xref: /openbmc/linux/fs/f2fs/node.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 							PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114 
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt++;
181 	return ne;
182 }
183 
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186 	struct nat_entry *ne;
187 
188 	ne = radix_tree_lookup(&nm_i->nat_root, n);
189 
190 	/* for recent accessed nat entry, move it to tail of lru list */
191 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 		spin_lock(&nm_i->nat_list_lock);
193 		if (!list_empty(&ne->list))
194 			list_move_tail(&ne->list, &nm_i->nat_entries);
195 		spin_unlock(&nm_i->nat_list_lock);
196 	}
197 
198 	return ne;
199 }
200 
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 		nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206 
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 	nm_i->nat_cnt--;
211 	__free_nat_entry(e);
212 }
213 
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 							struct nat_entry *ne)
216 {
217 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 	struct nat_entry_set *head;
219 
220 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 	if (!head) {
222 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223 
224 		INIT_LIST_HEAD(&head->entry_list);
225 		INIT_LIST_HEAD(&head->set_list);
226 		head->set = set;
227 		head->entry_cnt = 0;
228 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 	}
230 	return head;
231 }
232 
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 						struct nat_entry *ne)
235 {
236 	struct nat_entry_set *head;
237 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238 
239 	if (!new_ne)
240 		head = __grab_nat_entry_set(nm_i, ne);
241 
242 	/*
243 	 * update entry_cnt in below condition:
244 	 * 1. update NEW_ADDR to valid block address;
245 	 * 2. update old block address to new one;
246 	 */
247 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 				!get_nat_flag(ne, IS_DIRTY)))
249 		head->entry_cnt++;
250 
251 	set_nat_flag(ne, IS_PREALLOC, new_ne);
252 
253 	if (get_nat_flag(ne, IS_DIRTY))
254 		goto refresh_list;
255 
256 	nm_i->dirty_nat_cnt++;
257 	set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259 	spin_lock(&nm_i->nat_list_lock);
260 	if (new_ne)
261 		list_del_init(&ne->list);
262 	else
263 		list_move_tail(&ne->list, &head->entry_list);
264 	spin_unlock(&nm_i->nat_list_lock);
265 }
266 
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 		struct nat_entry_set *set, struct nat_entry *ne)
269 {
270 	spin_lock(&nm_i->nat_list_lock);
271 	list_move_tail(&ne->list, &nm_i->nat_entries);
272 	spin_unlock(&nm_i->nat_list_lock);
273 
274 	set_nat_flag(ne, IS_DIRTY, false);
275 	set->entry_cnt--;
276 	nm_i->dirty_nat_cnt--;
277 }
278 
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 							start, nr);
284 }
285 
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288 	return NODE_MAPPING(sbi) == page->mapping &&
289 			IS_DNODE(page) && is_cold_node(page);
290 }
291 
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294 	spin_lock_init(&sbi->fsync_node_lock);
295 	INIT_LIST_HEAD(&sbi->fsync_node_list);
296 	sbi->fsync_seg_id = 0;
297 	sbi->fsync_node_num = 0;
298 }
299 
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 							struct page *page)
302 {
303 	struct fsync_node_entry *fn;
304 	unsigned long flags;
305 	unsigned int seq_id;
306 
307 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308 
309 	get_page(page);
310 	fn->page = page;
311 	INIT_LIST_HEAD(&fn->list);
312 
313 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 	list_add_tail(&fn->list, &sbi->fsync_node_list);
315 	fn->seq_id = sbi->fsync_seg_id++;
316 	seq_id = fn->seq_id;
317 	sbi->fsync_node_num++;
318 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319 
320 	return seq_id;
321 }
322 
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325 	struct fsync_node_entry *fn;
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 		if (fn->page == page) {
331 			list_del(&fn->list);
332 			sbi->fsync_node_num--;
333 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 			kmem_cache_free(fsync_node_entry_slab, fn);
335 			put_page(page);
336 			return;
337 		}
338 	}
339 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 	f2fs_bug_on(sbi, 1);
341 }
342 
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345 	unsigned long flags;
346 
347 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 	sbi->fsync_seg_id = 0;
349 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351 
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354 	struct f2fs_nm_info *nm_i = NM_I(sbi);
355 	struct nat_entry *e;
356 	bool need = false;
357 
358 	down_read(&nm_i->nat_tree_lock);
359 	e = __lookup_nat_cache(nm_i, nid);
360 	if (e) {
361 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 				!get_nat_flag(e, HAS_FSYNCED_INODE))
363 			need = true;
364 	}
365 	up_read(&nm_i->nat_tree_lock);
366 	return need;
367 }
368 
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371 	struct f2fs_nm_info *nm_i = NM_I(sbi);
372 	struct nat_entry *e;
373 	bool is_cp = true;
374 
375 	down_read(&nm_i->nat_tree_lock);
376 	e = __lookup_nat_cache(nm_i, nid);
377 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 		is_cp = false;
379 	up_read(&nm_i->nat_tree_lock);
380 	return is_cp;
381 }
382 
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385 	struct f2fs_nm_info *nm_i = NM_I(sbi);
386 	struct nat_entry *e;
387 	bool need_update = true;
388 
389 	down_read(&nm_i->nat_tree_lock);
390 	e = __lookup_nat_cache(nm_i, ino);
391 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 			(get_nat_flag(e, IS_CHECKPOINTED) ||
393 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 		need_update = false;
395 	up_read(&nm_i->nat_tree_lock);
396 	return need_update;
397 }
398 
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 						struct f2fs_nat_entry *ne)
402 {
403 	struct f2fs_nm_info *nm_i = NM_I(sbi);
404 	struct nat_entry *new, *e;
405 
406 	new = __alloc_nat_entry(nid, false);
407 	if (!new)
408 		return;
409 
410 	down_write(&nm_i->nat_tree_lock);
411 	e = __lookup_nat_cache(nm_i, nid);
412 	if (!e)
413 		e = __init_nat_entry(nm_i, new, ne, false);
414 	else
415 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 				nat_get_blkaddr(e) !=
417 					le32_to_cpu(ne->block_addr) ||
418 				nat_get_version(e) != ne->version);
419 	up_write(&nm_i->nat_tree_lock);
420 	if (e != new)
421 		__free_nat_entry(new);
422 }
423 
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 			block_t new_blkaddr, bool fsync_done)
426 {
427 	struct f2fs_nm_info *nm_i = NM_I(sbi);
428 	struct nat_entry *e;
429 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430 
431 	down_write(&nm_i->nat_tree_lock);
432 	e = __lookup_nat_cache(nm_i, ni->nid);
433 	if (!e) {
434 		e = __init_nat_entry(nm_i, new, NULL, true);
435 		copy_node_info(&e->ni, ni);
436 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 	} else if (new_blkaddr == NEW_ADDR) {
438 		/*
439 		 * when nid is reallocated,
440 		 * previous nat entry can be remained in nat cache.
441 		 * So, reinitialize it with new information.
442 		 */
443 		copy_node_info(&e->ni, ni);
444 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 	}
446 	/* let's free early to reduce memory consumption */
447 	if (e != new)
448 		__free_nat_entry(new);
449 
450 	/* sanity check */
451 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 			new_blkaddr == NULL_ADDR);
454 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 			new_blkaddr == NEW_ADDR);
456 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 			new_blkaddr == NEW_ADDR);
458 
459 	/* increment version no as node is removed */
460 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 		unsigned char version = nat_get_version(e);
462 		nat_set_version(e, inc_node_version(version));
463 	}
464 
465 	/* change address */
466 	nat_set_blkaddr(e, new_blkaddr);
467 	if (!__is_valid_data_blkaddr(new_blkaddr))
468 		set_nat_flag(e, IS_CHECKPOINTED, false);
469 	__set_nat_cache_dirty(nm_i, e);
470 
471 	/* update fsync_mark if its inode nat entry is still alive */
472 	if (ni->nid != ni->ino)
473 		e = __lookup_nat_cache(nm_i, ni->ino);
474 	if (e) {
475 		if (fsync_done && ni->nid == ni->ino)
476 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 	}
479 	up_write(&nm_i->nat_tree_lock);
480 }
481 
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484 	struct f2fs_nm_info *nm_i = NM_I(sbi);
485 	int nr = nr_shrink;
486 
487 	if (!down_write_trylock(&nm_i->nat_tree_lock))
488 		return 0;
489 
490 	spin_lock(&nm_i->nat_list_lock);
491 	while (nr_shrink) {
492 		struct nat_entry *ne;
493 
494 		if (list_empty(&nm_i->nat_entries))
495 			break;
496 
497 		ne = list_first_entry(&nm_i->nat_entries,
498 					struct nat_entry, list);
499 		list_del(&ne->list);
500 		spin_unlock(&nm_i->nat_list_lock);
501 
502 		__del_from_nat_cache(nm_i, ne);
503 		nr_shrink--;
504 
505 		spin_lock(&nm_i->nat_list_lock);
506 	}
507 	spin_unlock(&nm_i->nat_list_lock);
508 
509 	up_write(&nm_i->nat_tree_lock);
510 	return nr - nr_shrink;
511 }
512 
513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514 						struct node_info *ni)
515 {
516 	struct f2fs_nm_info *nm_i = NM_I(sbi);
517 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518 	struct f2fs_journal *journal = curseg->journal;
519 	nid_t start_nid = START_NID(nid);
520 	struct f2fs_nat_block *nat_blk;
521 	struct page *page = NULL;
522 	struct f2fs_nat_entry ne;
523 	struct nat_entry *e;
524 	pgoff_t index;
525 	block_t blkaddr;
526 	int i;
527 
528 	ni->nid = nid;
529 
530 	/* Check nat cache */
531 	down_read(&nm_i->nat_tree_lock);
532 	e = __lookup_nat_cache(nm_i, nid);
533 	if (e) {
534 		ni->ino = nat_get_ino(e);
535 		ni->blk_addr = nat_get_blkaddr(e);
536 		ni->version = nat_get_version(e);
537 		up_read(&nm_i->nat_tree_lock);
538 		return 0;
539 	}
540 
541 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542 
543 	/* Check current segment summary */
544 	down_read(&curseg->journal_rwsem);
545 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546 	if (i >= 0) {
547 		ne = nat_in_journal(journal, i);
548 		node_info_from_raw_nat(ni, &ne);
549 	}
550 	up_read(&curseg->journal_rwsem);
551 	if (i >= 0) {
552 		up_read(&nm_i->nat_tree_lock);
553 		goto cache;
554 	}
555 
556 	/* Fill node_info from nat page */
557 	index = current_nat_addr(sbi, nid);
558 	up_read(&nm_i->nat_tree_lock);
559 
560 	page = f2fs_get_meta_page(sbi, index);
561 	if (IS_ERR(page))
562 		return PTR_ERR(page);
563 
564 	nat_blk = (struct f2fs_nat_block *)page_address(page);
565 	ne = nat_blk->entries[nid - start_nid];
566 	node_info_from_raw_nat(ni, &ne);
567 	f2fs_put_page(page, 1);
568 cache:
569 	blkaddr = le32_to_cpu(ne.block_addr);
570 	if (__is_valid_data_blkaddr(blkaddr) &&
571 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572 		return -EFAULT;
573 
574 	/* cache nat entry */
575 	cache_nat_entry(sbi, nid, &ne);
576 	return 0;
577 }
578 
579 /*
580  * readahead MAX_RA_NODE number of node pages.
581  */
582 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583 {
584 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585 	struct blk_plug plug;
586 	int i, end;
587 	nid_t nid;
588 
589 	blk_start_plug(&plug);
590 
591 	/* Then, try readahead for siblings of the desired node */
592 	end = start + n;
593 	end = min(end, NIDS_PER_BLOCK);
594 	for (i = start; i < end; i++) {
595 		nid = get_nid(parent, i, false);
596 		f2fs_ra_node_page(sbi, nid);
597 	}
598 
599 	blk_finish_plug(&plug);
600 }
601 
602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603 {
604 	const long direct_index = ADDRS_PER_INODE(dn->inode);
605 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608 	int cur_level = dn->cur_level;
609 	int max_level = dn->max_level;
610 	pgoff_t base = 0;
611 
612 	if (!dn->max_level)
613 		return pgofs + 1;
614 
615 	while (max_level-- > cur_level)
616 		skipped_unit *= NIDS_PER_BLOCK;
617 
618 	switch (dn->max_level) {
619 	case 3:
620 		base += 2 * indirect_blks;
621 		/* fall through */
622 	case 2:
623 		base += 2 * direct_blks;
624 		/* fall through */
625 	case 1:
626 		base += direct_index;
627 		break;
628 	default:
629 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630 	}
631 
632 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633 }
634 
635 /*
636  * The maximum depth is four.
637  * Offset[0] will have raw inode offset.
638  */
639 static int get_node_path(struct inode *inode, long block,
640 				int offset[4], unsigned int noffset[4])
641 {
642 	const long direct_index = ADDRS_PER_INODE(inode);
643 	const long direct_blks = ADDRS_PER_BLOCK(inode);
644 	const long dptrs_per_blk = NIDS_PER_BLOCK;
645 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647 	int n = 0;
648 	int level = 0;
649 
650 	noffset[0] = 0;
651 
652 	if (block < direct_index) {
653 		offset[n] = block;
654 		goto got;
655 	}
656 	block -= direct_index;
657 	if (block < direct_blks) {
658 		offset[n++] = NODE_DIR1_BLOCK;
659 		noffset[n] = 1;
660 		offset[n] = block;
661 		level = 1;
662 		goto got;
663 	}
664 	block -= direct_blks;
665 	if (block < direct_blks) {
666 		offset[n++] = NODE_DIR2_BLOCK;
667 		noffset[n] = 2;
668 		offset[n] = block;
669 		level = 1;
670 		goto got;
671 	}
672 	block -= direct_blks;
673 	if (block < indirect_blks) {
674 		offset[n++] = NODE_IND1_BLOCK;
675 		noffset[n] = 3;
676 		offset[n++] = block / direct_blks;
677 		noffset[n] = 4 + offset[n - 1];
678 		offset[n] = block % direct_blks;
679 		level = 2;
680 		goto got;
681 	}
682 	block -= indirect_blks;
683 	if (block < indirect_blks) {
684 		offset[n++] = NODE_IND2_BLOCK;
685 		noffset[n] = 4 + dptrs_per_blk;
686 		offset[n++] = block / direct_blks;
687 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688 		offset[n] = block % direct_blks;
689 		level = 2;
690 		goto got;
691 	}
692 	block -= indirect_blks;
693 	if (block < dindirect_blks) {
694 		offset[n++] = NODE_DIND_BLOCK;
695 		noffset[n] = 5 + (dptrs_per_blk * 2);
696 		offset[n++] = block / indirect_blks;
697 		noffset[n] = 6 + (dptrs_per_blk * 2) +
698 			      offset[n - 1] * (dptrs_per_blk + 1);
699 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
700 		noffset[n] = 7 + (dptrs_per_blk * 2) +
701 			      offset[n - 2] * (dptrs_per_blk + 1) +
702 			      offset[n - 1];
703 		offset[n] = block % direct_blks;
704 		level = 3;
705 		goto got;
706 	} else {
707 		return -E2BIG;
708 	}
709 got:
710 	return level;
711 }
712 
713 /*
714  * Caller should call f2fs_put_dnode(dn).
715  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717  */
718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719 {
720 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 	struct page *npage[4];
722 	struct page *parent = NULL;
723 	int offset[4];
724 	unsigned int noffset[4];
725 	nid_t nids[4];
726 	int level, i = 0;
727 	int err = 0;
728 
729 	level = get_node_path(dn->inode, index, offset, noffset);
730 	if (level < 0)
731 		return level;
732 
733 	nids[0] = dn->inode->i_ino;
734 	npage[0] = dn->inode_page;
735 
736 	if (!npage[0]) {
737 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
738 		if (IS_ERR(npage[0]))
739 			return PTR_ERR(npage[0]);
740 	}
741 
742 	/* if inline_data is set, should not report any block indices */
743 	if (f2fs_has_inline_data(dn->inode) && index) {
744 		err = -ENOENT;
745 		f2fs_put_page(npage[0], 1);
746 		goto release_out;
747 	}
748 
749 	parent = npage[0];
750 	if (level != 0)
751 		nids[1] = get_nid(parent, offset[0], true);
752 	dn->inode_page = npage[0];
753 	dn->inode_page_locked = true;
754 
755 	/* get indirect or direct nodes */
756 	for (i = 1; i <= level; i++) {
757 		bool done = false;
758 
759 		if (!nids[i] && mode == ALLOC_NODE) {
760 			/* alloc new node */
761 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762 				err = -ENOSPC;
763 				goto release_pages;
764 			}
765 
766 			dn->nid = nids[i];
767 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
768 			if (IS_ERR(npage[i])) {
769 				f2fs_alloc_nid_failed(sbi, nids[i]);
770 				err = PTR_ERR(npage[i]);
771 				goto release_pages;
772 			}
773 
774 			set_nid(parent, offset[i - 1], nids[i], i == 1);
775 			f2fs_alloc_nid_done(sbi, nids[i]);
776 			done = true;
777 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779 			if (IS_ERR(npage[i])) {
780 				err = PTR_ERR(npage[i]);
781 				goto release_pages;
782 			}
783 			done = true;
784 		}
785 		if (i == 1) {
786 			dn->inode_page_locked = false;
787 			unlock_page(parent);
788 		} else {
789 			f2fs_put_page(parent, 1);
790 		}
791 
792 		if (!done) {
793 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
794 			if (IS_ERR(npage[i])) {
795 				err = PTR_ERR(npage[i]);
796 				f2fs_put_page(npage[0], 0);
797 				goto release_out;
798 			}
799 		}
800 		if (i < level) {
801 			parent = npage[i];
802 			nids[i + 1] = get_nid(parent, offset[i], false);
803 		}
804 	}
805 	dn->nid = nids[level];
806 	dn->ofs_in_node = offset[level];
807 	dn->node_page = npage[level];
808 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
809 	return 0;
810 
811 release_pages:
812 	f2fs_put_page(parent, 1);
813 	if (i > 1)
814 		f2fs_put_page(npage[0], 0);
815 release_out:
816 	dn->inode_page = NULL;
817 	dn->node_page = NULL;
818 	if (err == -ENOENT) {
819 		dn->cur_level = i;
820 		dn->max_level = level;
821 		dn->ofs_in_node = offset[level];
822 	}
823 	return err;
824 }
825 
826 static int truncate_node(struct dnode_of_data *dn)
827 {
828 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829 	struct node_info ni;
830 	int err;
831 	pgoff_t index;
832 
833 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
834 	if (err)
835 		return err;
836 
837 	/* Deallocate node address */
838 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
839 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840 	set_node_addr(sbi, &ni, NULL_ADDR, false);
841 
842 	if (dn->nid == dn->inode->i_ino) {
843 		f2fs_remove_orphan_inode(sbi, dn->nid);
844 		dec_valid_inode_count(sbi);
845 		f2fs_inode_synced(dn->inode);
846 	}
847 
848 	clear_node_page_dirty(dn->node_page);
849 	set_sbi_flag(sbi, SBI_IS_DIRTY);
850 
851 	index = dn->node_page->index;
852 	f2fs_put_page(dn->node_page, 1);
853 
854 	invalidate_mapping_pages(NODE_MAPPING(sbi),
855 			index, index);
856 
857 	dn->node_page = NULL;
858 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859 
860 	return 0;
861 }
862 
863 static int truncate_dnode(struct dnode_of_data *dn)
864 {
865 	struct page *page;
866 	int err;
867 
868 	if (dn->nid == 0)
869 		return 1;
870 
871 	/* get direct node */
872 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873 	if (PTR_ERR(page) == -ENOENT)
874 		return 1;
875 	else if (IS_ERR(page))
876 		return PTR_ERR(page);
877 
878 	/* Make dnode_of_data for parameter */
879 	dn->node_page = page;
880 	dn->ofs_in_node = 0;
881 	f2fs_truncate_data_blocks(dn);
882 	err = truncate_node(dn);
883 	if (err)
884 		return err;
885 
886 	return 1;
887 }
888 
889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890 						int ofs, int depth)
891 {
892 	struct dnode_of_data rdn = *dn;
893 	struct page *page;
894 	struct f2fs_node *rn;
895 	nid_t child_nid;
896 	unsigned int child_nofs;
897 	int freed = 0;
898 	int i, ret;
899 
900 	if (dn->nid == 0)
901 		return NIDS_PER_BLOCK + 1;
902 
903 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904 
905 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906 	if (IS_ERR(page)) {
907 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908 		return PTR_ERR(page);
909 	}
910 
911 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912 
913 	rn = F2FS_NODE(page);
914 	if (depth < 3) {
915 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916 			child_nid = le32_to_cpu(rn->in.nid[i]);
917 			if (child_nid == 0)
918 				continue;
919 			rdn.nid = child_nid;
920 			ret = truncate_dnode(&rdn);
921 			if (ret < 0)
922 				goto out_err;
923 			if (set_nid(page, i, 0, false))
924 				dn->node_changed = true;
925 		}
926 	} else {
927 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929 			child_nid = le32_to_cpu(rn->in.nid[i]);
930 			if (child_nid == 0) {
931 				child_nofs += NIDS_PER_BLOCK + 1;
932 				continue;
933 			}
934 			rdn.nid = child_nid;
935 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936 			if (ret == (NIDS_PER_BLOCK + 1)) {
937 				if (set_nid(page, i, 0, false))
938 					dn->node_changed = true;
939 				child_nofs += ret;
940 			} else if (ret < 0 && ret != -ENOENT) {
941 				goto out_err;
942 			}
943 		}
944 		freed = child_nofs;
945 	}
946 
947 	if (!ofs) {
948 		/* remove current indirect node */
949 		dn->node_page = page;
950 		ret = truncate_node(dn);
951 		if (ret)
952 			goto out_err;
953 		freed++;
954 	} else {
955 		f2fs_put_page(page, 1);
956 	}
957 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958 	return freed;
959 
960 out_err:
961 	f2fs_put_page(page, 1);
962 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963 	return ret;
964 }
965 
966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967 			struct f2fs_inode *ri, int *offset, int depth)
968 {
969 	struct page *pages[2];
970 	nid_t nid[3];
971 	nid_t child_nid;
972 	int err = 0;
973 	int i;
974 	int idx = depth - 2;
975 
976 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977 	if (!nid[0])
978 		return 0;
979 
980 	/* get indirect nodes in the path */
981 	for (i = 0; i < idx + 1; i++) {
982 		/* reference count'll be increased */
983 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984 		if (IS_ERR(pages[i])) {
985 			err = PTR_ERR(pages[i]);
986 			idx = i - 1;
987 			goto fail;
988 		}
989 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990 	}
991 
992 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993 
994 	/* free direct nodes linked to a partial indirect node */
995 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996 		child_nid = get_nid(pages[idx], i, false);
997 		if (!child_nid)
998 			continue;
999 		dn->nid = child_nid;
1000 		err = truncate_dnode(dn);
1001 		if (err < 0)
1002 			goto fail;
1003 		if (set_nid(pages[idx], i, 0, false))
1004 			dn->node_changed = true;
1005 	}
1006 
1007 	if (offset[idx + 1] == 0) {
1008 		dn->node_page = pages[idx];
1009 		dn->nid = nid[idx];
1010 		err = truncate_node(dn);
1011 		if (err)
1012 			goto fail;
1013 	} else {
1014 		f2fs_put_page(pages[idx], 1);
1015 	}
1016 	offset[idx]++;
1017 	offset[idx + 1] = 0;
1018 	idx--;
1019 fail:
1020 	for (i = idx; i >= 0; i--)
1021 		f2fs_put_page(pages[i], 1);
1022 
1023 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024 
1025 	return err;
1026 }
1027 
1028 /*
1029  * All the block addresses of data and nodes should be nullified.
1030  */
1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032 {
1033 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 	int err = 0, cont = 1;
1035 	int level, offset[4], noffset[4];
1036 	unsigned int nofs = 0;
1037 	struct f2fs_inode *ri;
1038 	struct dnode_of_data dn;
1039 	struct page *page;
1040 
1041 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042 
1043 	level = get_node_path(inode, from, offset, noffset);
1044 	if (level < 0)
1045 		return level;
1046 
1047 	page = f2fs_get_node_page(sbi, inode->i_ino);
1048 	if (IS_ERR(page)) {
1049 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1050 		return PTR_ERR(page);
1051 	}
1052 
1053 	set_new_dnode(&dn, inode, page, NULL, 0);
1054 	unlock_page(page);
1055 
1056 	ri = F2FS_INODE(page);
1057 	switch (level) {
1058 	case 0:
1059 	case 1:
1060 		nofs = noffset[1];
1061 		break;
1062 	case 2:
1063 		nofs = noffset[1];
1064 		if (!offset[level - 1])
1065 			goto skip_partial;
1066 		err = truncate_partial_nodes(&dn, ri, offset, level);
1067 		if (err < 0 && err != -ENOENT)
1068 			goto fail;
1069 		nofs += 1 + NIDS_PER_BLOCK;
1070 		break;
1071 	case 3:
1072 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1073 		if (!offset[level - 1])
1074 			goto skip_partial;
1075 		err = truncate_partial_nodes(&dn, ri, offset, level);
1076 		if (err < 0 && err != -ENOENT)
1077 			goto fail;
1078 		break;
1079 	default:
1080 		BUG();
1081 	}
1082 
1083 skip_partial:
1084 	while (cont) {
1085 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1086 		switch (offset[0]) {
1087 		case NODE_DIR1_BLOCK:
1088 		case NODE_DIR2_BLOCK:
1089 			err = truncate_dnode(&dn);
1090 			break;
1091 
1092 		case NODE_IND1_BLOCK:
1093 		case NODE_IND2_BLOCK:
1094 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1095 			break;
1096 
1097 		case NODE_DIND_BLOCK:
1098 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1099 			cont = 0;
1100 			break;
1101 
1102 		default:
1103 			BUG();
1104 		}
1105 		if (err < 0 && err != -ENOENT)
1106 			goto fail;
1107 		if (offset[1] == 0 &&
1108 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1109 			lock_page(page);
1110 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1111 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1112 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1113 			set_page_dirty(page);
1114 			unlock_page(page);
1115 		}
1116 		offset[1] = 0;
1117 		offset[0]++;
1118 		nofs += err;
1119 	}
1120 fail:
1121 	f2fs_put_page(page, 0);
1122 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1123 	return err > 0 ? 0 : err;
1124 }
1125 
1126 /* caller must lock inode page */
1127 int f2fs_truncate_xattr_node(struct inode *inode)
1128 {
1129 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1130 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1131 	struct dnode_of_data dn;
1132 	struct page *npage;
1133 	int err;
1134 
1135 	if (!nid)
1136 		return 0;
1137 
1138 	npage = f2fs_get_node_page(sbi, nid);
1139 	if (IS_ERR(npage))
1140 		return PTR_ERR(npage);
1141 
1142 	set_new_dnode(&dn, inode, NULL, npage, nid);
1143 	err = truncate_node(&dn);
1144 	if (err) {
1145 		f2fs_put_page(npage, 1);
1146 		return err;
1147 	}
1148 
1149 	f2fs_i_xnid_write(inode, 0);
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1156  * f2fs_unlock_op().
1157  */
1158 int f2fs_remove_inode_page(struct inode *inode)
1159 {
1160 	struct dnode_of_data dn;
1161 	int err;
1162 
1163 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1164 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1165 	if (err)
1166 		return err;
1167 
1168 	err = f2fs_truncate_xattr_node(inode);
1169 	if (err) {
1170 		f2fs_put_dnode(&dn);
1171 		return err;
1172 	}
1173 
1174 	/* remove potential inline_data blocks */
1175 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176 				S_ISLNK(inode->i_mode))
1177 		f2fs_truncate_data_blocks_range(&dn, 1);
1178 
1179 	/* 0 is possible, after f2fs_new_inode() has failed */
1180 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1181 		f2fs_put_dnode(&dn);
1182 		return -EIO;
1183 	}
1184 
1185 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1186 		f2fs_warn(F2FS_I_SB(inode),
1187 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1188 			inode->i_ino, (unsigned long long)inode->i_blocks);
1189 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1190 	}
1191 
1192 	/* will put inode & node pages */
1193 	err = truncate_node(&dn);
1194 	if (err) {
1195 		f2fs_put_dnode(&dn);
1196 		return err;
1197 	}
1198 	return 0;
1199 }
1200 
1201 struct page *f2fs_new_inode_page(struct inode *inode)
1202 {
1203 	struct dnode_of_data dn;
1204 
1205 	/* allocate inode page for new inode */
1206 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1207 
1208 	/* caller should f2fs_put_page(page, 1); */
1209 	return f2fs_new_node_page(&dn, 0);
1210 }
1211 
1212 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1213 {
1214 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1215 	struct node_info new_ni;
1216 	struct page *page;
1217 	int err;
1218 
1219 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220 		return ERR_PTR(-EPERM);
1221 
1222 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1223 	if (!page)
1224 		return ERR_PTR(-ENOMEM);
1225 
1226 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1227 		goto fail;
1228 
1229 #ifdef CONFIG_F2FS_CHECK_FS
1230 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1231 	if (err) {
1232 		dec_valid_node_count(sbi, dn->inode, !ofs);
1233 		goto fail;
1234 	}
1235 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1236 #endif
1237 	new_ni.nid = dn->nid;
1238 	new_ni.ino = dn->inode->i_ino;
1239 	new_ni.blk_addr = NULL_ADDR;
1240 	new_ni.flag = 0;
1241 	new_ni.version = 0;
1242 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1243 
1244 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1245 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1246 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1247 	if (!PageUptodate(page))
1248 		SetPageUptodate(page);
1249 	if (set_page_dirty(page))
1250 		dn->node_changed = true;
1251 
1252 	if (f2fs_has_xattr_block(ofs))
1253 		f2fs_i_xnid_write(dn->inode, dn->nid);
1254 
1255 	if (ofs == 0)
1256 		inc_valid_inode_count(sbi);
1257 	return page;
1258 
1259 fail:
1260 	clear_node_page_dirty(page);
1261 	f2fs_put_page(page, 1);
1262 	return ERR_PTR(err);
1263 }
1264 
1265 /*
1266  * Caller should do after getting the following values.
1267  * 0: f2fs_put_page(page, 0)
1268  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1269  */
1270 static int read_node_page(struct page *page, int op_flags)
1271 {
1272 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1273 	struct node_info ni;
1274 	struct f2fs_io_info fio = {
1275 		.sbi = sbi,
1276 		.type = NODE,
1277 		.op = REQ_OP_READ,
1278 		.op_flags = op_flags,
1279 		.page = page,
1280 		.encrypted_page = NULL,
1281 	};
1282 	int err;
1283 
1284 	if (PageUptodate(page)) {
1285 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1286 			ClearPageUptodate(page);
1287 			return -EFSBADCRC;
1288 		}
1289 		return LOCKED_PAGE;
1290 	}
1291 
1292 	err = f2fs_get_node_info(sbi, page->index, &ni);
1293 	if (err)
1294 		return err;
1295 
1296 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1297 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1298 		ClearPageUptodate(page);
1299 		return -ENOENT;
1300 	}
1301 
1302 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1303 
1304 	err = f2fs_submit_page_bio(&fio);
1305 
1306 	if (!err)
1307 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1308 
1309 	return err;
1310 }
1311 
1312 /*
1313  * Readahead a node page
1314  */
1315 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1316 {
1317 	struct page *apage;
1318 	int err;
1319 
1320 	if (!nid)
1321 		return;
1322 	if (f2fs_check_nid_range(sbi, nid))
1323 		return;
1324 
1325 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1326 	if (apage)
1327 		return;
1328 
1329 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1330 	if (!apage)
1331 		return;
1332 
1333 	err = read_node_page(apage, REQ_RAHEAD);
1334 	f2fs_put_page(apage, err ? 1 : 0);
1335 }
1336 
1337 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1338 					struct page *parent, int start)
1339 {
1340 	struct page *page;
1341 	int err;
1342 
1343 	if (!nid)
1344 		return ERR_PTR(-ENOENT);
1345 	if (f2fs_check_nid_range(sbi, nid))
1346 		return ERR_PTR(-EINVAL);
1347 repeat:
1348 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1349 	if (!page)
1350 		return ERR_PTR(-ENOMEM);
1351 
1352 	err = read_node_page(page, 0);
1353 	if (err < 0) {
1354 		f2fs_put_page(page, 1);
1355 		return ERR_PTR(err);
1356 	} else if (err == LOCKED_PAGE) {
1357 		err = 0;
1358 		goto page_hit;
1359 	}
1360 
1361 	if (parent)
1362 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1363 
1364 	lock_page(page);
1365 
1366 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1367 		f2fs_put_page(page, 1);
1368 		goto repeat;
1369 	}
1370 
1371 	if (unlikely(!PageUptodate(page))) {
1372 		err = -EIO;
1373 		goto out_err;
1374 	}
1375 
1376 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1377 		err = -EFSBADCRC;
1378 		goto out_err;
1379 	}
1380 page_hit:
1381 	if(unlikely(nid != nid_of_node(page))) {
1382 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1383 			  nid, nid_of_node(page), ino_of_node(page),
1384 			  ofs_of_node(page), cpver_of_node(page),
1385 			  next_blkaddr_of_node(page));
1386 		err = -EINVAL;
1387 out_err:
1388 		ClearPageUptodate(page);
1389 		f2fs_put_page(page, 1);
1390 		return ERR_PTR(err);
1391 	}
1392 	return page;
1393 }
1394 
1395 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1396 {
1397 	return __get_node_page(sbi, nid, NULL, 0);
1398 }
1399 
1400 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1401 {
1402 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1403 	nid_t nid = get_nid(parent, start, false);
1404 
1405 	return __get_node_page(sbi, nid, parent, start);
1406 }
1407 
1408 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1409 {
1410 	struct inode *inode;
1411 	struct page *page;
1412 	int ret;
1413 
1414 	/* should flush inline_data before evict_inode */
1415 	inode = ilookup(sbi->sb, ino);
1416 	if (!inode)
1417 		return;
1418 
1419 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1420 					FGP_LOCK|FGP_NOWAIT, 0);
1421 	if (!page)
1422 		goto iput_out;
1423 
1424 	if (!PageUptodate(page))
1425 		goto page_out;
1426 
1427 	if (!PageDirty(page))
1428 		goto page_out;
1429 
1430 	if (!clear_page_dirty_for_io(page))
1431 		goto page_out;
1432 
1433 	ret = f2fs_write_inline_data(inode, page);
1434 	inode_dec_dirty_pages(inode);
1435 	f2fs_remove_dirty_inode(inode);
1436 	if (ret)
1437 		set_page_dirty(page);
1438 page_out:
1439 	f2fs_put_page(page, 1);
1440 iput_out:
1441 	iput(inode);
1442 }
1443 
1444 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1445 {
1446 	pgoff_t index;
1447 	struct pagevec pvec;
1448 	struct page *last_page = NULL;
1449 	int nr_pages;
1450 
1451 	pagevec_init(&pvec);
1452 	index = 0;
1453 
1454 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1455 				PAGECACHE_TAG_DIRTY))) {
1456 		int i;
1457 
1458 		for (i = 0; i < nr_pages; i++) {
1459 			struct page *page = pvec.pages[i];
1460 
1461 			if (unlikely(f2fs_cp_error(sbi))) {
1462 				f2fs_put_page(last_page, 0);
1463 				pagevec_release(&pvec);
1464 				return ERR_PTR(-EIO);
1465 			}
1466 
1467 			if (!IS_DNODE(page) || !is_cold_node(page))
1468 				continue;
1469 			if (ino_of_node(page) != ino)
1470 				continue;
1471 
1472 			lock_page(page);
1473 
1474 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1475 continue_unlock:
1476 				unlock_page(page);
1477 				continue;
1478 			}
1479 			if (ino_of_node(page) != ino)
1480 				goto continue_unlock;
1481 
1482 			if (!PageDirty(page)) {
1483 				/* someone wrote it for us */
1484 				goto continue_unlock;
1485 			}
1486 
1487 			if (last_page)
1488 				f2fs_put_page(last_page, 0);
1489 
1490 			get_page(page);
1491 			last_page = page;
1492 			unlock_page(page);
1493 		}
1494 		pagevec_release(&pvec);
1495 		cond_resched();
1496 	}
1497 	return last_page;
1498 }
1499 
1500 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1501 				struct writeback_control *wbc, bool do_balance,
1502 				enum iostat_type io_type, unsigned int *seq_id)
1503 {
1504 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1505 	nid_t nid;
1506 	struct node_info ni;
1507 	struct f2fs_io_info fio = {
1508 		.sbi = sbi,
1509 		.ino = ino_of_node(page),
1510 		.type = NODE,
1511 		.op = REQ_OP_WRITE,
1512 		.op_flags = wbc_to_write_flags(wbc),
1513 		.page = page,
1514 		.encrypted_page = NULL,
1515 		.submitted = false,
1516 		.io_type = io_type,
1517 		.io_wbc = wbc,
1518 	};
1519 	unsigned int seq;
1520 
1521 	trace_f2fs_writepage(page, NODE);
1522 
1523 	if (unlikely(f2fs_cp_error(sbi))) {
1524 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1525 			ClearPageUptodate(page);
1526 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1527 			unlock_page(page);
1528 			return 0;
1529 		}
1530 		goto redirty_out;
1531 	}
1532 
1533 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1534 		goto redirty_out;
1535 
1536 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1537 			wbc->sync_mode == WB_SYNC_NONE &&
1538 			IS_DNODE(page) && is_cold_node(page))
1539 		goto redirty_out;
1540 
1541 	/* get old block addr of this node page */
1542 	nid = nid_of_node(page);
1543 	f2fs_bug_on(sbi, page->index != nid);
1544 
1545 	if (f2fs_get_node_info(sbi, nid, &ni))
1546 		goto redirty_out;
1547 
1548 	if (wbc->for_reclaim) {
1549 		if (!down_read_trylock(&sbi->node_write))
1550 			goto redirty_out;
1551 	} else {
1552 		down_read(&sbi->node_write);
1553 	}
1554 
1555 	/* This page is already truncated */
1556 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1557 		ClearPageUptodate(page);
1558 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1559 		up_read(&sbi->node_write);
1560 		unlock_page(page);
1561 		return 0;
1562 	}
1563 
1564 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1565 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1566 					DATA_GENERIC_ENHANCE)) {
1567 		up_read(&sbi->node_write);
1568 		goto redirty_out;
1569 	}
1570 
1571 	if (atomic && !test_opt(sbi, NOBARRIER))
1572 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1573 
1574 	/* should add to global list before clearing PAGECACHE status */
1575 	if (f2fs_in_warm_node_list(sbi, page)) {
1576 		seq = f2fs_add_fsync_node_entry(sbi, page);
1577 		if (seq_id)
1578 			*seq_id = seq;
1579 	}
1580 
1581 	set_page_writeback(page);
1582 	ClearPageError(page);
1583 
1584 	fio.old_blkaddr = ni.blk_addr;
1585 	f2fs_do_write_node_page(nid, &fio);
1586 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1587 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1588 	up_read(&sbi->node_write);
1589 
1590 	if (wbc->for_reclaim) {
1591 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1592 		submitted = NULL;
1593 	}
1594 
1595 	unlock_page(page);
1596 
1597 	if (unlikely(f2fs_cp_error(sbi))) {
1598 		f2fs_submit_merged_write(sbi, NODE);
1599 		submitted = NULL;
1600 	}
1601 	if (submitted)
1602 		*submitted = fio.submitted;
1603 
1604 	if (do_balance)
1605 		f2fs_balance_fs(sbi, false);
1606 	return 0;
1607 
1608 redirty_out:
1609 	redirty_page_for_writepage(wbc, page);
1610 	return AOP_WRITEPAGE_ACTIVATE;
1611 }
1612 
1613 int f2fs_move_node_page(struct page *node_page, int gc_type)
1614 {
1615 	int err = 0;
1616 
1617 	if (gc_type == FG_GC) {
1618 		struct writeback_control wbc = {
1619 			.sync_mode = WB_SYNC_ALL,
1620 			.nr_to_write = 1,
1621 			.for_reclaim = 0,
1622 		};
1623 
1624 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1625 
1626 		set_page_dirty(node_page);
1627 
1628 		if (!clear_page_dirty_for_io(node_page)) {
1629 			err = -EAGAIN;
1630 			goto out_page;
1631 		}
1632 
1633 		if (__write_node_page(node_page, false, NULL,
1634 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1635 			err = -EAGAIN;
1636 			unlock_page(node_page);
1637 		}
1638 		goto release_page;
1639 	} else {
1640 		/* set page dirty and write it */
1641 		if (!PageWriteback(node_page))
1642 			set_page_dirty(node_page);
1643 	}
1644 out_page:
1645 	unlock_page(node_page);
1646 release_page:
1647 	f2fs_put_page(node_page, 0);
1648 	return err;
1649 }
1650 
1651 static int f2fs_write_node_page(struct page *page,
1652 				struct writeback_control *wbc)
1653 {
1654 	return __write_node_page(page, false, NULL, wbc, false,
1655 						FS_NODE_IO, NULL);
1656 }
1657 
1658 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1659 			struct writeback_control *wbc, bool atomic,
1660 			unsigned int *seq_id)
1661 {
1662 	pgoff_t index;
1663 	struct pagevec pvec;
1664 	int ret = 0;
1665 	struct page *last_page = NULL;
1666 	bool marked = false;
1667 	nid_t ino = inode->i_ino;
1668 	int nr_pages;
1669 	int nwritten = 0;
1670 
1671 	if (atomic) {
1672 		last_page = last_fsync_dnode(sbi, ino);
1673 		if (IS_ERR_OR_NULL(last_page))
1674 			return PTR_ERR_OR_ZERO(last_page);
1675 	}
1676 retry:
1677 	pagevec_init(&pvec);
1678 	index = 0;
1679 
1680 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1681 				PAGECACHE_TAG_DIRTY))) {
1682 		int i;
1683 
1684 		for (i = 0; i < nr_pages; i++) {
1685 			struct page *page = pvec.pages[i];
1686 			bool submitted = false;
1687 
1688 			if (unlikely(f2fs_cp_error(sbi))) {
1689 				f2fs_put_page(last_page, 0);
1690 				pagevec_release(&pvec);
1691 				ret = -EIO;
1692 				goto out;
1693 			}
1694 
1695 			if (!IS_DNODE(page) || !is_cold_node(page))
1696 				continue;
1697 			if (ino_of_node(page) != ino)
1698 				continue;
1699 
1700 			lock_page(page);
1701 
1702 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1703 continue_unlock:
1704 				unlock_page(page);
1705 				continue;
1706 			}
1707 			if (ino_of_node(page) != ino)
1708 				goto continue_unlock;
1709 
1710 			if (!PageDirty(page) && page != last_page) {
1711 				/* someone wrote it for us */
1712 				goto continue_unlock;
1713 			}
1714 
1715 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1716 
1717 			set_fsync_mark(page, 0);
1718 			set_dentry_mark(page, 0);
1719 
1720 			if (!atomic || page == last_page) {
1721 				set_fsync_mark(page, 1);
1722 				if (IS_INODE(page)) {
1723 					if (is_inode_flag_set(inode,
1724 								FI_DIRTY_INODE))
1725 						f2fs_update_inode(inode, page);
1726 					set_dentry_mark(page,
1727 						f2fs_need_dentry_mark(sbi, ino));
1728 				}
1729 				/*  may be written by other thread */
1730 				if (!PageDirty(page))
1731 					set_page_dirty(page);
1732 			}
1733 
1734 			if (!clear_page_dirty_for_io(page))
1735 				goto continue_unlock;
1736 
1737 			ret = __write_node_page(page, atomic &&
1738 						page == last_page,
1739 						&submitted, wbc, true,
1740 						FS_NODE_IO, seq_id);
1741 			if (ret) {
1742 				unlock_page(page);
1743 				f2fs_put_page(last_page, 0);
1744 				break;
1745 			} else if (submitted) {
1746 				nwritten++;
1747 			}
1748 
1749 			if (page == last_page) {
1750 				f2fs_put_page(page, 0);
1751 				marked = true;
1752 				break;
1753 			}
1754 		}
1755 		pagevec_release(&pvec);
1756 		cond_resched();
1757 
1758 		if (ret || marked)
1759 			break;
1760 	}
1761 	if (!ret && atomic && !marked) {
1762 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1763 			   ino, last_page->index);
1764 		lock_page(last_page);
1765 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1766 		set_page_dirty(last_page);
1767 		unlock_page(last_page);
1768 		goto retry;
1769 	}
1770 out:
1771 	if (nwritten)
1772 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1773 	return ret ? -EIO: 0;
1774 }
1775 
1776 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1777 {
1778 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1779 	bool clean;
1780 
1781 	if (inode->i_ino != ino)
1782 		return 0;
1783 
1784 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1785 		return 0;
1786 
1787 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1788 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1789 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1790 
1791 	if (clean)
1792 		return 0;
1793 
1794 	inode = igrab(inode);
1795 	if (!inode)
1796 		return 0;
1797 	return 1;
1798 }
1799 
1800 static bool flush_dirty_inode(struct page *page)
1801 {
1802 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1803 	struct inode *inode;
1804 	nid_t ino = ino_of_node(page);
1805 
1806 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1807 	if (!inode)
1808 		return false;
1809 
1810 	f2fs_update_inode(inode, page);
1811 	unlock_page(page);
1812 
1813 	iput(inode);
1814 	return true;
1815 }
1816 
1817 int f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1818 {
1819 	pgoff_t index = 0;
1820 	struct pagevec pvec;
1821 	int nr_pages;
1822 	int ret = 0;
1823 
1824 	pagevec_init(&pvec);
1825 
1826 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1827 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1828 		int i;
1829 
1830 		for (i = 0; i < nr_pages; i++) {
1831 			struct page *page = pvec.pages[i];
1832 
1833 			if (!IS_DNODE(page))
1834 				continue;
1835 
1836 			lock_page(page);
1837 
1838 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1839 continue_unlock:
1840 				unlock_page(page);
1841 				continue;
1842 			}
1843 
1844 			if (!PageDirty(page)) {
1845 				/* someone wrote it for us */
1846 				goto continue_unlock;
1847 			}
1848 
1849 			/* flush inline_data, if it's async context. */
1850 			if (is_inline_node(page)) {
1851 				clear_inline_node(page);
1852 				unlock_page(page);
1853 				flush_inline_data(sbi, ino_of_node(page));
1854 				continue;
1855 			}
1856 			unlock_page(page);
1857 		}
1858 		pagevec_release(&pvec);
1859 		cond_resched();
1860 	}
1861 	return ret;
1862 }
1863 
1864 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865 				struct writeback_control *wbc,
1866 				bool do_balance, enum iostat_type io_type)
1867 {
1868 	pgoff_t index;
1869 	struct pagevec pvec;
1870 	int step = 0;
1871 	int nwritten = 0;
1872 	int ret = 0;
1873 	int nr_pages, done = 0;
1874 
1875 	pagevec_init(&pvec);
1876 
1877 next_step:
1878 	index = 0;
1879 
1880 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1882 		int i;
1883 
1884 		for (i = 0; i < nr_pages; i++) {
1885 			struct page *page = pvec.pages[i];
1886 			bool submitted = false;
1887 			bool may_dirty = true;
1888 
1889 			/* give a priority to WB_SYNC threads */
1890 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891 					wbc->sync_mode == WB_SYNC_NONE) {
1892 				done = 1;
1893 				break;
1894 			}
1895 
1896 			/*
1897 			 * flushing sequence with step:
1898 			 * 0. indirect nodes
1899 			 * 1. dentry dnodes
1900 			 * 2. file dnodes
1901 			 */
1902 			if (step == 0 && IS_DNODE(page))
1903 				continue;
1904 			if (step == 1 && (!IS_DNODE(page) ||
1905 						is_cold_node(page)))
1906 				continue;
1907 			if (step == 2 && (!IS_DNODE(page) ||
1908 						!is_cold_node(page)))
1909 				continue;
1910 lock_node:
1911 			if (wbc->sync_mode == WB_SYNC_ALL)
1912 				lock_page(page);
1913 			else if (!trylock_page(page))
1914 				continue;
1915 
1916 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1917 continue_unlock:
1918 				unlock_page(page);
1919 				continue;
1920 			}
1921 
1922 			if (!PageDirty(page)) {
1923 				/* someone wrote it for us */
1924 				goto continue_unlock;
1925 			}
1926 
1927 			/* flush inline_data, if it's async context. */
1928 			if (do_balance && is_inline_node(page)) {
1929 				clear_inline_node(page);
1930 				unlock_page(page);
1931 				flush_inline_data(sbi, ino_of_node(page));
1932 				goto lock_node;
1933 			}
1934 
1935 			/* flush dirty inode */
1936 			if (IS_INODE(page) && may_dirty) {
1937 				may_dirty = false;
1938 				if (flush_dirty_inode(page))
1939 					goto lock_node;
1940 			}
1941 
1942 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1943 
1944 			if (!clear_page_dirty_for_io(page))
1945 				goto continue_unlock;
1946 
1947 			set_fsync_mark(page, 0);
1948 			set_dentry_mark(page, 0);
1949 
1950 			ret = __write_node_page(page, false, &submitted,
1951 						wbc, do_balance, io_type, NULL);
1952 			if (ret)
1953 				unlock_page(page);
1954 			else if (submitted)
1955 				nwritten++;
1956 
1957 			if (--wbc->nr_to_write == 0)
1958 				break;
1959 		}
1960 		pagevec_release(&pvec);
1961 		cond_resched();
1962 
1963 		if (wbc->nr_to_write == 0) {
1964 			step = 2;
1965 			break;
1966 		}
1967 	}
1968 
1969 	if (step < 2) {
1970 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1971 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1972 			goto out;
1973 		step++;
1974 		goto next_step;
1975 	}
1976 out:
1977 	if (nwritten)
1978 		f2fs_submit_merged_write(sbi, NODE);
1979 
1980 	if (unlikely(f2fs_cp_error(sbi)))
1981 		return -EIO;
1982 	return ret;
1983 }
1984 
1985 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1986 						unsigned int seq_id)
1987 {
1988 	struct fsync_node_entry *fn;
1989 	struct page *page;
1990 	struct list_head *head = &sbi->fsync_node_list;
1991 	unsigned long flags;
1992 	unsigned int cur_seq_id = 0;
1993 	int ret2, ret = 0;
1994 
1995 	while (seq_id && cur_seq_id < seq_id) {
1996 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1997 		if (list_empty(head)) {
1998 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1999 			break;
2000 		}
2001 		fn = list_first_entry(head, struct fsync_node_entry, list);
2002 		if (fn->seq_id > seq_id) {
2003 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2004 			break;
2005 		}
2006 		cur_seq_id = fn->seq_id;
2007 		page = fn->page;
2008 		get_page(page);
2009 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2010 
2011 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2012 		if (TestClearPageError(page))
2013 			ret = -EIO;
2014 
2015 		put_page(page);
2016 
2017 		if (ret)
2018 			break;
2019 	}
2020 
2021 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2022 	if (!ret)
2023 		ret = ret2;
2024 
2025 	return ret;
2026 }
2027 
2028 static int f2fs_write_node_pages(struct address_space *mapping,
2029 			    struct writeback_control *wbc)
2030 {
2031 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2032 	struct blk_plug plug;
2033 	long diff;
2034 
2035 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2036 		goto skip_write;
2037 
2038 	/* balancing f2fs's metadata in background */
2039 	f2fs_balance_fs_bg(sbi, true);
2040 
2041 	/* collect a number of dirty node pages and write together */
2042 	if (wbc->sync_mode != WB_SYNC_ALL &&
2043 			get_pages(sbi, F2FS_DIRTY_NODES) <
2044 					nr_pages_to_skip(sbi, NODE))
2045 		goto skip_write;
2046 
2047 	if (wbc->sync_mode == WB_SYNC_ALL)
2048 		atomic_inc(&sbi->wb_sync_req[NODE]);
2049 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
2050 		goto skip_write;
2051 
2052 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2053 
2054 	diff = nr_pages_to_write(sbi, NODE, wbc);
2055 	blk_start_plug(&plug);
2056 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2057 	blk_finish_plug(&plug);
2058 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2059 
2060 	if (wbc->sync_mode == WB_SYNC_ALL)
2061 		atomic_dec(&sbi->wb_sync_req[NODE]);
2062 	return 0;
2063 
2064 skip_write:
2065 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2066 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2067 	return 0;
2068 }
2069 
2070 static int f2fs_set_node_page_dirty(struct page *page)
2071 {
2072 	trace_f2fs_set_page_dirty(page, NODE);
2073 
2074 	if (!PageUptodate(page))
2075 		SetPageUptodate(page);
2076 #ifdef CONFIG_F2FS_CHECK_FS
2077 	if (IS_INODE(page))
2078 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2079 #endif
2080 	if (!PageDirty(page)) {
2081 		__set_page_dirty_nobuffers(page);
2082 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2083 		f2fs_set_page_private(page, 0);
2084 		f2fs_trace_pid(page);
2085 		return 1;
2086 	}
2087 	return 0;
2088 }
2089 
2090 /*
2091  * Structure of the f2fs node operations
2092  */
2093 const struct address_space_operations f2fs_node_aops = {
2094 	.writepage	= f2fs_write_node_page,
2095 	.writepages	= f2fs_write_node_pages,
2096 	.set_page_dirty	= f2fs_set_node_page_dirty,
2097 	.invalidatepage	= f2fs_invalidate_page,
2098 	.releasepage	= f2fs_release_page,
2099 #ifdef CONFIG_MIGRATION
2100 	.migratepage    = f2fs_migrate_page,
2101 #endif
2102 };
2103 
2104 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2105 						nid_t n)
2106 {
2107 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2108 }
2109 
2110 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2111 			struct free_nid *i, enum nid_state state)
2112 {
2113 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2114 
2115 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2116 	if (err)
2117 		return err;
2118 
2119 	f2fs_bug_on(sbi, state != i->state);
2120 	nm_i->nid_cnt[state]++;
2121 	if (state == FREE_NID)
2122 		list_add_tail(&i->list, &nm_i->free_nid_list);
2123 	return 0;
2124 }
2125 
2126 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2127 			struct free_nid *i, enum nid_state state)
2128 {
2129 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2130 
2131 	f2fs_bug_on(sbi, state != i->state);
2132 	nm_i->nid_cnt[state]--;
2133 	if (state == FREE_NID)
2134 		list_del(&i->list);
2135 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2136 }
2137 
2138 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2139 			enum nid_state org_state, enum nid_state dst_state)
2140 {
2141 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2142 
2143 	f2fs_bug_on(sbi, org_state != i->state);
2144 	i->state = dst_state;
2145 	nm_i->nid_cnt[org_state]--;
2146 	nm_i->nid_cnt[dst_state]++;
2147 
2148 	switch (dst_state) {
2149 	case PREALLOC_NID:
2150 		list_del(&i->list);
2151 		break;
2152 	case FREE_NID:
2153 		list_add_tail(&i->list, &nm_i->free_nid_list);
2154 		break;
2155 	default:
2156 		BUG_ON(1);
2157 	}
2158 }
2159 
2160 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2161 							bool set, bool build)
2162 {
2163 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2164 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2165 	unsigned int nid_ofs = nid - START_NID(nid);
2166 
2167 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2168 		return;
2169 
2170 	if (set) {
2171 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2172 			return;
2173 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2174 		nm_i->free_nid_count[nat_ofs]++;
2175 	} else {
2176 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2177 			return;
2178 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2179 		if (!build)
2180 			nm_i->free_nid_count[nat_ofs]--;
2181 	}
2182 }
2183 
2184 /* return if the nid is recognized as free */
2185 static bool add_free_nid(struct f2fs_sb_info *sbi,
2186 				nid_t nid, bool build, bool update)
2187 {
2188 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2189 	struct free_nid *i, *e;
2190 	struct nat_entry *ne;
2191 	int err = -EINVAL;
2192 	bool ret = false;
2193 
2194 	/* 0 nid should not be used */
2195 	if (unlikely(nid == 0))
2196 		return false;
2197 
2198 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2199 		return false;
2200 
2201 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2202 	i->nid = nid;
2203 	i->state = FREE_NID;
2204 
2205 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2206 
2207 	spin_lock(&nm_i->nid_list_lock);
2208 
2209 	if (build) {
2210 		/*
2211 		 *   Thread A             Thread B
2212 		 *  - f2fs_create
2213 		 *   - f2fs_new_inode
2214 		 *    - f2fs_alloc_nid
2215 		 *     - __insert_nid_to_list(PREALLOC_NID)
2216 		 *                     - f2fs_balance_fs_bg
2217 		 *                      - f2fs_build_free_nids
2218 		 *                       - __f2fs_build_free_nids
2219 		 *                        - scan_nat_page
2220 		 *                         - add_free_nid
2221 		 *                          - __lookup_nat_cache
2222 		 *  - f2fs_add_link
2223 		 *   - f2fs_init_inode_metadata
2224 		 *    - f2fs_new_inode_page
2225 		 *     - f2fs_new_node_page
2226 		 *      - set_node_addr
2227 		 *  - f2fs_alloc_nid_done
2228 		 *   - __remove_nid_from_list(PREALLOC_NID)
2229 		 *                         - __insert_nid_to_list(FREE_NID)
2230 		 */
2231 		ne = __lookup_nat_cache(nm_i, nid);
2232 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2233 				nat_get_blkaddr(ne) != NULL_ADDR))
2234 			goto err_out;
2235 
2236 		e = __lookup_free_nid_list(nm_i, nid);
2237 		if (e) {
2238 			if (e->state == FREE_NID)
2239 				ret = true;
2240 			goto err_out;
2241 		}
2242 	}
2243 	ret = true;
2244 	err = __insert_free_nid(sbi, i, FREE_NID);
2245 err_out:
2246 	if (update) {
2247 		update_free_nid_bitmap(sbi, nid, ret, build);
2248 		if (!build)
2249 			nm_i->available_nids++;
2250 	}
2251 	spin_unlock(&nm_i->nid_list_lock);
2252 	radix_tree_preload_end();
2253 
2254 	if (err)
2255 		kmem_cache_free(free_nid_slab, i);
2256 	return ret;
2257 }
2258 
2259 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2260 {
2261 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2262 	struct free_nid *i;
2263 	bool need_free = false;
2264 
2265 	spin_lock(&nm_i->nid_list_lock);
2266 	i = __lookup_free_nid_list(nm_i, nid);
2267 	if (i && i->state == FREE_NID) {
2268 		__remove_free_nid(sbi, i, FREE_NID);
2269 		need_free = true;
2270 	}
2271 	spin_unlock(&nm_i->nid_list_lock);
2272 
2273 	if (need_free)
2274 		kmem_cache_free(free_nid_slab, i);
2275 }
2276 
2277 static int scan_nat_page(struct f2fs_sb_info *sbi,
2278 			struct page *nat_page, nid_t start_nid)
2279 {
2280 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2281 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2282 	block_t blk_addr;
2283 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2284 	int i;
2285 
2286 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2287 
2288 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2289 
2290 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2291 		if (unlikely(start_nid >= nm_i->max_nid))
2292 			break;
2293 
2294 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2295 
2296 		if (blk_addr == NEW_ADDR)
2297 			return -EINVAL;
2298 
2299 		if (blk_addr == NULL_ADDR) {
2300 			add_free_nid(sbi, start_nid, true, true);
2301 		} else {
2302 			spin_lock(&NM_I(sbi)->nid_list_lock);
2303 			update_free_nid_bitmap(sbi, start_nid, false, true);
2304 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2305 		}
2306 	}
2307 
2308 	return 0;
2309 }
2310 
2311 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2312 {
2313 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2314 	struct f2fs_journal *journal = curseg->journal;
2315 	int i;
2316 
2317 	down_read(&curseg->journal_rwsem);
2318 	for (i = 0; i < nats_in_cursum(journal); i++) {
2319 		block_t addr;
2320 		nid_t nid;
2321 
2322 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2323 		nid = le32_to_cpu(nid_in_journal(journal, i));
2324 		if (addr == NULL_ADDR)
2325 			add_free_nid(sbi, nid, true, false);
2326 		else
2327 			remove_free_nid(sbi, nid);
2328 	}
2329 	up_read(&curseg->journal_rwsem);
2330 }
2331 
2332 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2333 {
2334 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2335 	unsigned int i, idx;
2336 	nid_t nid;
2337 
2338 	down_read(&nm_i->nat_tree_lock);
2339 
2340 	for (i = 0; i < nm_i->nat_blocks; i++) {
2341 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2342 			continue;
2343 		if (!nm_i->free_nid_count[i])
2344 			continue;
2345 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2346 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2347 						NAT_ENTRY_PER_BLOCK, idx);
2348 			if (idx >= NAT_ENTRY_PER_BLOCK)
2349 				break;
2350 
2351 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2352 			add_free_nid(sbi, nid, true, false);
2353 
2354 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2355 				goto out;
2356 		}
2357 	}
2358 out:
2359 	scan_curseg_cache(sbi);
2360 
2361 	up_read(&nm_i->nat_tree_lock);
2362 }
2363 
2364 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2365 						bool sync, bool mount)
2366 {
2367 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 	int i = 0, ret;
2369 	nid_t nid = nm_i->next_scan_nid;
2370 
2371 	if (unlikely(nid >= nm_i->max_nid))
2372 		nid = 0;
2373 
2374 	/* Enough entries */
2375 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2376 		return 0;
2377 
2378 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2379 		return 0;
2380 
2381 	if (!mount) {
2382 		/* try to find free nids in free_nid_bitmap */
2383 		scan_free_nid_bits(sbi);
2384 
2385 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2386 			return 0;
2387 	}
2388 
2389 	/* readahead nat pages to be scanned */
2390 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2391 							META_NAT, true);
2392 
2393 	down_read(&nm_i->nat_tree_lock);
2394 
2395 	while (1) {
2396 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2397 						nm_i->nat_block_bitmap)) {
2398 			struct page *page = get_current_nat_page(sbi, nid);
2399 
2400 			if (IS_ERR(page)) {
2401 				ret = PTR_ERR(page);
2402 			} else {
2403 				ret = scan_nat_page(sbi, page, nid);
2404 				f2fs_put_page(page, 1);
2405 			}
2406 
2407 			if (ret) {
2408 				up_read(&nm_i->nat_tree_lock);
2409 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2410 				return ret;
2411 			}
2412 		}
2413 
2414 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2415 		if (unlikely(nid >= nm_i->max_nid))
2416 			nid = 0;
2417 
2418 		if (++i >= FREE_NID_PAGES)
2419 			break;
2420 	}
2421 
2422 	/* go to the next free nat pages to find free nids abundantly */
2423 	nm_i->next_scan_nid = nid;
2424 
2425 	/* find free nids from current sum_pages */
2426 	scan_curseg_cache(sbi);
2427 
2428 	up_read(&nm_i->nat_tree_lock);
2429 
2430 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2431 					nm_i->ra_nid_pages, META_NAT, false);
2432 
2433 	return 0;
2434 }
2435 
2436 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2437 {
2438 	int ret;
2439 
2440 	mutex_lock(&NM_I(sbi)->build_lock);
2441 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2442 	mutex_unlock(&NM_I(sbi)->build_lock);
2443 
2444 	return ret;
2445 }
2446 
2447 /*
2448  * If this function returns success, caller can obtain a new nid
2449  * from second parameter of this function.
2450  * The returned nid could be used ino as well as nid when inode is created.
2451  */
2452 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2453 {
2454 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2455 	struct free_nid *i = NULL;
2456 retry:
2457 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2458 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2459 		return false;
2460 	}
2461 
2462 	spin_lock(&nm_i->nid_list_lock);
2463 
2464 	if (unlikely(nm_i->available_nids == 0)) {
2465 		spin_unlock(&nm_i->nid_list_lock);
2466 		return false;
2467 	}
2468 
2469 	/* We should not use stale free nids created by f2fs_build_free_nids */
2470 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2471 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2472 		i = list_first_entry(&nm_i->free_nid_list,
2473 					struct free_nid, list);
2474 		*nid = i->nid;
2475 
2476 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2477 		nm_i->available_nids--;
2478 
2479 		update_free_nid_bitmap(sbi, *nid, false, false);
2480 
2481 		spin_unlock(&nm_i->nid_list_lock);
2482 		return true;
2483 	}
2484 	spin_unlock(&nm_i->nid_list_lock);
2485 
2486 	/* Let's scan nat pages and its caches to get free nids */
2487 	if (!f2fs_build_free_nids(sbi, true, false))
2488 		goto retry;
2489 	return false;
2490 }
2491 
2492 /*
2493  * f2fs_alloc_nid() should be called prior to this function.
2494  */
2495 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2496 {
2497 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2498 	struct free_nid *i;
2499 
2500 	spin_lock(&nm_i->nid_list_lock);
2501 	i = __lookup_free_nid_list(nm_i, nid);
2502 	f2fs_bug_on(sbi, !i);
2503 	__remove_free_nid(sbi, i, PREALLOC_NID);
2504 	spin_unlock(&nm_i->nid_list_lock);
2505 
2506 	kmem_cache_free(free_nid_slab, i);
2507 }
2508 
2509 /*
2510  * f2fs_alloc_nid() should be called prior to this function.
2511  */
2512 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2513 {
2514 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2515 	struct free_nid *i;
2516 	bool need_free = false;
2517 
2518 	if (!nid)
2519 		return;
2520 
2521 	spin_lock(&nm_i->nid_list_lock);
2522 	i = __lookup_free_nid_list(nm_i, nid);
2523 	f2fs_bug_on(sbi, !i);
2524 
2525 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2526 		__remove_free_nid(sbi, i, PREALLOC_NID);
2527 		need_free = true;
2528 	} else {
2529 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2530 	}
2531 
2532 	nm_i->available_nids++;
2533 
2534 	update_free_nid_bitmap(sbi, nid, true, false);
2535 
2536 	spin_unlock(&nm_i->nid_list_lock);
2537 
2538 	if (need_free)
2539 		kmem_cache_free(free_nid_slab, i);
2540 }
2541 
2542 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2543 {
2544 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2545 	int nr = nr_shrink;
2546 
2547 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2548 		return 0;
2549 
2550 	if (!mutex_trylock(&nm_i->build_lock))
2551 		return 0;
2552 
2553 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2554 		struct free_nid *i, *next;
2555 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2556 
2557 		spin_lock(&nm_i->nid_list_lock);
2558 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2559 			if (!nr_shrink || !batch ||
2560 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2561 				break;
2562 			__remove_free_nid(sbi, i, FREE_NID);
2563 			kmem_cache_free(free_nid_slab, i);
2564 			nr_shrink--;
2565 			batch--;
2566 		}
2567 		spin_unlock(&nm_i->nid_list_lock);
2568 	}
2569 
2570 	mutex_unlock(&nm_i->build_lock);
2571 
2572 	return nr - nr_shrink;
2573 }
2574 
2575 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2576 {
2577 	void *src_addr, *dst_addr;
2578 	size_t inline_size;
2579 	struct page *ipage;
2580 	struct f2fs_inode *ri;
2581 
2582 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2583 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2584 
2585 	ri = F2FS_INODE(page);
2586 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2587 		set_inode_flag(inode, FI_INLINE_XATTR);
2588 	} else {
2589 		clear_inode_flag(inode, FI_INLINE_XATTR);
2590 		goto update_inode;
2591 	}
2592 
2593 	dst_addr = inline_xattr_addr(inode, ipage);
2594 	src_addr = inline_xattr_addr(inode, page);
2595 	inline_size = inline_xattr_size(inode);
2596 
2597 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2598 	memcpy(dst_addr, src_addr, inline_size);
2599 update_inode:
2600 	f2fs_update_inode(inode, ipage);
2601 	f2fs_put_page(ipage, 1);
2602 }
2603 
2604 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2605 {
2606 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2607 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2608 	nid_t new_xnid;
2609 	struct dnode_of_data dn;
2610 	struct node_info ni;
2611 	struct page *xpage;
2612 	int err;
2613 
2614 	if (!prev_xnid)
2615 		goto recover_xnid;
2616 
2617 	/* 1: invalidate the previous xattr nid */
2618 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2619 	if (err)
2620 		return err;
2621 
2622 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2623 	dec_valid_node_count(sbi, inode, false);
2624 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2625 
2626 recover_xnid:
2627 	/* 2: update xattr nid in inode */
2628 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2629 		return -ENOSPC;
2630 
2631 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2632 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2633 	if (IS_ERR(xpage)) {
2634 		f2fs_alloc_nid_failed(sbi, new_xnid);
2635 		return PTR_ERR(xpage);
2636 	}
2637 
2638 	f2fs_alloc_nid_done(sbi, new_xnid);
2639 	f2fs_update_inode_page(inode);
2640 
2641 	/* 3: update and set xattr node page dirty */
2642 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2643 
2644 	set_page_dirty(xpage);
2645 	f2fs_put_page(xpage, 1);
2646 
2647 	return 0;
2648 }
2649 
2650 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2651 {
2652 	struct f2fs_inode *src, *dst;
2653 	nid_t ino = ino_of_node(page);
2654 	struct node_info old_ni, new_ni;
2655 	struct page *ipage;
2656 	int err;
2657 
2658 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2659 	if (err)
2660 		return err;
2661 
2662 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2663 		return -EINVAL;
2664 retry:
2665 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2666 	if (!ipage) {
2667 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2668 		goto retry;
2669 	}
2670 
2671 	/* Should not use this inode from free nid list */
2672 	remove_free_nid(sbi, ino);
2673 
2674 	if (!PageUptodate(ipage))
2675 		SetPageUptodate(ipage);
2676 	fill_node_footer(ipage, ino, ino, 0, true);
2677 	set_cold_node(ipage, false);
2678 
2679 	src = F2FS_INODE(page);
2680 	dst = F2FS_INODE(ipage);
2681 
2682 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2683 	dst->i_size = 0;
2684 	dst->i_blocks = cpu_to_le64(1);
2685 	dst->i_links = cpu_to_le32(1);
2686 	dst->i_xattr_nid = 0;
2687 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2688 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2689 		dst->i_extra_isize = src->i_extra_isize;
2690 
2691 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2692 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2693 							i_inline_xattr_size))
2694 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2695 
2696 		if (f2fs_sb_has_project_quota(sbi) &&
2697 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2698 								i_projid))
2699 			dst->i_projid = src->i_projid;
2700 
2701 		if (f2fs_sb_has_inode_crtime(sbi) &&
2702 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2703 							i_crtime_nsec)) {
2704 			dst->i_crtime = src->i_crtime;
2705 			dst->i_crtime_nsec = src->i_crtime_nsec;
2706 		}
2707 	}
2708 
2709 	new_ni = old_ni;
2710 	new_ni.ino = ino;
2711 
2712 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2713 		WARN_ON(1);
2714 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2715 	inc_valid_inode_count(sbi);
2716 	set_page_dirty(ipage);
2717 	f2fs_put_page(ipage, 1);
2718 	return 0;
2719 }
2720 
2721 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2722 			unsigned int segno, struct f2fs_summary_block *sum)
2723 {
2724 	struct f2fs_node *rn;
2725 	struct f2fs_summary *sum_entry;
2726 	block_t addr;
2727 	int i, idx, last_offset, nrpages;
2728 
2729 	/* scan the node segment */
2730 	last_offset = sbi->blocks_per_seg;
2731 	addr = START_BLOCK(sbi, segno);
2732 	sum_entry = &sum->entries[0];
2733 
2734 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2735 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2736 
2737 		/* readahead node pages */
2738 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2739 
2740 		for (idx = addr; idx < addr + nrpages; idx++) {
2741 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2742 
2743 			if (IS_ERR(page))
2744 				return PTR_ERR(page);
2745 
2746 			rn = F2FS_NODE(page);
2747 			sum_entry->nid = rn->footer.nid;
2748 			sum_entry->version = 0;
2749 			sum_entry->ofs_in_node = 0;
2750 			sum_entry++;
2751 			f2fs_put_page(page, 1);
2752 		}
2753 
2754 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2755 							addr + nrpages);
2756 	}
2757 	return 0;
2758 }
2759 
2760 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2761 {
2762 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2763 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2764 	struct f2fs_journal *journal = curseg->journal;
2765 	int i;
2766 
2767 	down_write(&curseg->journal_rwsem);
2768 	for (i = 0; i < nats_in_cursum(journal); i++) {
2769 		struct nat_entry *ne;
2770 		struct f2fs_nat_entry raw_ne;
2771 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2772 
2773 		raw_ne = nat_in_journal(journal, i);
2774 
2775 		ne = __lookup_nat_cache(nm_i, nid);
2776 		if (!ne) {
2777 			ne = __alloc_nat_entry(nid, true);
2778 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2779 		}
2780 
2781 		/*
2782 		 * if a free nat in journal has not been used after last
2783 		 * checkpoint, we should remove it from available nids,
2784 		 * since later we will add it again.
2785 		 */
2786 		if (!get_nat_flag(ne, IS_DIRTY) &&
2787 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2788 			spin_lock(&nm_i->nid_list_lock);
2789 			nm_i->available_nids--;
2790 			spin_unlock(&nm_i->nid_list_lock);
2791 		}
2792 
2793 		__set_nat_cache_dirty(nm_i, ne);
2794 	}
2795 	update_nats_in_cursum(journal, -i);
2796 	up_write(&curseg->journal_rwsem);
2797 }
2798 
2799 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2800 						struct list_head *head, int max)
2801 {
2802 	struct nat_entry_set *cur;
2803 
2804 	if (nes->entry_cnt >= max)
2805 		goto add_out;
2806 
2807 	list_for_each_entry(cur, head, set_list) {
2808 		if (cur->entry_cnt >= nes->entry_cnt) {
2809 			list_add(&nes->set_list, cur->set_list.prev);
2810 			return;
2811 		}
2812 	}
2813 add_out:
2814 	list_add_tail(&nes->set_list, head);
2815 }
2816 
2817 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2818 						struct page *page)
2819 {
2820 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2821 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2822 	struct f2fs_nat_block *nat_blk = page_address(page);
2823 	int valid = 0;
2824 	int i = 0;
2825 
2826 	if (!enabled_nat_bits(sbi, NULL))
2827 		return;
2828 
2829 	if (nat_index == 0) {
2830 		valid = 1;
2831 		i = 1;
2832 	}
2833 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2834 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2835 			valid++;
2836 	}
2837 	if (valid == 0) {
2838 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2839 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2840 		return;
2841 	}
2842 
2843 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2844 	if (valid == NAT_ENTRY_PER_BLOCK)
2845 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2846 	else
2847 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2848 }
2849 
2850 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2851 		struct nat_entry_set *set, struct cp_control *cpc)
2852 {
2853 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2854 	struct f2fs_journal *journal = curseg->journal;
2855 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2856 	bool to_journal = true;
2857 	struct f2fs_nat_block *nat_blk;
2858 	struct nat_entry *ne, *cur;
2859 	struct page *page = NULL;
2860 
2861 	/*
2862 	 * there are two steps to flush nat entries:
2863 	 * #1, flush nat entries to journal in current hot data summary block.
2864 	 * #2, flush nat entries to nat page.
2865 	 */
2866 	if (enabled_nat_bits(sbi, cpc) ||
2867 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2868 		to_journal = false;
2869 
2870 	if (to_journal) {
2871 		down_write(&curseg->journal_rwsem);
2872 	} else {
2873 		page = get_next_nat_page(sbi, start_nid);
2874 		if (IS_ERR(page))
2875 			return PTR_ERR(page);
2876 
2877 		nat_blk = page_address(page);
2878 		f2fs_bug_on(sbi, !nat_blk);
2879 	}
2880 
2881 	/* flush dirty nats in nat entry set */
2882 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2883 		struct f2fs_nat_entry *raw_ne;
2884 		nid_t nid = nat_get_nid(ne);
2885 		int offset;
2886 
2887 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2888 
2889 		if (to_journal) {
2890 			offset = f2fs_lookup_journal_in_cursum(journal,
2891 							NAT_JOURNAL, nid, 1);
2892 			f2fs_bug_on(sbi, offset < 0);
2893 			raw_ne = &nat_in_journal(journal, offset);
2894 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2895 		} else {
2896 			raw_ne = &nat_blk->entries[nid - start_nid];
2897 		}
2898 		raw_nat_from_node_info(raw_ne, &ne->ni);
2899 		nat_reset_flag(ne);
2900 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2901 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2902 			add_free_nid(sbi, nid, false, true);
2903 		} else {
2904 			spin_lock(&NM_I(sbi)->nid_list_lock);
2905 			update_free_nid_bitmap(sbi, nid, false, false);
2906 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2907 		}
2908 	}
2909 
2910 	if (to_journal) {
2911 		up_write(&curseg->journal_rwsem);
2912 	} else {
2913 		__update_nat_bits(sbi, start_nid, page);
2914 		f2fs_put_page(page, 1);
2915 	}
2916 
2917 	/* Allow dirty nats by node block allocation in write_begin */
2918 	if (!set->entry_cnt) {
2919 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2920 		kmem_cache_free(nat_entry_set_slab, set);
2921 	}
2922 	return 0;
2923 }
2924 
2925 /*
2926  * This function is called during the checkpointing process.
2927  */
2928 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2929 {
2930 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2931 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2932 	struct f2fs_journal *journal = curseg->journal;
2933 	struct nat_entry_set *setvec[SETVEC_SIZE];
2934 	struct nat_entry_set *set, *tmp;
2935 	unsigned int found;
2936 	nid_t set_idx = 0;
2937 	LIST_HEAD(sets);
2938 	int err = 0;
2939 
2940 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2941 	if (enabled_nat_bits(sbi, cpc)) {
2942 		down_write(&nm_i->nat_tree_lock);
2943 		remove_nats_in_journal(sbi);
2944 		up_write(&nm_i->nat_tree_lock);
2945 	}
2946 
2947 	if (!nm_i->dirty_nat_cnt)
2948 		return 0;
2949 
2950 	down_write(&nm_i->nat_tree_lock);
2951 
2952 	/*
2953 	 * if there are no enough space in journal to store dirty nat
2954 	 * entries, remove all entries from journal and merge them
2955 	 * into nat entry set.
2956 	 */
2957 	if (enabled_nat_bits(sbi, cpc) ||
2958 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2959 		remove_nats_in_journal(sbi);
2960 
2961 	while ((found = __gang_lookup_nat_set(nm_i,
2962 					set_idx, SETVEC_SIZE, setvec))) {
2963 		unsigned idx;
2964 		set_idx = setvec[found - 1]->set + 1;
2965 		for (idx = 0; idx < found; idx++)
2966 			__adjust_nat_entry_set(setvec[idx], &sets,
2967 						MAX_NAT_JENTRIES(journal));
2968 	}
2969 
2970 	/* flush dirty nats in nat entry set */
2971 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2972 		err = __flush_nat_entry_set(sbi, set, cpc);
2973 		if (err)
2974 			break;
2975 	}
2976 
2977 	up_write(&nm_i->nat_tree_lock);
2978 	/* Allow dirty nats by node block allocation in write_begin */
2979 
2980 	return err;
2981 }
2982 
2983 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2984 {
2985 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2986 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2987 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2988 	unsigned int i;
2989 	__u64 cp_ver = cur_cp_version(ckpt);
2990 	block_t nat_bits_addr;
2991 
2992 	if (!enabled_nat_bits(sbi, NULL))
2993 		return 0;
2994 
2995 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2996 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
2997 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2998 	if (!nm_i->nat_bits)
2999 		return -ENOMEM;
3000 
3001 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3002 						nm_i->nat_bits_blocks;
3003 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3004 		struct page *page;
3005 
3006 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3007 		if (IS_ERR(page))
3008 			return PTR_ERR(page);
3009 
3010 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3011 					page_address(page), F2FS_BLKSIZE);
3012 		f2fs_put_page(page, 1);
3013 	}
3014 
3015 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3016 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3017 		disable_nat_bits(sbi, true);
3018 		return 0;
3019 	}
3020 
3021 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3022 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3023 
3024 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3025 	return 0;
3026 }
3027 
3028 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3029 {
3030 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3031 	unsigned int i = 0;
3032 	nid_t nid, last_nid;
3033 
3034 	if (!enabled_nat_bits(sbi, NULL))
3035 		return;
3036 
3037 	for (i = 0; i < nm_i->nat_blocks; i++) {
3038 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3039 		if (i >= nm_i->nat_blocks)
3040 			break;
3041 
3042 		__set_bit_le(i, nm_i->nat_block_bitmap);
3043 
3044 		nid = i * NAT_ENTRY_PER_BLOCK;
3045 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3046 
3047 		spin_lock(&NM_I(sbi)->nid_list_lock);
3048 		for (; nid < last_nid; nid++)
3049 			update_free_nid_bitmap(sbi, nid, true, true);
3050 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3051 	}
3052 
3053 	for (i = 0; i < nm_i->nat_blocks; i++) {
3054 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3055 		if (i >= nm_i->nat_blocks)
3056 			break;
3057 
3058 		__set_bit_le(i, nm_i->nat_block_bitmap);
3059 	}
3060 }
3061 
3062 static int init_node_manager(struct f2fs_sb_info *sbi)
3063 {
3064 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3065 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3066 	unsigned char *version_bitmap;
3067 	unsigned int nat_segs;
3068 	int err;
3069 
3070 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3071 
3072 	/* segment_count_nat includes pair segment so divide to 2. */
3073 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3074 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3075 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3076 
3077 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3078 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3079 						F2FS_RESERVED_NODE_NUM;
3080 	nm_i->nid_cnt[FREE_NID] = 0;
3081 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3082 	nm_i->nat_cnt = 0;
3083 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3084 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3085 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3086 
3087 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3088 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3089 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3090 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3091 	INIT_LIST_HEAD(&nm_i->nat_entries);
3092 	spin_lock_init(&nm_i->nat_list_lock);
3093 
3094 	mutex_init(&nm_i->build_lock);
3095 	spin_lock_init(&nm_i->nid_list_lock);
3096 	init_rwsem(&nm_i->nat_tree_lock);
3097 
3098 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3099 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3100 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3101 	if (!version_bitmap)
3102 		return -EFAULT;
3103 
3104 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3105 					GFP_KERNEL);
3106 	if (!nm_i->nat_bitmap)
3107 		return -ENOMEM;
3108 
3109 	err = __get_nat_bitmaps(sbi);
3110 	if (err)
3111 		return err;
3112 
3113 #ifdef CONFIG_F2FS_CHECK_FS
3114 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3115 					GFP_KERNEL);
3116 	if (!nm_i->nat_bitmap_mir)
3117 		return -ENOMEM;
3118 #endif
3119 
3120 	return 0;
3121 }
3122 
3123 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3124 {
3125 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3126 	int i;
3127 
3128 	nm_i->free_nid_bitmap =
3129 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3130 					      nm_i->nat_blocks),
3131 			      GFP_KERNEL);
3132 	if (!nm_i->free_nid_bitmap)
3133 		return -ENOMEM;
3134 
3135 	for (i = 0; i < nm_i->nat_blocks; i++) {
3136 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3137 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3138 		if (!nm_i->free_nid_bitmap[i])
3139 			return -ENOMEM;
3140 	}
3141 
3142 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3143 								GFP_KERNEL);
3144 	if (!nm_i->nat_block_bitmap)
3145 		return -ENOMEM;
3146 
3147 	nm_i->free_nid_count =
3148 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3149 					      nm_i->nat_blocks),
3150 			      GFP_KERNEL);
3151 	if (!nm_i->free_nid_count)
3152 		return -ENOMEM;
3153 	return 0;
3154 }
3155 
3156 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3157 {
3158 	int err;
3159 
3160 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3161 							GFP_KERNEL);
3162 	if (!sbi->nm_info)
3163 		return -ENOMEM;
3164 
3165 	err = init_node_manager(sbi);
3166 	if (err)
3167 		return err;
3168 
3169 	err = init_free_nid_cache(sbi);
3170 	if (err)
3171 		return err;
3172 
3173 	/* load free nid status from nat_bits table */
3174 	load_free_nid_bitmap(sbi);
3175 
3176 	return f2fs_build_free_nids(sbi, true, true);
3177 }
3178 
3179 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3180 {
3181 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3182 	struct free_nid *i, *next_i;
3183 	struct nat_entry *natvec[NATVEC_SIZE];
3184 	struct nat_entry_set *setvec[SETVEC_SIZE];
3185 	nid_t nid = 0;
3186 	unsigned int found;
3187 
3188 	if (!nm_i)
3189 		return;
3190 
3191 	/* destroy free nid list */
3192 	spin_lock(&nm_i->nid_list_lock);
3193 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3194 		__remove_free_nid(sbi, i, FREE_NID);
3195 		spin_unlock(&nm_i->nid_list_lock);
3196 		kmem_cache_free(free_nid_slab, i);
3197 		spin_lock(&nm_i->nid_list_lock);
3198 	}
3199 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3200 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3201 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3202 	spin_unlock(&nm_i->nid_list_lock);
3203 
3204 	/* destroy nat cache */
3205 	down_write(&nm_i->nat_tree_lock);
3206 	while ((found = __gang_lookup_nat_cache(nm_i,
3207 					nid, NATVEC_SIZE, natvec))) {
3208 		unsigned idx;
3209 
3210 		nid = nat_get_nid(natvec[found - 1]) + 1;
3211 		for (idx = 0; idx < found; idx++) {
3212 			spin_lock(&nm_i->nat_list_lock);
3213 			list_del(&natvec[idx]->list);
3214 			spin_unlock(&nm_i->nat_list_lock);
3215 
3216 			__del_from_nat_cache(nm_i, natvec[idx]);
3217 		}
3218 	}
3219 	f2fs_bug_on(sbi, nm_i->nat_cnt);
3220 
3221 	/* destroy nat set cache */
3222 	nid = 0;
3223 	while ((found = __gang_lookup_nat_set(nm_i,
3224 					nid, SETVEC_SIZE, setvec))) {
3225 		unsigned idx;
3226 
3227 		nid = setvec[found - 1]->set + 1;
3228 		for (idx = 0; idx < found; idx++) {
3229 			/* entry_cnt is not zero, when cp_error was occurred */
3230 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3231 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3232 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3233 		}
3234 	}
3235 	up_write(&nm_i->nat_tree_lock);
3236 
3237 	kvfree(nm_i->nat_block_bitmap);
3238 	if (nm_i->free_nid_bitmap) {
3239 		int i;
3240 
3241 		for (i = 0; i < nm_i->nat_blocks; i++)
3242 			kvfree(nm_i->free_nid_bitmap[i]);
3243 		kvfree(nm_i->free_nid_bitmap);
3244 	}
3245 	kvfree(nm_i->free_nid_count);
3246 
3247 	kvfree(nm_i->nat_bitmap);
3248 	kvfree(nm_i->nat_bits);
3249 #ifdef CONFIG_F2FS_CHECK_FS
3250 	kvfree(nm_i->nat_bitmap_mir);
3251 #endif
3252 	sbi->nm_info = NULL;
3253 	kvfree(nm_i);
3254 }
3255 
3256 int __init f2fs_create_node_manager_caches(void)
3257 {
3258 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3259 			sizeof(struct nat_entry));
3260 	if (!nat_entry_slab)
3261 		goto fail;
3262 
3263 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3264 			sizeof(struct free_nid));
3265 	if (!free_nid_slab)
3266 		goto destroy_nat_entry;
3267 
3268 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3269 			sizeof(struct nat_entry_set));
3270 	if (!nat_entry_set_slab)
3271 		goto destroy_free_nid;
3272 
3273 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3274 			sizeof(struct fsync_node_entry));
3275 	if (!fsync_node_entry_slab)
3276 		goto destroy_nat_entry_set;
3277 	return 0;
3278 
3279 destroy_nat_entry_set:
3280 	kmem_cache_destroy(nat_entry_set_slab);
3281 destroy_free_nid:
3282 	kmem_cache_destroy(free_nid_slab);
3283 destroy_nat_entry:
3284 	kmem_cache_destroy(nat_entry_slab);
3285 fail:
3286 	return -ENOMEM;
3287 }
3288 
3289 void f2fs_destroy_node_manager_caches(void)
3290 {
3291 	kmem_cache_destroy(fsync_node_entry_slab);
3292 	kmem_cache_destroy(nat_entry_set_slab);
3293 	kmem_cache_destroy(free_nid_slab);
3294 	kmem_cache_destroy(nat_entry_slab);
3295 }
3296