1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "xattr.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 27 28 static struct kmem_cache *nat_entry_slab; 29 static struct kmem_cache *free_nid_slab; 30 static struct kmem_cache *nat_entry_set_slab; 31 static struct kmem_cache *fsync_node_entry_slab; 32 33 /* 34 * Check whether the given nid is within node id range. 35 */ 36 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 37 { 38 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 39 set_sbi_flag(sbi, SBI_NEED_FSCK); 40 f2fs_msg(sbi->sb, KERN_WARNING, 41 "%s: out-of-range nid=%x, run fsck to fix.", 42 __func__, nid); 43 return -EINVAL; 44 } 45 return 0; 46 } 47 48 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 49 { 50 struct f2fs_nm_info *nm_i = NM_I(sbi); 51 struct sysinfo val; 52 unsigned long avail_ram; 53 unsigned long mem_size = 0; 54 bool res = false; 55 56 si_meminfo(&val); 57 58 /* only uses low memory */ 59 avail_ram = val.totalram - val.totalhigh; 60 61 /* 62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 63 */ 64 if (type == FREE_NIDS) { 65 mem_size = (nm_i->nid_cnt[FREE_NID] * 66 sizeof(struct free_nid)) >> PAGE_SHIFT; 67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 68 } else if (type == NAT_ENTRIES) { 69 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 70 PAGE_SHIFT; 71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 72 if (excess_cached_nats(sbi)) 73 res = false; 74 } else if (type == DIRTY_DENTS) { 75 if (sbi->sb->s_bdi->wb.dirty_exceeded) 76 return false; 77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 79 } else if (type == INO_ENTRIES) { 80 int i; 81 82 for (i = 0; i < MAX_INO_ENTRY; i++) 83 mem_size += sbi->im[i].ino_num * 84 sizeof(struct ino_entry); 85 mem_size >>= PAGE_SHIFT; 86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 87 } else if (type == EXTENT_CACHE) { 88 mem_size = (atomic_read(&sbi->total_ext_tree) * 89 sizeof(struct extent_tree) + 90 atomic_read(&sbi->total_ext_node) * 91 sizeof(struct extent_node)) >> PAGE_SHIFT; 92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 93 } else if (type == INMEM_PAGES) { 94 /* it allows 20% / total_ram for inmemory pages */ 95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 96 res = mem_size < (val.totalram / 5); 97 } else { 98 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 99 return true; 100 } 101 return res; 102 } 103 104 static void clear_node_page_dirty(struct page *page) 105 { 106 if (PageDirty(page)) { 107 f2fs_clear_radix_tree_dirty_tag(page); 108 clear_page_dirty_for_io(page); 109 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 110 } 111 ClearPageUptodate(page); 112 } 113 114 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 115 { 116 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid)); 117 } 118 119 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 120 { 121 struct page *src_page; 122 struct page *dst_page; 123 pgoff_t dst_off; 124 void *src_addr; 125 void *dst_addr; 126 struct f2fs_nm_info *nm_i = NM_I(sbi); 127 128 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 129 130 /* get current nat block page with lock */ 131 src_page = get_current_nat_page(sbi, nid); 132 dst_page = f2fs_grab_meta_page(sbi, dst_off); 133 f2fs_bug_on(sbi, PageDirty(src_page)); 134 135 src_addr = page_address(src_page); 136 dst_addr = page_address(dst_page); 137 memcpy(dst_addr, src_addr, PAGE_SIZE); 138 set_page_dirty(dst_page); 139 f2fs_put_page(src_page, 1); 140 141 set_to_next_nat(nm_i, nid); 142 143 return dst_page; 144 } 145 146 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 147 { 148 struct nat_entry *new; 149 150 if (no_fail) 151 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 152 else 153 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 154 if (new) { 155 nat_set_nid(new, nid); 156 nat_reset_flag(new); 157 } 158 return new; 159 } 160 161 static void __free_nat_entry(struct nat_entry *e) 162 { 163 kmem_cache_free(nat_entry_slab, e); 164 } 165 166 /* must be locked by nat_tree_lock */ 167 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 168 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 169 { 170 if (no_fail) 171 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 172 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 173 return NULL; 174 175 if (raw_ne) 176 node_info_from_raw_nat(&ne->ni, raw_ne); 177 178 spin_lock(&nm_i->nat_list_lock); 179 list_add_tail(&ne->list, &nm_i->nat_entries); 180 spin_unlock(&nm_i->nat_list_lock); 181 182 nm_i->nat_cnt++; 183 return ne; 184 } 185 186 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 187 { 188 struct nat_entry *ne; 189 190 ne = radix_tree_lookup(&nm_i->nat_root, n); 191 192 /* for recent accessed nat entry, move it to tail of lru list */ 193 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 194 spin_lock(&nm_i->nat_list_lock); 195 if (!list_empty(&ne->list)) 196 list_move_tail(&ne->list, &nm_i->nat_entries); 197 spin_unlock(&nm_i->nat_list_lock); 198 } 199 200 return ne; 201 } 202 203 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 204 nid_t start, unsigned int nr, struct nat_entry **ep) 205 { 206 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 207 } 208 209 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 210 { 211 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 212 nm_i->nat_cnt--; 213 __free_nat_entry(e); 214 } 215 216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 217 struct nat_entry *ne) 218 { 219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 220 struct nat_entry_set *head; 221 222 head = radix_tree_lookup(&nm_i->nat_set_root, set); 223 if (!head) { 224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 225 226 INIT_LIST_HEAD(&head->entry_list); 227 INIT_LIST_HEAD(&head->set_list); 228 head->set = set; 229 head->entry_cnt = 0; 230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 231 } 232 return head; 233 } 234 235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 236 struct nat_entry *ne) 237 { 238 struct nat_entry_set *head; 239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 240 241 if (!new_ne) 242 head = __grab_nat_entry_set(nm_i, ne); 243 244 /* 245 * update entry_cnt in below condition: 246 * 1. update NEW_ADDR to valid block address; 247 * 2. update old block address to new one; 248 */ 249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 250 !get_nat_flag(ne, IS_DIRTY))) 251 head->entry_cnt++; 252 253 set_nat_flag(ne, IS_PREALLOC, new_ne); 254 255 if (get_nat_flag(ne, IS_DIRTY)) 256 goto refresh_list; 257 258 nm_i->dirty_nat_cnt++; 259 set_nat_flag(ne, IS_DIRTY, true); 260 refresh_list: 261 spin_lock(&nm_i->nat_list_lock); 262 if (new_ne) 263 list_del_init(&ne->list); 264 else 265 list_move_tail(&ne->list, &head->entry_list); 266 spin_unlock(&nm_i->nat_list_lock); 267 } 268 269 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 270 struct nat_entry_set *set, struct nat_entry *ne) 271 { 272 spin_lock(&nm_i->nat_list_lock); 273 list_move_tail(&ne->list, &nm_i->nat_entries); 274 spin_unlock(&nm_i->nat_list_lock); 275 276 set_nat_flag(ne, IS_DIRTY, false); 277 set->entry_cnt--; 278 nm_i->dirty_nat_cnt--; 279 } 280 281 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 282 nid_t start, unsigned int nr, struct nat_entry_set **ep) 283 { 284 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 285 start, nr); 286 } 287 288 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 289 { 290 return NODE_MAPPING(sbi) == page->mapping && 291 IS_DNODE(page) && is_cold_node(page); 292 } 293 294 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 295 { 296 spin_lock_init(&sbi->fsync_node_lock); 297 INIT_LIST_HEAD(&sbi->fsync_node_list); 298 sbi->fsync_seg_id = 0; 299 sbi->fsync_node_num = 0; 300 } 301 302 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 303 struct page *page) 304 { 305 struct fsync_node_entry *fn; 306 unsigned long flags; 307 unsigned int seq_id; 308 309 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); 310 311 get_page(page); 312 fn->page = page; 313 INIT_LIST_HEAD(&fn->list); 314 315 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 316 list_add_tail(&fn->list, &sbi->fsync_node_list); 317 fn->seq_id = sbi->fsync_seg_id++; 318 seq_id = fn->seq_id; 319 sbi->fsync_node_num++; 320 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 321 322 return seq_id; 323 } 324 325 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 326 { 327 struct fsync_node_entry *fn; 328 unsigned long flags; 329 330 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 331 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 332 if (fn->page == page) { 333 list_del(&fn->list); 334 sbi->fsync_node_num--; 335 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 336 kmem_cache_free(fsync_node_entry_slab, fn); 337 put_page(page); 338 return; 339 } 340 } 341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 342 f2fs_bug_on(sbi, 1); 343 } 344 345 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 346 { 347 unsigned long flags; 348 349 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 350 sbi->fsync_seg_id = 0; 351 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 352 } 353 354 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 355 { 356 struct f2fs_nm_info *nm_i = NM_I(sbi); 357 struct nat_entry *e; 358 bool need = false; 359 360 down_read(&nm_i->nat_tree_lock); 361 e = __lookup_nat_cache(nm_i, nid); 362 if (e) { 363 if (!get_nat_flag(e, IS_CHECKPOINTED) && 364 !get_nat_flag(e, HAS_FSYNCED_INODE)) 365 need = true; 366 } 367 up_read(&nm_i->nat_tree_lock); 368 return need; 369 } 370 371 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 372 { 373 struct f2fs_nm_info *nm_i = NM_I(sbi); 374 struct nat_entry *e; 375 bool is_cp = true; 376 377 down_read(&nm_i->nat_tree_lock); 378 e = __lookup_nat_cache(nm_i, nid); 379 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 380 is_cp = false; 381 up_read(&nm_i->nat_tree_lock); 382 return is_cp; 383 } 384 385 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 386 { 387 struct f2fs_nm_info *nm_i = NM_I(sbi); 388 struct nat_entry *e; 389 bool need_update = true; 390 391 down_read(&nm_i->nat_tree_lock); 392 e = __lookup_nat_cache(nm_i, ino); 393 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 394 (get_nat_flag(e, IS_CHECKPOINTED) || 395 get_nat_flag(e, HAS_FSYNCED_INODE))) 396 need_update = false; 397 up_read(&nm_i->nat_tree_lock); 398 return need_update; 399 } 400 401 /* must be locked by nat_tree_lock */ 402 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 403 struct f2fs_nat_entry *ne) 404 { 405 struct f2fs_nm_info *nm_i = NM_I(sbi); 406 struct nat_entry *new, *e; 407 408 new = __alloc_nat_entry(nid, false); 409 if (!new) 410 return; 411 412 down_write(&nm_i->nat_tree_lock); 413 e = __lookup_nat_cache(nm_i, nid); 414 if (!e) 415 e = __init_nat_entry(nm_i, new, ne, false); 416 else 417 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 418 nat_get_blkaddr(e) != 419 le32_to_cpu(ne->block_addr) || 420 nat_get_version(e) != ne->version); 421 up_write(&nm_i->nat_tree_lock); 422 if (e != new) 423 __free_nat_entry(new); 424 } 425 426 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 427 block_t new_blkaddr, bool fsync_done) 428 { 429 struct f2fs_nm_info *nm_i = NM_I(sbi); 430 struct nat_entry *e; 431 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 432 433 down_write(&nm_i->nat_tree_lock); 434 e = __lookup_nat_cache(nm_i, ni->nid); 435 if (!e) { 436 e = __init_nat_entry(nm_i, new, NULL, true); 437 copy_node_info(&e->ni, ni); 438 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 439 } else if (new_blkaddr == NEW_ADDR) { 440 /* 441 * when nid is reallocated, 442 * previous nat entry can be remained in nat cache. 443 * So, reinitialize it with new information. 444 */ 445 copy_node_info(&e->ni, ni); 446 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 447 } 448 /* let's free early to reduce memory consumption */ 449 if (e != new) 450 __free_nat_entry(new); 451 452 /* sanity check */ 453 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 455 new_blkaddr == NULL_ADDR); 456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 457 new_blkaddr == NEW_ADDR); 458 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) && 459 new_blkaddr == NEW_ADDR); 460 461 /* increment version no as node is removed */ 462 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 463 unsigned char version = nat_get_version(e); 464 nat_set_version(e, inc_node_version(version)); 465 } 466 467 /* change address */ 468 nat_set_blkaddr(e, new_blkaddr); 469 if (!is_valid_data_blkaddr(sbi, new_blkaddr)) 470 set_nat_flag(e, IS_CHECKPOINTED, false); 471 __set_nat_cache_dirty(nm_i, e); 472 473 /* update fsync_mark if its inode nat entry is still alive */ 474 if (ni->nid != ni->ino) 475 e = __lookup_nat_cache(nm_i, ni->ino); 476 if (e) { 477 if (fsync_done && ni->nid == ni->ino) 478 set_nat_flag(e, HAS_FSYNCED_INODE, true); 479 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 480 } 481 up_write(&nm_i->nat_tree_lock); 482 } 483 484 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 485 { 486 struct f2fs_nm_info *nm_i = NM_I(sbi); 487 int nr = nr_shrink; 488 489 if (!down_write_trylock(&nm_i->nat_tree_lock)) 490 return 0; 491 492 spin_lock(&nm_i->nat_list_lock); 493 while (nr_shrink) { 494 struct nat_entry *ne; 495 496 if (list_empty(&nm_i->nat_entries)) 497 break; 498 499 ne = list_first_entry(&nm_i->nat_entries, 500 struct nat_entry, list); 501 list_del(&ne->list); 502 spin_unlock(&nm_i->nat_list_lock); 503 504 __del_from_nat_cache(nm_i, ne); 505 nr_shrink--; 506 507 spin_lock(&nm_i->nat_list_lock); 508 } 509 spin_unlock(&nm_i->nat_list_lock); 510 511 up_write(&nm_i->nat_tree_lock); 512 return nr - nr_shrink; 513 } 514 515 /* 516 * This function always returns success 517 */ 518 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 519 struct node_info *ni) 520 { 521 struct f2fs_nm_info *nm_i = NM_I(sbi); 522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 523 struct f2fs_journal *journal = curseg->journal; 524 nid_t start_nid = START_NID(nid); 525 struct f2fs_nat_block *nat_blk; 526 struct page *page = NULL; 527 struct f2fs_nat_entry ne; 528 struct nat_entry *e; 529 pgoff_t index; 530 int i; 531 532 ni->nid = nid; 533 534 /* Check nat cache */ 535 down_read(&nm_i->nat_tree_lock); 536 e = __lookup_nat_cache(nm_i, nid); 537 if (e) { 538 ni->ino = nat_get_ino(e); 539 ni->blk_addr = nat_get_blkaddr(e); 540 ni->version = nat_get_version(e); 541 up_read(&nm_i->nat_tree_lock); 542 return 0; 543 } 544 545 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 546 547 /* Check current segment summary */ 548 down_read(&curseg->journal_rwsem); 549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 550 if (i >= 0) { 551 ne = nat_in_journal(journal, i); 552 node_info_from_raw_nat(ni, &ne); 553 } 554 up_read(&curseg->journal_rwsem); 555 if (i >= 0) { 556 up_read(&nm_i->nat_tree_lock); 557 goto cache; 558 } 559 560 /* Fill node_info from nat page */ 561 index = current_nat_addr(sbi, nid); 562 up_read(&nm_i->nat_tree_lock); 563 564 page = f2fs_get_meta_page(sbi, index); 565 if (IS_ERR(page)) 566 return PTR_ERR(page); 567 568 nat_blk = (struct f2fs_nat_block *)page_address(page); 569 ne = nat_blk->entries[nid - start_nid]; 570 node_info_from_raw_nat(ni, &ne); 571 f2fs_put_page(page, 1); 572 cache: 573 /* cache nat entry */ 574 cache_nat_entry(sbi, nid, &ne); 575 return 0; 576 } 577 578 /* 579 * readahead MAX_RA_NODE number of node pages. 580 */ 581 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 582 { 583 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 584 struct blk_plug plug; 585 int i, end; 586 nid_t nid; 587 588 blk_start_plug(&plug); 589 590 /* Then, try readahead for siblings of the desired node */ 591 end = start + n; 592 end = min(end, NIDS_PER_BLOCK); 593 for (i = start; i < end; i++) { 594 nid = get_nid(parent, i, false); 595 f2fs_ra_node_page(sbi, nid); 596 } 597 598 blk_finish_plug(&plug); 599 } 600 601 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 602 { 603 const long direct_index = ADDRS_PER_INODE(dn->inode); 604 const long direct_blks = ADDRS_PER_BLOCK; 605 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 606 unsigned int skipped_unit = ADDRS_PER_BLOCK; 607 int cur_level = dn->cur_level; 608 int max_level = dn->max_level; 609 pgoff_t base = 0; 610 611 if (!dn->max_level) 612 return pgofs + 1; 613 614 while (max_level-- > cur_level) 615 skipped_unit *= NIDS_PER_BLOCK; 616 617 switch (dn->max_level) { 618 case 3: 619 base += 2 * indirect_blks; 620 case 2: 621 base += 2 * direct_blks; 622 case 1: 623 base += direct_index; 624 break; 625 default: 626 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 627 } 628 629 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 630 } 631 632 /* 633 * The maximum depth is four. 634 * Offset[0] will have raw inode offset. 635 */ 636 static int get_node_path(struct inode *inode, long block, 637 int offset[4], unsigned int noffset[4]) 638 { 639 const long direct_index = ADDRS_PER_INODE(inode); 640 const long direct_blks = ADDRS_PER_BLOCK; 641 const long dptrs_per_blk = NIDS_PER_BLOCK; 642 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 643 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 644 int n = 0; 645 int level = 0; 646 647 noffset[0] = 0; 648 649 if (block < direct_index) { 650 offset[n] = block; 651 goto got; 652 } 653 block -= direct_index; 654 if (block < direct_blks) { 655 offset[n++] = NODE_DIR1_BLOCK; 656 noffset[n] = 1; 657 offset[n] = block; 658 level = 1; 659 goto got; 660 } 661 block -= direct_blks; 662 if (block < direct_blks) { 663 offset[n++] = NODE_DIR2_BLOCK; 664 noffset[n] = 2; 665 offset[n] = block; 666 level = 1; 667 goto got; 668 } 669 block -= direct_blks; 670 if (block < indirect_blks) { 671 offset[n++] = NODE_IND1_BLOCK; 672 noffset[n] = 3; 673 offset[n++] = block / direct_blks; 674 noffset[n] = 4 + offset[n - 1]; 675 offset[n] = block % direct_blks; 676 level = 2; 677 goto got; 678 } 679 block -= indirect_blks; 680 if (block < indirect_blks) { 681 offset[n++] = NODE_IND2_BLOCK; 682 noffset[n] = 4 + dptrs_per_blk; 683 offset[n++] = block / direct_blks; 684 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 685 offset[n] = block % direct_blks; 686 level = 2; 687 goto got; 688 } 689 block -= indirect_blks; 690 if (block < dindirect_blks) { 691 offset[n++] = NODE_DIND_BLOCK; 692 noffset[n] = 5 + (dptrs_per_blk * 2); 693 offset[n++] = block / indirect_blks; 694 noffset[n] = 6 + (dptrs_per_blk * 2) + 695 offset[n - 1] * (dptrs_per_blk + 1); 696 offset[n++] = (block / direct_blks) % dptrs_per_blk; 697 noffset[n] = 7 + (dptrs_per_blk * 2) + 698 offset[n - 2] * (dptrs_per_blk + 1) + 699 offset[n - 1]; 700 offset[n] = block % direct_blks; 701 level = 3; 702 goto got; 703 } else { 704 return -E2BIG; 705 } 706 got: 707 return level; 708 } 709 710 /* 711 * Caller should call f2fs_put_dnode(dn). 712 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 713 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 714 * In the case of RDONLY_NODE, we don't need to care about mutex. 715 */ 716 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 717 { 718 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 719 struct page *npage[4]; 720 struct page *parent = NULL; 721 int offset[4]; 722 unsigned int noffset[4]; 723 nid_t nids[4]; 724 int level, i = 0; 725 int err = 0; 726 727 level = get_node_path(dn->inode, index, offset, noffset); 728 if (level < 0) 729 return level; 730 731 nids[0] = dn->inode->i_ino; 732 npage[0] = dn->inode_page; 733 734 if (!npage[0]) { 735 npage[0] = f2fs_get_node_page(sbi, nids[0]); 736 if (IS_ERR(npage[0])) 737 return PTR_ERR(npage[0]); 738 } 739 740 /* if inline_data is set, should not report any block indices */ 741 if (f2fs_has_inline_data(dn->inode) && index) { 742 err = -ENOENT; 743 f2fs_put_page(npage[0], 1); 744 goto release_out; 745 } 746 747 parent = npage[0]; 748 if (level != 0) 749 nids[1] = get_nid(parent, offset[0], true); 750 dn->inode_page = npage[0]; 751 dn->inode_page_locked = true; 752 753 /* get indirect or direct nodes */ 754 for (i = 1; i <= level; i++) { 755 bool done = false; 756 757 if (!nids[i] && mode == ALLOC_NODE) { 758 /* alloc new node */ 759 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 760 err = -ENOSPC; 761 goto release_pages; 762 } 763 764 dn->nid = nids[i]; 765 npage[i] = f2fs_new_node_page(dn, noffset[i]); 766 if (IS_ERR(npage[i])) { 767 f2fs_alloc_nid_failed(sbi, nids[i]); 768 err = PTR_ERR(npage[i]); 769 goto release_pages; 770 } 771 772 set_nid(parent, offset[i - 1], nids[i], i == 1); 773 f2fs_alloc_nid_done(sbi, nids[i]); 774 done = true; 775 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 776 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 777 if (IS_ERR(npage[i])) { 778 err = PTR_ERR(npage[i]); 779 goto release_pages; 780 } 781 done = true; 782 } 783 if (i == 1) { 784 dn->inode_page_locked = false; 785 unlock_page(parent); 786 } else { 787 f2fs_put_page(parent, 1); 788 } 789 790 if (!done) { 791 npage[i] = f2fs_get_node_page(sbi, nids[i]); 792 if (IS_ERR(npage[i])) { 793 err = PTR_ERR(npage[i]); 794 f2fs_put_page(npage[0], 0); 795 goto release_out; 796 } 797 } 798 if (i < level) { 799 parent = npage[i]; 800 nids[i + 1] = get_nid(parent, offset[i], false); 801 } 802 } 803 dn->nid = nids[level]; 804 dn->ofs_in_node = offset[level]; 805 dn->node_page = npage[level]; 806 dn->data_blkaddr = datablock_addr(dn->inode, 807 dn->node_page, dn->ofs_in_node); 808 return 0; 809 810 release_pages: 811 f2fs_put_page(parent, 1); 812 if (i > 1) 813 f2fs_put_page(npage[0], 0); 814 release_out: 815 dn->inode_page = NULL; 816 dn->node_page = NULL; 817 if (err == -ENOENT) { 818 dn->cur_level = i; 819 dn->max_level = level; 820 dn->ofs_in_node = offset[level]; 821 } 822 return err; 823 } 824 825 static int truncate_node(struct dnode_of_data *dn) 826 { 827 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 828 struct node_info ni; 829 int err; 830 831 err = f2fs_get_node_info(sbi, dn->nid, &ni); 832 if (err) 833 return err; 834 835 /* Deallocate node address */ 836 f2fs_invalidate_blocks(sbi, ni.blk_addr); 837 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 838 set_node_addr(sbi, &ni, NULL_ADDR, false); 839 840 if (dn->nid == dn->inode->i_ino) { 841 f2fs_remove_orphan_inode(sbi, dn->nid); 842 dec_valid_inode_count(sbi); 843 f2fs_inode_synced(dn->inode); 844 } 845 846 clear_node_page_dirty(dn->node_page); 847 set_sbi_flag(sbi, SBI_IS_DIRTY); 848 849 f2fs_put_page(dn->node_page, 1); 850 851 invalidate_mapping_pages(NODE_MAPPING(sbi), 852 dn->node_page->index, dn->node_page->index); 853 854 dn->node_page = NULL; 855 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 856 857 return 0; 858 } 859 860 static int truncate_dnode(struct dnode_of_data *dn) 861 { 862 struct page *page; 863 int err; 864 865 if (dn->nid == 0) 866 return 1; 867 868 /* get direct node */ 869 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 870 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 871 return 1; 872 else if (IS_ERR(page)) 873 return PTR_ERR(page); 874 875 /* Make dnode_of_data for parameter */ 876 dn->node_page = page; 877 dn->ofs_in_node = 0; 878 f2fs_truncate_data_blocks(dn); 879 err = truncate_node(dn); 880 if (err) 881 return err; 882 883 return 1; 884 } 885 886 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 887 int ofs, int depth) 888 { 889 struct dnode_of_data rdn = *dn; 890 struct page *page; 891 struct f2fs_node *rn; 892 nid_t child_nid; 893 unsigned int child_nofs; 894 int freed = 0; 895 int i, ret; 896 897 if (dn->nid == 0) 898 return NIDS_PER_BLOCK + 1; 899 900 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 901 902 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 903 if (IS_ERR(page)) { 904 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 905 return PTR_ERR(page); 906 } 907 908 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 909 910 rn = F2FS_NODE(page); 911 if (depth < 3) { 912 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 913 child_nid = le32_to_cpu(rn->in.nid[i]); 914 if (child_nid == 0) 915 continue; 916 rdn.nid = child_nid; 917 ret = truncate_dnode(&rdn); 918 if (ret < 0) 919 goto out_err; 920 if (set_nid(page, i, 0, false)) 921 dn->node_changed = true; 922 } 923 } else { 924 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 925 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 926 child_nid = le32_to_cpu(rn->in.nid[i]); 927 if (child_nid == 0) { 928 child_nofs += NIDS_PER_BLOCK + 1; 929 continue; 930 } 931 rdn.nid = child_nid; 932 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 933 if (ret == (NIDS_PER_BLOCK + 1)) { 934 if (set_nid(page, i, 0, false)) 935 dn->node_changed = true; 936 child_nofs += ret; 937 } else if (ret < 0 && ret != -ENOENT) { 938 goto out_err; 939 } 940 } 941 freed = child_nofs; 942 } 943 944 if (!ofs) { 945 /* remove current indirect node */ 946 dn->node_page = page; 947 ret = truncate_node(dn); 948 if (ret) 949 goto out_err; 950 freed++; 951 } else { 952 f2fs_put_page(page, 1); 953 } 954 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 955 return freed; 956 957 out_err: 958 f2fs_put_page(page, 1); 959 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 960 return ret; 961 } 962 963 static int truncate_partial_nodes(struct dnode_of_data *dn, 964 struct f2fs_inode *ri, int *offset, int depth) 965 { 966 struct page *pages[2]; 967 nid_t nid[3]; 968 nid_t child_nid; 969 int err = 0; 970 int i; 971 int idx = depth - 2; 972 973 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 974 if (!nid[0]) 975 return 0; 976 977 /* get indirect nodes in the path */ 978 for (i = 0; i < idx + 1; i++) { 979 /* reference count'll be increased */ 980 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 981 if (IS_ERR(pages[i])) { 982 err = PTR_ERR(pages[i]); 983 idx = i - 1; 984 goto fail; 985 } 986 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 987 } 988 989 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 990 991 /* free direct nodes linked to a partial indirect node */ 992 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 993 child_nid = get_nid(pages[idx], i, false); 994 if (!child_nid) 995 continue; 996 dn->nid = child_nid; 997 err = truncate_dnode(dn); 998 if (err < 0) 999 goto fail; 1000 if (set_nid(pages[idx], i, 0, false)) 1001 dn->node_changed = true; 1002 } 1003 1004 if (offset[idx + 1] == 0) { 1005 dn->node_page = pages[idx]; 1006 dn->nid = nid[idx]; 1007 err = truncate_node(dn); 1008 if (err) 1009 goto fail; 1010 } else { 1011 f2fs_put_page(pages[idx], 1); 1012 } 1013 offset[idx]++; 1014 offset[idx + 1] = 0; 1015 idx--; 1016 fail: 1017 for (i = idx; i >= 0; i--) 1018 f2fs_put_page(pages[i], 1); 1019 1020 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1021 1022 return err; 1023 } 1024 1025 /* 1026 * All the block addresses of data and nodes should be nullified. 1027 */ 1028 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1031 int err = 0, cont = 1; 1032 int level, offset[4], noffset[4]; 1033 unsigned int nofs = 0; 1034 struct f2fs_inode *ri; 1035 struct dnode_of_data dn; 1036 struct page *page; 1037 1038 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1039 1040 level = get_node_path(inode, from, offset, noffset); 1041 if (level < 0) 1042 return level; 1043 1044 page = f2fs_get_node_page(sbi, inode->i_ino); 1045 if (IS_ERR(page)) { 1046 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1047 return PTR_ERR(page); 1048 } 1049 1050 set_new_dnode(&dn, inode, page, NULL, 0); 1051 unlock_page(page); 1052 1053 ri = F2FS_INODE(page); 1054 switch (level) { 1055 case 0: 1056 case 1: 1057 nofs = noffset[1]; 1058 break; 1059 case 2: 1060 nofs = noffset[1]; 1061 if (!offset[level - 1]) 1062 goto skip_partial; 1063 err = truncate_partial_nodes(&dn, ri, offset, level); 1064 if (err < 0 && err != -ENOENT) 1065 goto fail; 1066 nofs += 1 + NIDS_PER_BLOCK; 1067 break; 1068 case 3: 1069 nofs = 5 + 2 * NIDS_PER_BLOCK; 1070 if (!offset[level - 1]) 1071 goto skip_partial; 1072 err = truncate_partial_nodes(&dn, ri, offset, level); 1073 if (err < 0 && err != -ENOENT) 1074 goto fail; 1075 break; 1076 default: 1077 BUG(); 1078 } 1079 1080 skip_partial: 1081 while (cont) { 1082 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1083 switch (offset[0]) { 1084 case NODE_DIR1_BLOCK: 1085 case NODE_DIR2_BLOCK: 1086 err = truncate_dnode(&dn); 1087 break; 1088 1089 case NODE_IND1_BLOCK: 1090 case NODE_IND2_BLOCK: 1091 err = truncate_nodes(&dn, nofs, offset[1], 2); 1092 break; 1093 1094 case NODE_DIND_BLOCK: 1095 err = truncate_nodes(&dn, nofs, offset[1], 3); 1096 cont = 0; 1097 break; 1098 1099 default: 1100 BUG(); 1101 } 1102 if (err < 0 && err != -ENOENT) 1103 goto fail; 1104 if (offset[1] == 0 && 1105 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1106 lock_page(page); 1107 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1108 f2fs_wait_on_page_writeback(page, NODE, true); 1109 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1110 set_page_dirty(page); 1111 unlock_page(page); 1112 } 1113 offset[1] = 0; 1114 offset[0]++; 1115 nofs += err; 1116 } 1117 fail: 1118 f2fs_put_page(page, 0); 1119 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1120 return err > 0 ? 0 : err; 1121 } 1122 1123 /* caller must lock inode page */ 1124 int f2fs_truncate_xattr_node(struct inode *inode) 1125 { 1126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1127 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1128 struct dnode_of_data dn; 1129 struct page *npage; 1130 int err; 1131 1132 if (!nid) 1133 return 0; 1134 1135 npage = f2fs_get_node_page(sbi, nid); 1136 if (IS_ERR(npage)) 1137 return PTR_ERR(npage); 1138 1139 set_new_dnode(&dn, inode, NULL, npage, nid); 1140 err = truncate_node(&dn); 1141 if (err) { 1142 f2fs_put_page(npage, 1); 1143 return err; 1144 } 1145 1146 f2fs_i_xnid_write(inode, 0); 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1153 * f2fs_unlock_op(). 1154 */ 1155 int f2fs_remove_inode_page(struct inode *inode) 1156 { 1157 struct dnode_of_data dn; 1158 int err; 1159 1160 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1161 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1162 if (err) 1163 return err; 1164 1165 err = f2fs_truncate_xattr_node(inode); 1166 if (err) { 1167 f2fs_put_dnode(&dn); 1168 return err; 1169 } 1170 1171 /* remove potential inline_data blocks */ 1172 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1173 S_ISLNK(inode->i_mode)) 1174 f2fs_truncate_data_blocks_range(&dn, 1); 1175 1176 /* 0 is possible, after f2fs_new_inode() has failed */ 1177 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1178 f2fs_put_dnode(&dn); 1179 return -EIO; 1180 } 1181 f2fs_bug_on(F2FS_I_SB(inode), 1182 inode->i_blocks != 0 && inode->i_blocks != 8); 1183 1184 /* will put inode & node pages */ 1185 err = truncate_node(&dn); 1186 if (err) { 1187 f2fs_put_dnode(&dn); 1188 return err; 1189 } 1190 return 0; 1191 } 1192 1193 struct page *f2fs_new_inode_page(struct inode *inode) 1194 { 1195 struct dnode_of_data dn; 1196 1197 /* allocate inode page for new inode */ 1198 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1199 1200 /* caller should f2fs_put_page(page, 1); */ 1201 return f2fs_new_node_page(&dn, 0); 1202 } 1203 1204 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1205 { 1206 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1207 struct node_info new_ni; 1208 struct page *page; 1209 int err; 1210 1211 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1212 return ERR_PTR(-EPERM); 1213 1214 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1215 if (!page) 1216 return ERR_PTR(-ENOMEM); 1217 1218 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1219 goto fail; 1220 1221 #ifdef CONFIG_F2FS_CHECK_FS 1222 err = f2fs_get_node_info(sbi, dn->nid, &new_ni); 1223 if (err) { 1224 dec_valid_node_count(sbi, dn->inode, !ofs); 1225 goto fail; 1226 } 1227 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1228 #endif 1229 new_ni.nid = dn->nid; 1230 new_ni.ino = dn->inode->i_ino; 1231 new_ni.blk_addr = NULL_ADDR; 1232 new_ni.flag = 0; 1233 new_ni.version = 0; 1234 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1235 1236 f2fs_wait_on_page_writeback(page, NODE, true); 1237 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1238 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1239 if (!PageUptodate(page)) 1240 SetPageUptodate(page); 1241 if (set_page_dirty(page)) 1242 dn->node_changed = true; 1243 1244 if (f2fs_has_xattr_block(ofs)) 1245 f2fs_i_xnid_write(dn->inode, dn->nid); 1246 1247 if (ofs == 0) 1248 inc_valid_inode_count(sbi); 1249 return page; 1250 1251 fail: 1252 clear_node_page_dirty(page); 1253 f2fs_put_page(page, 1); 1254 return ERR_PTR(err); 1255 } 1256 1257 /* 1258 * Caller should do after getting the following values. 1259 * 0: f2fs_put_page(page, 0) 1260 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1261 */ 1262 static int read_node_page(struct page *page, int op_flags) 1263 { 1264 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1265 struct node_info ni; 1266 struct f2fs_io_info fio = { 1267 .sbi = sbi, 1268 .type = NODE, 1269 .op = REQ_OP_READ, 1270 .op_flags = op_flags, 1271 .page = page, 1272 .encrypted_page = NULL, 1273 }; 1274 int err; 1275 1276 if (PageUptodate(page)) { 1277 #ifdef CONFIG_F2FS_CHECK_FS 1278 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page)); 1279 #endif 1280 return LOCKED_PAGE; 1281 } 1282 1283 err = f2fs_get_node_info(sbi, page->index, &ni); 1284 if (err) 1285 return err; 1286 1287 if (unlikely(ni.blk_addr == NULL_ADDR) || 1288 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1289 ClearPageUptodate(page); 1290 return -ENOENT; 1291 } 1292 1293 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1294 return f2fs_submit_page_bio(&fio); 1295 } 1296 1297 /* 1298 * Readahead a node page 1299 */ 1300 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1301 { 1302 struct page *apage; 1303 int err; 1304 1305 if (!nid) 1306 return; 1307 if (f2fs_check_nid_range(sbi, nid)) 1308 return; 1309 1310 rcu_read_lock(); 1311 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid); 1312 rcu_read_unlock(); 1313 if (apage) 1314 return; 1315 1316 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1317 if (!apage) 1318 return; 1319 1320 err = read_node_page(apage, REQ_RAHEAD); 1321 f2fs_put_page(apage, err ? 1 : 0); 1322 } 1323 1324 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1325 struct page *parent, int start) 1326 { 1327 struct page *page; 1328 int err; 1329 1330 if (!nid) 1331 return ERR_PTR(-ENOENT); 1332 if (f2fs_check_nid_range(sbi, nid)) 1333 return ERR_PTR(-EINVAL); 1334 repeat: 1335 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1336 if (!page) 1337 return ERR_PTR(-ENOMEM); 1338 1339 err = read_node_page(page, 0); 1340 if (err < 0) { 1341 f2fs_put_page(page, 1); 1342 return ERR_PTR(err); 1343 } else if (err == LOCKED_PAGE) { 1344 err = 0; 1345 goto page_hit; 1346 } 1347 1348 if (parent) 1349 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1350 1351 lock_page(page); 1352 1353 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1354 f2fs_put_page(page, 1); 1355 goto repeat; 1356 } 1357 1358 if (unlikely(!PageUptodate(page))) { 1359 err = -EIO; 1360 goto out_err; 1361 } 1362 1363 if (!f2fs_inode_chksum_verify(sbi, page)) { 1364 err = -EBADMSG; 1365 goto out_err; 1366 } 1367 page_hit: 1368 if(unlikely(nid != nid_of_node(page))) { 1369 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1370 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1371 nid, nid_of_node(page), ino_of_node(page), 1372 ofs_of_node(page), cpver_of_node(page), 1373 next_blkaddr_of_node(page)); 1374 err = -EINVAL; 1375 out_err: 1376 ClearPageUptodate(page); 1377 f2fs_put_page(page, 1); 1378 return ERR_PTR(err); 1379 } 1380 return page; 1381 } 1382 1383 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1384 { 1385 return __get_node_page(sbi, nid, NULL, 0); 1386 } 1387 1388 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1389 { 1390 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1391 nid_t nid = get_nid(parent, start, false); 1392 1393 return __get_node_page(sbi, nid, parent, start); 1394 } 1395 1396 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1397 { 1398 struct inode *inode; 1399 struct page *page; 1400 int ret; 1401 1402 /* should flush inline_data before evict_inode */ 1403 inode = ilookup(sbi->sb, ino); 1404 if (!inode) 1405 return; 1406 1407 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1408 FGP_LOCK|FGP_NOWAIT, 0); 1409 if (!page) 1410 goto iput_out; 1411 1412 if (!PageUptodate(page)) 1413 goto page_out; 1414 1415 if (!PageDirty(page)) 1416 goto page_out; 1417 1418 if (!clear_page_dirty_for_io(page)) 1419 goto page_out; 1420 1421 ret = f2fs_write_inline_data(inode, page); 1422 inode_dec_dirty_pages(inode); 1423 f2fs_remove_dirty_inode(inode); 1424 if (ret) 1425 set_page_dirty(page); 1426 page_out: 1427 f2fs_put_page(page, 1); 1428 iput_out: 1429 iput(inode); 1430 } 1431 1432 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1433 { 1434 pgoff_t index; 1435 struct pagevec pvec; 1436 struct page *last_page = NULL; 1437 int nr_pages; 1438 1439 pagevec_init(&pvec); 1440 index = 0; 1441 1442 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1443 PAGECACHE_TAG_DIRTY))) { 1444 int i; 1445 1446 for (i = 0; i < nr_pages; i++) { 1447 struct page *page = pvec.pages[i]; 1448 1449 if (unlikely(f2fs_cp_error(sbi))) { 1450 f2fs_put_page(last_page, 0); 1451 pagevec_release(&pvec); 1452 return ERR_PTR(-EIO); 1453 } 1454 1455 if (!IS_DNODE(page) || !is_cold_node(page)) 1456 continue; 1457 if (ino_of_node(page) != ino) 1458 continue; 1459 1460 lock_page(page); 1461 1462 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1463 continue_unlock: 1464 unlock_page(page); 1465 continue; 1466 } 1467 if (ino_of_node(page) != ino) 1468 goto continue_unlock; 1469 1470 if (!PageDirty(page)) { 1471 /* someone wrote it for us */ 1472 goto continue_unlock; 1473 } 1474 1475 if (last_page) 1476 f2fs_put_page(last_page, 0); 1477 1478 get_page(page); 1479 last_page = page; 1480 unlock_page(page); 1481 } 1482 pagevec_release(&pvec); 1483 cond_resched(); 1484 } 1485 return last_page; 1486 } 1487 1488 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1489 struct writeback_control *wbc, bool do_balance, 1490 enum iostat_type io_type, unsigned int *seq_id) 1491 { 1492 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1493 nid_t nid; 1494 struct node_info ni; 1495 struct f2fs_io_info fio = { 1496 .sbi = sbi, 1497 .ino = ino_of_node(page), 1498 .type = NODE, 1499 .op = REQ_OP_WRITE, 1500 .op_flags = wbc_to_write_flags(wbc), 1501 .page = page, 1502 .encrypted_page = NULL, 1503 .submitted = false, 1504 .io_type = io_type, 1505 .io_wbc = wbc, 1506 }; 1507 unsigned int seq; 1508 1509 trace_f2fs_writepage(page, NODE); 1510 1511 if (unlikely(f2fs_cp_error(sbi))) 1512 goto redirty_out; 1513 1514 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1515 goto redirty_out; 1516 1517 if (wbc->sync_mode == WB_SYNC_NONE && 1518 IS_DNODE(page) && is_cold_node(page)) 1519 goto redirty_out; 1520 1521 /* get old block addr of this node page */ 1522 nid = nid_of_node(page); 1523 f2fs_bug_on(sbi, page->index != nid); 1524 1525 if (f2fs_get_node_info(sbi, nid, &ni)) 1526 goto redirty_out; 1527 1528 if (wbc->for_reclaim) { 1529 if (!down_read_trylock(&sbi->node_write)) 1530 goto redirty_out; 1531 } else { 1532 down_read(&sbi->node_write); 1533 } 1534 1535 /* This page is already truncated */ 1536 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1537 ClearPageUptodate(page); 1538 dec_page_count(sbi, F2FS_DIRTY_NODES); 1539 up_read(&sbi->node_write); 1540 unlock_page(page); 1541 return 0; 1542 } 1543 1544 if (__is_valid_data_blkaddr(ni.blk_addr) && 1545 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) 1546 goto redirty_out; 1547 1548 if (atomic && !test_opt(sbi, NOBARRIER)) 1549 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1550 1551 set_page_writeback(page); 1552 ClearPageError(page); 1553 1554 if (f2fs_in_warm_node_list(sbi, page)) { 1555 seq = f2fs_add_fsync_node_entry(sbi, page); 1556 if (seq_id) 1557 *seq_id = seq; 1558 } 1559 1560 fio.old_blkaddr = ni.blk_addr; 1561 f2fs_do_write_node_page(nid, &fio); 1562 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1563 dec_page_count(sbi, F2FS_DIRTY_NODES); 1564 up_read(&sbi->node_write); 1565 1566 if (wbc->for_reclaim) { 1567 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0, 1568 page->index, NODE); 1569 submitted = NULL; 1570 } 1571 1572 unlock_page(page); 1573 1574 if (unlikely(f2fs_cp_error(sbi))) { 1575 f2fs_submit_merged_write(sbi, NODE); 1576 submitted = NULL; 1577 } 1578 if (submitted) 1579 *submitted = fio.submitted; 1580 1581 if (do_balance) 1582 f2fs_balance_fs(sbi, false); 1583 return 0; 1584 1585 redirty_out: 1586 redirty_page_for_writepage(wbc, page); 1587 return AOP_WRITEPAGE_ACTIVATE; 1588 } 1589 1590 void f2fs_move_node_page(struct page *node_page, int gc_type) 1591 { 1592 if (gc_type == FG_GC) { 1593 struct writeback_control wbc = { 1594 .sync_mode = WB_SYNC_ALL, 1595 .nr_to_write = 1, 1596 .for_reclaim = 0, 1597 }; 1598 1599 set_page_dirty(node_page); 1600 f2fs_wait_on_page_writeback(node_page, NODE, true); 1601 1602 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page)); 1603 if (!clear_page_dirty_for_io(node_page)) 1604 goto out_page; 1605 1606 if (__write_node_page(node_page, false, NULL, 1607 &wbc, false, FS_GC_NODE_IO, NULL)) 1608 unlock_page(node_page); 1609 goto release_page; 1610 } else { 1611 /* set page dirty and write it */ 1612 if (!PageWriteback(node_page)) 1613 set_page_dirty(node_page); 1614 } 1615 out_page: 1616 unlock_page(node_page); 1617 release_page: 1618 f2fs_put_page(node_page, 0); 1619 } 1620 1621 static int f2fs_write_node_page(struct page *page, 1622 struct writeback_control *wbc) 1623 { 1624 return __write_node_page(page, false, NULL, wbc, false, 1625 FS_NODE_IO, NULL); 1626 } 1627 1628 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1629 struct writeback_control *wbc, bool atomic, 1630 unsigned int *seq_id) 1631 { 1632 pgoff_t index; 1633 pgoff_t last_idx = ULONG_MAX; 1634 struct pagevec pvec; 1635 int ret = 0; 1636 struct page *last_page = NULL; 1637 bool marked = false; 1638 nid_t ino = inode->i_ino; 1639 int nr_pages; 1640 1641 if (atomic) { 1642 last_page = last_fsync_dnode(sbi, ino); 1643 if (IS_ERR_OR_NULL(last_page)) 1644 return PTR_ERR_OR_ZERO(last_page); 1645 } 1646 retry: 1647 pagevec_init(&pvec); 1648 index = 0; 1649 1650 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1651 PAGECACHE_TAG_DIRTY))) { 1652 int i; 1653 1654 for (i = 0; i < nr_pages; i++) { 1655 struct page *page = pvec.pages[i]; 1656 bool submitted = false; 1657 1658 if (unlikely(f2fs_cp_error(sbi))) { 1659 f2fs_put_page(last_page, 0); 1660 pagevec_release(&pvec); 1661 ret = -EIO; 1662 goto out; 1663 } 1664 1665 if (!IS_DNODE(page) || !is_cold_node(page)) 1666 continue; 1667 if (ino_of_node(page) != ino) 1668 continue; 1669 1670 lock_page(page); 1671 1672 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1673 continue_unlock: 1674 unlock_page(page); 1675 continue; 1676 } 1677 if (ino_of_node(page) != ino) 1678 goto continue_unlock; 1679 1680 if (!PageDirty(page) && page != last_page) { 1681 /* someone wrote it for us */ 1682 goto continue_unlock; 1683 } 1684 1685 f2fs_wait_on_page_writeback(page, NODE, true); 1686 BUG_ON(PageWriteback(page)); 1687 1688 set_fsync_mark(page, 0); 1689 set_dentry_mark(page, 0); 1690 1691 if (!atomic || page == last_page) { 1692 set_fsync_mark(page, 1); 1693 if (IS_INODE(page)) { 1694 if (is_inode_flag_set(inode, 1695 FI_DIRTY_INODE)) 1696 f2fs_update_inode(inode, page); 1697 set_dentry_mark(page, 1698 f2fs_need_dentry_mark(sbi, ino)); 1699 } 1700 /* may be written by other thread */ 1701 if (!PageDirty(page)) 1702 set_page_dirty(page); 1703 } 1704 1705 if (!clear_page_dirty_for_io(page)) 1706 goto continue_unlock; 1707 1708 ret = __write_node_page(page, atomic && 1709 page == last_page, 1710 &submitted, wbc, true, 1711 FS_NODE_IO, seq_id); 1712 if (ret) { 1713 unlock_page(page); 1714 f2fs_put_page(last_page, 0); 1715 break; 1716 } else if (submitted) { 1717 last_idx = page->index; 1718 } 1719 1720 if (page == last_page) { 1721 f2fs_put_page(page, 0); 1722 marked = true; 1723 break; 1724 } 1725 } 1726 pagevec_release(&pvec); 1727 cond_resched(); 1728 1729 if (ret || marked) 1730 break; 1731 } 1732 if (!ret && atomic && !marked) { 1733 f2fs_msg(sbi->sb, KERN_DEBUG, 1734 "Retry to write fsync mark: ino=%u, idx=%lx", 1735 ino, last_page->index); 1736 lock_page(last_page); 1737 f2fs_wait_on_page_writeback(last_page, NODE, true); 1738 set_page_dirty(last_page); 1739 unlock_page(last_page); 1740 goto retry; 1741 } 1742 out: 1743 if (last_idx != ULONG_MAX) 1744 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE); 1745 return ret ? -EIO: 0; 1746 } 1747 1748 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1749 struct writeback_control *wbc, 1750 bool do_balance, enum iostat_type io_type) 1751 { 1752 pgoff_t index; 1753 struct pagevec pvec; 1754 int step = 0; 1755 int nwritten = 0; 1756 int ret = 0; 1757 int nr_pages, done = 0; 1758 1759 pagevec_init(&pvec); 1760 1761 next_step: 1762 index = 0; 1763 1764 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1765 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1766 int i; 1767 1768 for (i = 0; i < nr_pages; i++) { 1769 struct page *page = pvec.pages[i]; 1770 bool submitted = false; 1771 1772 /* give a priority to WB_SYNC threads */ 1773 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1774 wbc->sync_mode == WB_SYNC_NONE) { 1775 done = 1; 1776 break; 1777 } 1778 1779 /* 1780 * flushing sequence with step: 1781 * 0. indirect nodes 1782 * 1. dentry dnodes 1783 * 2. file dnodes 1784 */ 1785 if (step == 0 && IS_DNODE(page)) 1786 continue; 1787 if (step == 1 && (!IS_DNODE(page) || 1788 is_cold_node(page))) 1789 continue; 1790 if (step == 2 && (!IS_DNODE(page) || 1791 !is_cold_node(page))) 1792 continue; 1793 lock_node: 1794 if (wbc->sync_mode == WB_SYNC_ALL) 1795 lock_page(page); 1796 else if (!trylock_page(page)) 1797 continue; 1798 1799 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1800 continue_unlock: 1801 unlock_page(page); 1802 continue; 1803 } 1804 1805 if (!PageDirty(page)) { 1806 /* someone wrote it for us */ 1807 goto continue_unlock; 1808 } 1809 1810 /* flush inline_data */ 1811 if (is_inline_node(page)) { 1812 clear_inline_node(page); 1813 unlock_page(page); 1814 flush_inline_data(sbi, ino_of_node(page)); 1815 goto lock_node; 1816 } 1817 1818 f2fs_wait_on_page_writeback(page, NODE, true); 1819 1820 BUG_ON(PageWriteback(page)); 1821 if (!clear_page_dirty_for_io(page)) 1822 goto continue_unlock; 1823 1824 set_fsync_mark(page, 0); 1825 set_dentry_mark(page, 0); 1826 1827 ret = __write_node_page(page, false, &submitted, 1828 wbc, do_balance, io_type, NULL); 1829 if (ret) 1830 unlock_page(page); 1831 else if (submitted) 1832 nwritten++; 1833 1834 if (--wbc->nr_to_write == 0) 1835 break; 1836 } 1837 pagevec_release(&pvec); 1838 cond_resched(); 1839 1840 if (wbc->nr_to_write == 0) { 1841 step = 2; 1842 break; 1843 } 1844 } 1845 1846 if (step < 2) { 1847 if (wbc->sync_mode == WB_SYNC_NONE && step == 1) 1848 goto out; 1849 step++; 1850 goto next_step; 1851 } 1852 out: 1853 if (nwritten) 1854 f2fs_submit_merged_write(sbi, NODE); 1855 1856 if (unlikely(f2fs_cp_error(sbi))) 1857 return -EIO; 1858 return ret; 1859 } 1860 1861 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 1862 unsigned int seq_id) 1863 { 1864 struct fsync_node_entry *fn; 1865 struct page *page; 1866 struct list_head *head = &sbi->fsync_node_list; 1867 unsigned long flags; 1868 unsigned int cur_seq_id = 0; 1869 int ret2, ret = 0; 1870 1871 while (seq_id && cur_seq_id < seq_id) { 1872 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 1873 if (list_empty(head)) { 1874 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1875 break; 1876 } 1877 fn = list_first_entry(head, struct fsync_node_entry, list); 1878 if (fn->seq_id > seq_id) { 1879 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1880 break; 1881 } 1882 cur_seq_id = fn->seq_id; 1883 page = fn->page; 1884 get_page(page); 1885 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1886 1887 f2fs_wait_on_page_writeback(page, NODE, true); 1888 if (TestClearPageError(page)) 1889 ret = -EIO; 1890 1891 put_page(page); 1892 1893 if (ret) 1894 break; 1895 } 1896 1897 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1898 if (!ret) 1899 ret = ret2; 1900 1901 return ret; 1902 } 1903 1904 static int f2fs_write_node_pages(struct address_space *mapping, 1905 struct writeback_control *wbc) 1906 { 1907 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1908 struct blk_plug plug; 1909 long diff; 1910 1911 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1912 goto skip_write; 1913 1914 /* balancing f2fs's metadata in background */ 1915 f2fs_balance_fs_bg(sbi); 1916 1917 /* collect a number of dirty node pages and write together */ 1918 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1919 goto skip_write; 1920 1921 if (wbc->sync_mode == WB_SYNC_ALL) 1922 atomic_inc(&sbi->wb_sync_req[NODE]); 1923 else if (atomic_read(&sbi->wb_sync_req[NODE])) 1924 goto skip_write; 1925 1926 trace_f2fs_writepages(mapping->host, wbc, NODE); 1927 1928 diff = nr_pages_to_write(sbi, NODE, wbc); 1929 blk_start_plug(&plug); 1930 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 1931 blk_finish_plug(&plug); 1932 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1933 1934 if (wbc->sync_mode == WB_SYNC_ALL) 1935 atomic_dec(&sbi->wb_sync_req[NODE]); 1936 return 0; 1937 1938 skip_write: 1939 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1940 trace_f2fs_writepages(mapping->host, wbc, NODE); 1941 return 0; 1942 } 1943 1944 static int f2fs_set_node_page_dirty(struct page *page) 1945 { 1946 trace_f2fs_set_page_dirty(page, NODE); 1947 1948 if (!PageUptodate(page)) 1949 SetPageUptodate(page); 1950 #ifdef CONFIG_F2FS_CHECK_FS 1951 if (IS_INODE(page)) 1952 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 1953 #endif 1954 if (!PageDirty(page)) { 1955 __set_page_dirty_nobuffers(page); 1956 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1957 SetPagePrivate(page); 1958 f2fs_trace_pid(page); 1959 return 1; 1960 } 1961 return 0; 1962 } 1963 1964 /* 1965 * Structure of the f2fs node operations 1966 */ 1967 const struct address_space_operations f2fs_node_aops = { 1968 .writepage = f2fs_write_node_page, 1969 .writepages = f2fs_write_node_pages, 1970 .set_page_dirty = f2fs_set_node_page_dirty, 1971 .invalidatepage = f2fs_invalidate_page, 1972 .releasepage = f2fs_release_page, 1973 #ifdef CONFIG_MIGRATION 1974 .migratepage = f2fs_migrate_page, 1975 #endif 1976 }; 1977 1978 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1979 nid_t n) 1980 { 1981 return radix_tree_lookup(&nm_i->free_nid_root, n); 1982 } 1983 1984 static int __insert_free_nid(struct f2fs_sb_info *sbi, 1985 struct free_nid *i, enum nid_state state) 1986 { 1987 struct f2fs_nm_info *nm_i = NM_I(sbi); 1988 1989 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1990 if (err) 1991 return err; 1992 1993 f2fs_bug_on(sbi, state != i->state); 1994 nm_i->nid_cnt[state]++; 1995 if (state == FREE_NID) 1996 list_add_tail(&i->list, &nm_i->free_nid_list); 1997 return 0; 1998 } 1999 2000 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2001 struct free_nid *i, enum nid_state state) 2002 { 2003 struct f2fs_nm_info *nm_i = NM_I(sbi); 2004 2005 f2fs_bug_on(sbi, state != i->state); 2006 nm_i->nid_cnt[state]--; 2007 if (state == FREE_NID) 2008 list_del(&i->list); 2009 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2010 } 2011 2012 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2013 enum nid_state org_state, enum nid_state dst_state) 2014 { 2015 struct f2fs_nm_info *nm_i = NM_I(sbi); 2016 2017 f2fs_bug_on(sbi, org_state != i->state); 2018 i->state = dst_state; 2019 nm_i->nid_cnt[org_state]--; 2020 nm_i->nid_cnt[dst_state]++; 2021 2022 switch (dst_state) { 2023 case PREALLOC_NID: 2024 list_del(&i->list); 2025 break; 2026 case FREE_NID: 2027 list_add_tail(&i->list, &nm_i->free_nid_list); 2028 break; 2029 default: 2030 BUG_ON(1); 2031 } 2032 } 2033 2034 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2035 bool set, bool build) 2036 { 2037 struct f2fs_nm_info *nm_i = NM_I(sbi); 2038 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2039 unsigned int nid_ofs = nid - START_NID(nid); 2040 2041 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2042 return; 2043 2044 if (set) { 2045 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2046 return; 2047 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2048 nm_i->free_nid_count[nat_ofs]++; 2049 } else { 2050 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2051 return; 2052 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2053 if (!build) 2054 nm_i->free_nid_count[nat_ofs]--; 2055 } 2056 } 2057 2058 /* return if the nid is recognized as free */ 2059 static bool add_free_nid(struct f2fs_sb_info *sbi, 2060 nid_t nid, bool build, bool update) 2061 { 2062 struct f2fs_nm_info *nm_i = NM_I(sbi); 2063 struct free_nid *i, *e; 2064 struct nat_entry *ne; 2065 int err = -EINVAL; 2066 bool ret = false; 2067 2068 /* 0 nid should not be used */ 2069 if (unlikely(nid == 0)) 2070 return false; 2071 2072 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 2073 i->nid = nid; 2074 i->state = FREE_NID; 2075 2076 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2077 2078 spin_lock(&nm_i->nid_list_lock); 2079 2080 if (build) { 2081 /* 2082 * Thread A Thread B 2083 * - f2fs_create 2084 * - f2fs_new_inode 2085 * - f2fs_alloc_nid 2086 * - __insert_nid_to_list(PREALLOC_NID) 2087 * - f2fs_balance_fs_bg 2088 * - f2fs_build_free_nids 2089 * - __f2fs_build_free_nids 2090 * - scan_nat_page 2091 * - add_free_nid 2092 * - __lookup_nat_cache 2093 * - f2fs_add_link 2094 * - f2fs_init_inode_metadata 2095 * - f2fs_new_inode_page 2096 * - f2fs_new_node_page 2097 * - set_node_addr 2098 * - f2fs_alloc_nid_done 2099 * - __remove_nid_from_list(PREALLOC_NID) 2100 * - __insert_nid_to_list(FREE_NID) 2101 */ 2102 ne = __lookup_nat_cache(nm_i, nid); 2103 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2104 nat_get_blkaddr(ne) != NULL_ADDR)) 2105 goto err_out; 2106 2107 e = __lookup_free_nid_list(nm_i, nid); 2108 if (e) { 2109 if (e->state == FREE_NID) 2110 ret = true; 2111 goto err_out; 2112 } 2113 } 2114 ret = true; 2115 err = __insert_free_nid(sbi, i, FREE_NID); 2116 err_out: 2117 if (update) { 2118 update_free_nid_bitmap(sbi, nid, ret, build); 2119 if (!build) 2120 nm_i->available_nids++; 2121 } 2122 spin_unlock(&nm_i->nid_list_lock); 2123 radix_tree_preload_end(); 2124 2125 if (err) 2126 kmem_cache_free(free_nid_slab, i); 2127 return ret; 2128 } 2129 2130 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2131 { 2132 struct f2fs_nm_info *nm_i = NM_I(sbi); 2133 struct free_nid *i; 2134 bool need_free = false; 2135 2136 spin_lock(&nm_i->nid_list_lock); 2137 i = __lookup_free_nid_list(nm_i, nid); 2138 if (i && i->state == FREE_NID) { 2139 __remove_free_nid(sbi, i, FREE_NID); 2140 need_free = true; 2141 } 2142 spin_unlock(&nm_i->nid_list_lock); 2143 2144 if (need_free) 2145 kmem_cache_free(free_nid_slab, i); 2146 } 2147 2148 static int scan_nat_page(struct f2fs_sb_info *sbi, 2149 struct page *nat_page, nid_t start_nid) 2150 { 2151 struct f2fs_nm_info *nm_i = NM_I(sbi); 2152 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2153 block_t blk_addr; 2154 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2155 int i; 2156 2157 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2158 2159 i = start_nid % NAT_ENTRY_PER_BLOCK; 2160 2161 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2162 if (unlikely(start_nid >= nm_i->max_nid)) 2163 break; 2164 2165 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2166 2167 if (blk_addr == NEW_ADDR) 2168 return -EINVAL; 2169 2170 if (blk_addr == NULL_ADDR) { 2171 add_free_nid(sbi, start_nid, true, true); 2172 } else { 2173 spin_lock(&NM_I(sbi)->nid_list_lock); 2174 update_free_nid_bitmap(sbi, start_nid, false, true); 2175 spin_unlock(&NM_I(sbi)->nid_list_lock); 2176 } 2177 } 2178 2179 return 0; 2180 } 2181 2182 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2183 { 2184 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2185 struct f2fs_journal *journal = curseg->journal; 2186 int i; 2187 2188 down_read(&curseg->journal_rwsem); 2189 for (i = 0; i < nats_in_cursum(journal); i++) { 2190 block_t addr; 2191 nid_t nid; 2192 2193 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2194 nid = le32_to_cpu(nid_in_journal(journal, i)); 2195 if (addr == NULL_ADDR) 2196 add_free_nid(sbi, nid, true, false); 2197 else 2198 remove_free_nid(sbi, nid); 2199 } 2200 up_read(&curseg->journal_rwsem); 2201 } 2202 2203 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2204 { 2205 struct f2fs_nm_info *nm_i = NM_I(sbi); 2206 unsigned int i, idx; 2207 nid_t nid; 2208 2209 down_read(&nm_i->nat_tree_lock); 2210 2211 for (i = 0; i < nm_i->nat_blocks; i++) { 2212 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2213 continue; 2214 if (!nm_i->free_nid_count[i]) 2215 continue; 2216 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2217 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2218 NAT_ENTRY_PER_BLOCK, idx); 2219 if (idx >= NAT_ENTRY_PER_BLOCK) 2220 break; 2221 2222 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2223 add_free_nid(sbi, nid, true, false); 2224 2225 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2226 goto out; 2227 } 2228 } 2229 out: 2230 scan_curseg_cache(sbi); 2231 2232 up_read(&nm_i->nat_tree_lock); 2233 } 2234 2235 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2236 bool sync, bool mount) 2237 { 2238 struct f2fs_nm_info *nm_i = NM_I(sbi); 2239 int i = 0, ret; 2240 nid_t nid = nm_i->next_scan_nid; 2241 2242 if (unlikely(nid >= nm_i->max_nid)) 2243 nid = 0; 2244 2245 /* Enough entries */ 2246 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2247 return 0; 2248 2249 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2250 return 0; 2251 2252 if (!mount) { 2253 /* try to find free nids in free_nid_bitmap */ 2254 scan_free_nid_bits(sbi); 2255 2256 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2257 return 0; 2258 } 2259 2260 /* readahead nat pages to be scanned */ 2261 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2262 META_NAT, true); 2263 2264 down_read(&nm_i->nat_tree_lock); 2265 2266 while (1) { 2267 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2268 nm_i->nat_block_bitmap)) { 2269 struct page *page = get_current_nat_page(sbi, nid); 2270 2271 ret = scan_nat_page(sbi, page, nid); 2272 f2fs_put_page(page, 1); 2273 2274 if (ret) { 2275 up_read(&nm_i->nat_tree_lock); 2276 f2fs_bug_on(sbi, !mount); 2277 f2fs_msg(sbi->sb, KERN_ERR, 2278 "NAT is corrupt, run fsck to fix it"); 2279 return -EINVAL; 2280 } 2281 } 2282 2283 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2284 if (unlikely(nid >= nm_i->max_nid)) 2285 nid = 0; 2286 2287 if (++i >= FREE_NID_PAGES) 2288 break; 2289 } 2290 2291 /* go to the next free nat pages to find free nids abundantly */ 2292 nm_i->next_scan_nid = nid; 2293 2294 /* find free nids from current sum_pages */ 2295 scan_curseg_cache(sbi); 2296 2297 up_read(&nm_i->nat_tree_lock); 2298 2299 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2300 nm_i->ra_nid_pages, META_NAT, false); 2301 2302 return 0; 2303 } 2304 2305 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2306 { 2307 int ret; 2308 2309 mutex_lock(&NM_I(sbi)->build_lock); 2310 ret = __f2fs_build_free_nids(sbi, sync, mount); 2311 mutex_unlock(&NM_I(sbi)->build_lock); 2312 2313 return ret; 2314 } 2315 2316 /* 2317 * If this function returns success, caller can obtain a new nid 2318 * from second parameter of this function. 2319 * The returned nid could be used ino as well as nid when inode is created. 2320 */ 2321 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2322 { 2323 struct f2fs_nm_info *nm_i = NM_I(sbi); 2324 struct free_nid *i = NULL; 2325 retry: 2326 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2327 f2fs_show_injection_info(FAULT_ALLOC_NID); 2328 return false; 2329 } 2330 2331 spin_lock(&nm_i->nid_list_lock); 2332 2333 if (unlikely(nm_i->available_nids == 0)) { 2334 spin_unlock(&nm_i->nid_list_lock); 2335 return false; 2336 } 2337 2338 /* We should not use stale free nids created by f2fs_build_free_nids */ 2339 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2340 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2341 i = list_first_entry(&nm_i->free_nid_list, 2342 struct free_nid, list); 2343 *nid = i->nid; 2344 2345 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2346 nm_i->available_nids--; 2347 2348 update_free_nid_bitmap(sbi, *nid, false, false); 2349 2350 spin_unlock(&nm_i->nid_list_lock); 2351 return true; 2352 } 2353 spin_unlock(&nm_i->nid_list_lock); 2354 2355 /* Let's scan nat pages and its caches to get free nids */ 2356 f2fs_build_free_nids(sbi, true, false); 2357 goto retry; 2358 } 2359 2360 /* 2361 * f2fs_alloc_nid() should be called prior to this function. 2362 */ 2363 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2364 { 2365 struct f2fs_nm_info *nm_i = NM_I(sbi); 2366 struct free_nid *i; 2367 2368 spin_lock(&nm_i->nid_list_lock); 2369 i = __lookup_free_nid_list(nm_i, nid); 2370 f2fs_bug_on(sbi, !i); 2371 __remove_free_nid(sbi, i, PREALLOC_NID); 2372 spin_unlock(&nm_i->nid_list_lock); 2373 2374 kmem_cache_free(free_nid_slab, i); 2375 } 2376 2377 /* 2378 * f2fs_alloc_nid() should be called prior to this function. 2379 */ 2380 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2381 { 2382 struct f2fs_nm_info *nm_i = NM_I(sbi); 2383 struct free_nid *i; 2384 bool need_free = false; 2385 2386 if (!nid) 2387 return; 2388 2389 spin_lock(&nm_i->nid_list_lock); 2390 i = __lookup_free_nid_list(nm_i, nid); 2391 f2fs_bug_on(sbi, !i); 2392 2393 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2394 __remove_free_nid(sbi, i, PREALLOC_NID); 2395 need_free = true; 2396 } else { 2397 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2398 } 2399 2400 nm_i->available_nids++; 2401 2402 update_free_nid_bitmap(sbi, nid, true, false); 2403 2404 spin_unlock(&nm_i->nid_list_lock); 2405 2406 if (need_free) 2407 kmem_cache_free(free_nid_slab, i); 2408 } 2409 2410 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2411 { 2412 struct f2fs_nm_info *nm_i = NM_I(sbi); 2413 struct free_nid *i, *next; 2414 int nr = nr_shrink; 2415 2416 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2417 return 0; 2418 2419 if (!mutex_trylock(&nm_i->build_lock)) 2420 return 0; 2421 2422 spin_lock(&nm_i->nid_list_lock); 2423 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2424 if (nr_shrink <= 0 || 2425 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2426 break; 2427 2428 __remove_free_nid(sbi, i, FREE_NID); 2429 kmem_cache_free(free_nid_slab, i); 2430 nr_shrink--; 2431 } 2432 spin_unlock(&nm_i->nid_list_lock); 2433 mutex_unlock(&nm_i->build_lock); 2434 2435 return nr - nr_shrink; 2436 } 2437 2438 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2439 { 2440 void *src_addr, *dst_addr; 2441 size_t inline_size; 2442 struct page *ipage; 2443 struct f2fs_inode *ri; 2444 2445 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2446 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2447 2448 ri = F2FS_INODE(page); 2449 if (ri->i_inline & F2FS_INLINE_XATTR) { 2450 set_inode_flag(inode, FI_INLINE_XATTR); 2451 } else { 2452 clear_inode_flag(inode, FI_INLINE_XATTR); 2453 goto update_inode; 2454 } 2455 2456 dst_addr = inline_xattr_addr(inode, ipage); 2457 src_addr = inline_xattr_addr(inode, page); 2458 inline_size = inline_xattr_size(inode); 2459 2460 f2fs_wait_on_page_writeback(ipage, NODE, true); 2461 memcpy(dst_addr, src_addr, inline_size); 2462 update_inode: 2463 f2fs_update_inode(inode, ipage); 2464 f2fs_put_page(ipage, 1); 2465 } 2466 2467 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2468 { 2469 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2470 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2471 nid_t new_xnid; 2472 struct dnode_of_data dn; 2473 struct node_info ni; 2474 struct page *xpage; 2475 int err; 2476 2477 if (!prev_xnid) 2478 goto recover_xnid; 2479 2480 /* 1: invalidate the previous xattr nid */ 2481 err = f2fs_get_node_info(sbi, prev_xnid, &ni); 2482 if (err) 2483 return err; 2484 2485 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2486 dec_valid_node_count(sbi, inode, false); 2487 set_node_addr(sbi, &ni, NULL_ADDR, false); 2488 2489 recover_xnid: 2490 /* 2: update xattr nid in inode */ 2491 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2492 return -ENOSPC; 2493 2494 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2495 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2496 if (IS_ERR(xpage)) { 2497 f2fs_alloc_nid_failed(sbi, new_xnid); 2498 return PTR_ERR(xpage); 2499 } 2500 2501 f2fs_alloc_nid_done(sbi, new_xnid); 2502 f2fs_update_inode_page(inode); 2503 2504 /* 3: update and set xattr node page dirty */ 2505 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2506 2507 set_page_dirty(xpage); 2508 f2fs_put_page(xpage, 1); 2509 2510 return 0; 2511 } 2512 2513 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2514 { 2515 struct f2fs_inode *src, *dst; 2516 nid_t ino = ino_of_node(page); 2517 struct node_info old_ni, new_ni; 2518 struct page *ipage; 2519 int err; 2520 2521 err = f2fs_get_node_info(sbi, ino, &old_ni); 2522 if (err) 2523 return err; 2524 2525 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2526 return -EINVAL; 2527 retry: 2528 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2529 if (!ipage) { 2530 congestion_wait(BLK_RW_ASYNC, HZ/50); 2531 goto retry; 2532 } 2533 2534 /* Should not use this inode from free nid list */ 2535 remove_free_nid(sbi, ino); 2536 2537 if (!PageUptodate(ipage)) 2538 SetPageUptodate(ipage); 2539 fill_node_footer(ipage, ino, ino, 0, true); 2540 set_cold_node(page, false); 2541 2542 src = F2FS_INODE(page); 2543 dst = F2FS_INODE(ipage); 2544 2545 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2546 dst->i_size = 0; 2547 dst->i_blocks = cpu_to_le64(1); 2548 dst->i_links = cpu_to_le32(1); 2549 dst->i_xattr_nid = 0; 2550 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2551 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2552 dst->i_extra_isize = src->i_extra_isize; 2553 2554 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) && 2555 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2556 i_inline_xattr_size)) 2557 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2558 2559 if (f2fs_sb_has_project_quota(sbi->sb) && 2560 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2561 i_projid)) 2562 dst->i_projid = src->i_projid; 2563 } 2564 2565 new_ni = old_ni; 2566 new_ni.ino = ino; 2567 2568 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2569 WARN_ON(1); 2570 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2571 inc_valid_inode_count(sbi); 2572 set_page_dirty(ipage); 2573 f2fs_put_page(ipage, 1); 2574 return 0; 2575 } 2576 2577 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2578 unsigned int segno, struct f2fs_summary_block *sum) 2579 { 2580 struct f2fs_node *rn; 2581 struct f2fs_summary *sum_entry; 2582 block_t addr; 2583 int i, idx, last_offset, nrpages; 2584 2585 /* scan the node segment */ 2586 last_offset = sbi->blocks_per_seg; 2587 addr = START_BLOCK(sbi, segno); 2588 sum_entry = &sum->entries[0]; 2589 2590 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2591 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2592 2593 /* readahead node pages */ 2594 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2595 2596 for (idx = addr; idx < addr + nrpages; idx++) { 2597 struct page *page = f2fs_get_tmp_page(sbi, idx); 2598 2599 if (IS_ERR(page)) 2600 return PTR_ERR(page); 2601 2602 rn = F2FS_NODE(page); 2603 sum_entry->nid = rn->footer.nid; 2604 sum_entry->version = 0; 2605 sum_entry->ofs_in_node = 0; 2606 sum_entry++; 2607 f2fs_put_page(page, 1); 2608 } 2609 2610 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2611 addr + nrpages); 2612 } 2613 return 0; 2614 } 2615 2616 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2617 { 2618 struct f2fs_nm_info *nm_i = NM_I(sbi); 2619 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2620 struct f2fs_journal *journal = curseg->journal; 2621 int i; 2622 2623 down_write(&curseg->journal_rwsem); 2624 for (i = 0; i < nats_in_cursum(journal); i++) { 2625 struct nat_entry *ne; 2626 struct f2fs_nat_entry raw_ne; 2627 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2628 2629 raw_ne = nat_in_journal(journal, i); 2630 2631 ne = __lookup_nat_cache(nm_i, nid); 2632 if (!ne) { 2633 ne = __alloc_nat_entry(nid, true); 2634 __init_nat_entry(nm_i, ne, &raw_ne, true); 2635 } 2636 2637 /* 2638 * if a free nat in journal has not been used after last 2639 * checkpoint, we should remove it from available nids, 2640 * since later we will add it again. 2641 */ 2642 if (!get_nat_flag(ne, IS_DIRTY) && 2643 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2644 spin_lock(&nm_i->nid_list_lock); 2645 nm_i->available_nids--; 2646 spin_unlock(&nm_i->nid_list_lock); 2647 } 2648 2649 __set_nat_cache_dirty(nm_i, ne); 2650 } 2651 update_nats_in_cursum(journal, -i); 2652 up_write(&curseg->journal_rwsem); 2653 } 2654 2655 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2656 struct list_head *head, int max) 2657 { 2658 struct nat_entry_set *cur; 2659 2660 if (nes->entry_cnt >= max) 2661 goto add_out; 2662 2663 list_for_each_entry(cur, head, set_list) { 2664 if (cur->entry_cnt >= nes->entry_cnt) { 2665 list_add(&nes->set_list, cur->set_list.prev); 2666 return; 2667 } 2668 } 2669 add_out: 2670 list_add_tail(&nes->set_list, head); 2671 } 2672 2673 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2674 struct page *page) 2675 { 2676 struct f2fs_nm_info *nm_i = NM_I(sbi); 2677 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2678 struct f2fs_nat_block *nat_blk = page_address(page); 2679 int valid = 0; 2680 int i = 0; 2681 2682 if (!enabled_nat_bits(sbi, NULL)) 2683 return; 2684 2685 if (nat_index == 0) { 2686 valid = 1; 2687 i = 1; 2688 } 2689 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2690 if (nat_blk->entries[i].block_addr != NULL_ADDR) 2691 valid++; 2692 } 2693 if (valid == 0) { 2694 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2695 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2696 return; 2697 } 2698 2699 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2700 if (valid == NAT_ENTRY_PER_BLOCK) 2701 __set_bit_le(nat_index, nm_i->full_nat_bits); 2702 else 2703 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2704 } 2705 2706 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2707 struct nat_entry_set *set, struct cp_control *cpc) 2708 { 2709 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2710 struct f2fs_journal *journal = curseg->journal; 2711 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2712 bool to_journal = true; 2713 struct f2fs_nat_block *nat_blk; 2714 struct nat_entry *ne, *cur; 2715 struct page *page = NULL; 2716 2717 /* 2718 * there are two steps to flush nat entries: 2719 * #1, flush nat entries to journal in current hot data summary block. 2720 * #2, flush nat entries to nat page. 2721 */ 2722 if (enabled_nat_bits(sbi, cpc) || 2723 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2724 to_journal = false; 2725 2726 if (to_journal) { 2727 down_write(&curseg->journal_rwsem); 2728 } else { 2729 page = get_next_nat_page(sbi, start_nid); 2730 nat_blk = page_address(page); 2731 f2fs_bug_on(sbi, !nat_blk); 2732 } 2733 2734 /* flush dirty nats in nat entry set */ 2735 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2736 struct f2fs_nat_entry *raw_ne; 2737 nid_t nid = nat_get_nid(ne); 2738 int offset; 2739 2740 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2741 2742 if (to_journal) { 2743 offset = f2fs_lookup_journal_in_cursum(journal, 2744 NAT_JOURNAL, nid, 1); 2745 f2fs_bug_on(sbi, offset < 0); 2746 raw_ne = &nat_in_journal(journal, offset); 2747 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2748 } else { 2749 raw_ne = &nat_blk->entries[nid - start_nid]; 2750 } 2751 raw_nat_from_node_info(raw_ne, &ne->ni); 2752 nat_reset_flag(ne); 2753 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2754 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2755 add_free_nid(sbi, nid, false, true); 2756 } else { 2757 spin_lock(&NM_I(sbi)->nid_list_lock); 2758 update_free_nid_bitmap(sbi, nid, false, false); 2759 spin_unlock(&NM_I(sbi)->nid_list_lock); 2760 } 2761 } 2762 2763 if (to_journal) { 2764 up_write(&curseg->journal_rwsem); 2765 } else { 2766 __update_nat_bits(sbi, start_nid, page); 2767 f2fs_put_page(page, 1); 2768 } 2769 2770 /* Allow dirty nats by node block allocation in write_begin */ 2771 if (!set->entry_cnt) { 2772 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2773 kmem_cache_free(nat_entry_set_slab, set); 2774 } 2775 } 2776 2777 /* 2778 * This function is called during the checkpointing process. 2779 */ 2780 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2781 { 2782 struct f2fs_nm_info *nm_i = NM_I(sbi); 2783 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2784 struct f2fs_journal *journal = curseg->journal; 2785 struct nat_entry_set *setvec[SETVEC_SIZE]; 2786 struct nat_entry_set *set, *tmp; 2787 unsigned int found; 2788 nid_t set_idx = 0; 2789 LIST_HEAD(sets); 2790 2791 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */ 2792 if (enabled_nat_bits(sbi, cpc)) { 2793 down_write(&nm_i->nat_tree_lock); 2794 remove_nats_in_journal(sbi); 2795 up_write(&nm_i->nat_tree_lock); 2796 } 2797 2798 if (!nm_i->dirty_nat_cnt) 2799 return; 2800 2801 down_write(&nm_i->nat_tree_lock); 2802 2803 /* 2804 * if there are no enough space in journal to store dirty nat 2805 * entries, remove all entries from journal and merge them 2806 * into nat entry set. 2807 */ 2808 if (enabled_nat_bits(sbi, cpc) || 2809 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2810 remove_nats_in_journal(sbi); 2811 2812 while ((found = __gang_lookup_nat_set(nm_i, 2813 set_idx, SETVEC_SIZE, setvec))) { 2814 unsigned idx; 2815 set_idx = setvec[found - 1]->set + 1; 2816 for (idx = 0; idx < found; idx++) 2817 __adjust_nat_entry_set(setvec[idx], &sets, 2818 MAX_NAT_JENTRIES(journal)); 2819 } 2820 2821 /* flush dirty nats in nat entry set */ 2822 list_for_each_entry_safe(set, tmp, &sets, set_list) 2823 __flush_nat_entry_set(sbi, set, cpc); 2824 2825 up_write(&nm_i->nat_tree_lock); 2826 /* Allow dirty nats by node block allocation in write_begin */ 2827 } 2828 2829 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2830 { 2831 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2832 struct f2fs_nm_info *nm_i = NM_I(sbi); 2833 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2834 unsigned int i; 2835 __u64 cp_ver = cur_cp_version(ckpt); 2836 block_t nat_bits_addr; 2837 2838 if (!enabled_nat_bits(sbi, NULL)) 2839 return 0; 2840 2841 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 2842 nm_i->nat_bits = f2fs_kzalloc(sbi, 2843 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 2844 if (!nm_i->nat_bits) 2845 return -ENOMEM; 2846 2847 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2848 nm_i->nat_bits_blocks; 2849 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2850 struct page *page; 2851 2852 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 2853 if (IS_ERR(page)) { 2854 disable_nat_bits(sbi, true); 2855 return PTR_ERR(page); 2856 } 2857 2858 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2859 page_address(page), F2FS_BLKSIZE); 2860 f2fs_put_page(page, 1); 2861 } 2862 2863 cp_ver |= (cur_cp_crc(ckpt) << 32); 2864 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2865 disable_nat_bits(sbi, true); 2866 return 0; 2867 } 2868 2869 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2870 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2871 2872 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2873 return 0; 2874 } 2875 2876 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2877 { 2878 struct f2fs_nm_info *nm_i = NM_I(sbi); 2879 unsigned int i = 0; 2880 nid_t nid, last_nid; 2881 2882 if (!enabled_nat_bits(sbi, NULL)) 2883 return; 2884 2885 for (i = 0; i < nm_i->nat_blocks; i++) { 2886 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2887 if (i >= nm_i->nat_blocks) 2888 break; 2889 2890 __set_bit_le(i, nm_i->nat_block_bitmap); 2891 2892 nid = i * NAT_ENTRY_PER_BLOCK; 2893 last_nid = nid + NAT_ENTRY_PER_BLOCK; 2894 2895 spin_lock(&NM_I(sbi)->nid_list_lock); 2896 for (; nid < last_nid; nid++) 2897 update_free_nid_bitmap(sbi, nid, true, true); 2898 spin_unlock(&NM_I(sbi)->nid_list_lock); 2899 } 2900 2901 for (i = 0; i < nm_i->nat_blocks; i++) { 2902 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2903 if (i >= nm_i->nat_blocks) 2904 break; 2905 2906 __set_bit_le(i, nm_i->nat_block_bitmap); 2907 } 2908 } 2909 2910 static int init_node_manager(struct f2fs_sb_info *sbi) 2911 { 2912 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2913 struct f2fs_nm_info *nm_i = NM_I(sbi); 2914 unsigned char *version_bitmap; 2915 unsigned int nat_segs; 2916 int err; 2917 2918 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2919 2920 /* segment_count_nat includes pair segment so divide to 2. */ 2921 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2922 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2923 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2924 2925 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2926 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2927 sbi->nquota_files - F2FS_RESERVED_NODE_NUM; 2928 nm_i->nid_cnt[FREE_NID] = 0; 2929 nm_i->nid_cnt[PREALLOC_NID] = 0; 2930 nm_i->nat_cnt = 0; 2931 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2932 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2933 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2934 2935 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2936 INIT_LIST_HEAD(&nm_i->free_nid_list); 2937 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2938 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2939 INIT_LIST_HEAD(&nm_i->nat_entries); 2940 spin_lock_init(&nm_i->nat_list_lock); 2941 2942 mutex_init(&nm_i->build_lock); 2943 spin_lock_init(&nm_i->nid_list_lock); 2944 init_rwsem(&nm_i->nat_tree_lock); 2945 2946 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2947 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2948 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2949 if (!version_bitmap) 2950 return -EFAULT; 2951 2952 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2953 GFP_KERNEL); 2954 if (!nm_i->nat_bitmap) 2955 return -ENOMEM; 2956 2957 err = __get_nat_bitmaps(sbi); 2958 if (err) 2959 return err; 2960 2961 #ifdef CONFIG_F2FS_CHECK_FS 2962 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2963 GFP_KERNEL); 2964 if (!nm_i->nat_bitmap_mir) 2965 return -ENOMEM; 2966 #endif 2967 2968 return 0; 2969 } 2970 2971 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2972 { 2973 struct f2fs_nm_info *nm_i = NM_I(sbi); 2974 int i; 2975 2976 nm_i->free_nid_bitmap = 2977 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *), 2978 nm_i->nat_blocks), 2979 GFP_KERNEL); 2980 if (!nm_i->free_nid_bitmap) 2981 return -ENOMEM; 2982 2983 for (i = 0; i < nm_i->nat_blocks; i++) { 2984 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 2985 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 2986 if (!nm_i->free_nid_bitmap[i]) 2987 return -ENOMEM; 2988 } 2989 2990 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 2991 GFP_KERNEL); 2992 if (!nm_i->nat_block_bitmap) 2993 return -ENOMEM; 2994 2995 nm_i->free_nid_count = 2996 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 2997 nm_i->nat_blocks), 2998 GFP_KERNEL); 2999 if (!nm_i->free_nid_count) 3000 return -ENOMEM; 3001 return 0; 3002 } 3003 3004 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3005 { 3006 int err; 3007 3008 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3009 GFP_KERNEL); 3010 if (!sbi->nm_info) 3011 return -ENOMEM; 3012 3013 err = init_node_manager(sbi); 3014 if (err) 3015 return err; 3016 3017 err = init_free_nid_cache(sbi); 3018 if (err) 3019 return err; 3020 3021 /* load free nid status from nat_bits table */ 3022 load_free_nid_bitmap(sbi); 3023 3024 return f2fs_build_free_nids(sbi, true, true); 3025 } 3026 3027 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3028 { 3029 struct f2fs_nm_info *nm_i = NM_I(sbi); 3030 struct free_nid *i, *next_i; 3031 struct nat_entry *natvec[NATVEC_SIZE]; 3032 struct nat_entry_set *setvec[SETVEC_SIZE]; 3033 nid_t nid = 0; 3034 unsigned int found; 3035 3036 if (!nm_i) 3037 return; 3038 3039 /* destroy free nid list */ 3040 spin_lock(&nm_i->nid_list_lock); 3041 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3042 __remove_free_nid(sbi, i, FREE_NID); 3043 spin_unlock(&nm_i->nid_list_lock); 3044 kmem_cache_free(free_nid_slab, i); 3045 spin_lock(&nm_i->nid_list_lock); 3046 } 3047 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3048 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3049 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3050 spin_unlock(&nm_i->nid_list_lock); 3051 3052 /* destroy nat cache */ 3053 down_write(&nm_i->nat_tree_lock); 3054 while ((found = __gang_lookup_nat_cache(nm_i, 3055 nid, NATVEC_SIZE, natvec))) { 3056 unsigned idx; 3057 3058 nid = nat_get_nid(natvec[found - 1]) + 1; 3059 for (idx = 0; idx < found; idx++) { 3060 spin_lock(&nm_i->nat_list_lock); 3061 list_del(&natvec[idx]->list); 3062 spin_unlock(&nm_i->nat_list_lock); 3063 3064 __del_from_nat_cache(nm_i, natvec[idx]); 3065 } 3066 } 3067 f2fs_bug_on(sbi, nm_i->nat_cnt); 3068 3069 /* destroy nat set cache */ 3070 nid = 0; 3071 while ((found = __gang_lookup_nat_set(nm_i, 3072 nid, SETVEC_SIZE, setvec))) { 3073 unsigned idx; 3074 3075 nid = setvec[found - 1]->set + 1; 3076 for (idx = 0; idx < found; idx++) { 3077 /* entry_cnt is not zero, when cp_error was occurred */ 3078 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3079 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3080 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3081 } 3082 } 3083 up_write(&nm_i->nat_tree_lock); 3084 3085 kvfree(nm_i->nat_block_bitmap); 3086 if (nm_i->free_nid_bitmap) { 3087 int i; 3088 3089 for (i = 0; i < nm_i->nat_blocks; i++) 3090 kvfree(nm_i->free_nid_bitmap[i]); 3091 kfree(nm_i->free_nid_bitmap); 3092 } 3093 kvfree(nm_i->free_nid_count); 3094 3095 kfree(nm_i->nat_bitmap); 3096 kfree(nm_i->nat_bits); 3097 #ifdef CONFIG_F2FS_CHECK_FS 3098 kfree(nm_i->nat_bitmap_mir); 3099 #endif 3100 sbi->nm_info = NULL; 3101 kfree(nm_i); 3102 } 3103 3104 int __init f2fs_create_node_manager_caches(void) 3105 { 3106 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 3107 sizeof(struct nat_entry)); 3108 if (!nat_entry_slab) 3109 goto fail; 3110 3111 free_nid_slab = f2fs_kmem_cache_create("free_nid", 3112 sizeof(struct free_nid)); 3113 if (!free_nid_slab) 3114 goto destroy_nat_entry; 3115 3116 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 3117 sizeof(struct nat_entry_set)); 3118 if (!nat_entry_set_slab) 3119 goto destroy_free_nid; 3120 3121 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry", 3122 sizeof(struct fsync_node_entry)); 3123 if (!fsync_node_entry_slab) 3124 goto destroy_nat_entry_set; 3125 return 0; 3126 3127 destroy_nat_entry_set: 3128 kmem_cache_destroy(nat_entry_set_slab); 3129 destroy_free_nid: 3130 kmem_cache_destroy(free_nid_slab); 3131 destroy_nat_entry: 3132 kmem_cache_destroy(nat_entry_slab); 3133 fail: 3134 return -ENOMEM; 3135 } 3136 3137 void f2fs_destroy_node_manager_caches(void) 3138 { 3139 kmem_cache_destroy(fsync_node_entry_slab); 3140 kmem_cache_destroy(nat_entry_set_slab); 3141 kmem_cache_destroy(free_nid_slab); 3142 kmem_cache_destroy(nat_entry_slab); 3143 } 3144