xref: /openbmc/linux/fs/f2fs/node.c (revision 7b6d864b)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 
27 static void clear_node_page_dirty(struct page *page)
28 {
29 	struct address_space *mapping = page->mapping;
30 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
31 	unsigned int long flags;
32 
33 	if (PageDirty(page)) {
34 		spin_lock_irqsave(&mapping->tree_lock, flags);
35 		radix_tree_tag_clear(&mapping->page_tree,
36 				page_index(page),
37 				PAGECACHE_TAG_DIRTY);
38 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
39 
40 		clear_page_dirty_for_io(page);
41 		dec_page_count(sbi, F2FS_DIRTY_NODES);
42 	}
43 	ClearPageUptodate(page);
44 }
45 
46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
47 {
48 	pgoff_t index = current_nat_addr(sbi, nid);
49 	return get_meta_page(sbi, index);
50 }
51 
52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
53 {
54 	struct page *src_page;
55 	struct page *dst_page;
56 	pgoff_t src_off;
57 	pgoff_t dst_off;
58 	void *src_addr;
59 	void *dst_addr;
60 	struct f2fs_nm_info *nm_i = NM_I(sbi);
61 
62 	src_off = current_nat_addr(sbi, nid);
63 	dst_off = next_nat_addr(sbi, src_off);
64 
65 	/* get current nat block page with lock */
66 	src_page = get_meta_page(sbi, src_off);
67 
68 	/* Dirty src_page means that it is already the new target NAT page. */
69 	if (PageDirty(src_page))
70 		return src_page;
71 
72 	dst_page = grab_meta_page(sbi, dst_off);
73 
74 	src_addr = page_address(src_page);
75 	dst_addr = page_address(dst_page);
76 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
77 	set_page_dirty(dst_page);
78 	f2fs_put_page(src_page, 1);
79 
80 	set_to_next_nat(nm_i, nid);
81 
82 	return dst_page;
83 }
84 
85 /*
86  * Readahead NAT pages
87  */
88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
89 {
90 	struct address_space *mapping = sbi->meta_inode->i_mapping;
91 	struct f2fs_nm_info *nm_i = NM_I(sbi);
92 	struct blk_plug plug;
93 	struct page *page;
94 	pgoff_t index;
95 	int i;
96 
97 	blk_start_plug(&plug);
98 
99 	for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
100 		if (nid >= nm_i->max_nid)
101 			nid = 0;
102 		index = current_nat_addr(sbi, nid);
103 
104 		page = grab_cache_page(mapping, index);
105 		if (!page)
106 			continue;
107 		if (PageUptodate(page)) {
108 			f2fs_put_page(page, 1);
109 			continue;
110 		}
111 		if (f2fs_readpage(sbi, page, index, READ))
112 			continue;
113 
114 		f2fs_put_page(page, 0);
115 	}
116 	blk_finish_plug(&plug);
117 }
118 
119 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
120 {
121 	return radix_tree_lookup(&nm_i->nat_root, n);
122 }
123 
124 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
125 		nid_t start, unsigned int nr, struct nat_entry **ep)
126 {
127 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
128 }
129 
130 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
131 {
132 	list_del(&e->list);
133 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
134 	nm_i->nat_cnt--;
135 	kmem_cache_free(nat_entry_slab, e);
136 }
137 
138 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct f2fs_nm_info *nm_i = NM_I(sbi);
141 	struct nat_entry *e;
142 	int is_cp = 1;
143 
144 	read_lock(&nm_i->nat_tree_lock);
145 	e = __lookup_nat_cache(nm_i, nid);
146 	if (e && !e->checkpointed)
147 		is_cp = 0;
148 	read_unlock(&nm_i->nat_tree_lock);
149 	return is_cp;
150 }
151 
152 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
153 {
154 	struct nat_entry *new;
155 
156 	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
157 	if (!new)
158 		return NULL;
159 	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
160 		kmem_cache_free(nat_entry_slab, new);
161 		return NULL;
162 	}
163 	memset(new, 0, sizeof(struct nat_entry));
164 	nat_set_nid(new, nid);
165 	list_add_tail(&new->list, &nm_i->nat_entries);
166 	nm_i->nat_cnt++;
167 	return new;
168 }
169 
170 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
171 						struct f2fs_nat_entry *ne)
172 {
173 	struct nat_entry *e;
174 retry:
175 	write_lock(&nm_i->nat_tree_lock);
176 	e = __lookup_nat_cache(nm_i, nid);
177 	if (!e) {
178 		e = grab_nat_entry(nm_i, nid);
179 		if (!e) {
180 			write_unlock(&nm_i->nat_tree_lock);
181 			goto retry;
182 		}
183 		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
184 		nat_set_ino(e, le32_to_cpu(ne->ino));
185 		nat_set_version(e, ne->version);
186 		e->checkpointed = true;
187 	}
188 	write_unlock(&nm_i->nat_tree_lock);
189 }
190 
191 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
192 			block_t new_blkaddr)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 	struct nat_entry *e;
196 retry:
197 	write_lock(&nm_i->nat_tree_lock);
198 	e = __lookup_nat_cache(nm_i, ni->nid);
199 	if (!e) {
200 		e = grab_nat_entry(nm_i, ni->nid);
201 		if (!e) {
202 			write_unlock(&nm_i->nat_tree_lock);
203 			goto retry;
204 		}
205 		e->ni = *ni;
206 		e->checkpointed = true;
207 		BUG_ON(ni->blk_addr == NEW_ADDR);
208 	} else if (new_blkaddr == NEW_ADDR) {
209 		/*
210 		 * when nid is reallocated,
211 		 * previous nat entry can be remained in nat cache.
212 		 * So, reinitialize it with new information.
213 		 */
214 		e->ni = *ni;
215 		BUG_ON(ni->blk_addr != NULL_ADDR);
216 	}
217 
218 	if (new_blkaddr == NEW_ADDR)
219 		e->checkpointed = false;
220 
221 	/* sanity check */
222 	BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
223 	BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
224 			new_blkaddr == NULL_ADDR);
225 	BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
226 			new_blkaddr == NEW_ADDR);
227 	BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
228 			nat_get_blkaddr(e) != NULL_ADDR &&
229 			new_blkaddr == NEW_ADDR);
230 
231 	/* increament version no as node is removed */
232 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
233 		unsigned char version = nat_get_version(e);
234 		nat_set_version(e, inc_node_version(version));
235 	}
236 
237 	/* change address */
238 	nat_set_blkaddr(e, new_blkaddr);
239 	__set_nat_cache_dirty(nm_i, e);
240 	write_unlock(&nm_i->nat_tree_lock);
241 }
242 
243 static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
244 {
245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
246 
247 	if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
248 		return 0;
249 
250 	write_lock(&nm_i->nat_tree_lock);
251 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
252 		struct nat_entry *ne;
253 		ne = list_first_entry(&nm_i->nat_entries,
254 					struct nat_entry, list);
255 		__del_from_nat_cache(nm_i, ne);
256 		nr_shrink--;
257 	}
258 	write_unlock(&nm_i->nat_tree_lock);
259 	return nr_shrink;
260 }
261 
262 /*
263  * This function returns always success
264  */
265 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
266 {
267 	struct f2fs_nm_info *nm_i = NM_I(sbi);
268 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
269 	struct f2fs_summary_block *sum = curseg->sum_blk;
270 	nid_t start_nid = START_NID(nid);
271 	struct f2fs_nat_block *nat_blk;
272 	struct page *page = NULL;
273 	struct f2fs_nat_entry ne;
274 	struct nat_entry *e;
275 	int i;
276 
277 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
278 	ni->nid = nid;
279 
280 	/* Check nat cache */
281 	read_lock(&nm_i->nat_tree_lock);
282 	e = __lookup_nat_cache(nm_i, nid);
283 	if (e) {
284 		ni->ino = nat_get_ino(e);
285 		ni->blk_addr = nat_get_blkaddr(e);
286 		ni->version = nat_get_version(e);
287 	}
288 	read_unlock(&nm_i->nat_tree_lock);
289 	if (e)
290 		return;
291 
292 	/* Check current segment summary */
293 	mutex_lock(&curseg->curseg_mutex);
294 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
295 	if (i >= 0) {
296 		ne = nat_in_journal(sum, i);
297 		node_info_from_raw_nat(ni, &ne);
298 	}
299 	mutex_unlock(&curseg->curseg_mutex);
300 	if (i >= 0)
301 		goto cache;
302 
303 	/* Fill node_info from nat page */
304 	page = get_current_nat_page(sbi, start_nid);
305 	nat_blk = (struct f2fs_nat_block *)page_address(page);
306 	ne = nat_blk->entries[nid - start_nid];
307 	node_info_from_raw_nat(ni, &ne);
308 	f2fs_put_page(page, 1);
309 cache:
310 	/* cache nat entry */
311 	cache_nat_entry(NM_I(sbi), nid, &ne);
312 }
313 
314 /*
315  * The maximum depth is four.
316  * Offset[0] will have raw inode offset.
317  */
318 static int get_node_path(long block, int offset[4], unsigned int noffset[4])
319 {
320 	const long direct_index = ADDRS_PER_INODE;
321 	const long direct_blks = ADDRS_PER_BLOCK;
322 	const long dptrs_per_blk = NIDS_PER_BLOCK;
323 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 	int n = 0;
326 	int level = 0;
327 
328 	noffset[0] = 0;
329 
330 	if (block < direct_index) {
331 		offset[n] = block;
332 		goto got;
333 	}
334 	block -= direct_index;
335 	if (block < direct_blks) {
336 		offset[n++] = NODE_DIR1_BLOCK;
337 		noffset[n] = 1;
338 		offset[n] = block;
339 		level = 1;
340 		goto got;
341 	}
342 	block -= direct_blks;
343 	if (block < direct_blks) {
344 		offset[n++] = NODE_DIR2_BLOCK;
345 		noffset[n] = 2;
346 		offset[n] = block;
347 		level = 1;
348 		goto got;
349 	}
350 	block -= direct_blks;
351 	if (block < indirect_blks) {
352 		offset[n++] = NODE_IND1_BLOCK;
353 		noffset[n] = 3;
354 		offset[n++] = block / direct_blks;
355 		noffset[n] = 4 + offset[n - 1];
356 		offset[n] = block % direct_blks;
357 		level = 2;
358 		goto got;
359 	}
360 	block -= indirect_blks;
361 	if (block < indirect_blks) {
362 		offset[n++] = NODE_IND2_BLOCK;
363 		noffset[n] = 4 + dptrs_per_blk;
364 		offset[n++] = block / direct_blks;
365 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 		offset[n] = block % direct_blks;
367 		level = 2;
368 		goto got;
369 	}
370 	block -= indirect_blks;
371 	if (block < dindirect_blks) {
372 		offset[n++] = NODE_DIND_BLOCK;
373 		noffset[n] = 5 + (dptrs_per_blk * 2);
374 		offset[n++] = block / indirect_blks;
375 		noffset[n] = 6 + (dptrs_per_blk * 2) +
376 			      offset[n - 1] * (dptrs_per_blk + 1);
377 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 		noffset[n] = 7 + (dptrs_per_blk * 2) +
379 			      offset[n - 2] * (dptrs_per_blk + 1) +
380 			      offset[n - 1];
381 		offset[n] = block % direct_blks;
382 		level = 3;
383 		goto got;
384 	} else {
385 		BUG();
386 	}
387 got:
388 	return level;
389 }
390 
391 /*
392  * Caller should call f2fs_put_dnode(dn).
393  * Also, it should grab and release a mutex by calling mutex_lock_op() and
394  * mutex_unlock_op() only if ro is not set RDONLY_NODE.
395  * In the case of RDONLY_NODE, we don't need to care about mutex.
396  */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 	struct page *npage[4];
401 	struct page *parent;
402 	int offset[4];
403 	unsigned int noffset[4];
404 	nid_t nids[4];
405 	int level, i;
406 	int err = 0;
407 
408 	level = get_node_path(index, offset, noffset);
409 
410 	nids[0] = dn->inode->i_ino;
411 	npage[0] = dn->inode_page;
412 
413 	if (!npage[0]) {
414 		npage[0] = get_node_page(sbi, nids[0]);
415 		if (IS_ERR(npage[0]))
416 			return PTR_ERR(npage[0]);
417 	}
418 	parent = npage[0];
419 	if (level != 0)
420 		nids[1] = get_nid(parent, offset[0], true);
421 	dn->inode_page = npage[0];
422 	dn->inode_page_locked = true;
423 
424 	/* get indirect or direct nodes */
425 	for (i = 1; i <= level; i++) {
426 		bool done = false;
427 
428 		if (!nids[i] && mode == ALLOC_NODE) {
429 			/* alloc new node */
430 			if (!alloc_nid(sbi, &(nids[i]))) {
431 				err = -ENOSPC;
432 				goto release_pages;
433 			}
434 
435 			dn->nid = nids[i];
436 			npage[i] = new_node_page(dn, noffset[i], NULL);
437 			if (IS_ERR(npage[i])) {
438 				alloc_nid_failed(sbi, nids[i]);
439 				err = PTR_ERR(npage[i]);
440 				goto release_pages;
441 			}
442 
443 			set_nid(parent, offset[i - 1], nids[i], i == 1);
444 			alloc_nid_done(sbi, nids[i]);
445 			done = true;
446 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
448 			if (IS_ERR(npage[i])) {
449 				err = PTR_ERR(npage[i]);
450 				goto release_pages;
451 			}
452 			done = true;
453 		}
454 		if (i == 1) {
455 			dn->inode_page_locked = false;
456 			unlock_page(parent);
457 		} else {
458 			f2fs_put_page(parent, 1);
459 		}
460 
461 		if (!done) {
462 			npage[i] = get_node_page(sbi, nids[i]);
463 			if (IS_ERR(npage[i])) {
464 				err = PTR_ERR(npage[i]);
465 				f2fs_put_page(npage[0], 0);
466 				goto release_out;
467 			}
468 		}
469 		if (i < level) {
470 			parent = npage[i];
471 			nids[i + 1] = get_nid(parent, offset[i], false);
472 		}
473 	}
474 	dn->nid = nids[level];
475 	dn->ofs_in_node = offset[level];
476 	dn->node_page = npage[level];
477 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 	return 0;
479 
480 release_pages:
481 	f2fs_put_page(parent, 1);
482 	if (i > 1)
483 		f2fs_put_page(npage[0], 0);
484 release_out:
485 	dn->inode_page = NULL;
486 	dn->node_page = NULL;
487 	return err;
488 }
489 
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493 	struct node_info ni;
494 
495 	get_node_info(sbi, dn->nid, &ni);
496 	if (dn->inode->i_blocks == 0) {
497 		BUG_ON(ni.blk_addr != NULL_ADDR);
498 		goto invalidate;
499 	}
500 	BUG_ON(ni.blk_addr == NULL_ADDR);
501 
502 	/* Deallocate node address */
503 	invalidate_blocks(sbi, ni.blk_addr);
504 	dec_valid_node_count(sbi, dn->inode, 1);
505 	set_node_addr(sbi, &ni, NULL_ADDR);
506 
507 	if (dn->nid == dn->inode->i_ino) {
508 		remove_orphan_inode(sbi, dn->nid);
509 		dec_valid_inode_count(sbi);
510 	} else {
511 		sync_inode_page(dn);
512 	}
513 invalidate:
514 	clear_node_page_dirty(dn->node_page);
515 	F2FS_SET_SB_DIRT(sbi);
516 
517 	f2fs_put_page(dn->node_page, 1);
518 	dn->node_page = NULL;
519 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
520 }
521 
522 static int truncate_dnode(struct dnode_of_data *dn)
523 {
524 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
525 	struct page *page;
526 
527 	if (dn->nid == 0)
528 		return 1;
529 
530 	/* get direct node */
531 	page = get_node_page(sbi, dn->nid);
532 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
533 		return 1;
534 	else if (IS_ERR(page))
535 		return PTR_ERR(page);
536 
537 	/* Make dnode_of_data for parameter */
538 	dn->node_page = page;
539 	dn->ofs_in_node = 0;
540 	truncate_data_blocks(dn);
541 	truncate_node(dn);
542 	return 1;
543 }
544 
545 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
546 						int ofs, int depth)
547 {
548 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
549 	struct dnode_of_data rdn = *dn;
550 	struct page *page;
551 	struct f2fs_node *rn;
552 	nid_t child_nid;
553 	unsigned int child_nofs;
554 	int freed = 0;
555 	int i, ret;
556 
557 	if (dn->nid == 0)
558 		return NIDS_PER_BLOCK + 1;
559 
560 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
561 
562 	page = get_node_page(sbi, dn->nid);
563 	if (IS_ERR(page)) {
564 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
565 		return PTR_ERR(page);
566 	}
567 
568 	rn = (struct f2fs_node *)page_address(page);
569 	if (depth < 3) {
570 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
571 			child_nid = le32_to_cpu(rn->in.nid[i]);
572 			if (child_nid == 0)
573 				continue;
574 			rdn.nid = child_nid;
575 			ret = truncate_dnode(&rdn);
576 			if (ret < 0)
577 				goto out_err;
578 			set_nid(page, i, 0, false);
579 		}
580 	} else {
581 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
582 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
583 			child_nid = le32_to_cpu(rn->in.nid[i]);
584 			if (child_nid == 0) {
585 				child_nofs += NIDS_PER_BLOCK + 1;
586 				continue;
587 			}
588 			rdn.nid = child_nid;
589 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
590 			if (ret == (NIDS_PER_BLOCK + 1)) {
591 				set_nid(page, i, 0, false);
592 				child_nofs += ret;
593 			} else if (ret < 0 && ret != -ENOENT) {
594 				goto out_err;
595 			}
596 		}
597 		freed = child_nofs;
598 	}
599 
600 	if (!ofs) {
601 		/* remove current indirect node */
602 		dn->node_page = page;
603 		truncate_node(dn);
604 		freed++;
605 	} else {
606 		f2fs_put_page(page, 1);
607 	}
608 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
609 	return freed;
610 
611 out_err:
612 	f2fs_put_page(page, 1);
613 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
614 	return ret;
615 }
616 
617 static int truncate_partial_nodes(struct dnode_of_data *dn,
618 			struct f2fs_inode *ri, int *offset, int depth)
619 {
620 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
621 	struct page *pages[2];
622 	nid_t nid[3];
623 	nid_t child_nid;
624 	int err = 0;
625 	int i;
626 	int idx = depth - 2;
627 
628 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
629 	if (!nid[0])
630 		return 0;
631 
632 	/* get indirect nodes in the path */
633 	for (i = 0; i < depth - 1; i++) {
634 		/* refernece count'll be increased */
635 		pages[i] = get_node_page(sbi, nid[i]);
636 		if (IS_ERR(pages[i])) {
637 			depth = i + 1;
638 			err = PTR_ERR(pages[i]);
639 			goto fail;
640 		}
641 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
642 	}
643 
644 	/* free direct nodes linked to a partial indirect node */
645 	for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
646 		child_nid = get_nid(pages[idx], i, false);
647 		if (!child_nid)
648 			continue;
649 		dn->nid = child_nid;
650 		err = truncate_dnode(dn);
651 		if (err < 0)
652 			goto fail;
653 		set_nid(pages[idx], i, 0, false);
654 	}
655 
656 	if (offset[depth - 1] == 0) {
657 		dn->node_page = pages[idx];
658 		dn->nid = nid[idx];
659 		truncate_node(dn);
660 	} else {
661 		f2fs_put_page(pages[idx], 1);
662 	}
663 	offset[idx]++;
664 	offset[depth - 1] = 0;
665 fail:
666 	for (i = depth - 3; i >= 0; i--)
667 		f2fs_put_page(pages[i], 1);
668 
669 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
670 
671 	return err;
672 }
673 
674 /*
675  * All the block addresses of data and nodes should be nullified.
676  */
677 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
678 {
679 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
680 	struct address_space *node_mapping = sbi->node_inode->i_mapping;
681 	int err = 0, cont = 1;
682 	int level, offset[4], noffset[4];
683 	unsigned int nofs = 0;
684 	struct f2fs_node *rn;
685 	struct dnode_of_data dn;
686 	struct page *page;
687 
688 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
689 
690 	level = get_node_path(from, offset, noffset);
691 restart:
692 	page = get_node_page(sbi, inode->i_ino);
693 	if (IS_ERR(page)) {
694 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
695 		return PTR_ERR(page);
696 	}
697 
698 	set_new_dnode(&dn, inode, page, NULL, 0);
699 	unlock_page(page);
700 
701 	rn = page_address(page);
702 	switch (level) {
703 	case 0:
704 	case 1:
705 		nofs = noffset[1];
706 		break;
707 	case 2:
708 		nofs = noffset[1];
709 		if (!offset[level - 1])
710 			goto skip_partial;
711 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
712 		if (err < 0 && err != -ENOENT)
713 			goto fail;
714 		nofs += 1 + NIDS_PER_BLOCK;
715 		break;
716 	case 3:
717 		nofs = 5 + 2 * NIDS_PER_BLOCK;
718 		if (!offset[level - 1])
719 			goto skip_partial;
720 		err = truncate_partial_nodes(&dn, &rn->i, offset, level);
721 		if (err < 0 && err != -ENOENT)
722 			goto fail;
723 		break;
724 	default:
725 		BUG();
726 	}
727 
728 skip_partial:
729 	while (cont) {
730 		dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
731 		switch (offset[0]) {
732 		case NODE_DIR1_BLOCK:
733 		case NODE_DIR2_BLOCK:
734 			err = truncate_dnode(&dn);
735 			break;
736 
737 		case NODE_IND1_BLOCK:
738 		case NODE_IND2_BLOCK:
739 			err = truncate_nodes(&dn, nofs, offset[1], 2);
740 			break;
741 
742 		case NODE_DIND_BLOCK:
743 			err = truncate_nodes(&dn, nofs, offset[1], 3);
744 			cont = 0;
745 			break;
746 
747 		default:
748 			BUG();
749 		}
750 		if (err < 0 && err != -ENOENT)
751 			goto fail;
752 		if (offset[1] == 0 &&
753 				rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
754 			lock_page(page);
755 			if (page->mapping != node_mapping) {
756 				f2fs_put_page(page, 1);
757 				goto restart;
758 			}
759 			wait_on_page_writeback(page);
760 			rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
761 			set_page_dirty(page);
762 			unlock_page(page);
763 		}
764 		offset[1] = 0;
765 		offset[0]++;
766 		nofs += err;
767 	}
768 fail:
769 	f2fs_put_page(page, 0);
770 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
771 	return err > 0 ? 0 : err;
772 }
773 
774 /*
775  * Caller should grab and release a mutex by calling mutex_lock_op() and
776  * mutex_unlock_op().
777  */
778 int remove_inode_page(struct inode *inode)
779 {
780 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781 	struct page *page;
782 	nid_t ino = inode->i_ino;
783 	struct dnode_of_data dn;
784 
785 	page = get_node_page(sbi, ino);
786 	if (IS_ERR(page))
787 		return PTR_ERR(page);
788 
789 	if (F2FS_I(inode)->i_xattr_nid) {
790 		nid_t nid = F2FS_I(inode)->i_xattr_nid;
791 		struct page *npage = get_node_page(sbi, nid);
792 
793 		if (IS_ERR(npage))
794 			return PTR_ERR(npage);
795 
796 		F2FS_I(inode)->i_xattr_nid = 0;
797 		set_new_dnode(&dn, inode, page, npage, nid);
798 		dn.inode_page_locked = 1;
799 		truncate_node(&dn);
800 	}
801 
802 	/* 0 is possible, after f2fs_new_inode() is failed */
803 	BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
804 	set_new_dnode(&dn, inode, page, page, ino);
805 	truncate_node(&dn);
806 	return 0;
807 }
808 
809 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
810 {
811 	struct dnode_of_data dn;
812 
813 	/* allocate inode page for new inode */
814 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
815 
816 	/* caller should f2fs_put_page(page, 1); */
817 	return new_node_page(&dn, 0, NULL);
818 }
819 
820 struct page *new_node_page(struct dnode_of_data *dn,
821 				unsigned int ofs, struct page *ipage)
822 {
823 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
824 	struct address_space *mapping = sbi->node_inode->i_mapping;
825 	struct node_info old_ni, new_ni;
826 	struct page *page;
827 	int err;
828 
829 	if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
830 		return ERR_PTR(-EPERM);
831 
832 	page = grab_cache_page(mapping, dn->nid);
833 	if (!page)
834 		return ERR_PTR(-ENOMEM);
835 
836 	get_node_info(sbi, dn->nid, &old_ni);
837 
838 	SetPageUptodate(page);
839 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
840 
841 	/* Reinitialize old_ni with new node page */
842 	BUG_ON(old_ni.blk_addr != NULL_ADDR);
843 	new_ni = old_ni;
844 	new_ni.ino = dn->inode->i_ino;
845 
846 	if (!inc_valid_node_count(sbi, dn->inode, 1)) {
847 		err = -ENOSPC;
848 		goto fail;
849 	}
850 	set_node_addr(sbi, &new_ni, NEW_ADDR);
851 	set_cold_node(dn->inode, page);
852 
853 	dn->node_page = page;
854 	if (ipage)
855 		update_inode(dn->inode, ipage);
856 	else
857 		sync_inode_page(dn);
858 	set_page_dirty(page);
859 	if (ofs == 0)
860 		inc_valid_inode_count(sbi);
861 
862 	return page;
863 
864 fail:
865 	clear_node_page_dirty(page);
866 	f2fs_put_page(page, 1);
867 	return ERR_PTR(err);
868 }
869 
870 /*
871  * Caller should do after getting the following values.
872  * 0: f2fs_put_page(page, 0)
873  * LOCKED_PAGE: f2fs_put_page(page, 1)
874  * error: nothing
875  */
876 static int read_node_page(struct page *page, int type)
877 {
878 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
879 	struct node_info ni;
880 
881 	get_node_info(sbi, page->index, &ni);
882 
883 	if (ni.blk_addr == NULL_ADDR) {
884 		f2fs_put_page(page, 1);
885 		return -ENOENT;
886 	}
887 
888 	if (PageUptodate(page))
889 		return LOCKED_PAGE;
890 
891 	return f2fs_readpage(sbi, page, ni.blk_addr, type);
892 }
893 
894 /*
895  * Readahead a node page
896  */
897 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
898 {
899 	struct address_space *mapping = sbi->node_inode->i_mapping;
900 	struct page *apage;
901 	int err;
902 
903 	apage = find_get_page(mapping, nid);
904 	if (apage && PageUptodate(apage)) {
905 		f2fs_put_page(apage, 0);
906 		return;
907 	}
908 	f2fs_put_page(apage, 0);
909 
910 	apage = grab_cache_page(mapping, nid);
911 	if (!apage)
912 		return;
913 
914 	err = read_node_page(apage, READA);
915 	if (err == 0)
916 		f2fs_put_page(apage, 0);
917 	else if (err == LOCKED_PAGE)
918 		f2fs_put_page(apage, 1);
919 	return;
920 }
921 
922 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
923 {
924 	struct address_space *mapping = sbi->node_inode->i_mapping;
925 	struct page *page;
926 	int err;
927 repeat:
928 	page = grab_cache_page(mapping, nid);
929 	if (!page)
930 		return ERR_PTR(-ENOMEM);
931 
932 	err = read_node_page(page, READ_SYNC);
933 	if (err < 0)
934 		return ERR_PTR(err);
935 	else if (err == LOCKED_PAGE)
936 		goto got_it;
937 
938 	lock_page(page);
939 	if (!PageUptodate(page)) {
940 		f2fs_put_page(page, 1);
941 		return ERR_PTR(-EIO);
942 	}
943 	if (page->mapping != mapping) {
944 		f2fs_put_page(page, 1);
945 		goto repeat;
946 	}
947 got_it:
948 	BUG_ON(nid != nid_of_node(page));
949 	mark_page_accessed(page);
950 	return page;
951 }
952 
953 /*
954  * Return a locked page for the desired node page.
955  * And, readahead MAX_RA_NODE number of node pages.
956  */
957 struct page *get_node_page_ra(struct page *parent, int start)
958 {
959 	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
960 	struct address_space *mapping = sbi->node_inode->i_mapping;
961 	struct blk_plug plug;
962 	struct page *page;
963 	int err, i, end;
964 	nid_t nid;
965 
966 	/* First, try getting the desired direct node. */
967 	nid = get_nid(parent, start, false);
968 	if (!nid)
969 		return ERR_PTR(-ENOENT);
970 repeat:
971 	page = grab_cache_page(mapping, nid);
972 	if (!page)
973 		return ERR_PTR(-ENOMEM);
974 
975 	err = read_node_page(page, READ_SYNC);
976 	if (err < 0)
977 		return ERR_PTR(err);
978 	else if (err == LOCKED_PAGE)
979 		goto page_hit;
980 
981 	blk_start_plug(&plug);
982 
983 	/* Then, try readahead for siblings of the desired node */
984 	end = start + MAX_RA_NODE;
985 	end = min(end, NIDS_PER_BLOCK);
986 	for (i = start + 1; i < end; i++) {
987 		nid = get_nid(parent, i, false);
988 		if (!nid)
989 			continue;
990 		ra_node_page(sbi, nid);
991 	}
992 
993 	blk_finish_plug(&plug);
994 
995 	lock_page(page);
996 	if (page->mapping != mapping) {
997 		f2fs_put_page(page, 1);
998 		goto repeat;
999 	}
1000 page_hit:
1001 	if (!PageUptodate(page)) {
1002 		f2fs_put_page(page, 1);
1003 		return ERR_PTR(-EIO);
1004 	}
1005 	mark_page_accessed(page);
1006 	return page;
1007 }
1008 
1009 void sync_inode_page(struct dnode_of_data *dn)
1010 {
1011 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1012 		update_inode(dn->inode, dn->node_page);
1013 	} else if (dn->inode_page) {
1014 		if (!dn->inode_page_locked)
1015 			lock_page(dn->inode_page);
1016 		update_inode(dn->inode, dn->inode_page);
1017 		if (!dn->inode_page_locked)
1018 			unlock_page(dn->inode_page);
1019 	} else {
1020 		update_inode_page(dn->inode);
1021 	}
1022 }
1023 
1024 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1025 					struct writeback_control *wbc)
1026 {
1027 	struct address_space *mapping = sbi->node_inode->i_mapping;
1028 	pgoff_t index, end;
1029 	struct pagevec pvec;
1030 	int step = ino ? 2 : 0;
1031 	int nwritten = 0, wrote = 0;
1032 
1033 	pagevec_init(&pvec, 0);
1034 
1035 next_step:
1036 	index = 0;
1037 	end = LONG_MAX;
1038 
1039 	while (index <= end) {
1040 		int i, nr_pages;
1041 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1042 				PAGECACHE_TAG_DIRTY,
1043 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1044 		if (nr_pages == 0)
1045 			break;
1046 
1047 		for (i = 0; i < nr_pages; i++) {
1048 			struct page *page = pvec.pages[i];
1049 
1050 			/*
1051 			 * flushing sequence with step:
1052 			 * 0. indirect nodes
1053 			 * 1. dentry dnodes
1054 			 * 2. file dnodes
1055 			 */
1056 			if (step == 0 && IS_DNODE(page))
1057 				continue;
1058 			if (step == 1 && (!IS_DNODE(page) ||
1059 						is_cold_node(page)))
1060 				continue;
1061 			if (step == 2 && (!IS_DNODE(page) ||
1062 						!is_cold_node(page)))
1063 				continue;
1064 
1065 			/*
1066 			 * If an fsync mode,
1067 			 * we should not skip writing node pages.
1068 			 */
1069 			if (ino && ino_of_node(page) == ino)
1070 				lock_page(page);
1071 			else if (!trylock_page(page))
1072 				continue;
1073 
1074 			if (unlikely(page->mapping != mapping)) {
1075 continue_unlock:
1076 				unlock_page(page);
1077 				continue;
1078 			}
1079 			if (ino && ino_of_node(page) != ino)
1080 				goto continue_unlock;
1081 
1082 			if (!PageDirty(page)) {
1083 				/* someone wrote it for us */
1084 				goto continue_unlock;
1085 			}
1086 
1087 			if (!clear_page_dirty_for_io(page))
1088 				goto continue_unlock;
1089 
1090 			/* called by fsync() */
1091 			if (ino && IS_DNODE(page)) {
1092 				int mark = !is_checkpointed_node(sbi, ino);
1093 				set_fsync_mark(page, 1);
1094 				if (IS_INODE(page))
1095 					set_dentry_mark(page, mark);
1096 				nwritten++;
1097 			} else {
1098 				set_fsync_mark(page, 0);
1099 				set_dentry_mark(page, 0);
1100 			}
1101 			mapping->a_ops->writepage(page, wbc);
1102 			wrote++;
1103 
1104 			if (--wbc->nr_to_write == 0)
1105 				break;
1106 		}
1107 		pagevec_release(&pvec);
1108 		cond_resched();
1109 
1110 		if (wbc->nr_to_write == 0) {
1111 			step = 2;
1112 			break;
1113 		}
1114 	}
1115 
1116 	if (step < 2) {
1117 		step++;
1118 		goto next_step;
1119 	}
1120 
1121 	if (wrote)
1122 		f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1123 
1124 	return nwritten;
1125 }
1126 
1127 static int f2fs_write_node_page(struct page *page,
1128 				struct writeback_control *wbc)
1129 {
1130 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1131 	nid_t nid;
1132 	block_t new_addr;
1133 	struct node_info ni;
1134 
1135 	wait_on_page_writeback(page);
1136 
1137 	/* get old block addr of this node page */
1138 	nid = nid_of_node(page);
1139 	BUG_ON(page->index != nid);
1140 
1141 	get_node_info(sbi, nid, &ni);
1142 
1143 	/* This page is already truncated */
1144 	if (ni.blk_addr == NULL_ADDR) {
1145 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1146 		unlock_page(page);
1147 		return 0;
1148 	}
1149 
1150 	if (wbc->for_reclaim) {
1151 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1152 		wbc->pages_skipped++;
1153 		set_page_dirty(page);
1154 		return AOP_WRITEPAGE_ACTIVATE;
1155 	}
1156 
1157 	mutex_lock(&sbi->node_write);
1158 	set_page_writeback(page);
1159 	write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1160 	set_node_addr(sbi, &ni, new_addr);
1161 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1162 	mutex_unlock(&sbi->node_write);
1163 	unlock_page(page);
1164 	return 0;
1165 }
1166 
1167 /*
1168  * It is very important to gather dirty pages and write at once, so that we can
1169  * submit a big bio without interfering other data writes.
1170  * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1171  */
1172 #define COLLECT_DIRTY_NODES	512
1173 static int f2fs_write_node_pages(struct address_space *mapping,
1174 			    struct writeback_control *wbc)
1175 {
1176 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1177 	long nr_to_write = wbc->nr_to_write;
1178 
1179 	/* First check balancing cached NAT entries */
1180 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1181 		f2fs_sync_fs(sbi->sb, true);
1182 		return 0;
1183 	}
1184 
1185 	/* collect a number of dirty node pages and write together */
1186 	if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1187 		return 0;
1188 
1189 	/* if mounting is failed, skip writing node pages */
1190 	wbc->nr_to_write = max_hw_blocks(sbi);
1191 	sync_node_pages(sbi, 0, wbc);
1192 	wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
1193 	return 0;
1194 }
1195 
1196 static int f2fs_set_node_page_dirty(struct page *page)
1197 {
1198 	struct address_space *mapping = page->mapping;
1199 	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1200 
1201 	SetPageUptodate(page);
1202 	if (!PageDirty(page)) {
1203 		__set_page_dirty_nobuffers(page);
1204 		inc_page_count(sbi, F2FS_DIRTY_NODES);
1205 		SetPagePrivate(page);
1206 		return 1;
1207 	}
1208 	return 0;
1209 }
1210 
1211 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1212 				      unsigned int length)
1213 {
1214 	struct inode *inode = page->mapping->host;
1215 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1216 	if (PageDirty(page))
1217 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1218 	ClearPagePrivate(page);
1219 }
1220 
1221 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1222 {
1223 	ClearPagePrivate(page);
1224 	return 1;
1225 }
1226 
1227 /*
1228  * Structure of the f2fs node operations
1229  */
1230 const struct address_space_operations f2fs_node_aops = {
1231 	.writepage	= f2fs_write_node_page,
1232 	.writepages	= f2fs_write_node_pages,
1233 	.set_page_dirty	= f2fs_set_node_page_dirty,
1234 	.invalidatepage	= f2fs_invalidate_node_page,
1235 	.releasepage	= f2fs_release_node_page,
1236 };
1237 
1238 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1239 {
1240 	struct list_head *this;
1241 	struct free_nid *i;
1242 	list_for_each(this, head) {
1243 		i = list_entry(this, struct free_nid, list);
1244 		if (i->nid == n)
1245 			return i;
1246 	}
1247 	return NULL;
1248 }
1249 
1250 static void __del_from_free_nid_list(struct free_nid *i)
1251 {
1252 	list_del(&i->list);
1253 	kmem_cache_free(free_nid_slab, i);
1254 }
1255 
1256 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1257 {
1258 	struct free_nid *i;
1259 	struct nat_entry *ne;
1260 	bool allocated = false;
1261 
1262 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1263 		return -1;
1264 
1265 	/* 0 nid should not be used */
1266 	if (nid == 0)
1267 		return 0;
1268 
1269 	if (!build)
1270 		goto retry;
1271 
1272 	/* do not add allocated nids */
1273 	read_lock(&nm_i->nat_tree_lock);
1274 	ne = __lookup_nat_cache(nm_i, nid);
1275 	if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1276 		allocated = true;
1277 	read_unlock(&nm_i->nat_tree_lock);
1278 	if (allocated)
1279 		return 0;
1280 retry:
1281 	i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1282 	if (!i) {
1283 		cond_resched();
1284 		goto retry;
1285 	}
1286 	i->nid = nid;
1287 	i->state = NID_NEW;
1288 
1289 	spin_lock(&nm_i->free_nid_list_lock);
1290 	if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1291 		spin_unlock(&nm_i->free_nid_list_lock);
1292 		kmem_cache_free(free_nid_slab, i);
1293 		return 0;
1294 	}
1295 	list_add_tail(&i->list, &nm_i->free_nid_list);
1296 	nm_i->fcnt++;
1297 	spin_unlock(&nm_i->free_nid_list_lock);
1298 	return 1;
1299 }
1300 
1301 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1302 {
1303 	struct free_nid *i;
1304 	spin_lock(&nm_i->free_nid_list_lock);
1305 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1306 	if (i && i->state == NID_NEW) {
1307 		__del_from_free_nid_list(i);
1308 		nm_i->fcnt--;
1309 	}
1310 	spin_unlock(&nm_i->free_nid_list_lock);
1311 }
1312 
1313 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1314 			struct page *nat_page, nid_t start_nid)
1315 {
1316 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1317 	block_t blk_addr;
1318 	int i;
1319 
1320 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1321 
1322 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1323 
1324 		if (start_nid >= nm_i->max_nid)
1325 			break;
1326 
1327 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1328 		BUG_ON(blk_addr == NEW_ADDR);
1329 		if (blk_addr == NULL_ADDR) {
1330 			if (add_free_nid(nm_i, start_nid, true) < 0)
1331 				break;
1332 		}
1333 	}
1334 }
1335 
1336 static void build_free_nids(struct f2fs_sb_info *sbi)
1337 {
1338 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1339 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1340 	struct f2fs_summary_block *sum = curseg->sum_blk;
1341 	int i = 0;
1342 	nid_t nid = nm_i->next_scan_nid;
1343 
1344 	/* Enough entries */
1345 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1346 		return;
1347 
1348 	/* readahead nat pages to be scanned */
1349 	ra_nat_pages(sbi, nid);
1350 
1351 	while (1) {
1352 		struct page *page = get_current_nat_page(sbi, nid);
1353 
1354 		scan_nat_page(nm_i, page, nid);
1355 		f2fs_put_page(page, 1);
1356 
1357 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1358 		if (nid >= nm_i->max_nid)
1359 			nid = 0;
1360 
1361 		if (i++ == FREE_NID_PAGES)
1362 			break;
1363 	}
1364 
1365 	/* go to the next free nat pages to find free nids abundantly */
1366 	nm_i->next_scan_nid = nid;
1367 
1368 	/* find free nids from current sum_pages */
1369 	mutex_lock(&curseg->curseg_mutex);
1370 	for (i = 0; i < nats_in_cursum(sum); i++) {
1371 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1372 		nid = le32_to_cpu(nid_in_journal(sum, i));
1373 		if (addr == NULL_ADDR)
1374 			add_free_nid(nm_i, nid, true);
1375 		else
1376 			remove_free_nid(nm_i, nid);
1377 	}
1378 	mutex_unlock(&curseg->curseg_mutex);
1379 }
1380 
1381 /*
1382  * If this function returns success, caller can obtain a new nid
1383  * from second parameter of this function.
1384  * The returned nid could be used ino as well as nid when inode is created.
1385  */
1386 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1387 {
1388 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1389 	struct free_nid *i = NULL;
1390 	struct list_head *this;
1391 retry:
1392 	if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
1393 		return false;
1394 
1395 	spin_lock(&nm_i->free_nid_list_lock);
1396 
1397 	/* We should not use stale free nids created by build_free_nids */
1398 	if (nm_i->fcnt && !sbi->on_build_free_nids) {
1399 		BUG_ON(list_empty(&nm_i->free_nid_list));
1400 		list_for_each(this, &nm_i->free_nid_list) {
1401 			i = list_entry(this, struct free_nid, list);
1402 			if (i->state == NID_NEW)
1403 				break;
1404 		}
1405 
1406 		BUG_ON(i->state != NID_NEW);
1407 		*nid = i->nid;
1408 		i->state = NID_ALLOC;
1409 		nm_i->fcnt--;
1410 		spin_unlock(&nm_i->free_nid_list_lock);
1411 		return true;
1412 	}
1413 	spin_unlock(&nm_i->free_nid_list_lock);
1414 
1415 	/* Let's scan nat pages and its caches to get free nids */
1416 	mutex_lock(&nm_i->build_lock);
1417 	sbi->on_build_free_nids = 1;
1418 	build_free_nids(sbi);
1419 	sbi->on_build_free_nids = 0;
1420 	mutex_unlock(&nm_i->build_lock);
1421 	goto retry;
1422 }
1423 
1424 /*
1425  * alloc_nid() should be called prior to this function.
1426  */
1427 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1428 {
1429 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1430 	struct free_nid *i;
1431 
1432 	spin_lock(&nm_i->free_nid_list_lock);
1433 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1434 	BUG_ON(!i || i->state != NID_ALLOC);
1435 	__del_from_free_nid_list(i);
1436 	spin_unlock(&nm_i->free_nid_list_lock);
1437 }
1438 
1439 /*
1440  * alloc_nid() should be called prior to this function.
1441  */
1442 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1443 {
1444 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1445 	struct free_nid *i;
1446 
1447 	spin_lock(&nm_i->free_nid_list_lock);
1448 	i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1449 	BUG_ON(!i || i->state != NID_ALLOC);
1450 	if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1451 		__del_from_free_nid_list(i);
1452 	} else {
1453 		i->state = NID_NEW;
1454 		nm_i->fcnt++;
1455 	}
1456 	spin_unlock(&nm_i->free_nid_list_lock);
1457 }
1458 
1459 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1460 		struct f2fs_summary *sum, struct node_info *ni,
1461 		block_t new_blkaddr)
1462 {
1463 	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1464 	set_node_addr(sbi, ni, new_blkaddr);
1465 	clear_node_page_dirty(page);
1466 }
1467 
1468 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1469 {
1470 	struct address_space *mapping = sbi->node_inode->i_mapping;
1471 	struct f2fs_node *src, *dst;
1472 	nid_t ino = ino_of_node(page);
1473 	struct node_info old_ni, new_ni;
1474 	struct page *ipage;
1475 
1476 	ipage = grab_cache_page(mapping, ino);
1477 	if (!ipage)
1478 		return -ENOMEM;
1479 
1480 	/* Should not use this inode  from free nid list */
1481 	remove_free_nid(NM_I(sbi), ino);
1482 
1483 	get_node_info(sbi, ino, &old_ni);
1484 	SetPageUptodate(ipage);
1485 	fill_node_footer(ipage, ino, ino, 0, true);
1486 
1487 	src = (struct f2fs_node *)page_address(page);
1488 	dst = (struct f2fs_node *)page_address(ipage);
1489 
1490 	memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1491 	dst->i.i_size = 0;
1492 	dst->i.i_blocks = cpu_to_le64(1);
1493 	dst->i.i_links = cpu_to_le32(1);
1494 	dst->i.i_xattr_nid = 0;
1495 
1496 	new_ni = old_ni;
1497 	new_ni.ino = ino;
1498 
1499 	if (!inc_valid_node_count(sbi, NULL, 1))
1500 		WARN_ON(1);
1501 	set_node_addr(sbi, &new_ni, NEW_ADDR);
1502 	inc_valid_inode_count(sbi);
1503 	f2fs_put_page(ipage, 1);
1504 	return 0;
1505 }
1506 
1507 int restore_node_summary(struct f2fs_sb_info *sbi,
1508 			unsigned int segno, struct f2fs_summary_block *sum)
1509 {
1510 	struct f2fs_node *rn;
1511 	struct f2fs_summary *sum_entry;
1512 	struct page *page;
1513 	block_t addr;
1514 	int i, last_offset;
1515 
1516 	/* alloc temporal page for read node */
1517 	page = alloc_page(GFP_NOFS | __GFP_ZERO);
1518 	if (IS_ERR(page))
1519 		return PTR_ERR(page);
1520 	lock_page(page);
1521 
1522 	/* scan the node segment */
1523 	last_offset = sbi->blocks_per_seg;
1524 	addr = START_BLOCK(sbi, segno);
1525 	sum_entry = &sum->entries[0];
1526 
1527 	for (i = 0; i < last_offset; i++, sum_entry++) {
1528 		/*
1529 		 * In order to read next node page,
1530 		 * we must clear PageUptodate flag.
1531 		 */
1532 		ClearPageUptodate(page);
1533 
1534 		if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1535 			goto out;
1536 
1537 		lock_page(page);
1538 		rn = (struct f2fs_node *)page_address(page);
1539 		sum_entry->nid = rn->footer.nid;
1540 		sum_entry->version = 0;
1541 		sum_entry->ofs_in_node = 0;
1542 		addr++;
1543 	}
1544 	unlock_page(page);
1545 out:
1546 	__free_pages(page, 0);
1547 	return 0;
1548 }
1549 
1550 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1551 {
1552 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1553 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1554 	struct f2fs_summary_block *sum = curseg->sum_blk;
1555 	int i;
1556 
1557 	mutex_lock(&curseg->curseg_mutex);
1558 
1559 	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1560 		mutex_unlock(&curseg->curseg_mutex);
1561 		return false;
1562 	}
1563 
1564 	for (i = 0; i < nats_in_cursum(sum); i++) {
1565 		struct nat_entry *ne;
1566 		struct f2fs_nat_entry raw_ne;
1567 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1568 
1569 		raw_ne = nat_in_journal(sum, i);
1570 retry:
1571 		write_lock(&nm_i->nat_tree_lock);
1572 		ne = __lookup_nat_cache(nm_i, nid);
1573 		if (ne) {
1574 			__set_nat_cache_dirty(nm_i, ne);
1575 			write_unlock(&nm_i->nat_tree_lock);
1576 			continue;
1577 		}
1578 		ne = grab_nat_entry(nm_i, nid);
1579 		if (!ne) {
1580 			write_unlock(&nm_i->nat_tree_lock);
1581 			goto retry;
1582 		}
1583 		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1584 		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1585 		nat_set_version(ne, raw_ne.version);
1586 		__set_nat_cache_dirty(nm_i, ne);
1587 		write_unlock(&nm_i->nat_tree_lock);
1588 	}
1589 	update_nats_in_cursum(sum, -i);
1590 	mutex_unlock(&curseg->curseg_mutex);
1591 	return true;
1592 }
1593 
1594 /*
1595  * This function is called during the checkpointing process.
1596  */
1597 void flush_nat_entries(struct f2fs_sb_info *sbi)
1598 {
1599 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1600 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1601 	struct f2fs_summary_block *sum = curseg->sum_blk;
1602 	struct list_head *cur, *n;
1603 	struct page *page = NULL;
1604 	struct f2fs_nat_block *nat_blk = NULL;
1605 	nid_t start_nid = 0, end_nid = 0;
1606 	bool flushed;
1607 
1608 	flushed = flush_nats_in_journal(sbi);
1609 
1610 	if (!flushed)
1611 		mutex_lock(&curseg->curseg_mutex);
1612 
1613 	/* 1) flush dirty nat caches */
1614 	list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1615 		struct nat_entry *ne;
1616 		nid_t nid;
1617 		struct f2fs_nat_entry raw_ne;
1618 		int offset = -1;
1619 		block_t new_blkaddr;
1620 
1621 		ne = list_entry(cur, struct nat_entry, list);
1622 		nid = nat_get_nid(ne);
1623 
1624 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1625 			continue;
1626 		if (flushed)
1627 			goto to_nat_page;
1628 
1629 		/* if there is room for nat enries in curseg->sumpage */
1630 		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1631 		if (offset >= 0) {
1632 			raw_ne = nat_in_journal(sum, offset);
1633 			goto flush_now;
1634 		}
1635 to_nat_page:
1636 		if (!page || (start_nid > nid || nid > end_nid)) {
1637 			if (page) {
1638 				f2fs_put_page(page, 1);
1639 				page = NULL;
1640 			}
1641 			start_nid = START_NID(nid);
1642 			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1643 
1644 			/*
1645 			 * get nat block with dirty flag, increased reference
1646 			 * count, mapped and lock
1647 			 */
1648 			page = get_next_nat_page(sbi, start_nid);
1649 			nat_blk = page_address(page);
1650 		}
1651 
1652 		BUG_ON(!nat_blk);
1653 		raw_ne = nat_blk->entries[nid - start_nid];
1654 flush_now:
1655 		new_blkaddr = nat_get_blkaddr(ne);
1656 
1657 		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1658 		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1659 		raw_ne.version = nat_get_version(ne);
1660 
1661 		if (offset < 0) {
1662 			nat_blk->entries[nid - start_nid] = raw_ne;
1663 		} else {
1664 			nat_in_journal(sum, offset) = raw_ne;
1665 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1666 		}
1667 
1668 		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1669 				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1670 			write_lock(&nm_i->nat_tree_lock);
1671 			__del_from_nat_cache(nm_i, ne);
1672 			write_unlock(&nm_i->nat_tree_lock);
1673 		} else {
1674 			write_lock(&nm_i->nat_tree_lock);
1675 			__clear_nat_cache_dirty(nm_i, ne);
1676 			ne->checkpointed = true;
1677 			write_unlock(&nm_i->nat_tree_lock);
1678 		}
1679 	}
1680 	if (!flushed)
1681 		mutex_unlock(&curseg->curseg_mutex);
1682 	f2fs_put_page(page, 1);
1683 
1684 	/* 2) shrink nat caches if necessary */
1685 	try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1686 }
1687 
1688 static int init_node_manager(struct f2fs_sb_info *sbi)
1689 {
1690 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1691 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1692 	unsigned char *version_bitmap;
1693 	unsigned int nat_segs, nat_blocks;
1694 
1695 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1696 
1697 	/* segment_count_nat includes pair segment so divide to 2. */
1698 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1699 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1700 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1701 	nm_i->fcnt = 0;
1702 	nm_i->nat_cnt = 0;
1703 
1704 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1705 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1706 	INIT_LIST_HEAD(&nm_i->nat_entries);
1707 	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1708 
1709 	mutex_init(&nm_i->build_lock);
1710 	spin_lock_init(&nm_i->free_nid_list_lock);
1711 	rwlock_init(&nm_i->nat_tree_lock);
1712 
1713 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1714 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1715 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1716 	if (!version_bitmap)
1717 		return -EFAULT;
1718 
1719 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1720 					GFP_KERNEL);
1721 	if (!nm_i->nat_bitmap)
1722 		return -ENOMEM;
1723 	return 0;
1724 }
1725 
1726 int build_node_manager(struct f2fs_sb_info *sbi)
1727 {
1728 	int err;
1729 
1730 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1731 	if (!sbi->nm_info)
1732 		return -ENOMEM;
1733 
1734 	err = init_node_manager(sbi);
1735 	if (err)
1736 		return err;
1737 
1738 	build_free_nids(sbi);
1739 	return 0;
1740 }
1741 
1742 void destroy_node_manager(struct f2fs_sb_info *sbi)
1743 {
1744 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1745 	struct free_nid *i, *next_i;
1746 	struct nat_entry *natvec[NATVEC_SIZE];
1747 	nid_t nid = 0;
1748 	unsigned int found;
1749 
1750 	if (!nm_i)
1751 		return;
1752 
1753 	/* destroy free nid list */
1754 	spin_lock(&nm_i->free_nid_list_lock);
1755 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1756 		BUG_ON(i->state == NID_ALLOC);
1757 		__del_from_free_nid_list(i);
1758 		nm_i->fcnt--;
1759 	}
1760 	BUG_ON(nm_i->fcnt);
1761 	spin_unlock(&nm_i->free_nid_list_lock);
1762 
1763 	/* destroy nat cache */
1764 	write_lock(&nm_i->nat_tree_lock);
1765 	while ((found = __gang_lookup_nat_cache(nm_i,
1766 					nid, NATVEC_SIZE, natvec))) {
1767 		unsigned idx;
1768 		for (idx = 0; idx < found; idx++) {
1769 			struct nat_entry *e = natvec[idx];
1770 			nid = nat_get_nid(e) + 1;
1771 			__del_from_nat_cache(nm_i, e);
1772 		}
1773 	}
1774 	BUG_ON(nm_i->nat_cnt);
1775 	write_unlock(&nm_i->nat_tree_lock);
1776 
1777 	kfree(nm_i->nat_bitmap);
1778 	sbi->nm_info = NULL;
1779 	kfree(nm_i);
1780 }
1781 
1782 int __init create_node_manager_caches(void)
1783 {
1784 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1785 			sizeof(struct nat_entry), NULL);
1786 	if (!nat_entry_slab)
1787 		return -ENOMEM;
1788 
1789 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1790 			sizeof(struct free_nid), NULL);
1791 	if (!free_nid_slab) {
1792 		kmem_cache_destroy(nat_entry_slab);
1793 		return -ENOMEM;
1794 	}
1795 	return 0;
1796 }
1797 
1798 void destroy_node_manager_caches(void)
1799 {
1800 	kmem_cache_destroy(free_nid_slab);
1801 	kmem_cache_destroy(nat_entry_slab);
1802 }
1803