs_node_aops = {
2153 	.writepage	= f2fs_write_node_page,
2154 	.writepages	= f2fs_write_node_pages,
2155 	.set_page_dirty	= f2fs_set_node_page_dirty,
2156 	.invalidatepage	= f2fs_invalidate_page,
2157 	.releasepage	= f2fs_release_page,
2158 #ifdef CONFIG_MIGRATION
2159 	.migratepage	= f2fs_migrate_page,
2160 #endif
2161 };
2162 
2163 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2164 						nid_t n)
2165 {
2166 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2167 }
2168 
2169 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2170 				struct free_nid *i)
2171 {
2172 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2173 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2174 
2175 	if (err)
2176 		return err;
2177 
2178 	nm_i->nid_cnt[FREE_NID]++;
2179 	list_add_tail(&i->list, &nm_i->free_nid_list);
2180 	return 0;
2181 }
2182 
2183 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2184 			struct free_nid *i, enum nid_state state)
2185 {
2186 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2187 
2188 	f2fs_bug_on(sbi, state != i->state);
2189 	nm_i->nid_cnt[state]--;
2190 	if (state == FREE_NID)
2191 		list_del(&i->list);
2192 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2193 }
2194 
2195 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2196 			enum nid_state org_state, enum nid_state dst_state)
2197 {
2198 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2199 
2200 	f2fs_bug_on(sbi, org_state != i->state);
2201 	i->state = dst_state;
2202 	nm_i->nid_cnt[org_state]--;
2203 	nm_i->nid_cnt[dst_state]++;
2204 
2205 	switch (dst_state) {
2206 	case PREALLOC_NID:
2207 		list_del(&i->list);
2208 		break;
2209 	case FREE_NID:
2210 		list_add_tail(&i->list, &nm_i->free_nid_list);
2211 		break;
2212 	default:
2213 		BUG_ON(1);
2214 	}
2215 }
2216 
2217 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2218 {
2219 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2220 	unsigned int i;
2221 	bool ret = true;
2222 
2223 	down_read(&nm_i->nat_tree_lock);
2224 	for (i = 0; i < nm_i->nat_blocks; i++) {
2225 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2226 			ret = false;
2227 			break;
2228 		}
2229 	}
2230 	up_read(&nm_i->nat_tree_lock);
2231 
2232 	return ret;
2233 }
2234 
2235 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2236 							bool set, bool build)
2237 {
2238 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2239 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2240 	unsigned int nid_ofs = nid - START_NID(nid);
2241 
2242 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2243 		return;
2244 
2245 	if (set) {
2246 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2247 			return;
2248 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2249 		nm_i->free_nid_count[nat_ofs]++;
2250 	} else {
2251 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2252 			return;
2253 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2254 		if (!build)
2255 			nm_i->free_nid_count[nat_ofs]--;
2256 	}
2257 }
2258 
2259 /* return if the nid is recognized as free */
2260 static bool add_free_nid(struct f2fs_sb_info *sbi,
2261 				nid_t nid, bool build, bool update)
2262 {
2263 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2264 	struct free_nid *i, *e;
2265 	struct nat_entry *ne;
2266 	int err = -EINVAL;
2267 	bool ret = false;
2268 
2269 	/* 0 nid should not be used */
2270 	if (unlikely(nid == 0))
2271 		return false;
2272 
2273 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2274 		return false;
2275 
2276 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2277 	i->nid = nid;
2278 	i->state = FREE_NID;
2279 
2280 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2281 
2282 	spin_lock(&nm_i->nid_list_lock);
2283 
2284 	if (build) {
2285 		/*
2286 		 *   Thread A             Thread B
2287 		 *  - f2fs_create
2288 		 *   - f2fs_new_inode
2289 		 *    - f2fs_alloc_nid
2290 		 *     - __insert_nid_to_list(PREALLOC_NID)
2291 		 *                     - f2fs_balance_fs_bg
2292 		 *                      - f2fs_build_free_nids
2293 		 *                       - __f2fs_build_free_nids
2294 		 *                        - scan_nat_page
2295 		 *                         - add_free_nid
2296 		 *                          - __lookup_nat_cache
2297 		 *  - f2fs_add_link
2298 		 *   - f2fs_init_inode_metadata
2299 		 *    - f2fs_new_inode_page
2300 		 *     - f2fs_new_node_page
2301 		 *      - set_node_addr
2302 		 *  - f2fs_alloc_nid_done
2303 		 *   - __remove_nid_from_list(PREALLOC_NID)
2304 		 *                         - __insert_nid_to_list(FREE_NID)
2305 		 */
2306 		ne = __lookup_nat_cache(nm_i, nid);
2307 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2308 				nat_get_blkaddr(ne) != NULL_ADDR))
2309 			goto err_out;
2310 
2311 		e = __lookup_free_nid_list(nm_i, nid);
2312 		if (e) {
2313 			if (e->state == FREE_NID)
2314 				ret = true;
2315 			goto err_out;
2316 		}
2317 	}
2318 	ret = true;
2319 	err = __insert_free_nid(sbi, i);
2320 err_out:
2321 	if (update) {
2322 		update_free_nid_bitmap(sbi, nid, ret, build);
2323 		if (!build)
2324 			nm_i->available_nids++;
2325 	}
2326 	spin_unlock(&nm_i->nid_list_lock);
2327 	radix_tree_preload_end();
2328 
2329 	if (err)
2330 		kmem_cache_free(free_nid_slab, i);
2331 	return ret;
2332 }
2333 
2334 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2335 {
2336 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2337 	struct free_nid *i;
2338 	bool need_free = false;
2339 
2340 	spin_lock(&nm_i->nid_list_lock);
2341 	i = __lookup_free_nid_list(nm_i, nid);
2342 	if (i && i->state == FREE_NID) {
2343 		__remove_free_nid(sbi, i, FREE_NID);
2344 		need_free = true;
2345 	}
2346 	spin_unlock(&nm_i->nid_list_lock);
2347 
2348 	if (need_free)
2349 		kmem_cache_free(free_nid_slab, i);
2350 }
2351 
2352 static int scan_nat_page(struct f2fs_sb_info *sbi,
2353 			struct page *nat_page, nid_t start_nid)
2354 {
2355 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2356 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2357 	block_t blk_addr;
2358 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2359 	int i;
2360 
2361 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2362 
2363 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2364 
2365 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2366 		if (unlikely(start_nid >= nm_i->max_nid))
2367 			break;
2368 
2369 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2370 
2371 		if (blk_addr == NEW_ADDR)
2372 			return -EINVAL;
2373 
2374 		if (blk_addr == NULL_ADDR) {
2375 			add_free_nid(sbi, start_nid, true, true);
2376 		} else {
2377 			spin_lock(&NM_I(sbi)->nid_list_lock);
2378 			update_free_nid_bitmap(sbi, start_nid, false, true);
2379 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2380 		}
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2387 {
2388 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2389 	struct f2fs_journal *journal = curseg->journal;
2390 	int i;
2391 
2392 	down_read(&curseg->journal_rwsem);
2393 	for (i = 0; i < nats_in_cursum(journal); i++) {
2394 		block_t addr;
2395 		nid_t nid;
2396 
2397 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2398 		nid = le32_to_cpu(nid_in_journal(journal, i));
2399 		if (addr == NULL_ADDR)
2400 			add_free_nid(sbi, nid, true, false);
2401 		else
2402 			remove_free_nid(sbi, nid);
2403 	}
2404 	up_read(&curseg->journal_rwsem);
2405 }
2406 
2407 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2408 {
2409 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2410 	unsigned int i, idx;
2411 	nid_t nid;
2412 
2413 	down_read(&nm_i->nat_tree_lock);
2414 
2415 	for (i = 0; i < nm_i->nat_blocks; i++) {
2416 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2417 			continue;
2418 		if (!nm_i->free_nid_count[i])
2419 			continue;
2420 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2421 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2422 						NAT_ENTRY_PER_BLOCK, idx);
2423 			if (idx >= NAT_ENTRY_PER_BLOCK)
2424 				break;
2425 
2426 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2427 			add_free_nid(sbi, nid, true, false);
2428 
2429 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2430 				goto out;
2431 		}
2432 	}
2433 out:
2434 	scan_curseg_cache(sbi);
2435 
2436 	up_read(&nm_i->nat_tree_lock);
2437 }
2438 
2439 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2440 						bool sync, bool mount)
2441 {
2442 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2443 	int i = 0, ret;
2444 	nid_t nid = nm_i->next_scan_nid;
2445 
2446 	if (unlikely(nid >= nm_i->max_nid))
2447 		nid = 0;
2448 
2449 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2450 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2451 
2452 	/* Enough entries */
2453 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2454 		return 0;
2455 
2456 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2457 		return 0;
2458 
2459 	if (!mount) {
2460 		/* try to find free nids in free_nid_bitmap */
2461 		scan_free_nid_bits(sbi);
2462 
2463 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2464 			return 0;
2465 	}
2466 
2467 	/* readahead nat pages to be scanned */
2468 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2469 							META_NAT, true);
2470 
2471 	down_read(&nm_i->nat_tree_lock);
2472 
2473 	while (1) {
2474 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2475 						nm_i->nat_block_bitmap)) {
2476 			struct page *page = get_current_nat_page(sbi, nid);
2477 
2478 			if (IS_ERR(page)) {
2479 				ret = PTR_ERR(page);
2480 			} else {
2481 				ret = scan_nat_page(sbi, page, nid);
2482 				f2fs_put_page(page, 1);
2483 			}
2484 
2485 			if (ret) {
2486 				up_read(&nm_i->nat_tree_lock);
2487 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2488 				return ret;
2489 			}
2490 		}
2491 
2492 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2493 		if (unlikely(nid >= nm_i->max_nid))
2494 			nid = 0;
2495 
2496 		if (++i >= FREE_NID_PAGES)
2497 			break;
2498 	}
2499 
2500 	/* go to the next free nat pages to find free nids abundantly */
2501 	nm_i->next_scan_nid = nid;
2502 
2503 	/* find free nids from current sum_pages */
2504 	scan_curseg_cache(sbi);
2505 
2506 	up_read(&nm_i->nat_tree_lock);
2507 
2508 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2509 					nm_i->ra_nid_pages, META_NAT, false);
2510 
2511 	return 0;
2512 }
2513 
2514 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2515 {
2516 	int ret;
2517 
2518 	mutex_lock(&NM_I(sbi)->build_lock);
2519 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2520 	mutex_unlock(&NM_I(sbi)->build_lock);
2521 
2522 	return ret;
2523 }
2524 
2525 /*
2526  * If this function returns success, caller can obtain a new nid
2527  * from second parameter of this function.
2528  * The returned nid could be used ino as well as nid when inode is created.
2529  */
2530 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2531 {
2532 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2533 	struct free_nid *i = NULL;
2534 retry:
2535 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2536 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2537 		return false;
2538 	}
2539 
2540 	spin_lock(&nm_i->nid_list_lock);
2541 
2542 	if (unlikely(nm_i->available_nids == 0)) {
2543 		spin_unlock(&nm_i->nid_list_lock);
2544 		return false;
2545 	}
2546 
2547 	/* We should not use stale free nids created by f2fs_build_free_nids */
2548 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2549 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2550 		i = list_first_entry(&nm_i->free_nid_list,
2551 					struct free_nid, list);
2552 		*nid = i->nid;
2553 
2554 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2555 		nm_i->available_nids--;
2556 
2557 		update_free_nid_bitmap(sbi, *nid, false, false);
2558 
2559 		spin_unlock(&nm_i->nid_list_lock);
2560 		return true;
2561 	}
2562 	spin_unlock(&nm_i->nid_list_lock);
2563 
2564 	/* Let's scan nat pages and its caches to get free nids */
2565 	if (!f2fs_build_free_nids(sbi, true, false))
2566 		goto retry;
2567 	return false;
2568 }
2569 
2570 /*
2571  * f2fs_alloc_nid() should be called prior to this function.
2572  */
2573 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2574 {
2575 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2576 	struct free_nid *i;
2577 
2578 	spin_lock(&nm_i->nid_list_lock);
2579 	i = __lookup_free_nid_list(nm_i, nid);
2580 	f2fs_bug_on(sbi, !i);
2581 	__remove_free_nid(sbi, i, PREALLOC_NID);
2582 	spin_unlock(&nm_i->nid_list_lock);
2583 
2584 	kmem_cache_free(free_nid_slab, i);
2585 }
2586 
2587 /*
2588  * f2fs_alloc_nid() should be called prior to this function.
2589  */
2590 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2591 {
2592 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2593 	struct free_nid *i;
2594 	bool need_free = false;
2595 
2596 	if (!nid)
2597 		return;
2598 
2599 	spin_lock(&nm_i->nid_list_lock);
2600 	i = __lookup_free_nid_list(nm_i, nid);
2601 	f2fs_bug_on(sbi, !i);
2602 
2603 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2604 		__remove_free_nid(sbi, i, PREALLOC_NID);
2605 		need_free = true;
2606 	} else {
2607 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2608 	}
2609 
2610 	nm_i->available_nids++;
2611 
2612 	update_free_nid_bitmap(sbi, nid, true, false);
2613 
2614 	spin_unlock(&nm_i->nid_list_lock);
2615 
2616 	if (need_free)
2617 		kmem_cache_free(free_nid_slab, i);
2618 }
2619 
2620 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2621 {
2622 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2623 	int nr = nr_shrink;
2624 
2625 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2626 		return 0;
2627 
2628 	if (!mutex_trylock(&nm_i->build_lock))
2629 		return 0;
2630 
2631 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2632 		struct free_nid *i, *next;
2633 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2634 
2635 		spin_lock(&nm_i->nid_list_lock);
2636 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2637 			if (!nr_shrink || !batch ||
2638 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2639 				break;
2640 			__remove_free_nid(sbi, i, FREE_NID);
2641 			kmem_cache_free(free_nid_slab, i);
2642 			nr_shrink--;
2643 			batch--;
2644 		}
2645 		spin_unlock(&nm_i->nid_list_lock);
2646 	}
2647 
2648 	mutex_unlock(&nm_i->build_lock);
2649 
2650 	return nr - nr_shrink;
2651 }
2652 
2653 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2654 {
2655 	void *src_addr, *dst_addr;
2656 	size_t inline_size;
2657 	struct page *ipage;
2658 	struct f2fs_inode *ri;
2659 
2660 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2661 	if (IS_ERR(ipage))
2662 		return PTR_ERR(ipage);
2663 
2664 	ri = F2FS_INODE(page);
2665 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2666 		if (!f2fs_has_inline_xattr(inode)) {
2667 			set_inode_flag(inode, FI_INLINE_XATTR);
2668 			stat_inc_inline_xattr(inode);
2669 		}
2670 	} else {
2671 		if (f2fs_has_inline_xattr(inode)) {
2672 			stat_dec_inline_xattr(inode);
2673 			clear_inode_flag(inode, FI_INLINE_XATTR);
2674 		}
2675 		goto update_inode;
2676 	}
2677 
2678 	dst_addr = inline_xattr_addr(inode, ipage);
2679 	src_addr = inline_xattr_addr(inode, page);
2680 	inline_size = inline_xattr_size(inode);
2681 
2682 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2683 	memcpy(dst_addr, src_addr, inline_size);
2684 update_inode:
2685 	f2fs_update_inode(inode, ipage);
2686 	f2fs_put_page(ipage, 1);
2687 	return 0;
2688 }
2689 
2690 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2691 {
2692 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2693 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2694 	nid_t new_xnid;
2695 	struct dnode_of_data dn;
2696 	struct node_info ni;
2697 	struct page *xpage;
2698 	int err;
2699 
2700 	if (!prev_xnid)
2701 		goto recover_xnid;
2702 
2703 	/* 1: invalidate the previous xattr nid */
2704 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2705 	if (err)
2706 		return err;
2707 
2708 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2709 	dec_valid_node_count(sbi, inode, false);
2710 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2711 
2712 recover_xnid:
2713 	/* 2: update xattr nid in inode */
2714 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2715 		return -ENOSPC;
2716 
2717 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2718 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2719 	if (IS_ERR(xpage)) {
2720 		f2fs_alloc_nid_failed(sbi, new_xnid);
2721 		return PTR_ERR(xpage);
2722 	}
2723 
2724 	f2fs_alloc_nid_done(sbi, new_xnid);
2725 	f2fs_update_inode_page(inode);
2726 
2727 	/* 3: update and set xattr node page dirty */
2728 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2729 
2730 	set_page_dirty(xpage);
2731 	f2fs_put_page(xpage, 1);
2732 
2733 	return 0;
2734 }
2735 
2736 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2737 {
2738 	struct f2fs_inode *src, *dst;
2739 	nid_t ino = ino_of_node(page);
2740 	struct node_info old_ni, new_ni;
2741 	struct page *ipage;
2742 	int err;
2743 
2744 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2745 	if (err)
2746 		return err;
2747 
2748 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2749 		return -EINVAL;
2750 retry:
2751 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2752 	if (!ipage) {
2753 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2754 		goto retry;
2755 	}
2756 
2757 	/* Should not use this inode from free nid list */
2758 	remove_free_nid(sbi, ino);
2759 
2760 	if (!PageUptodate(ipage))
2761 		SetPageUptodate(ipage);
2762 	fill_node_footer(ipage, ino, ino, 0, true);
2763 	set_cold_node(ipage, false);
2764 
2765 	src = F2FS_INODE(page);
2766 	dst = F2FS_INODE(ipage);
2767 
2768 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2769 	dst->i_size = 0;
2770 	dst->i_blocks = cpu_to_le64(1);
2771 	dst->i_links = cpu_to_le32(1);
2772 	dst->i_xattr_nid = 0;
2773 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2774 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2775 		dst->i_extra_isize = src->i_extra_isize;
2776 
2777 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2778 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2779 							i_inline_xattr_size))
2780 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2781 
2782 		if (f2fs_sb_has_project_quota(sbi) &&
2783 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2784 								i_projid))
2785 			dst->i_projid = src->i_projid;
2786 
2787 		if (f2fs_sb_has_inode_crtime(sbi) &&
2788 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2789 							i_crtime_nsec)) {
2790 			dst->i_crtime = src->i_crtime;
2791 			dst->i_crtime_nsec = src->i_crtime_nsec;
2792 		}
2793 	}
2794 
2795 	new_ni = old_ni;
2796 	new_ni.ino = ino;
2797 
2798 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2799 		WARN_ON(1);
2800 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2801 	inc_valid_inode_count(sbi);
2802 	set_page_dirty(ipage);
2803 	f2fs_put_page(ipage, 1);
2804 	return 0;
2805 }
2806 
2807 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2808 			unsigned int segno, struct f2fs_summary_block *sum)
2809 {
2810 	struct f2fs_node *rn;
2811 	struct f2fs_summary *sum_entry;
2812 	block_t addr;
2813 	int i, idx, last_offset, nrpages;
2814 
2815 	/* scan the node segment */
2816 	last_offset = sbi->blocks_per_seg;
2817 	addr = START_BLOCK(sbi, segno);
2818 	sum_entry = &sum->entries[0];
2819 
2820 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2821 		nrpages = bio_max_segs(last_offset - i);
2822 
2823 		/* readahead node pages */
2824 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2825 
2826 		for (idx = addr; idx < addr + nrpages; idx++) {
2827 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2828 
2829 			if (IS_ERR(page))
2830 				return PTR_ERR(page);
2831 
2832 			rn = F2FS_NODE(page);
2833 			sum_entry->nid = rn->footer.nid;
2834 			sum_entry->version = 0;
2835 			sum_entry->ofs_in_node = 0;
2836 			sum_entry++;
2837 			f2fs_put_page(page, 1);
2838 		}
2839 
2840 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2841 							addr + nrpages);
2842 	}
2843 	return 0;
2844 }
2845 
2846 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2847 {
2848 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2849 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2850 	struct f2fs_journal *journal = curseg->journal;
2851 	int i;
2852 
2853 	down_write(&curseg->journal_rwsem);
2854 	for (i = 0; i < nats_in_cursum(journal); i++) {
2855 		struct nat_entry *ne;
2856 		struct f2fs_nat_entry raw_ne;
2857 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2858 
2859 		if (f2fs_check_nid_range(sbi, nid))
2860 			continue;
2861 
2862 		raw_ne = nat_in_journal(journal, i);
2863 
2864 		ne = __lookup_nat_cache(nm_i, nid);
2865 		if (!ne) {
2866 			ne = __alloc_nat_entry(sbi, nid, true);
2867 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2868 		}
2869 
2870 		/*
2871 		 * if a free nat in journal has not been used after last
2872 		 * checkpoint, we should remove it from available nids,
2873 		 * since later we will add it again.
2874 		 */
2875 		if (!get_nat_flag(ne, IS_DIRTY) &&
2876 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2877 			spin_lock(&nm_i->nid_list_lock);
2878 			nm_i->available_nids--;
2879 			spin_unlock(&nm_i->nid_list_lock);
2880 		}
2881 
2882 		__set_nat_cache_dirty(nm_i, ne);
2883 	}
2884 	update_nats_in_cursum(journal, -i);
2885 	up_write(&curseg->journal_rwsem);
2886 }
2887 
2888 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2889 						struct list_head *head, int max)
2890 {
2891 	struct nat_entry_set *cur;
2892 
2893 	if (nes->entry_cnt >= max)
2894 		goto add_out;
2895 
2896 	list_for_each_entry(cur, head, set_list) {
2897 		if (cur->entry_cnt >= nes->entry_cnt) {
2898 			list_add(&nes->set_list, cur->set_list.prev);
2899 			return;
2900 		}
2901 	}
2902 add_out:
2903 	list_add_tail(&nes->set_list, head);
2904 }
2905 
2906 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2907 							unsigned int valid)
2908 {
2909 	if (valid == 0) {
2910 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2911 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2912 		return;
2913 	}
2914 
2915 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2916 	if (valid == NAT_ENTRY_PER_BLOCK)
2917 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2918 	else
2919 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2920 }
2921 
2922 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2923 						struct page *page)
2924 {
2925 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2926 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2927 	struct f2fs_nat_block *nat_blk = page_address(page);
2928 	int valid = 0;
2929 	int i = 0;
2930 
2931 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2932 		return;
2933 
2934 	if (nat_index == 0) {
2935 		valid = 1;
2936 		i = 1;
2937 	}
2938 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2939 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2940 			valid++;
2941 	}
2942 
2943 	__update_nat_bits(nm_i, nat_index, valid);
2944 }
2945 
2946 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2947 {
2948 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2949 	unsigned int nat_ofs;
2950 
2951 	down_read(&nm_i->nat_tree_lock);
2952 
2953 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2954 		unsigned int valid = 0, nid_ofs = 0;
2955 
2956 		/* handle nid zero due to it should never be used */
2957 		if (unlikely(nat_ofs == 0)) {
2958 			valid = 1;
2959 			nid_ofs = 1;
2960 		}
2961 
2962 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2963 			if (!test_bit_le(nid_ofs,
2964 					nm_i->free_nid_bitmap[nat_ofs]))
2965 				valid++;
2966 		}
2967 
2968 		__update_nat_bits(nm_i, nat_ofs, valid);
2969 	}
2970 
2971 	up_read(&nm_i->nat_tree_lock);
2972 }
2973 
2974 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2975 		struct nat_entry_set *set, struct cp_control *cpc)
2976 {
2977 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2978 	struct f2fs_journal *journal = curseg->journal;
2979 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2980 	bool to_journal = true;
2981 	struct f2fs_nat_block *nat_blk;
2982 	struct nat_entry *ne, *cur;
2983 	struct page *page = NULL;
2984 
2985 	/*
2986 	 * there are two steps to flush nat entries:
2987 	 * #1, flush nat entries to journal in current hot data summary block.
2988 	 * #2, flush nat entries to nat page.
2989 	 */
2990 	if ((cpc->reason & CP_UMOUNT) ||
2991 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2992 		to_journal = false;
2993 
2994 	if (to_journal) {
2995 		down_write(&curseg->journal_rwsem);
2996 	} else {
2997 		page = get_next_nat_page(sbi, start_nid);
2998 		if (IS_ERR(page))
2999 			return PTR_ERR(page);
3000 
3001 		nat_blk = page_address(page);
3002 		f2fs_bug_on(sbi, !nat_blk);
3003 	}
3004 
3005 	/* flush dirty nats in nat entry set */
3006 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3007 		struct f2fs_nat_entry *raw_ne;
3008 		nid_t nid = nat_get_nid(ne);
3009 		int offset;
3010 
3011 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3012 
3013 		if (to_journal) {
3014 			offset = f2fs_lookup_journal_in_cursum(journal,
3015 							NAT_JOURNAL, nid, 1);
3016 			f2fs_bug_on(sbi, offset < 0);
3017 			raw_ne = &nat_in_journal(journal, offset);
3018 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3019 		} else {
3020 			raw_ne = &nat_blk->entries[nid - start_nid];
3021 		}
3022 		raw_nat_from_node_info(raw_ne, &ne->ni);
3023 		nat_reset_flag(ne);
3024 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3025 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3026 			add_free_nid(sbi, nid, false, true);
3027 		} else {
3028 			spin_lock(&NM_I(sbi)->nid_list_lock);
3029 			update_free_nid_bitmap(sbi, nid, false, false);
3030 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3031 		}
3032 	}
3033 
3034 	if (to_journal) {
3035 		up_write(&curseg->journal_rwsem);
3036 	} else {
3037 		update_nat_bits(sbi, start_nid, page);
3038 		f2fs_put_page(page, 1);
3039 	}
3040 
3041 	/* Allow dirty nats by node block allocation in write_begin */
3042 	if (!set->entry_cnt) {
3043 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3044 		kmem_cache_free(nat_entry_set_slab, set);
3045 	}
3046 	return 0;
3047 }
3048 
3049 /*
3050  * This function is called during the checkpointing process.
3051  */
3052 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3053 {
3054 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3055 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3056 	struct f2fs_journal *journal = curseg->journal;
3057 	struct nat_entry_set *setvec[SETVEC_SIZE];
3058 	struct nat_entry_set *set, *tmp;
3059 	unsigned int found;
3060 	nid_t set_idx = 0;
3061 	LIST_HEAD(sets);
3062 	int err = 0;
3063 
3064 	/*
3065 	 * during unmount, let's flush nat_bits before checking
3066 	 * nat_cnt[DIRTY_NAT].
3067 	 */
3068 	if (cpc->reason & CP_UMOUNT) {
3069 		down_write(&nm_i->nat_tree_lock);
3070 		remove_nats_in_journal(sbi);
3071 		up_write(&nm_i->nat_tree_lock);
3072 	}
3073 
3074 	if (!nm_i->nat_cnt[DIRTY_NAT])
3075 		return 0;
3076 
3077 	down_write(&nm_i->nat_tree_lock);
3078 
3079 	/*
3080 	 * if there are no enough space in journal to store dirty nat
3081 	 * entries, remove all entries from journal and merge them
3082 	 * into nat entry set.
3083 	 */
3084 	if (cpc->reason & CP_UMOUNT ||
3085 		!__has_cursum_space(journal,
3086 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3087 		remove_nats_in_journal(sbi);
3088 
3089 	while ((found = __gang_lookup_nat_set(nm_i,
3090 					set_idx, SETVEC_SIZE, setvec))) {
3091 		unsigned idx;
3092 
3093 		set_idx = setvec[found - 1]->set + 1;
3094 		for (idx = 0; idx < found; idx++)
3095 			__adjust_nat_entry_set(setvec[idx], &sets,
3096 						MAX_NAT_JENTRIES(journal));
3097 	}
3098 
3099 	/* flush dirty nats in nat entry set */
3100 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3101 		err = __flush_nat_entry_set(sbi, set, cpc);
3102 		if (err)
3103 			break;
3104 	}
3105 
3106 	up_write(&nm_i->nat_tree_lock);
3107 	/* Allow dirty nats by node block allocation in write_begin */
3108 
3109 	return err;
3110 }
3111 
3112 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3113 {
3114 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3115 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3116 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3117 	unsigned int i;
3118 	__u64 cp_ver = cur_cp_version(ckpt);
3119 	block_t nat_bits_addr;
3120 
3121 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3122 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3123 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3124 	if (!nm_i->nat_bits)
3125 		return -ENOMEM;
3126 
3127 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3128 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3129 
3130 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3131 		return 0;
3132 
3133 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3134 						nm_i->nat_bits_blocks;
3135 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3136 		struct page *page;
3137 
3138 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3139 		if (IS_ERR(page))
3140 			return PTR_ERR(page);
3141 
3142 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3143 					page_address(page), F2FS_BLKSIZE);
3144 		f2fs_put_page(page, 1);
3145 	}
3146 
3147 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3148 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3149 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3150 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3151 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3152 		return 0;
3153 	}
3154 
3155 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3156 	return 0;
3157 }
3158 
3159 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3160 {
3161 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3162 	unsigned int i = 0;
3163 	nid_t nid, last_nid;
3164 
3165 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3166 		return;
3167 
3168 	for (i = 0; i < nm_i->nat_blocks; i++) {
3169 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3170 		if (i >= nm_i->nat_blocks)
3171 			break;
3172 
3173 		__set_bit_le(i, nm_i->nat_block_bitmap);
3174 
3175 		nid = i * NAT_ENTRY_PER_BLOCK;
3176 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3177 
3178 		spin_lock(&NM_I(sbi)->nid_list_lock);
3179 		for (; nid < last_nid; nid++)
3180 			update_free_nid_bitmap(sbi, nid, true, true);
3181 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3182 	}
3183 
3184 	for (i = 0; i < nm_i->nat_blocks; i++) {
3185 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3186 		if (i >= nm_i->nat_blocks)
3187 			break;
3188 
3189 		__set_bit_le(i, nm_i->nat_block_bitmap);
3190 	}
3191 }
3192 
3193 static int init_node_manager(struct f2fs_sb_info *sbi)
3194 {
3195 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3196 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3197 	unsigned char *version_bitmap;
3198 	unsigned int nat_segs;
3199 	int err;
3200 
3201 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3202 
3203 	/* segment_count_nat includes pair segment so divide to 2. */
3204 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3205 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3206 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3207 
3208 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3209 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3210 						F2FS_RESERVED_NODE_NUM;
3211 	nm_i->nid_cnt[FREE_NID] = 0;
3212 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3213 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3214 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3215 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3216 
3217 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3218 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3219 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3220 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3221 	INIT_LIST_HEAD(&nm_i->nat_entries);
3222 	spin_lock_init(&nm_i->nat_list_lock);
3223 
3224 	mutex_init(&nm_i->build_lock);
3225 	spin_lock_init(&nm_i->nid_list_lock);
3226 	init_rwsem(&nm_i->nat_tree_lock);
3227 
3228 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3229 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3230 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3231 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3232 					GFP_KERNEL);
3233 	if (!nm_i->nat_bitmap)
3234 		return -ENOMEM;
3235 
3236 	err = __get_nat_bitmaps(sbi);
3237 	if (err)
3238 		return err;
3239 
3240 #ifdef CONFIG_F2FS_CHECK_FS
3241 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3242 					GFP_KERNEL);
3243 	if (!nm_i->nat_bitmap_mir)
3244 		return -ENOMEM;
3245 #endif
3246 
3247 	return 0;
3248 }
3249 
3250 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3251 {
3252 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3253 	int i;
3254 
3255 	nm_i->free_nid_bitmap =
3256 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3257 					      nm_i->nat_blocks),
3258 			      GFP_KERNEL);
3259 	if (!nm_i->free_nid_bitmap)
3260 		return -ENOMEM;
3261 
3262 	for (i = 0; i < nm_i->nat_blocks; i++) {
3263 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3264 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3265 		if (!nm_i->free_nid_bitmap[i])
3266 			return -ENOMEM;
3267 	}
3268 
3269 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3270 								GFP_KERNEL);
3271 	if (!nm_i->nat_block_bitmap)
3272 		return -ENOMEM;
3273 
3274 	nm_i->free_nid_count =
3275 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3276 					      nm_i->nat_blocks),
3277 			      GFP_KERNEL);
3278 	if (!nm_i->free_nid_count)
3279 		return -ENOMEM;
3280 	return 0;
3281 }
3282 
3283 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3284 {
3285 	int err;
3286 
3287 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3288 							GFP_KERNEL);
3289 	if (!sbi->nm_info)
3290 		return -ENOMEM;
3291 
3292 	err = init_node_manager(sbi);
3293 	if (err)
3294 		return err;
3295 
3296 	err = init_free_nid_cache(sbi);
3297 	if (err)
3298 		return err;
3299 
3300 	/* load free nid status from nat_bits table */
3301 	load_free_nid_bitmap(sbi);
3302 
3303 	return f2fs_build_free_nids(sbi, true, true);
3304 }
3305 
3306 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3307 {
3308 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3309 	struct free_nid *i, *next_i;
3310 	struct nat_entry *natvec[NATVEC_SIZE];
3311 	struct nat_entry_set *setvec[SETVEC_SIZE];
3312 	nid_t nid = 0;
3313 	unsigned int found;
3314 
3315 	if (!nm_i)
3316 		return;
3317 
3318 	/* destroy free nid list */
3319 	spin_lock(&nm_i->nid_list_lock);
3320 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3321 		__remove_free_nid(sbi, i, FREE_NID);
3322 		spin_unlock(&nm_i->nid_list_lock);
3323 		kmem_cache_free(free_nid_slab, i);
3324 		spin_lock(&nm_i->nid_list_lock);
3325 	}
3326 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3327 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3328 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3329 	spin_unlock(&nm_i->nid_list_lock);
3330 
3331 	/* destroy nat cache */
3332 	down_write(&nm_i->nat_tree_lock);
3333 	while ((found = __gang_lookup_nat_cache(nm_i,
3334 					nid, NATVEC_SIZE, natvec))) {
3335 		unsigned idx;
3336 
3337 		nid = nat_get_nid(natvec[found - 1]) + 1;
3338 		for (idx = 0; idx < found; idx++) {
3339 			spin_lock(&nm_i->nat_list_lock);
3340 			list_del(&natvec[idx]->list);
3341 			spin_unlock(&nm_i->nat_list_lock);
3342 
3343 			__del_from_nat_cache(nm_i, natvec[idx]);
3344 		}
3345 	}
3346 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3347 
3348 	/* destroy nat set cache */
3349 	nid = 0;
3350 	while ((found = __gang_lookup_nat_set(nm_i,
3351 					nid, SETVEC_SIZE, setvec))) {
3352 		unsigned idx;
3353 
3354 		nid = setvec[found - 1]->set + 1;
3355 		for (idx = 0; idx < found; idx++) {
3356 			/* entry_cnt is not zero, when cp_error was occurred */
3357 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3358 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3359 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3360 		}
3361 	}
3362 	up_write(&nm_i->nat_tree_lock);
3363 
3364 	kvfree(nm_i->nat_block_bitmap);
3365 	if (nm_i->free_nid_bitmap) {
3366 		int i;
3367 
3368 		for (i = 0; i < nm_i->nat_blocks; i++)
3369 			kvfree(nm_i->free_nid_bitmap[i]);
3370 		kvfree(nm_i->free_nid_bitmap);
3371 	}
3372 	kvfree(nm_i->free_nid_count);
3373 
3374 	kvfree(nm_i->nat_bitmap);
3375 	kvfree(nm_i->nat_bits);
3376 #ifdef CONFIG_F2FS_CHECK_FS
3377 	kvfree(nm_i->nat_bitmap_mir);
3378 #endif
3379 	sbi->nm_info = NULL;
3380 	kfree(nm_i);
3381 }
3382 
3383 int __init f2fs_create_node_manager_caches(void)
3384 {
3385 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3386 			sizeof(struct nat_entry));
3387 	if (!nat_entry_slab)
3388 		goto fail;
3389 
3390 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3391 			sizeof(struct free_nid));
3392 	if (!free_nid_slab)
3393 		goto destroy_nat_entry;
3394 
3395 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3396 			sizeof(struct nat_entry_set));
3397 	if (!nat_entry_set_slab)
3398 		goto destroy_free_nid;
3399 
3400 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3401 			sizeof(struct fsync_node_entry));
3402 	if (!fsync_node_entry_slab)
3403 		goto destroy_nat_entry_set;
3404 	return 0;
3405 
3406 destroy_nat_entry_set:
3407 	kmem_cache_destroy(nat_entry_set_slab);
3408 destroy_free_nid:
3409 	kmem_cache_destroy(free_nid_slab);
3410 destroy_nat_entry:
3411 	kmem_cache_destroy(nat_entry_slab);
3412 fail:
3413 	return -ENOMEM;
3414 }
3415 
3416 void f2fs_destroy_node_manager_caches(void)
3417 {
3418 	kmem_cache_destroy(fsync_node_entry_slab);
3419 	kmem_cache_destroy(nat_entry_set_slab);
3420 	kmem_cache_destroy(free_nid_slab);
3421 	kmem_cache_destroy(nat_entry_slab);
3422 }
3423