1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] * 49 sizeof(struct free_nid)) >> PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 if (excess_cached_nats(sbi)) 56 res = false; 57 } else if (type == DIRTY_DENTS) { 58 if (sbi->sb->s_bdi->wb.dirty_exceeded) 59 return false; 60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 62 } else if (type == INO_ENTRIES) { 63 int i; 64 65 for (i = 0; i <= UPDATE_INO; i++) 66 mem_size += (sbi->im[i].ino_num * 67 sizeof(struct ino_entry)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 69 } else if (type == EXTENT_CACHE) { 70 mem_size = (atomic_read(&sbi->total_ext_tree) * 71 sizeof(struct extent_tree) + 72 atomic_read(&sbi->total_ext_node) * 73 sizeof(struct extent_node)) >> PAGE_SHIFT; 74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 75 } else { 76 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 77 return true; 78 } 79 return res; 80 } 81 82 static void clear_node_page_dirty(struct page *page) 83 { 84 struct address_space *mapping = page->mapping; 85 unsigned int long flags; 86 87 if (PageDirty(page)) { 88 spin_lock_irqsave(&mapping->tree_lock, flags); 89 radix_tree_tag_clear(&mapping->page_tree, 90 page_index(page), 91 PAGECACHE_TAG_DIRTY); 92 spin_unlock_irqrestore(&mapping->tree_lock, flags); 93 94 clear_page_dirty_for_io(page); 95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 96 } 97 ClearPageUptodate(page); 98 } 99 100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 101 { 102 pgoff_t index = current_nat_addr(sbi, nid); 103 return get_meta_page(sbi, index); 104 } 105 106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 107 { 108 struct page *src_page; 109 struct page *dst_page; 110 pgoff_t src_off; 111 pgoff_t dst_off; 112 void *src_addr; 113 void *dst_addr; 114 struct f2fs_nm_info *nm_i = NM_I(sbi); 115 116 src_off = current_nat_addr(sbi, nid); 117 dst_off = next_nat_addr(sbi, src_off); 118 119 /* get current nat block page with lock */ 120 src_page = get_meta_page(sbi, src_off); 121 dst_page = grab_meta_page(sbi, dst_off); 122 f2fs_bug_on(sbi, PageDirty(src_page)); 123 124 src_addr = page_address(src_page); 125 dst_addr = page_address(dst_page); 126 memcpy(dst_addr, src_addr, PAGE_SIZE); 127 set_page_dirty(dst_page); 128 f2fs_put_page(src_page, 1); 129 130 set_to_next_nat(nm_i, nid); 131 132 return dst_page; 133 } 134 135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 136 { 137 return radix_tree_lookup(&nm_i->nat_root, n); 138 } 139 140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 141 nid_t start, unsigned int nr, struct nat_entry **ep) 142 { 143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 144 } 145 146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 147 { 148 list_del(&e->list); 149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 150 nm_i->nat_cnt--; 151 kmem_cache_free(nat_entry_slab, e); 152 } 153 154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 155 struct nat_entry *ne) 156 { 157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 158 struct nat_entry_set *head; 159 160 if (get_nat_flag(ne, IS_DIRTY)) 161 return; 162 163 head = radix_tree_lookup(&nm_i->nat_set_root, set); 164 if (!head) { 165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 166 167 INIT_LIST_HEAD(&head->entry_list); 168 INIT_LIST_HEAD(&head->set_list); 169 head->set = set; 170 head->entry_cnt = 0; 171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 172 } 173 list_move_tail(&ne->list, &head->entry_list); 174 nm_i->dirty_nat_cnt++; 175 head->entry_cnt++; 176 set_nat_flag(ne, IS_DIRTY, true); 177 } 178 179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 180 struct nat_entry *ne) 181 { 182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 183 struct nat_entry_set *head; 184 185 head = radix_tree_lookup(&nm_i->nat_set_root, set); 186 if (head) { 187 list_move_tail(&ne->list, &nm_i->nat_entries); 188 set_nat_flag(ne, IS_DIRTY, false); 189 head->entry_cnt--; 190 nm_i->dirty_nat_cnt--; 191 } 192 } 193 194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 195 nid_t start, unsigned int nr, struct nat_entry_set **ep) 196 { 197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 198 start, nr); 199 } 200 201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 202 { 203 struct f2fs_nm_info *nm_i = NM_I(sbi); 204 struct nat_entry *e; 205 bool need = false; 206 207 down_read(&nm_i->nat_tree_lock); 208 e = __lookup_nat_cache(nm_i, nid); 209 if (e) { 210 if (!get_nat_flag(e, IS_CHECKPOINTED) && 211 !get_nat_flag(e, HAS_FSYNCED_INODE)) 212 need = true; 213 } 214 up_read(&nm_i->nat_tree_lock); 215 return need; 216 } 217 218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 219 { 220 struct f2fs_nm_info *nm_i = NM_I(sbi); 221 struct nat_entry *e; 222 bool is_cp = true; 223 224 down_read(&nm_i->nat_tree_lock); 225 e = __lookup_nat_cache(nm_i, nid); 226 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 227 is_cp = false; 228 up_read(&nm_i->nat_tree_lock); 229 return is_cp; 230 } 231 232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 233 { 234 struct f2fs_nm_info *nm_i = NM_I(sbi); 235 struct nat_entry *e; 236 bool need_update = true; 237 238 down_read(&nm_i->nat_tree_lock); 239 e = __lookup_nat_cache(nm_i, ino); 240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 241 (get_nat_flag(e, IS_CHECKPOINTED) || 242 get_nat_flag(e, HAS_FSYNCED_INODE))) 243 need_update = false; 244 up_read(&nm_i->nat_tree_lock); 245 return need_update; 246 } 247 248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 249 { 250 struct nat_entry *new; 251 252 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 253 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 254 memset(new, 0, sizeof(struct nat_entry)); 255 nat_set_nid(new, nid); 256 nat_reset_flag(new); 257 list_add_tail(&new->list, &nm_i->nat_entries); 258 nm_i->nat_cnt++; 259 return new; 260 } 261 262 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 263 struct f2fs_nat_entry *ne) 264 { 265 struct f2fs_nm_info *nm_i = NM_I(sbi); 266 struct nat_entry *e; 267 268 e = __lookup_nat_cache(nm_i, nid); 269 if (!e) { 270 e = grab_nat_entry(nm_i, nid); 271 node_info_from_raw_nat(&e->ni, ne); 272 } else { 273 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 274 nat_get_blkaddr(e) != 275 le32_to_cpu(ne->block_addr) || 276 nat_get_version(e) != ne->version); 277 } 278 } 279 280 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 281 block_t new_blkaddr, bool fsync_done) 282 { 283 struct f2fs_nm_info *nm_i = NM_I(sbi); 284 struct nat_entry *e; 285 286 down_write(&nm_i->nat_tree_lock); 287 e = __lookup_nat_cache(nm_i, ni->nid); 288 if (!e) { 289 e = grab_nat_entry(nm_i, ni->nid); 290 copy_node_info(&e->ni, ni); 291 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 292 } else if (new_blkaddr == NEW_ADDR) { 293 /* 294 * when nid is reallocated, 295 * previous nat entry can be remained in nat cache. 296 * So, reinitialize it with new information. 297 */ 298 copy_node_info(&e->ni, ni); 299 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 300 } 301 302 /* sanity check */ 303 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 304 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 305 new_blkaddr == NULL_ADDR); 306 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 307 new_blkaddr == NEW_ADDR); 308 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 309 nat_get_blkaddr(e) != NULL_ADDR && 310 new_blkaddr == NEW_ADDR); 311 312 /* increment version no as node is removed */ 313 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 314 unsigned char version = nat_get_version(e); 315 nat_set_version(e, inc_node_version(version)); 316 317 /* in order to reuse the nid */ 318 if (nm_i->next_scan_nid > ni->nid) 319 nm_i->next_scan_nid = ni->nid; 320 } 321 322 /* change address */ 323 nat_set_blkaddr(e, new_blkaddr); 324 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 325 set_nat_flag(e, IS_CHECKPOINTED, false); 326 __set_nat_cache_dirty(nm_i, e); 327 328 /* update fsync_mark if its inode nat entry is still alive */ 329 if (ni->nid != ni->ino) 330 e = __lookup_nat_cache(nm_i, ni->ino); 331 if (e) { 332 if (fsync_done && ni->nid == ni->ino) 333 set_nat_flag(e, HAS_FSYNCED_INODE, true); 334 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 335 } 336 up_write(&nm_i->nat_tree_lock); 337 } 338 339 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 340 { 341 struct f2fs_nm_info *nm_i = NM_I(sbi); 342 int nr = nr_shrink; 343 344 if (!down_write_trylock(&nm_i->nat_tree_lock)) 345 return 0; 346 347 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 348 struct nat_entry *ne; 349 ne = list_first_entry(&nm_i->nat_entries, 350 struct nat_entry, list); 351 __del_from_nat_cache(nm_i, ne); 352 nr_shrink--; 353 } 354 up_write(&nm_i->nat_tree_lock); 355 return nr - nr_shrink; 356 } 357 358 /* 359 * This function always returns success 360 */ 361 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 362 { 363 struct f2fs_nm_info *nm_i = NM_I(sbi); 364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 365 struct f2fs_journal *journal = curseg->journal; 366 nid_t start_nid = START_NID(nid); 367 struct f2fs_nat_block *nat_blk; 368 struct page *page = NULL; 369 struct f2fs_nat_entry ne; 370 struct nat_entry *e; 371 int i; 372 373 ni->nid = nid; 374 375 /* Check nat cache */ 376 down_read(&nm_i->nat_tree_lock); 377 e = __lookup_nat_cache(nm_i, nid); 378 if (e) { 379 ni->ino = nat_get_ino(e); 380 ni->blk_addr = nat_get_blkaddr(e); 381 ni->version = nat_get_version(e); 382 up_read(&nm_i->nat_tree_lock); 383 return; 384 } 385 386 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 387 388 /* Check current segment summary */ 389 down_read(&curseg->journal_rwsem); 390 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 391 if (i >= 0) { 392 ne = nat_in_journal(journal, i); 393 node_info_from_raw_nat(ni, &ne); 394 } 395 up_read(&curseg->journal_rwsem); 396 if (i >= 0) 397 goto cache; 398 399 /* Fill node_info from nat page */ 400 page = get_current_nat_page(sbi, start_nid); 401 nat_blk = (struct f2fs_nat_block *)page_address(page); 402 ne = nat_blk->entries[nid - start_nid]; 403 node_info_from_raw_nat(ni, &ne); 404 f2fs_put_page(page, 1); 405 cache: 406 up_read(&nm_i->nat_tree_lock); 407 /* cache nat entry */ 408 down_write(&nm_i->nat_tree_lock); 409 cache_nat_entry(sbi, nid, &ne); 410 up_write(&nm_i->nat_tree_lock); 411 } 412 413 /* 414 * readahead MAX_RA_NODE number of node pages. 415 */ 416 static void ra_node_pages(struct page *parent, int start, int n) 417 { 418 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 419 struct blk_plug plug; 420 int i, end; 421 nid_t nid; 422 423 blk_start_plug(&plug); 424 425 /* Then, try readahead for siblings of the desired node */ 426 end = start + n; 427 end = min(end, NIDS_PER_BLOCK); 428 for (i = start; i < end; i++) { 429 nid = get_nid(parent, i, false); 430 ra_node_page(sbi, nid); 431 } 432 433 blk_finish_plug(&plug); 434 } 435 436 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 437 { 438 const long direct_index = ADDRS_PER_INODE(dn->inode); 439 const long direct_blks = ADDRS_PER_BLOCK; 440 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 441 unsigned int skipped_unit = ADDRS_PER_BLOCK; 442 int cur_level = dn->cur_level; 443 int max_level = dn->max_level; 444 pgoff_t base = 0; 445 446 if (!dn->max_level) 447 return pgofs + 1; 448 449 while (max_level-- > cur_level) 450 skipped_unit *= NIDS_PER_BLOCK; 451 452 switch (dn->max_level) { 453 case 3: 454 base += 2 * indirect_blks; 455 case 2: 456 base += 2 * direct_blks; 457 case 1: 458 base += direct_index; 459 break; 460 default: 461 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 462 } 463 464 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 465 } 466 467 /* 468 * The maximum depth is four. 469 * Offset[0] will have raw inode offset. 470 */ 471 static int get_node_path(struct inode *inode, long block, 472 int offset[4], unsigned int noffset[4]) 473 { 474 const long direct_index = ADDRS_PER_INODE(inode); 475 const long direct_blks = ADDRS_PER_BLOCK; 476 const long dptrs_per_blk = NIDS_PER_BLOCK; 477 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 478 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 479 int n = 0; 480 int level = 0; 481 482 noffset[0] = 0; 483 484 if (block < direct_index) { 485 offset[n] = block; 486 goto got; 487 } 488 block -= direct_index; 489 if (block < direct_blks) { 490 offset[n++] = NODE_DIR1_BLOCK; 491 noffset[n] = 1; 492 offset[n] = block; 493 level = 1; 494 goto got; 495 } 496 block -= direct_blks; 497 if (block < direct_blks) { 498 offset[n++] = NODE_DIR2_BLOCK; 499 noffset[n] = 2; 500 offset[n] = block; 501 level = 1; 502 goto got; 503 } 504 block -= direct_blks; 505 if (block < indirect_blks) { 506 offset[n++] = NODE_IND1_BLOCK; 507 noffset[n] = 3; 508 offset[n++] = block / direct_blks; 509 noffset[n] = 4 + offset[n - 1]; 510 offset[n] = block % direct_blks; 511 level = 2; 512 goto got; 513 } 514 block -= indirect_blks; 515 if (block < indirect_blks) { 516 offset[n++] = NODE_IND2_BLOCK; 517 noffset[n] = 4 + dptrs_per_blk; 518 offset[n++] = block / direct_blks; 519 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 520 offset[n] = block % direct_blks; 521 level = 2; 522 goto got; 523 } 524 block -= indirect_blks; 525 if (block < dindirect_blks) { 526 offset[n++] = NODE_DIND_BLOCK; 527 noffset[n] = 5 + (dptrs_per_blk * 2); 528 offset[n++] = block / indirect_blks; 529 noffset[n] = 6 + (dptrs_per_blk * 2) + 530 offset[n - 1] * (dptrs_per_blk + 1); 531 offset[n++] = (block / direct_blks) % dptrs_per_blk; 532 noffset[n] = 7 + (dptrs_per_blk * 2) + 533 offset[n - 2] * (dptrs_per_blk + 1) + 534 offset[n - 1]; 535 offset[n] = block % direct_blks; 536 level = 3; 537 goto got; 538 } else { 539 BUG(); 540 } 541 got: 542 return level; 543 } 544 545 /* 546 * Caller should call f2fs_put_dnode(dn). 547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 549 * In the case of RDONLY_NODE, we don't need to care about mutex. 550 */ 551 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 552 { 553 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 554 struct page *npage[4]; 555 struct page *parent = NULL; 556 int offset[4]; 557 unsigned int noffset[4]; 558 nid_t nids[4]; 559 int level, i = 0; 560 int err = 0; 561 562 level = get_node_path(dn->inode, index, offset, noffset); 563 564 nids[0] = dn->inode->i_ino; 565 npage[0] = dn->inode_page; 566 567 if (!npage[0]) { 568 npage[0] = get_node_page(sbi, nids[0]); 569 if (IS_ERR(npage[0])) 570 return PTR_ERR(npage[0]); 571 } 572 573 /* if inline_data is set, should not report any block indices */ 574 if (f2fs_has_inline_data(dn->inode) && index) { 575 err = -ENOENT; 576 f2fs_put_page(npage[0], 1); 577 goto release_out; 578 } 579 580 parent = npage[0]; 581 if (level != 0) 582 nids[1] = get_nid(parent, offset[0], true); 583 dn->inode_page = npage[0]; 584 dn->inode_page_locked = true; 585 586 /* get indirect or direct nodes */ 587 for (i = 1; i <= level; i++) { 588 bool done = false; 589 590 if (!nids[i] && mode == ALLOC_NODE) { 591 /* alloc new node */ 592 if (!alloc_nid(sbi, &(nids[i]))) { 593 err = -ENOSPC; 594 goto release_pages; 595 } 596 597 dn->nid = nids[i]; 598 npage[i] = new_node_page(dn, noffset[i], NULL); 599 if (IS_ERR(npage[i])) { 600 alloc_nid_failed(sbi, nids[i]); 601 err = PTR_ERR(npage[i]); 602 goto release_pages; 603 } 604 605 set_nid(parent, offset[i - 1], nids[i], i == 1); 606 alloc_nid_done(sbi, nids[i]); 607 done = true; 608 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 609 npage[i] = get_node_page_ra(parent, offset[i - 1]); 610 if (IS_ERR(npage[i])) { 611 err = PTR_ERR(npage[i]); 612 goto release_pages; 613 } 614 done = true; 615 } 616 if (i == 1) { 617 dn->inode_page_locked = false; 618 unlock_page(parent); 619 } else { 620 f2fs_put_page(parent, 1); 621 } 622 623 if (!done) { 624 npage[i] = get_node_page(sbi, nids[i]); 625 if (IS_ERR(npage[i])) { 626 err = PTR_ERR(npage[i]); 627 f2fs_put_page(npage[0], 0); 628 goto release_out; 629 } 630 } 631 if (i < level) { 632 parent = npage[i]; 633 nids[i + 1] = get_nid(parent, offset[i], false); 634 } 635 } 636 dn->nid = nids[level]; 637 dn->ofs_in_node = offset[level]; 638 dn->node_page = npage[level]; 639 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 640 return 0; 641 642 release_pages: 643 f2fs_put_page(parent, 1); 644 if (i > 1) 645 f2fs_put_page(npage[0], 0); 646 release_out: 647 dn->inode_page = NULL; 648 dn->node_page = NULL; 649 if (err == -ENOENT) { 650 dn->cur_level = i; 651 dn->max_level = level; 652 dn->ofs_in_node = offset[level]; 653 } 654 return err; 655 } 656 657 static void truncate_node(struct dnode_of_data *dn) 658 { 659 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 660 struct node_info ni; 661 662 get_node_info(sbi, dn->nid, &ni); 663 if (dn->inode->i_blocks == 0) { 664 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 665 goto invalidate; 666 } 667 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 668 669 /* Deallocate node address */ 670 invalidate_blocks(sbi, ni.blk_addr); 671 dec_valid_node_count(sbi, dn->inode); 672 set_node_addr(sbi, &ni, NULL_ADDR, false); 673 674 if (dn->nid == dn->inode->i_ino) { 675 remove_orphan_inode(sbi, dn->nid); 676 dec_valid_inode_count(sbi); 677 f2fs_inode_synced(dn->inode); 678 } 679 invalidate: 680 clear_node_page_dirty(dn->node_page); 681 set_sbi_flag(sbi, SBI_IS_DIRTY); 682 683 f2fs_put_page(dn->node_page, 1); 684 685 invalidate_mapping_pages(NODE_MAPPING(sbi), 686 dn->node_page->index, dn->node_page->index); 687 688 dn->node_page = NULL; 689 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 690 } 691 692 static int truncate_dnode(struct dnode_of_data *dn) 693 { 694 struct page *page; 695 696 if (dn->nid == 0) 697 return 1; 698 699 /* get direct node */ 700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 701 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 702 return 1; 703 else if (IS_ERR(page)) 704 return PTR_ERR(page); 705 706 /* Make dnode_of_data for parameter */ 707 dn->node_page = page; 708 dn->ofs_in_node = 0; 709 truncate_data_blocks(dn); 710 truncate_node(dn); 711 return 1; 712 } 713 714 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 715 int ofs, int depth) 716 { 717 struct dnode_of_data rdn = *dn; 718 struct page *page; 719 struct f2fs_node *rn; 720 nid_t child_nid; 721 unsigned int child_nofs; 722 int freed = 0; 723 int i, ret; 724 725 if (dn->nid == 0) 726 return NIDS_PER_BLOCK + 1; 727 728 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 729 730 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 731 if (IS_ERR(page)) { 732 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 733 return PTR_ERR(page); 734 } 735 736 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 737 738 rn = F2FS_NODE(page); 739 if (depth < 3) { 740 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 741 child_nid = le32_to_cpu(rn->in.nid[i]); 742 if (child_nid == 0) 743 continue; 744 rdn.nid = child_nid; 745 ret = truncate_dnode(&rdn); 746 if (ret < 0) 747 goto out_err; 748 if (set_nid(page, i, 0, false)) 749 dn->node_changed = true; 750 } 751 } else { 752 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 753 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 754 child_nid = le32_to_cpu(rn->in.nid[i]); 755 if (child_nid == 0) { 756 child_nofs += NIDS_PER_BLOCK + 1; 757 continue; 758 } 759 rdn.nid = child_nid; 760 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 761 if (ret == (NIDS_PER_BLOCK + 1)) { 762 if (set_nid(page, i, 0, false)) 763 dn->node_changed = true; 764 child_nofs += ret; 765 } else if (ret < 0 && ret != -ENOENT) { 766 goto out_err; 767 } 768 } 769 freed = child_nofs; 770 } 771 772 if (!ofs) { 773 /* remove current indirect node */ 774 dn->node_page = page; 775 truncate_node(dn); 776 freed++; 777 } else { 778 f2fs_put_page(page, 1); 779 } 780 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 781 return freed; 782 783 out_err: 784 f2fs_put_page(page, 1); 785 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 786 return ret; 787 } 788 789 static int truncate_partial_nodes(struct dnode_of_data *dn, 790 struct f2fs_inode *ri, int *offset, int depth) 791 { 792 struct page *pages[2]; 793 nid_t nid[3]; 794 nid_t child_nid; 795 int err = 0; 796 int i; 797 int idx = depth - 2; 798 799 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 800 if (!nid[0]) 801 return 0; 802 803 /* get indirect nodes in the path */ 804 for (i = 0; i < idx + 1; i++) { 805 /* reference count'll be increased */ 806 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 807 if (IS_ERR(pages[i])) { 808 err = PTR_ERR(pages[i]); 809 idx = i - 1; 810 goto fail; 811 } 812 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 813 } 814 815 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 816 817 /* free direct nodes linked to a partial indirect node */ 818 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 819 child_nid = get_nid(pages[idx], i, false); 820 if (!child_nid) 821 continue; 822 dn->nid = child_nid; 823 err = truncate_dnode(dn); 824 if (err < 0) 825 goto fail; 826 if (set_nid(pages[idx], i, 0, false)) 827 dn->node_changed = true; 828 } 829 830 if (offset[idx + 1] == 0) { 831 dn->node_page = pages[idx]; 832 dn->nid = nid[idx]; 833 truncate_node(dn); 834 } else { 835 f2fs_put_page(pages[idx], 1); 836 } 837 offset[idx]++; 838 offset[idx + 1] = 0; 839 idx--; 840 fail: 841 for (i = idx; i >= 0; i--) 842 f2fs_put_page(pages[i], 1); 843 844 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 845 846 return err; 847 } 848 849 /* 850 * All the block addresses of data and nodes should be nullified. 851 */ 852 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 853 { 854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 855 int err = 0, cont = 1; 856 int level, offset[4], noffset[4]; 857 unsigned int nofs = 0; 858 struct f2fs_inode *ri; 859 struct dnode_of_data dn; 860 struct page *page; 861 862 trace_f2fs_truncate_inode_blocks_enter(inode, from); 863 864 level = get_node_path(inode, from, offset, noffset); 865 866 page = get_node_page(sbi, inode->i_ino); 867 if (IS_ERR(page)) { 868 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 869 return PTR_ERR(page); 870 } 871 872 set_new_dnode(&dn, inode, page, NULL, 0); 873 unlock_page(page); 874 875 ri = F2FS_INODE(page); 876 switch (level) { 877 case 0: 878 case 1: 879 nofs = noffset[1]; 880 break; 881 case 2: 882 nofs = noffset[1]; 883 if (!offset[level - 1]) 884 goto skip_partial; 885 err = truncate_partial_nodes(&dn, ri, offset, level); 886 if (err < 0 && err != -ENOENT) 887 goto fail; 888 nofs += 1 + NIDS_PER_BLOCK; 889 break; 890 case 3: 891 nofs = 5 + 2 * NIDS_PER_BLOCK; 892 if (!offset[level - 1]) 893 goto skip_partial; 894 err = truncate_partial_nodes(&dn, ri, offset, level); 895 if (err < 0 && err != -ENOENT) 896 goto fail; 897 break; 898 default: 899 BUG(); 900 } 901 902 skip_partial: 903 while (cont) { 904 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 905 switch (offset[0]) { 906 case NODE_DIR1_BLOCK: 907 case NODE_DIR2_BLOCK: 908 err = truncate_dnode(&dn); 909 break; 910 911 case NODE_IND1_BLOCK: 912 case NODE_IND2_BLOCK: 913 err = truncate_nodes(&dn, nofs, offset[1], 2); 914 break; 915 916 case NODE_DIND_BLOCK: 917 err = truncate_nodes(&dn, nofs, offset[1], 3); 918 cont = 0; 919 break; 920 921 default: 922 BUG(); 923 } 924 if (err < 0 && err != -ENOENT) 925 goto fail; 926 if (offset[1] == 0 && 927 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 928 lock_page(page); 929 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 930 f2fs_wait_on_page_writeback(page, NODE, true); 931 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 932 set_page_dirty(page); 933 unlock_page(page); 934 } 935 offset[1] = 0; 936 offset[0]++; 937 nofs += err; 938 } 939 fail: 940 f2fs_put_page(page, 0); 941 trace_f2fs_truncate_inode_blocks_exit(inode, err); 942 return err > 0 ? 0 : err; 943 } 944 945 int truncate_xattr_node(struct inode *inode, struct page *page) 946 { 947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 948 nid_t nid = F2FS_I(inode)->i_xattr_nid; 949 struct dnode_of_data dn; 950 struct page *npage; 951 952 if (!nid) 953 return 0; 954 955 npage = get_node_page(sbi, nid); 956 if (IS_ERR(npage)) 957 return PTR_ERR(npage); 958 959 f2fs_i_xnid_write(inode, 0); 960 961 /* need to do checkpoint during fsync */ 962 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 963 964 set_new_dnode(&dn, inode, page, npage, nid); 965 966 if (page) 967 dn.inode_page_locked = true; 968 truncate_node(&dn); 969 return 0; 970 } 971 972 /* 973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 974 * f2fs_unlock_op(). 975 */ 976 int remove_inode_page(struct inode *inode) 977 { 978 struct dnode_of_data dn; 979 int err; 980 981 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 982 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 983 if (err) 984 return err; 985 986 err = truncate_xattr_node(inode, dn.inode_page); 987 if (err) { 988 f2fs_put_dnode(&dn); 989 return err; 990 } 991 992 /* remove potential inline_data blocks */ 993 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 994 S_ISLNK(inode->i_mode)) 995 truncate_data_blocks_range(&dn, 1); 996 997 /* 0 is possible, after f2fs_new_inode() has failed */ 998 f2fs_bug_on(F2FS_I_SB(inode), 999 inode->i_blocks != 0 && inode->i_blocks != 1); 1000 1001 /* will put inode & node pages */ 1002 truncate_node(&dn); 1003 return 0; 1004 } 1005 1006 struct page *new_inode_page(struct inode *inode) 1007 { 1008 struct dnode_of_data dn; 1009 1010 /* allocate inode page for new inode */ 1011 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1012 1013 /* caller should f2fs_put_page(page, 1); */ 1014 return new_node_page(&dn, 0, NULL); 1015 } 1016 1017 struct page *new_node_page(struct dnode_of_data *dn, 1018 unsigned int ofs, struct page *ipage) 1019 { 1020 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1021 struct node_info old_ni, new_ni; 1022 struct page *page; 1023 int err; 1024 1025 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1026 return ERR_PTR(-EPERM); 1027 1028 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1029 if (!page) 1030 return ERR_PTR(-ENOMEM); 1031 1032 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1033 err = -ENOSPC; 1034 goto fail; 1035 } 1036 1037 get_node_info(sbi, dn->nid, &old_ni); 1038 1039 /* Reinitialize old_ni with new node page */ 1040 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); 1041 new_ni = old_ni; 1042 new_ni.ino = dn->inode->i_ino; 1043 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1044 1045 f2fs_wait_on_page_writeback(page, NODE, true); 1046 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1047 set_cold_node(dn->inode, page); 1048 if (!PageUptodate(page)) 1049 SetPageUptodate(page); 1050 if (set_page_dirty(page)) 1051 dn->node_changed = true; 1052 1053 if (f2fs_has_xattr_block(ofs)) 1054 f2fs_i_xnid_write(dn->inode, dn->nid); 1055 1056 if (ofs == 0) 1057 inc_valid_inode_count(sbi); 1058 return page; 1059 1060 fail: 1061 clear_node_page_dirty(page); 1062 f2fs_put_page(page, 1); 1063 return ERR_PTR(err); 1064 } 1065 1066 /* 1067 * Caller should do after getting the following values. 1068 * 0: f2fs_put_page(page, 0) 1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1070 */ 1071 static int read_node_page(struct page *page, int op_flags) 1072 { 1073 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1074 struct node_info ni; 1075 struct f2fs_io_info fio = { 1076 .sbi = sbi, 1077 .type = NODE, 1078 .op = REQ_OP_READ, 1079 .op_flags = op_flags, 1080 .page = page, 1081 .encrypted_page = NULL, 1082 }; 1083 1084 if (PageUptodate(page)) 1085 return LOCKED_PAGE; 1086 1087 get_node_info(sbi, page->index, &ni); 1088 1089 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1090 ClearPageUptodate(page); 1091 return -ENOENT; 1092 } 1093 1094 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1095 return f2fs_submit_page_bio(&fio); 1096 } 1097 1098 /* 1099 * Readahead a node page 1100 */ 1101 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1102 { 1103 struct page *apage; 1104 int err; 1105 1106 if (!nid) 1107 return; 1108 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1109 1110 rcu_read_lock(); 1111 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1112 rcu_read_unlock(); 1113 if (apage) 1114 return; 1115 1116 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1117 if (!apage) 1118 return; 1119 1120 err = read_node_page(apage, REQ_RAHEAD); 1121 f2fs_put_page(apage, err ? 1 : 0); 1122 } 1123 1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1125 struct page *parent, int start) 1126 { 1127 struct page *page; 1128 int err; 1129 1130 if (!nid) 1131 return ERR_PTR(-ENOENT); 1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1133 repeat: 1134 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1135 if (!page) 1136 return ERR_PTR(-ENOMEM); 1137 1138 err = read_node_page(page, 0); 1139 if (err < 0) { 1140 f2fs_put_page(page, 1); 1141 return ERR_PTR(err); 1142 } else if (err == LOCKED_PAGE) { 1143 goto page_hit; 1144 } 1145 1146 if (parent) 1147 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1148 1149 lock_page(page); 1150 1151 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1152 f2fs_put_page(page, 1); 1153 goto repeat; 1154 } 1155 1156 if (unlikely(!PageUptodate(page))) 1157 goto out_err; 1158 page_hit: 1159 if(unlikely(nid != nid_of_node(page))) { 1160 f2fs_bug_on(sbi, 1); 1161 ClearPageUptodate(page); 1162 out_err: 1163 f2fs_put_page(page, 1); 1164 return ERR_PTR(-EIO); 1165 } 1166 return page; 1167 } 1168 1169 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1170 { 1171 return __get_node_page(sbi, nid, NULL, 0); 1172 } 1173 1174 struct page *get_node_page_ra(struct page *parent, int start) 1175 { 1176 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1177 nid_t nid = get_nid(parent, start, false); 1178 1179 return __get_node_page(sbi, nid, parent, start); 1180 } 1181 1182 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1183 { 1184 struct inode *inode; 1185 struct page *page; 1186 int ret; 1187 1188 /* should flush inline_data before evict_inode */ 1189 inode = ilookup(sbi->sb, ino); 1190 if (!inode) 1191 return; 1192 1193 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1194 if (!page) 1195 goto iput_out; 1196 1197 if (!PageUptodate(page)) 1198 goto page_out; 1199 1200 if (!PageDirty(page)) 1201 goto page_out; 1202 1203 if (!clear_page_dirty_for_io(page)) 1204 goto page_out; 1205 1206 ret = f2fs_write_inline_data(inode, page); 1207 inode_dec_dirty_pages(inode); 1208 remove_dirty_inode(inode); 1209 if (ret) 1210 set_page_dirty(page); 1211 page_out: 1212 f2fs_put_page(page, 1); 1213 iput_out: 1214 iput(inode); 1215 } 1216 1217 void move_node_page(struct page *node_page, int gc_type) 1218 { 1219 if (gc_type == FG_GC) { 1220 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1221 struct writeback_control wbc = { 1222 .sync_mode = WB_SYNC_ALL, 1223 .nr_to_write = 1, 1224 .for_reclaim = 0, 1225 }; 1226 1227 set_page_dirty(node_page); 1228 f2fs_wait_on_page_writeback(node_page, NODE, true); 1229 1230 f2fs_bug_on(sbi, PageWriteback(node_page)); 1231 if (!clear_page_dirty_for_io(node_page)) 1232 goto out_page; 1233 1234 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1235 unlock_page(node_page); 1236 goto release_page; 1237 } else { 1238 /* set page dirty and write it */ 1239 if (!PageWriteback(node_page)) 1240 set_page_dirty(node_page); 1241 } 1242 out_page: 1243 unlock_page(node_page); 1244 release_page: 1245 f2fs_put_page(node_page, 0); 1246 } 1247 1248 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1249 { 1250 pgoff_t index, end; 1251 struct pagevec pvec; 1252 struct page *last_page = NULL; 1253 1254 pagevec_init(&pvec, 0); 1255 index = 0; 1256 end = ULONG_MAX; 1257 1258 while (index <= end) { 1259 int i, nr_pages; 1260 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1261 PAGECACHE_TAG_DIRTY, 1262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1263 if (nr_pages == 0) 1264 break; 1265 1266 for (i = 0; i < nr_pages; i++) { 1267 struct page *page = pvec.pages[i]; 1268 1269 if (unlikely(f2fs_cp_error(sbi))) { 1270 f2fs_put_page(last_page, 0); 1271 pagevec_release(&pvec); 1272 return ERR_PTR(-EIO); 1273 } 1274 1275 if (!IS_DNODE(page) || !is_cold_node(page)) 1276 continue; 1277 if (ino_of_node(page) != ino) 1278 continue; 1279 1280 lock_page(page); 1281 1282 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1283 continue_unlock: 1284 unlock_page(page); 1285 continue; 1286 } 1287 if (ino_of_node(page) != ino) 1288 goto continue_unlock; 1289 1290 if (!PageDirty(page)) { 1291 /* someone wrote it for us */ 1292 goto continue_unlock; 1293 } 1294 1295 if (last_page) 1296 f2fs_put_page(last_page, 0); 1297 1298 get_page(page); 1299 last_page = page; 1300 unlock_page(page); 1301 } 1302 pagevec_release(&pvec); 1303 cond_resched(); 1304 } 1305 return last_page; 1306 } 1307 1308 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1309 struct writeback_control *wbc, bool atomic) 1310 { 1311 pgoff_t index, end; 1312 struct pagevec pvec; 1313 int ret = 0; 1314 struct page *last_page = NULL; 1315 bool marked = false; 1316 nid_t ino = inode->i_ino; 1317 int nwritten = 0; 1318 1319 if (atomic) { 1320 last_page = last_fsync_dnode(sbi, ino); 1321 if (IS_ERR_OR_NULL(last_page)) 1322 return PTR_ERR_OR_ZERO(last_page); 1323 } 1324 retry: 1325 pagevec_init(&pvec, 0); 1326 index = 0; 1327 end = ULONG_MAX; 1328 1329 while (index <= end) { 1330 int i, nr_pages; 1331 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1332 PAGECACHE_TAG_DIRTY, 1333 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1334 if (nr_pages == 0) 1335 break; 1336 1337 for (i = 0; i < nr_pages; i++) { 1338 struct page *page = pvec.pages[i]; 1339 1340 if (unlikely(f2fs_cp_error(sbi))) { 1341 f2fs_put_page(last_page, 0); 1342 pagevec_release(&pvec); 1343 ret = -EIO; 1344 goto out; 1345 } 1346 1347 if (!IS_DNODE(page) || !is_cold_node(page)) 1348 continue; 1349 if (ino_of_node(page) != ino) 1350 continue; 1351 1352 lock_page(page); 1353 1354 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1355 continue_unlock: 1356 unlock_page(page); 1357 continue; 1358 } 1359 if (ino_of_node(page) != ino) 1360 goto continue_unlock; 1361 1362 if (!PageDirty(page) && page != last_page) { 1363 /* someone wrote it for us */ 1364 goto continue_unlock; 1365 } 1366 1367 f2fs_wait_on_page_writeback(page, NODE, true); 1368 BUG_ON(PageWriteback(page)); 1369 1370 if (!atomic || page == last_page) { 1371 set_fsync_mark(page, 1); 1372 if (IS_INODE(page)) { 1373 if (is_inode_flag_set(inode, 1374 FI_DIRTY_INODE)) 1375 update_inode(inode, page); 1376 set_dentry_mark(page, 1377 need_dentry_mark(sbi, ino)); 1378 } 1379 /* may be written by other thread */ 1380 if (!PageDirty(page)) 1381 set_page_dirty(page); 1382 } 1383 1384 if (!clear_page_dirty_for_io(page)) 1385 goto continue_unlock; 1386 1387 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc); 1388 if (ret) { 1389 unlock_page(page); 1390 f2fs_put_page(last_page, 0); 1391 break; 1392 } else { 1393 nwritten++; 1394 } 1395 1396 if (page == last_page) { 1397 f2fs_put_page(page, 0); 1398 marked = true; 1399 break; 1400 } 1401 } 1402 pagevec_release(&pvec); 1403 cond_resched(); 1404 1405 if (ret || marked) 1406 break; 1407 } 1408 if (!ret && atomic && !marked) { 1409 f2fs_msg(sbi->sb, KERN_DEBUG, 1410 "Retry to write fsync mark: ino=%u, idx=%lx", 1411 ino, last_page->index); 1412 lock_page(last_page); 1413 f2fs_wait_on_page_writeback(last_page, NODE, true); 1414 set_page_dirty(last_page); 1415 unlock_page(last_page); 1416 goto retry; 1417 } 1418 out: 1419 if (nwritten) 1420 f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE); 1421 return ret ? -EIO: 0; 1422 } 1423 1424 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1425 { 1426 pgoff_t index, end; 1427 struct pagevec pvec; 1428 int step = 0; 1429 int nwritten = 0; 1430 int ret = 0; 1431 1432 pagevec_init(&pvec, 0); 1433 1434 next_step: 1435 index = 0; 1436 end = ULONG_MAX; 1437 1438 while (index <= end) { 1439 int i, nr_pages; 1440 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1441 PAGECACHE_TAG_DIRTY, 1442 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1443 if (nr_pages == 0) 1444 break; 1445 1446 for (i = 0; i < nr_pages; i++) { 1447 struct page *page = pvec.pages[i]; 1448 1449 if (unlikely(f2fs_cp_error(sbi))) { 1450 pagevec_release(&pvec); 1451 ret = -EIO; 1452 goto out; 1453 } 1454 1455 /* 1456 * flushing sequence with step: 1457 * 0. indirect nodes 1458 * 1. dentry dnodes 1459 * 2. file dnodes 1460 */ 1461 if (step == 0 && IS_DNODE(page)) 1462 continue; 1463 if (step == 1 && (!IS_DNODE(page) || 1464 is_cold_node(page))) 1465 continue; 1466 if (step == 2 && (!IS_DNODE(page) || 1467 !is_cold_node(page))) 1468 continue; 1469 lock_node: 1470 if (!trylock_page(page)) 1471 continue; 1472 1473 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1474 continue_unlock: 1475 unlock_page(page); 1476 continue; 1477 } 1478 1479 if (!PageDirty(page)) { 1480 /* someone wrote it for us */ 1481 goto continue_unlock; 1482 } 1483 1484 /* flush inline_data */ 1485 if (is_inline_node(page)) { 1486 clear_inline_node(page); 1487 unlock_page(page); 1488 flush_inline_data(sbi, ino_of_node(page)); 1489 goto lock_node; 1490 } 1491 1492 f2fs_wait_on_page_writeback(page, NODE, true); 1493 1494 BUG_ON(PageWriteback(page)); 1495 if (!clear_page_dirty_for_io(page)) 1496 goto continue_unlock; 1497 1498 set_fsync_mark(page, 0); 1499 set_dentry_mark(page, 0); 1500 1501 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1502 unlock_page(page); 1503 else 1504 nwritten++; 1505 1506 if (--wbc->nr_to_write == 0) 1507 break; 1508 } 1509 pagevec_release(&pvec); 1510 cond_resched(); 1511 1512 if (wbc->nr_to_write == 0) { 1513 step = 2; 1514 break; 1515 } 1516 } 1517 1518 if (step < 2) { 1519 step++; 1520 goto next_step; 1521 } 1522 out: 1523 if (nwritten) 1524 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1525 return ret; 1526 } 1527 1528 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1529 { 1530 pgoff_t index = 0, end = ULONG_MAX; 1531 struct pagevec pvec; 1532 int ret2, ret = 0; 1533 1534 pagevec_init(&pvec, 0); 1535 1536 while (index <= end) { 1537 int i, nr_pages; 1538 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1539 PAGECACHE_TAG_WRITEBACK, 1540 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1541 if (nr_pages == 0) 1542 break; 1543 1544 for (i = 0; i < nr_pages; i++) { 1545 struct page *page = pvec.pages[i]; 1546 1547 /* until radix tree lookup accepts end_index */ 1548 if (unlikely(page->index > end)) 1549 continue; 1550 1551 if (ino && ino_of_node(page) == ino) { 1552 f2fs_wait_on_page_writeback(page, NODE, true); 1553 if (TestClearPageError(page)) 1554 ret = -EIO; 1555 } 1556 } 1557 pagevec_release(&pvec); 1558 cond_resched(); 1559 } 1560 1561 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1562 if (!ret) 1563 ret = ret2; 1564 return ret; 1565 } 1566 1567 static int f2fs_write_node_page(struct page *page, 1568 struct writeback_control *wbc) 1569 { 1570 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1571 nid_t nid; 1572 struct node_info ni; 1573 struct f2fs_io_info fio = { 1574 .sbi = sbi, 1575 .type = NODE, 1576 .op = REQ_OP_WRITE, 1577 .op_flags = wbc_to_write_flags(wbc), 1578 .page = page, 1579 .encrypted_page = NULL, 1580 }; 1581 1582 trace_f2fs_writepage(page, NODE); 1583 1584 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1585 goto redirty_out; 1586 if (unlikely(f2fs_cp_error(sbi))) 1587 goto redirty_out; 1588 1589 /* get old block addr of this node page */ 1590 nid = nid_of_node(page); 1591 f2fs_bug_on(sbi, page->index != nid); 1592 1593 if (wbc->for_reclaim) { 1594 if (!down_read_trylock(&sbi->node_write)) 1595 goto redirty_out; 1596 } else { 1597 down_read(&sbi->node_write); 1598 } 1599 1600 get_node_info(sbi, nid, &ni); 1601 1602 /* This page is already truncated */ 1603 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1604 ClearPageUptodate(page); 1605 dec_page_count(sbi, F2FS_DIRTY_NODES); 1606 up_read(&sbi->node_write); 1607 unlock_page(page); 1608 return 0; 1609 } 1610 1611 set_page_writeback(page); 1612 fio.old_blkaddr = ni.blk_addr; 1613 write_node_page(nid, &fio); 1614 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1615 dec_page_count(sbi, F2FS_DIRTY_NODES); 1616 up_read(&sbi->node_write); 1617 1618 if (wbc->for_reclaim) 1619 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE); 1620 1621 unlock_page(page); 1622 1623 if (unlikely(f2fs_cp_error(sbi))) 1624 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1625 1626 return 0; 1627 1628 redirty_out: 1629 redirty_page_for_writepage(wbc, page); 1630 return AOP_WRITEPAGE_ACTIVATE; 1631 } 1632 1633 static int f2fs_write_node_pages(struct address_space *mapping, 1634 struct writeback_control *wbc) 1635 { 1636 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1637 struct blk_plug plug; 1638 long diff; 1639 1640 /* balancing f2fs's metadata in background */ 1641 f2fs_balance_fs_bg(sbi); 1642 1643 /* collect a number of dirty node pages and write together */ 1644 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1645 goto skip_write; 1646 1647 trace_f2fs_writepages(mapping->host, wbc, NODE); 1648 1649 diff = nr_pages_to_write(sbi, NODE, wbc); 1650 wbc->sync_mode = WB_SYNC_NONE; 1651 blk_start_plug(&plug); 1652 sync_node_pages(sbi, wbc); 1653 blk_finish_plug(&plug); 1654 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1655 return 0; 1656 1657 skip_write: 1658 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1659 trace_f2fs_writepages(mapping->host, wbc, NODE); 1660 return 0; 1661 } 1662 1663 static int f2fs_set_node_page_dirty(struct page *page) 1664 { 1665 trace_f2fs_set_page_dirty(page, NODE); 1666 1667 if (!PageUptodate(page)) 1668 SetPageUptodate(page); 1669 if (!PageDirty(page)) { 1670 f2fs_set_page_dirty_nobuffers(page); 1671 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1672 SetPagePrivate(page); 1673 f2fs_trace_pid(page); 1674 return 1; 1675 } 1676 return 0; 1677 } 1678 1679 /* 1680 * Structure of the f2fs node operations 1681 */ 1682 const struct address_space_operations f2fs_node_aops = { 1683 .writepage = f2fs_write_node_page, 1684 .writepages = f2fs_write_node_pages, 1685 .set_page_dirty = f2fs_set_node_page_dirty, 1686 .invalidatepage = f2fs_invalidate_page, 1687 .releasepage = f2fs_release_page, 1688 #ifdef CONFIG_MIGRATION 1689 .migratepage = f2fs_migrate_page, 1690 #endif 1691 }; 1692 1693 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1694 nid_t n) 1695 { 1696 return radix_tree_lookup(&nm_i->free_nid_root, n); 1697 } 1698 1699 static int __insert_nid_to_list(struct f2fs_sb_info *sbi, 1700 struct free_nid *i, enum nid_list list, bool new) 1701 { 1702 struct f2fs_nm_info *nm_i = NM_I(sbi); 1703 1704 if (new) { 1705 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1706 if (err) 1707 return err; 1708 } 1709 1710 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1711 i->state != NID_ALLOC); 1712 nm_i->nid_cnt[list]++; 1713 list_add_tail(&i->list, &nm_i->nid_list[list]); 1714 return 0; 1715 } 1716 1717 static void __remove_nid_from_list(struct f2fs_sb_info *sbi, 1718 struct free_nid *i, enum nid_list list, bool reuse) 1719 { 1720 struct f2fs_nm_info *nm_i = NM_I(sbi); 1721 1722 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1723 i->state != NID_ALLOC); 1724 nm_i->nid_cnt[list]--; 1725 list_del(&i->list); 1726 if (!reuse) 1727 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1728 } 1729 1730 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1731 { 1732 struct f2fs_nm_info *nm_i = NM_I(sbi); 1733 struct free_nid *i; 1734 struct nat_entry *ne; 1735 int err; 1736 1737 /* 0 nid should not be used */ 1738 if (unlikely(nid == 0)) 1739 return 0; 1740 1741 if (build) { 1742 /* do not add allocated nids */ 1743 ne = __lookup_nat_cache(nm_i, nid); 1744 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1745 nat_get_blkaddr(ne) != NULL_ADDR)) 1746 return 0; 1747 } 1748 1749 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1750 i->nid = nid; 1751 i->state = NID_NEW; 1752 1753 if (radix_tree_preload(GFP_NOFS)) { 1754 kmem_cache_free(free_nid_slab, i); 1755 return 0; 1756 } 1757 1758 spin_lock(&nm_i->nid_list_lock); 1759 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); 1760 spin_unlock(&nm_i->nid_list_lock); 1761 radix_tree_preload_end(); 1762 if (err) { 1763 kmem_cache_free(free_nid_slab, i); 1764 return 0; 1765 } 1766 return 1; 1767 } 1768 1769 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1770 { 1771 struct f2fs_nm_info *nm_i = NM_I(sbi); 1772 struct free_nid *i; 1773 bool need_free = false; 1774 1775 spin_lock(&nm_i->nid_list_lock); 1776 i = __lookup_free_nid_list(nm_i, nid); 1777 if (i && i->state == NID_NEW) { 1778 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1779 need_free = true; 1780 } 1781 spin_unlock(&nm_i->nid_list_lock); 1782 1783 if (need_free) 1784 kmem_cache_free(free_nid_slab, i); 1785 } 1786 1787 static void scan_nat_page(struct f2fs_sb_info *sbi, 1788 struct page *nat_page, nid_t start_nid) 1789 { 1790 struct f2fs_nm_info *nm_i = NM_I(sbi); 1791 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1792 block_t blk_addr; 1793 int i; 1794 1795 i = start_nid % NAT_ENTRY_PER_BLOCK; 1796 1797 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1798 1799 if (unlikely(start_nid >= nm_i->max_nid)) 1800 break; 1801 1802 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1803 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1804 if (blk_addr == NULL_ADDR) 1805 add_free_nid(sbi, start_nid, true); 1806 } 1807 } 1808 1809 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync) 1810 { 1811 struct f2fs_nm_info *nm_i = NM_I(sbi); 1812 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1813 struct f2fs_journal *journal = curseg->journal; 1814 int i = 0; 1815 nid_t nid = nm_i->next_scan_nid; 1816 1817 /* Enough entries */ 1818 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK) 1819 return; 1820 1821 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 1822 return; 1823 1824 /* readahead nat pages to be scanned */ 1825 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1826 META_NAT, true); 1827 1828 down_read(&nm_i->nat_tree_lock); 1829 1830 while (1) { 1831 struct page *page = get_current_nat_page(sbi, nid); 1832 1833 scan_nat_page(sbi, page, nid); 1834 f2fs_put_page(page, 1); 1835 1836 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1837 if (unlikely(nid >= nm_i->max_nid)) 1838 nid = 0; 1839 1840 if (++i >= FREE_NID_PAGES) 1841 break; 1842 } 1843 1844 /* go to the next free nat pages to find free nids abundantly */ 1845 nm_i->next_scan_nid = nid; 1846 1847 /* find free nids from current sum_pages */ 1848 down_read(&curseg->journal_rwsem); 1849 for (i = 0; i < nats_in_cursum(journal); i++) { 1850 block_t addr; 1851 1852 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1853 nid = le32_to_cpu(nid_in_journal(journal, i)); 1854 if (addr == NULL_ADDR) 1855 add_free_nid(sbi, nid, true); 1856 else 1857 remove_free_nid(sbi, nid); 1858 } 1859 up_read(&curseg->journal_rwsem); 1860 up_read(&nm_i->nat_tree_lock); 1861 1862 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 1863 nm_i->ra_nid_pages, META_NAT, false); 1864 } 1865 1866 void build_free_nids(struct f2fs_sb_info *sbi, bool sync) 1867 { 1868 mutex_lock(&NM_I(sbi)->build_lock); 1869 __build_free_nids(sbi, sync); 1870 mutex_unlock(&NM_I(sbi)->build_lock); 1871 } 1872 1873 /* 1874 * If this function returns success, caller can obtain a new nid 1875 * from second parameter of this function. 1876 * The returned nid could be used ino as well as nid when inode is created. 1877 */ 1878 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1879 { 1880 struct f2fs_nm_info *nm_i = NM_I(sbi); 1881 struct free_nid *i = NULL; 1882 retry: 1883 #ifdef CONFIG_F2FS_FAULT_INJECTION 1884 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 1885 return false; 1886 #endif 1887 spin_lock(&nm_i->nid_list_lock); 1888 1889 if (unlikely(nm_i->available_nids == 0)) { 1890 spin_unlock(&nm_i->nid_list_lock); 1891 return false; 1892 } 1893 1894 /* We should not use stale free nids created by build_free_nids */ 1895 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) { 1896 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST])); 1897 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 1898 struct free_nid, list); 1899 *nid = i->nid; 1900 1901 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true); 1902 i->state = NID_ALLOC; 1903 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false); 1904 nm_i->available_nids--; 1905 spin_unlock(&nm_i->nid_list_lock); 1906 return true; 1907 } 1908 spin_unlock(&nm_i->nid_list_lock); 1909 1910 /* Let's scan nat pages and its caches to get free nids */ 1911 build_free_nids(sbi, true); 1912 goto retry; 1913 } 1914 1915 /* 1916 * alloc_nid() should be called prior to this function. 1917 */ 1918 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1919 { 1920 struct f2fs_nm_info *nm_i = NM_I(sbi); 1921 struct free_nid *i; 1922 1923 spin_lock(&nm_i->nid_list_lock); 1924 i = __lookup_free_nid_list(nm_i, nid); 1925 f2fs_bug_on(sbi, !i); 1926 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 1927 spin_unlock(&nm_i->nid_list_lock); 1928 1929 kmem_cache_free(free_nid_slab, i); 1930 } 1931 1932 /* 1933 * alloc_nid() should be called prior to this function. 1934 */ 1935 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1936 { 1937 struct f2fs_nm_info *nm_i = NM_I(sbi); 1938 struct free_nid *i; 1939 bool need_free = false; 1940 1941 if (!nid) 1942 return; 1943 1944 spin_lock(&nm_i->nid_list_lock); 1945 i = __lookup_free_nid_list(nm_i, nid); 1946 f2fs_bug_on(sbi, !i); 1947 1948 if (!available_free_memory(sbi, FREE_NIDS)) { 1949 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 1950 need_free = true; 1951 } else { 1952 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true); 1953 i->state = NID_NEW; 1954 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false); 1955 } 1956 1957 nm_i->available_nids++; 1958 1959 spin_unlock(&nm_i->nid_list_lock); 1960 1961 if (need_free) 1962 kmem_cache_free(free_nid_slab, i); 1963 } 1964 1965 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 1966 { 1967 struct f2fs_nm_info *nm_i = NM_I(sbi); 1968 struct free_nid *i, *next; 1969 int nr = nr_shrink; 1970 1971 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 1972 return 0; 1973 1974 if (!mutex_trylock(&nm_i->build_lock)) 1975 return 0; 1976 1977 spin_lock(&nm_i->nid_list_lock); 1978 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST], 1979 list) { 1980 if (nr_shrink <= 0 || 1981 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 1982 break; 1983 1984 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1985 kmem_cache_free(free_nid_slab, i); 1986 nr_shrink--; 1987 } 1988 spin_unlock(&nm_i->nid_list_lock); 1989 mutex_unlock(&nm_i->build_lock); 1990 1991 return nr - nr_shrink; 1992 } 1993 1994 void recover_inline_xattr(struct inode *inode, struct page *page) 1995 { 1996 void *src_addr, *dst_addr; 1997 size_t inline_size; 1998 struct page *ipage; 1999 struct f2fs_inode *ri; 2000 2001 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2002 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2003 2004 ri = F2FS_INODE(page); 2005 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 2006 clear_inode_flag(inode, FI_INLINE_XATTR); 2007 goto update_inode; 2008 } 2009 2010 dst_addr = inline_xattr_addr(ipage); 2011 src_addr = inline_xattr_addr(page); 2012 inline_size = inline_xattr_size(inode); 2013 2014 f2fs_wait_on_page_writeback(ipage, NODE, true); 2015 memcpy(dst_addr, src_addr, inline_size); 2016 update_inode: 2017 update_inode(inode, ipage); 2018 f2fs_put_page(ipage, 1); 2019 } 2020 2021 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 2022 { 2023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2024 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2025 nid_t new_xnid = nid_of_node(page); 2026 struct node_info ni; 2027 2028 /* 1: invalidate the previous xattr nid */ 2029 if (!prev_xnid) 2030 goto recover_xnid; 2031 2032 /* Deallocate node address */ 2033 get_node_info(sbi, prev_xnid, &ni); 2034 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 2035 invalidate_blocks(sbi, ni.blk_addr); 2036 dec_valid_node_count(sbi, inode); 2037 set_node_addr(sbi, &ni, NULL_ADDR, false); 2038 2039 recover_xnid: 2040 /* 2: allocate new xattr nid */ 2041 if (unlikely(!inc_valid_node_count(sbi, inode))) 2042 f2fs_bug_on(sbi, 1); 2043 2044 remove_free_nid(sbi, new_xnid); 2045 get_node_info(sbi, new_xnid, &ni); 2046 ni.ino = inode->i_ino; 2047 set_node_addr(sbi, &ni, NEW_ADDR, false); 2048 f2fs_i_xnid_write(inode, new_xnid); 2049 2050 /* 3: update xattr blkaddr */ 2051 refresh_sit_entry(sbi, NEW_ADDR, blkaddr); 2052 set_node_addr(sbi, &ni, blkaddr, false); 2053 } 2054 2055 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2056 { 2057 struct f2fs_inode *src, *dst; 2058 nid_t ino = ino_of_node(page); 2059 struct node_info old_ni, new_ni; 2060 struct page *ipage; 2061 2062 get_node_info(sbi, ino, &old_ni); 2063 2064 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2065 return -EINVAL; 2066 retry: 2067 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2068 if (!ipage) { 2069 congestion_wait(BLK_RW_ASYNC, HZ/50); 2070 goto retry; 2071 } 2072 2073 /* Should not use this inode from free nid list */ 2074 remove_free_nid(sbi, ino); 2075 2076 if (!PageUptodate(ipage)) 2077 SetPageUptodate(ipage); 2078 fill_node_footer(ipage, ino, ino, 0, true); 2079 2080 src = F2FS_INODE(page); 2081 dst = F2FS_INODE(ipage); 2082 2083 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2084 dst->i_size = 0; 2085 dst->i_blocks = cpu_to_le64(1); 2086 dst->i_links = cpu_to_le32(1); 2087 dst->i_xattr_nid = 0; 2088 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2089 2090 new_ni = old_ni; 2091 new_ni.ino = ino; 2092 2093 if (unlikely(!inc_valid_node_count(sbi, NULL))) 2094 WARN_ON(1); 2095 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2096 inc_valid_inode_count(sbi); 2097 set_page_dirty(ipage); 2098 f2fs_put_page(ipage, 1); 2099 return 0; 2100 } 2101 2102 int restore_node_summary(struct f2fs_sb_info *sbi, 2103 unsigned int segno, struct f2fs_summary_block *sum) 2104 { 2105 struct f2fs_node *rn; 2106 struct f2fs_summary *sum_entry; 2107 block_t addr; 2108 int i, idx, last_offset, nrpages; 2109 2110 /* scan the node segment */ 2111 last_offset = sbi->blocks_per_seg; 2112 addr = START_BLOCK(sbi, segno); 2113 sum_entry = &sum->entries[0]; 2114 2115 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2116 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2117 2118 /* readahead node pages */ 2119 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2120 2121 for (idx = addr; idx < addr + nrpages; idx++) { 2122 struct page *page = get_tmp_page(sbi, idx); 2123 2124 rn = F2FS_NODE(page); 2125 sum_entry->nid = rn->footer.nid; 2126 sum_entry->version = 0; 2127 sum_entry->ofs_in_node = 0; 2128 sum_entry++; 2129 f2fs_put_page(page, 1); 2130 } 2131 2132 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2133 addr + nrpages); 2134 } 2135 return 0; 2136 } 2137 2138 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2139 { 2140 struct f2fs_nm_info *nm_i = NM_I(sbi); 2141 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2142 struct f2fs_journal *journal = curseg->journal; 2143 int i; 2144 2145 down_write(&curseg->journal_rwsem); 2146 for (i = 0; i < nats_in_cursum(journal); i++) { 2147 struct nat_entry *ne; 2148 struct f2fs_nat_entry raw_ne; 2149 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2150 2151 raw_ne = nat_in_journal(journal, i); 2152 2153 ne = __lookup_nat_cache(nm_i, nid); 2154 if (!ne) { 2155 ne = grab_nat_entry(nm_i, nid); 2156 node_info_from_raw_nat(&ne->ni, &raw_ne); 2157 } 2158 2159 /* 2160 * if a free nat in journal has not been used after last 2161 * checkpoint, we should remove it from available nids, 2162 * since later we will add it again. 2163 */ 2164 if (!get_nat_flag(ne, IS_DIRTY) && 2165 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2166 spin_lock(&nm_i->nid_list_lock); 2167 nm_i->available_nids--; 2168 spin_unlock(&nm_i->nid_list_lock); 2169 } 2170 2171 __set_nat_cache_dirty(nm_i, ne); 2172 } 2173 update_nats_in_cursum(journal, -i); 2174 up_write(&curseg->journal_rwsem); 2175 } 2176 2177 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2178 struct list_head *head, int max) 2179 { 2180 struct nat_entry_set *cur; 2181 2182 if (nes->entry_cnt >= max) 2183 goto add_out; 2184 2185 list_for_each_entry(cur, head, set_list) { 2186 if (cur->entry_cnt >= nes->entry_cnt) { 2187 list_add(&nes->set_list, cur->set_list.prev); 2188 return; 2189 } 2190 } 2191 add_out: 2192 list_add_tail(&nes->set_list, head); 2193 } 2194 2195 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2196 struct nat_entry_set *set) 2197 { 2198 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2199 struct f2fs_journal *journal = curseg->journal; 2200 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2201 bool to_journal = true; 2202 struct f2fs_nat_block *nat_blk; 2203 struct nat_entry *ne, *cur; 2204 struct page *page = NULL; 2205 2206 /* 2207 * there are two steps to flush nat entries: 2208 * #1, flush nat entries to journal in current hot data summary block. 2209 * #2, flush nat entries to nat page. 2210 */ 2211 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2212 to_journal = false; 2213 2214 if (to_journal) { 2215 down_write(&curseg->journal_rwsem); 2216 } else { 2217 page = get_next_nat_page(sbi, start_nid); 2218 nat_blk = page_address(page); 2219 f2fs_bug_on(sbi, !nat_blk); 2220 } 2221 2222 /* flush dirty nats in nat entry set */ 2223 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2224 struct f2fs_nat_entry *raw_ne; 2225 nid_t nid = nat_get_nid(ne); 2226 int offset; 2227 2228 if (nat_get_blkaddr(ne) == NEW_ADDR) 2229 continue; 2230 2231 if (to_journal) { 2232 offset = lookup_journal_in_cursum(journal, 2233 NAT_JOURNAL, nid, 1); 2234 f2fs_bug_on(sbi, offset < 0); 2235 raw_ne = &nat_in_journal(journal, offset); 2236 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2237 } else { 2238 raw_ne = &nat_blk->entries[nid - start_nid]; 2239 } 2240 raw_nat_from_node_info(raw_ne, &ne->ni); 2241 nat_reset_flag(ne); 2242 __clear_nat_cache_dirty(NM_I(sbi), ne); 2243 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2244 add_free_nid(sbi, nid, false); 2245 spin_lock(&NM_I(sbi)->nid_list_lock); 2246 NM_I(sbi)->available_nids++; 2247 spin_unlock(&NM_I(sbi)->nid_list_lock); 2248 } 2249 } 2250 2251 if (to_journal) 2252 up_write(&curseg->journal_rwsem); 2253 else 2254 f2fs_put_page(page, 1); 2255 2256 f2fs_bug_on(sbi, set->entry_cnt); 2257 2258 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2259 kmem_cache_free(nat_entry_set_slab, set); 2260 } 2261 2262 /* 2263 * This function is called during the checkpointing process. 2264 */ 2265 void flush_nat_entries(struct f2fs_sb_info *sbi) 2266 { 2267 struct f2fs_nm_info *nm_i = NM_I(sbi); 2268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2269 struct f2fs_journal *journal = curseg->journal; 2270 struct nat_entry_set *setvec[SETVEC_SIZE]; 2271 struct nat_entry_set *set, *tmp; 2272 unsigned int found; 2273 nid_t set_idx = 0; 2274 LIST_HEAD(sets); 2275 2276 if (!nm_i->dirty_nat_cnt) 2277 return; 2278 2279 down_write(&nm_i->nat_tree_lock); 2280 2281 /* 2282 * if there are no enough space in journal to store dirty nat 2283 * entries, remove all entries from journal and merge them 2284 * into nat entry set. 2285 */ 2286 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2287 remove_nats_in_journal(sbi); 2288 2289 while ((found = __gang_lookup_nat_set(nm_i, 2290 set_idx, SETVEC_SIZE, setvec))) { 2291 unsigned idx; 2292 set_idx = setvec[found - 1]->set + 1; 2293 for (idx = 0; idx < found; idx++) 2294 __adjust_nat_entry_set(setvec[idx], &sets, 2295 MAX_NAT_JENTRIES(journal)); 2296 } 2297 2298 /* flush dirty nats in nat entry set */ 2299 list_for_each_entry_safe(set, tmp, &sets, set_list) 2300 __flush_nat_entry_set(sbi, set); 2301 2302 up_write(&nm_i->nat_tree_lock); 2303 2304 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 2305 } 2306 2307 static int init_node_manager(struct f2fs_sb_info *sbi) 2308 { 2309 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2310 struct f2fs_nm_info *nm_i = NM_I(sbi); 2311 unsigned char *version_bitmap; 2312 unsigned int nat_segs, nat_blocks; 2313 2314 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2315 2316 /* segment_count_nat includes pair segment so divide to 2. */ 2317 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2318 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2319 2320 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 2321 2322 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2323 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2324 F2FS_RESERVED_NODE_NUM; 2325 nm_i->nid_cnt[FREE_NID_LIST] = 0; 2326 nm_i->nid_cnt[ALLOC_NID_LIST] = 0; 2327 nm_i->nat_cnt = 0; 2328 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2329 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2330 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2331 2332 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2333 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]); 2334 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]); 2335 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2336 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2337 INIT_LIST_HEAD(&nm_i->nat_entries); 2338 2339 mutex_init(&nm_i->build_lock); 2340 spin_lock_init(&nm_i->nid_list_lock); 2341 init_rwsem(&nm_i->nat_tree_lock); 2342 2343 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2344 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2345 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2346 if (!version_bitmap) 2347 return -EFAULT; 2348 2349 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2350 GFP_KERNEL); 2351 if (!nm_i->nat_bitmap) 2352 return -ENOMEM; 2353 return 0; 2354 } 2355 2356 int build_node_manager(struct f2fs_sb_info *sbi) 2357 { 2358 int err; 2359 2360 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2361 if (!sbi->nm_info) 2362 return -ENOMEM; 2363 2364 err = init_node_manager(sbi); 2365 if (err) 2366 return err; 2367 2368 build_free_nids(sbi, true); 2369 return 0; 2370 } 2371 2372 void destroy_node_manager(struct f2fs_sb_info *sbi) 2373 { 2374 struct f2fs_nm_info *nm_i = NM_I(sbi); 2375 struct free_nid *i, *next_i; 2376 struct nat_entry *natvec[NATVEC_SIZE]; 2377 struct nat_entry_set *setvec[SETVEC_SIZE]; 2378 nid_t nid = 0; 2379 unsigned int found; 2380 2381 if (!nm_i) 2382 return; 2383 2384 /* destroy free nid list */ 2385 spin_lock(&nm_i->nid_list_lock); 2386 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST], 2387 list) { 2388 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2389 spin_unlock(&nm_i->nid_list_lock); 2390 kmem_cache_free(free_nid_slab, i); 2391 spin_lock(&nm_i->nid_list_lock); 2392 } 2393 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]); 2394 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]); 2395 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST])); 2396 spin_unlock(&nm_i->nid_list_lock); 2397 2398 /* destroy nat cache */ 2399 down_write(&nm_i->nat_tree_lock); 2400 while ((found = __gang_lookup_nat_cache(nm_i, 2401 nid, NATVEC_SIZE, natvec))) { 2402 unsigned idx; 2403 2404 nid = nat_get_nid(natvec[found - 1]) + 1; 2405 for (idx = 0; idx < found; idx++) 2406 __del_from_nat_cache(nm_i, natvec[idx]); 2407 } 2408 f2fs_bug_on(sbi, nm_i->nat_cnt); 2409 2410 /* destroy nat set cache */ 2411 nid = 0; 2412 while ((found = __gang_lookup_nat_set(nm_i, 2413 nid, SETVEC_SIZE, setvec))) { 2414 unsigned idx; 2415 2416 nid = setvec[found - 1]->set + 1; 2417 for (idx = 0; idx < found; idx++) { 2418 /* entry_cnt is not zero, when cp_error was occurred */ 2419 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2420 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2421 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2422 } 2423 } 2424 up_write(&nm_i->nat_tree_lock); 2425 2426 kfree(nm_i->nat_bitmap); 2427 sbi->nm_info = NULL; 2428 kfree(nm_i); 2429 } 2430 2431 int __init create_node_manager_caches(void) 2432 { 2433 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2434 sizeof(struct nat_entry)); 2435 if (!nat_entry_slab) 2436 goto fail; 2437 2438 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2439 sizeof(struct free_nid)); 2440 if (!free_nid_slab) 2441 goto destroy_nat_entry; 2442 2443 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2444 sizeof(struct nat_entry_set)); 2445 if (!nat_entry_set_slab) 2446 goto destroy_free_nid; 2447 return 0; 2448 2449 destroy_free_nid: 2450 kmem_cache_destroy(free_nid_slab); 2451 destroy_nat_entry: 2452 kmem_cache_destroy(nat_entry_slab); 2453 fail: 2454 return -ENOMEM; 2455 } 2456 2457 void destroy_node_manager_caches(void) 2458 { 2459 kmem_cache_destroy(nat_entry_set_slab); 2460 kmem_cache_destroy(free_nid_slab); 2461 kmem_cache_destroy(nat_entry_slab); 2462 } 2463