1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "xattr.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 27 28 static struct kmem_cache *nat_entry_slab; 29 static struct kmem_cache *free_nid_slab; 30 static struct kmem_cache *nat_entry_set_slab; 31 32 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 33 { 34 struct f2fs_nm_info *nm_i = NM_I(sbi); 35 struct sysinfo val; 36 unsigned long avail_ram; 37 unsigned long mem_size = 0; 38 bool res = false; 39 40 si_meminfo(&val); 41 42 /* only uses low memory */ 43 avail_ram = val.totalram - val.totalhigh; 44 45 /* 46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 47 */ 48 if (type == FREE_NIDS) { 49 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] * 50 sizeof(struct free_nid)) >> PAGE_SHIFT; 51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 52 } else if (type == NAT_ENTRIES) { 53 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 54 PAGE_SHIFT; 55 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 56 if (excess_cached_nats(sbi)) 57 res = false; 58 } else if (type == DIRTY_DENTS) { 59 if (sbi->sb->s_bdi->wb.dirty_exceeded) 60 return false; 61 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 63 } else if (type == INO_ENTRIES) { 64 int i; 65 66 for (i = 0; i <= UPDATE_INO; i++) 67 mem_size += sbi->im[i].ino_num * 68 sizeof(struct ino_entry); 69 mem_size >>= PAGE_SHIFT; 70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 71 } else if (type == EXTENT_CACHE) { 72 mem_size = (atomic_read(&sbi->total_ext_tree) * 73 sizeof(struct extent_tree) + 74 atomic_read(&sbi->total_ext_node) * 75 sizeof(struct extent_node)) >> PAGE_SHIFT; 76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 77 } else { 78 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 79 return true; 80 } 81 return res; 82 } 83 84 static void clear_node_page_dirty(struct page *page) 85 { 86 struct address_space *mapping = page->mapping; 87 unsigned int long flags; 88 89 if (PageDirty(page)) { 90 spin_lock_irqsave(&mapping->tree_lock, flags); 91 radix_tree_tag_clear(&mapping->page_tree, 92 page_index(page), 93 PAGECACHE_TAG_DIRTY); 94 spin_unlock_irqrestore(&mapping->tree_lock, flags); 95 96 clear_page_dirty_for_io(page); 97 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 98 } 99 ClearPageUptodate(page); 100 } 101 102 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 103 { 104 pgoff_t index = current_nat_addr(sbi, nid); 105 return get_meta_page(sbi, index); 106 } 107 108 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 109 { 110 struct page *src_page; 111 struct page *dst_page; 112 pgoff_t src_off; 113 pgoff_t dst_off; 114 void *src_addr; 115 void *dst_addr; 116 struct f2fs_nm_info *nm_i = NM_I(sbi); 117 118 src_off = current_nat_addr(sbi, nid); 119 dst_off = next_nat_addr(sbi, src_off); 120 121 /* get current nat block page with lock */ 122 src_page = get_meta_page(sbi, src_off); 123 dst_page = grab_meta_page(sbi, dst_off); 124 f2fs_bug_on(sbi, PageDirty(src_page)); 125 126 src_addr = page_address(src_page); 127 dst_addr = page_address(dst_page); 128 memcpy(dst_addr, src_addr, PAGE_SIZE); 129 set_page_dirty(dst_page); 130 f2fs_put_page(src_page, 1); 131 132 set_to_next_nat(nm_i, nid); 133 134 return dst_page; 135 } 136 137 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 138 { 139 return radix_tree_lookup(&nm_i->nat_root, n); 140 } 141 142 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 143 nid_t start, unsigned int nr, struct nat_entry **ep) 144 { 145 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 146 } 147 148 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 149 { 150 list_del(&e->list); 151 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 152 nm_i->nat_cnt--; 153 kmem_cache_free(nat_entry_slab, e); 154 } 155 156 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 157 struct nat_entry *ne) 158 { 159 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 160 struct nat_entry_set *head; 161 162 head = radix_tree_lookup(&nm_i->nat_set_root, set); 163 if (!head) { 164 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 165 166 INIT_LIST_HEAD(&head->entry_list); 167 INIT_LIST_HEAD(&head->set_list); 168 head->set = set; 169 head->entry_cnt = 0; 170 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 171 } 172 173 if (get_nat_flag(ne, IS_DIRTY)) 174 goto refresh_list; 175 176 nm_i->dirty_nat_cnt++; 177 head->entry_cnt++; 178 set_nat_flag(ne, IS_DIRTY, true); 179 refresh_list: 180 if (nat_get_blkaddr(ne) == NEW_ADDR) 181 list_del_init(&ne->list); 182 else 183 list_move_tail(&ne->list, &head->entry_list); 184 } 185 186 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 187 struct nat_entry_set *set, struct nat_entry *ne) 188 { 189 list_move_tail(&ne->list, &nm_i->nat_entries); 190 set_nat_flag(ne, IS_DIRTY, false); 191 set->entry_cnt--; 192 nm_i->dirty_nat_cnt--; 193 } 194 195 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 196 nid_t start, unsigned int nr, struct nat_entry_set **ep) 197 { 198 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 199 start, nr); 200 } 201 202 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 203 { 204 struct f2fs_nm_info *nm_i = NM_I(sbi); 205 struct nat_entry *e; 206 bool need = false; 207 208 down_read(&nm_i->nat_tree_lock); 209 e = __lookup_nat_cache(nm_i, nid); 210 if (e) { 211 if (!get_nat_flag(e, IS_CHECKPOINTED) && 212 !get_nat_flag(e, HAS_FSYNCED_INODE)) 213 need = true; 214 } 215 up_read(&nm_i->nat_tree_lock); 216 return need; 217 } 218 219 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 220 { 221 struct f2fs_nm_info *nm_i = NM_I(sbi); 222 struct nat_entry *e; 223 bool is_cp = true; 224 225 down_read(&nm_i->nat_tree_lock); 226 e = __lookup_nat_cache(nm_i, nid); 227 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 228 is_cp = false; 229 up_read(&nm_i->nat_tree_lock); 230 return is_cp; 231 } 232 233 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 234 { 235 struct f2fs_nm_info *nm_i = NM_I(sbi); 236 struct nat_entry *e; 237 bool need_update = true; 238 239 down_read(&nm_i->nat_tree_lock); 240 e = __lookup_nat_cache(nm_i, ino); 241 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 242 (get_nat_flag(e, IS_CHECKPOINTED) || 243 get_nat_flag(e, HAS_FSYNCED_INODE))) 244 need_update = false; 245 up_read(&nm_i->nat_tree_lock); 246 return need_update; 247 } 248 249 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 250 bool no_fail) 251 { 252 struct nat_entry *new; 253 254 if (no_fail) { 255 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 256 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 257 } else { 258 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 259 if (!new) 260 return NULL; 261 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 262 kmem_cache_free(nat_entry_slab, new); 263 return NULL; 264 } 265 } 266 267 memset(new, 0, sizeof(struct nat_entry)); 268 nat_set_nid(new, nid); 269 nat_reset_flag(new); 270 list_add_tail(&new->list, &nm_i->nat_entries); 271 nm_i->nat_cnt++; 272 return new; 273 } 274 275 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 276 struct f2fs_nat_entry *ne) 277 { 278 struct f2fs_nm_info *nm_i = NM_I(sbi); 279 struct nat_entry *e; 280 281 e = __lookup_nat_cache(nm_i, nid); 282 if (!e) { 283 e = grab_nat_entry(nm_i, nid, false); 284 if (e) 285 node_info_from_raw_nat(&e->ni, ne); 286 } else { 287 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 288 nat_get_blkaddr(e) != 289 le32_to_cpu(ne->block_addr) || 290 nat_get_version(e) != ne->version); 291 } 292 } 293 294 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 295 block_t new_blkaddr, bool fsync_done) 296 { 297 struct f2fs_nm_info *nm_i = NM_I(sbi); 298 struct nat_entry *e; 299 300 down_write(&nm_i->nat_tree_lock); 301 e = __lookup_nat_cache(nm_i, ni->nid); 302 if (!e) { 303 e = grab_nat_entry(nm_i, ni->nid, true); 304 copy_node_info(&e->ni, ni); 305 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 306 } else if (new_blkaddr == NEW_ADDR) { 307 /* 308 * when nid is reallocated, 309 * previous nat entry can be remained in nat cache. 310 * So, reinitialize it with new information. 311 */ 312 copy_node_info(&e->ni, ni); 313 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 314 } 315 316 /* sanity check */ 317 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 318 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 319 new_blkaddr == NULL_ADDR); 320 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 321 new_blkaddr == NEW_ADDR); 322 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 323 nat_get_blkaddr(e) != NULL_ADDR && 324 new_blkaddr == NEW_ADDR); 325 326 /* increment version no as node is removed */ 327 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 328 unsigned char version = nat_get_version(e); 329 nat_set_version(e, inc_node_version(version)); 330 331 /* in order to reuse the nid */ 332 if (nm_i->next_scan_nid > ni->nid) 333 nm_i->next_scan_nid = ni->nid; 334 } 335 336 /* change address */ 337 nat_set_blkaddr(e, new_blkaddr); 338 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 339 set_nat_flag(e, IS_CHECKPOINTED, false); 340 __set_nat_cache_dirty(nm_i, e); 341 342 /* update fsync_mark if its inode nat entry is still alive */ 343 if (ni->nid != ni->ino) 344 e = __lookup_nat_cache(nm_i, ni->ino); 345 if (e) { 346 if (fsync_done && ni->nid == ni->ino) 347 set_nat_flag(e, HAS_FSYNCED_INODE, true); 348 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 349 } 350 up_write(&nm_i->nat_tree_lock); 351 } 352 353 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 354 { 355 struct f2fs_nm_info *nm_i = NM_I(sbi); 356 int nr = nr_shrink; 357 358 if (!down_write_trylock(&nm_i->nat_tree_lock)) 359 return 0; 360 361 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 362 struct nat_entry *ne; 363 ne = list_first_entry(&nm_i->nat_entries, 364 struct nat_entry, list); 365 __del_from_nat_cache(nm_i, ne); 366 nr_shrink--; 367 } 368 up_write(&nm_i->nat_tree_lock); 369 return nr - nr_shrink; 370 } 371 372 /* 373 * This function always returns success 374 */ 375 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 376 { 377 struct f2fs_nm_info *nm_i = NM_I(sbi); 378 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 379 struct f2fs_journal *journal = curseg->journal; 380 nid_t start_nid = START_NID(nid); 381 struct f2fs_nat_block *nat_blk; 382 struct page *page = NULL; 383 struct f2fs_nat_entry ne; 384 struct nat_entry *e; 385 pgoff_t index; 386 int i; 387 388 ni->nid = nid; 389 390 /* Check nat cache */ 391 down_read(&nm_i->nat_tree_lock); 392 e = __lookup_nat_cache(nm_i, nid); 393 if (e) { 394 ni->ino = nat_get_ino(e); 395 ni->blk_addr = nat_get_blkaddr(e); 396 ni->version = nat_get_version(e); 397 up_read(&nm_i->nat_tree_lock); 398 return; 399 } 400 401 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 402 403 /* Check current segment summary */ 404 down_read(&curseg->journal_rwsem); 405 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 406 if (i >= 0) { 407 ne = nat_in_journal(journal, i); 408 node_info_from_raw_nat(ni, &ne); 409 } 410 up_read(&curseg->journal_rwsem); 411 if (i >= 0) { 412 up_read(&nm_i->nat_tree_lock); 413 goto cache; 414 } 415 416 /* Fill node_info from nat page */ 417 index = current_nat_addr(sbi, nid); 418 up_read(&nm_i->nat_tree_lock); 419 420 page = get_meta_page(sbi, index); 421 nat_blk = (struct f2fs_nat_block *)page_address(page); 422 ne = nat_blk->entries[nid - start_nid]; 423 node_info_from_raw_nat(ni, &ne); 424 f2fs_put_page(page, 1); 425 cache: 426 /* cache nat entry */ 427 down_write(&nm_i->nat_tree_lock); 428 cache_nat_entry(sbi, nid, &ne); 429 up_write(&nm_i->nat_tree_lock); 430 } 431 432 /* 433 * readahead MAX_RA_NODE number of node pages. 434 */ 435 static void ra_node_pages(struct page *parent, int start, int n) 436 { 437 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 438 struct blk_plug plug; 439 int i, end; 440 nid_t nid; 441 442 blk_start_plug(&plug); 443 444 /* Then, try readahead for siblings of the desired node */ 445 end = start + n; 446 end = min(end, NIDS_PER_BLOCK); 447 for (i = start; i < end; i++) { 448 nid = get_nid(parent, i, false); 449 ra_node_page(sbi, nid); 450 } 451 452 blk_finish_plug(&plug); 453 } 454 455 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 456 { 457 const long direct_index = ADDRS_PER_INODE(dn->inode); 458 const long direct_blks = ADDRS_PER_BLOCK; 459 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 460 unsigned int skipped_unit = ADDRS_PER_BLOCK; 461 int cur_level = dn->cur_level; 462 int max_level = dn->max_level; 463 pgoff_t base = 0; 464 465 if (!dn->max_level) 466 return pgofs + 1; 467 468 while (max_level-- > cur_level) 469 skipped_unit *= NIDS_PER_BLOCK; 470 471 switch (dn->max_level) { 472 case 3: 473 base += 2 * indirect_blks; 474 case 2: 475 base += 2 * direct_blks; 476 case 1: 477 base += direct_index; 478 break; 479 default: 480 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 481 } 482 483 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 484 } 485 486 /* 487 * The maximum depth is four. 488 * Offset[0] will have raw inode offset. 489 */ 490 static int get_node_path(struct inode *inode, long block, 491 int offset[4], unsigned int noffset[4]) 492 { 493 const long direct_index = ADDRS_PER_INODE(inode); 494 const long direct_blks = ADDRS_PER_BLOCK; 495 const long dptrs_per_blk = NIDS_PER_BLOCK; 496 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 497 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 498 int n = 0; 499 int level = 0; 500 501 noffset[0] = 0; 502 503 if (block < direct_index) { 504 offset[n] = block; 505 goto got; 506 } 507 block -= direct_index; 508 if (block < direct_blks) { 509 offset[n++] = NODE_DIR1_BLOCK; 510 noffset[n] = 1; 511 offset[n] = block; 512 level = 1; 513 goto got; 514 } 515 block -= direct_blks; 516 if (block < direct_blks) { 517 offset[n++] = NODE_DIR2_BLOCK; 518 noffset[n] = 2; 519 offset[n] = block; 520 level = 1; 521 goto got; 522 } 523 block -= direct_blks; 524 if (block < indirect_blks) { 525 offset[n++] = NODE_IND1_BLOCK; 526 noffset[n] = 3; 527 offset[n++] = block / direct_blks; 528 noffset[n] = 4 + offset[n - 1]; 529 offset[n] = block % direct_blks; 530 level = 2; 531 goto got; 532 } 533 block -= indirect_blks; 534 if (block < indirect_blks) { 535 offset[n++] = NODE_IND2_BLOCK; 536 noffset[n] = 4 + dptrs_per_blk; 537 offset[n++] = block / direct_blks; 538 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 539 offset[n] = block % direct_blks; 540 level = 2; 541 goto got; 542 } 543 block -= indirect_blks; 544 if (block < dindirect_blks) { 545 offset[n++] = NODE_DIND_BLOCK; 546 noffset[n] = 5 + (dptrs_per_blk * 2); 547 offset[n++] = block / indirect_blks; 548 noffset[n] = 6 + (dptrs_per_blk * 2) + 549 offset[n - 1] * (dptrs_per_blk + 1); 550 offset[n++] = (block / direct_blks) % dptrs_per_blk; 551 noffset[n] = 7 + (dptrs_per_blk * 2) + 552 offset[n - 2] * (dptrs_per_blk + 1) + 553 offset[n - 1]; 554 offset[n] = block % direct_blks; 555 level = 3; 556 goto got; 557 } else { 558 return -E2BIG; 559 } 560 got: 561 return level; 562 } 563 564 /* 565 * Caller should call f2fs_put_dnode(dn). 566 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 567 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 568 * In the case of RDONLY_NODE, we don't need to care about mutex. 569 */ 570 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 571 { 572 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 573 struct page *npage[4]; 574 struct page *parent = NULL; 575 int offset[4]; 576 unsigned int noffset[4]; 577 nid_t nids[4]; 578 int level, i = 0; 579 int err = 0; 580 581 level = get_node_path(dn->inode, index, offset, noffset); 582 if (level < 0) 583 return level; 584 585 nids[0] = dn->inode->i_ino; 586 npage[0] = dn->inode_page; 587 588 if (!npage[0]) { 589 npage[0] = get_node_page(sbi, nids[0]); 590 if (IS_ERR(npage[0])) 591 return PTR_ERR(npage[0]); 592 } 593 594 /* if inline_data is set, should not report any block indices */ 595 if (f2fs_has_inline_data(dn->inode) && index) { 596 err = -ENOENT; 597 f2fs_put_page(npage[0], 1); 598 goto release_out; 599 } 600 601 parent = npage[0]; 602 if (level != 0) 603 nids[1] = get_nid(parent, offset[0], true); 604 dn->inode_page = npage[0]; 605 dn->inode_page_locked = true; 606 607 /* get indirect or direct nodes */ 608 for (i = 1; i <= level; i++) { 609 bool done = false; 610 611 if (!nids[i] && mode == ALLOC_NODE) { 612 /* alloc new node */ 613 if (!alloc_nid(sbi, &(nids[i]))) { 614 err = -ENOSPC; 615 goto release_pages; 616 } 617 618 dn->nid = nids[i]; 619 npage[i] = new_node_page(dn, noffset[i]); 620 if (IS_ERR(npage[i])) { 621 alloc_nid_failed(sbi, nids[i]); 622 err = PTR_ERR(npage[i]); 623 goto release_pages; 624 } 625 626 set_nid(parent, offset[i - 1], nids[i], i == 1); 627 alloc_nid_done(sbi, nids[i]); 628 done = true; 629 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 630 npage[i] = get_node_page_ra(parent, offset[i - 1]); 631 if (IS_ERR(npage[i])) { 632 err = PTR_ERR(npage[i]); 633 goto release_pages; 634 } 635 done = true; 636 } 637 if (i == 1) { 638 dn->inode_page_locked = false; 639 unlock_page(parent); 640 } else { 641 f2fs_put_page(parent, 1); 642 } 643 644 if (!done) { 645 npage[i] = get_node_page(sbi, nids[i]); 646 if (IS_ERR(npage[i])) { 647 err = PTR_ERR(npage[i]); 648 f2fs_put_page(npage[0], 0); 649 goto release_out; 650 } 651 } 652 if (i < level) { 653 parent = npage[i]; 654 nids[i + 1] = get_nid(parent, offset[i], false); 655 } 656 } 657 dn->nid = nids[level]; 658 dn->ofs_in_node = offset[level]; 659 dn->node_page = npage[level]; 660 dn->data_blkaddr = datablock_addr(dn->inode, 661 dn->node_page, dn->ofs_in_node); 662 return 0; 663 664 release_pages: 665 f2fs_put_page(parent, 1); 666 if (i > 1) 667 f2fs_put_page(npage[0], 0); 668 release_out: 669 dn->inode_page = NULL; 670 dn->node_page = NULL; 671 if (err == -ENOENT) { 672 dn->cur_level = i; 673 dn->max_level = level; 674 dn->ofs_in_node = offset[level]; 675 } 676 return err; 677 } 678 679 static void truncate_node(struct dnode_of_data *dn) 680 { 681 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 682 struct node_info ni; 683 684 get_node_info(sbi, dn->nid, &ni); 685 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 686 687 /* Deallocate node address */ 688 invalidate_blocks(sbi, ni.blk_addr); 689 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 690 set_node_addr(sbi, &ni, NULL_ADDR, false); 691 692 if (dn->nid == dn->inode->i_ino) { 693 remove_orphan_inode(sbi, dn->nid); 694 dec_valid_inode_count(sbi); 695 f2fs_inode_synced(dn->inode); 696 } 697 698 clear_node_page_dirty(dn->node_page); 699 set_sbi_flag(sbi, SBI_IS_DIRTY); 700 701 f2fs_put_page(dn->node_page, 1); 702 703 invalidate_mapping_pages(NODE_MAPPING(sbi), 704 dn->node_page->index, dn->node_page->index); 705 706 dn->node_page = NULL; 707 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 708 } 709 710 static int truncate_dnode(struct dnode_of_data *dn) 711 { 712 struct page *page; 713 714 if (dn->nid == 0) 715 return 1; 716 717 /* get direct node */ 718 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 719 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 720 return 1; 721 else if (IS_ERR(page)) 722 return PTR_ERR(page); 723 724 /* Make dnode_of_data for parameter */ 725 dn->node_page = page; 726 dn->ofs_in_node = 0; 727 truncate_data_blocks(dn); 728 truncate_node(dn); 729 return 1; 730 } 731 732 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 733 int ofs, int depth) 734 { 735 struct dnode_of_data rdn = *dn; 736 struct page *page; 737 struct f2fs_node *rn; 738 nid_t child_nid; 739 unsigned int child_nofs; 740 int freed = 0; 741 int i, ret; 742 743 if (dn->nid == 0) 744 return NIDS_PER_BLOCK + 1; 745 746 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 747 748 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 749 if (IS_ERR(page)) { 750 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 751 return PTR_ERR(page); 752 } 753 754 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 755 756 rn = F2FS_NODE(page); 757 if (depth < 3) { 758 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 759 child_nid = le32_to_cpu(rn->in.nid[i]); 760 if (child_nid == 0) 761 continue; 762 rdn.nid = child_nid; 763 ret = truncate_dnode(&rdn); 764 if (ret < 0) 765 goto out_err; 766 if (set_nid(page, i, 0, false)) 767 dn->node_changed = true; 768 } 769 } else { 770 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 771 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 772 child_nid = le32_to_cpu(rn->in.nid[i]); 773 if (child_nid == 0) { 774 child_nofs += NIDS_PER_BLOCK + 1; 775 continue; 776 } 777 rdn.nid = child_nid; 778 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 779 if (ret == (NIDS_PER_BLOCK + 1)) { 780 if (set_nid(page, i, 0, false)) 781 dn->node_changed = true; 782 child_nofs += ret; 783 } else if (ret < 0 && ret != -ENOENT) { 784 goto out_err; 785 } 786 } 787 freed = child_nofs; 788 } 789 790 if (!ofs) { 791 /* remove current indirect node */ 792 dn->node_page = page; 793 truncate_node(dn); 794 freed++; 795 } else { 796 f2fs_put_page(page, 1); 797 } 798 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 799 return freed; 800 801 out_err: 802 f2fs_put_page(page, 1); 803 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 804 return ret; 805 } 806 807 static int truncate_partial_nodes(struct dnode_of_data *dn, 808 struct f2fs_inode *ri, int *offset, int depth) 809 { 810 struct page *pages[2]; 811 nid_t nid[3]; 812 nid_t child_nid; 813 int err = 0; 814 int i; 815 int idx = depth - 2; 816 817 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 818 if (!nid[0]) 819 return 0; 820 821 /* get indirect nodes in the path */ 822 for (i = 0; i < idx + 1; i++) { 823 /* reference count'll be increased */ 824 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 825 if (IS_ERR(pages[i])) { 826 err = PTR_ERR(pages[i]); 827 idx = i - 1; 828 goto fail; 829 } 830 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 831 } 832 833 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 834 835 /* free direct nodes linked to a partial indirect node */ 836 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 837 child_nid = get_nid(pages[idx], i, false); 838 if (!child_nid) 839 continue; 840 dn->nid = child_nid; 841 err = truncate_dnode(dn); 842 if (err < 0) 843 goto fail; 844 if (set_nid(pages[idx], i, 0, false)) 845 dn->node_changed = true; 846 } 847 848 if (offset[idx + 1] == 0) { 849 dn->node_page = pages[idx]; 850 dn->nid = nid[idx]; 851 truncate_node(dn); 852 } else { 853 f2fs_put_page(pages[idx], 1); 854 } 855 offset[idx]++; 856 offset[idx + 1] = 0; 857 idx--; 858 fail: 859 for (i = idx; i >= 0; i--) 860 f2fs_put_page(pages[i], 1); 861 862 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 863 864 return err; 865 } 866 867 /* 868 * All the block addresses of data and nodes should be nullified. 869 */ 870 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 871 { 872 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 873 int err = 0, cont = 1; 874 int level, offset[4], noffset[4]; 875 unsigned int nofs = 0; 876 struct f2fs_inode *ri; 877 struct dnode_of_data dn; 878 struct page *page; 879 880 trace_f2fs_truncate_inode_blocks_enter(inode, from); 881 882 level = get_node_path(inode, from, offset, noffset); 883 if (level < 0) 884 return level; 885 886 page = get_node_page(sbi, inode->i_ino); 887 if (IS_ERR(page)) { 888 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 889 return PTR_ERR(page); 890 } 891 892 set_new_dnode(&dn, inode, page, NULL, 0); 893 unlock_page(page); 894 895 ri = F2FS_INODE(page); 896 switch (level) { 897 case 0: 898 case 1: 899 nofs = noffset[1]; 900 break; 901 case 2: 902 nofs = noffset[1]; 903 if (!offset[level - 1]) 904 goto skip_partial; 905 err = truncate_partial_nodes(&dn, ri, offset, level); 906 if (err < 0 && err != -ENOENT) 907 goto fail; 908 nofs += 1 + NIDS_PER_BLOCK; 909 break; 910 case 3: 911 nofs = 5 + 2 * NIDS_PER_BLOCK; 912 if (!offset[level - 1]) 913 goto skip_partial; 914 err = truncate_partial_nodes(&dn, ri, offset, level); 915 if (err < 0 && err != -ENOENT) 916 goto fail; 917 break; 918 default: 919 BUG(); 920 } 921 922 skip_partial: 923 while (cont) { 924 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 925 switch (offset[0]) { 926 case NODE_DIR1_BLOCK: 927 case NODE_DIR2_BLOCK: 928 err = truncate_dnode(&dn); 929 break; 930 931 case NODE_IND1_BLOCK: 932 case NODE_IND2_BLOCK: 933 err = truncate_nodes(&dn, nofs, offset[1], 2); 934 break; 935 936 case NODE_DIND_BLOCK: 937 err = truncate_nodes(&dn, nofs, offset[1], 3); 938 cont = 0; 939 break; 940 941 default: 942 BUG(); 943 } 944 if (err < 0 && err != -ENOENT) 945 goto fail; 946 if (offset[1] == 0 && 947 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 948 lock_page(page); 949 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 950 f2fs_wait_on_page_writeback(page, NODE, true); 951 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 952 set_page_dirty(page); 953 unlock_page(page); 954 } 955 offset[1] = 0; 956 offset[0]++; 957 nofs += err; 958 } 959 fail: 960 f2fs_put_page(page, 0); 961 trace_f2fs_truncate_inode_blocks_exit(inode, err); 962 return err > 0 ? 0 : err; 963 } 964 965 int truncate_xattr_node(struct inode *inode, struct page *page) 966 { 967 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 968 nid_t nid = F2FS_I(inode)->i_xattr_nid; 969 struct dnode_of_data dn; 970 struct page *npage; 971 972 if (!nid) 973 return 0; 974 975 npage = get_node_page(sbi, nid); 976 if (IS_ERR(npage)) 977 return PTR_ERR(npage); 978 979 f2fs_i_xnid_write(inode, 0); 980 981 set_new_dnode(&dn, inode, page, npage, nid); 982 983 if (page) 984 dn.inode_page_locked = true; 985 truncate_node(&dn); 986 return 0; 987 } 988 989 /* 990 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 991 * f2fs_unlock_op(). 992 */ 993 int remove_inode_page(struct inode *inode) 994 { 995 struct dnode_of_data dn; 996 int err; 997 998 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 999 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1000 if (err) 1001 return err; 1002 1003 err = truncate_xattr_node(inode, dn.inode_page); 1004 if (err) { 1005 f2fs_put_dnode(&dn); 1006 return err; 1007 } 1008 1009 /* remove potential inline_data blocks */ 1010 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1011 S_ISLNK(inode->i_mode)) 1012 truncate_data_blocks_range(&dn, 1); 1013 1014 /* 0 is possible, after f2fs_new_inode() has failed */ 1015 f2fs_bug_on(F2FS_I_SB(inode), 1016 inode->i_blocks != 0 && inode->i_blocks != 8); 1017 1018 /* will put inode & node pages */ 1019 truncate_node(&dn); 1020 return 0; 1021 } 1022 1023 struct page *new_inode_page(struct inode *inode) 1024 { 1025 struct dnode_of_data dn; 1026 1027 /* allocate inode page for new inode */ 1028 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1029 1030 /* caller should f2fs_put_page(page, 1); */ 1031 return new_node_page(&dn, 0); 1032 } 1033 1034 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1035 { 1036 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1037 struct node_info new_ni; 1038 struct page *page; 1039 int err; 1040 1041 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1042 return ERR_PTR(-EPERM); 1043 1044 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1045 if (!page) 1046 return ERR_PTR(-ENOMEM); 1047 1048 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1049 goto fail; 1050 1051 #ifdef CONFIG_F2FS_CHECK_FS 1052 get_node_info(sbi, dn->nid, &new_ni); 1053 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1054 #endif 1055 new_ni.nid = dn->nid; 1056 new_ni.ino = dn->inode->i_ino; 1057 new_ni.blk_addr = NULL_ADDR; 1058 new_ni.flag = 0; 1059 new_ni.version = 0; 1060 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1061 1062 f2fs_wait_on_page_writeback(page, NODE, true); 1063 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1064 set_cold_node(dn->inode, page); 1065 if (!PageUptodate(page)) 1066 SetPageUptodate(page); 1067 if (set_page_dirty(page)) 1068 dn->node_changed = true; 1069 1070 if (f2fs_has_xattr_block(ofs)) 1071 f2fs_i_xnid_write(dn->inode, dn->nid); 1072 1073 if (ofs == 0) 1074 inc_valid_inode_count(sbi); 1075 return page; 1076 1077 fail: 1078 clear_node_page_dirty(page); 1079 f2fs_put_page(page, 1); 1080 return ERR_PTR(err); 1081 } 1082 1083 /* 1084 * Caller should do after getting the following values. 1085 * 0: f2fs_put_page(page, 0) 1086 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1087 */ 1088 static int read_node_page(struct page *page, int op_flags) 1089 { 1090 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1091 struct node_info ni; 1092 struct f2fs_io_info fio = { 1093 .sbi = sbi, 1094 .type = NODE, 1095 .op = REQ_OP_READ, 1096 .op_flags = op_flags, 1097 .page = page, 1098 .encrypted_page = NULL, 1099 }; 1100 1101 if (PageUptodate(page)) 1102 return LOCKED_PAGE; 1103 1104 get_node_info(sbi, page->index, &ni); 1105 1106 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1107 ClearPageUptodate(page); 1108 return -ENOENT; 1109 } 1110 1111 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1112 return f2fs_submit_page_bio(&fio); 1113 } 1114 1115 /* 1116 * Readahead a node page 1117 */ 1118 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1119 { 1120 struct page *apage; 1121 int err; 1122 1123 if (!nid) 1124 return; 1125 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1126 1127 rcu_read_lock(); 1128 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1129 rcu_read_unlock(); 1130 if (apage) 1131 return; 1132 1133 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1134 if (!apage) 1135 return; 1136 1137 err = read_node_page(apage, REQ_RAHEAD); 1138 f2fs_put_page(apage, err ? 1 : 0); 1139 } 1140 1141 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1142 struct page *parent, int start) 1143 { 1144 struct page *page; 1145 int err; 1146 1147 if (!nid) 1148 return ERR_PTR(-ENOENT); 1149 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1150 repeat: 1151 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1152 if (!page) 1153 return ERR_PTR(-ENOMEM); 1154 1155 err = read_node_page(page, 0); 1156 if (err < 0) { 1157 f2fs_put_page(page, 1); 1158 return ERR_PTR(err); 1159 } else if (err == LOCKED_PAGE) { 1160 err = 0; 1161 goto page_hit; 1162 } 1163 1164 if (parent) 1165 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1166 1167 lock_page(page); 1168 1169 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1170 f2fs_put_page(page, 1); 1171 goto repeat; 1172 } 1173 1174 if (unlikely(!PageUptodate(page))) { 1175 err = -EIO; 1176 goto out_err; 1177 } 1178 1179 if (!f2fs_inode_chksum_verify(sbi, page)) { 1180 err = -EBADMSG; 1181 goto out_err; 1182 } 1183 page_hit: 1184 if(unlikely(nid != nid_of_node(page))) { 1185 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1186 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1187 nid, nid_of_node(page), ino_of_node(page), 1188 ofs_of_node(page), cpver_of_node(page), 1189 next_blkaddr_of_node(page)); 1190 err = -EINVAL; 1191 out_err: 1192 ClearPageUptodate(page); 1193 f2fs_put_page(page, 1); 1194 return ERR_PTR(err); 1195 } 1196 return page; 1197 } 1198 1199 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1200 { 1201 return __get_node_page(sbi, nid, NULL, 0); 1202 } 1203 1204 struct page *get_node_page_ra(struct page *parent, int start) 1205 { 1206 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1207 nid_t nid = get_nid(parent, start, false); 1208 1209 return __get_node_page(sbi, nid, parent, start); 1210 } 1211 1212 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1213 { 1214 struct inode *inode; 1215 struct page *page; 1216 int ret; 1217 1218 /* should flush inline_data before evict_inode */ 1219 inode = ilookup(sbi->sb, ino); 1220 if (!inode) 1221 return; 1222 1223 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1224 if (!page) 1225 goto iput_out; 1226 1227 if (!PageUptodate(page)) 1228 goto page_out; 1229 1230 if (!PageDirty(page)) 1231 goto page_out; 1232 1233 if (!clear_page_dirty_for_io(page)) 1234 goto page_out; 1235 1236 ret = f2fs_write_inline_data(inode, page); 1237 inode_dec_dirty_pages(inode); 1238 remove_dirty_inode(inode); 1239 if (ret) 1240 set_page_dirty(page); 1241 page_out: 1242 f2fs_put_page(page, 1); 1243 iput_out: 1244 iput(inode); 1245 } 1246 1247 void move_node_page(struct page *node_page, int gc_type) 1248 { 1249 if (gc_type == FG_GC) { 1250 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1251 struct writeback_control wbc = { 1252 .sync_mode = WB_SYNC_ALL, 1253 .nr_to_write = 1, 1254 .for_reclaim = 0, 1255 }; 1256 1257 set_page_dirty(node_page); 1258 f2fs_wait_on_page_writeback(node_page, NODE, true); 1259 1260 f2fs_bug_on(sbi, PageWriteback(node_page)); 1261 if (!clear_page_dirty_for_io(node_page)) 1262 goto out_page; 1263 1264 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1265 unlock_page(node_page); 1266 goto release_page; 1267 } else { 1268 /* set page dirty and write it */ 1269 if (!PageWriteback(node_page)) 1270 set_page_dirty(node_page); 1271 } 1272 out_page: 1273 unlock_page(node_page); 1274 release_page: 1275 f2fs_put_page(node_page, 0); 1276 } 1277 1278 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1279 { 1280 pgoff_t index, end; 1281 struct pagevec pvec; 1282 struct page *last_page = NULL; 1283 1284 pagevec_init(&pvec, 0); 1285 index = 0; 1286 end = ULONG_MAX; 1287 1288 while (index <= end) { 1289 int i, nr_pages; 1290 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1291 PAGECACHE_TAG_DIRTY, 1292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1293 if (nr_pages == 0) 1294 break; 1295 1296 for (i = 0; i < nr_pages; i++) { 1297 struct page *page = pvec.pages[i]; 1298 1299 if (unlikely(f2fs_cp_error(sbi))) { 1300 f2fs_put_page(last_page, 0); 1301 pagevec_release(&pvec); 1302 return ERR_PTR(-EIO); 1303 } 1304 1305 if (!IS_DNODE(page) || !is_cold_node(page)) 1306 continue; 1307 if (ino_of_node(page) != ino) 1308 continue; 1309 1310 lock_page(page); 1311 1312 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1313 continue_unlock: 1314 unlock_page(page); 1315 continue; 1316 } 1317 if (ino_of_node(page) != ino) 1318 goto continue_unlock; 1319 1320 if (!PageDirty(page)) { 1321 /* someone wrote it for us */ 1322 goto continue_unlock; 1323 } 1324 1325 if (last_page) 1326 f2fs_put_page(last_page, 0); 1327 1328 get_page(page); 1329 last_page = page; 1330 unlock_page(page); 1331 } 1332 pagevec_release(&pvec); 1333 cond_resched(); 1334 } 1335 return last_page; 1336 } 1337 1338 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1339 struct writeback_control *wbc, bool do_balance, 1340 enum iostat_type io_type) 1341 { 1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1343 nid_t nid; 1344 struct node_info ni; 1345 struct f2fs_io_info fio = { 1346 .sbi = sbi, 1347 .type = NODE, 1348 .op = REQ_OP_WRITE, 1349 .op_flags = wbc_to_write_flags(wbc), 1350 .page = page, 1351 .encrypted_page = NULL, 1352 .submitted = false, 1353 .io_type = io_type, 1354 }; 1355 1356 trace_f2fs_writepage(page, NODE); 1357 1358 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1359 goto redirty_out; 1360 if (unlikely(f2fs_cp_error(sbi))) 1361 goto redirty_out; 1362 1363 /* get old block addr of this node page */ 1364 nid = nid_of_node(page); 1365 f2fs_bug_on(sbi, page->index != nid); 1366 1367 if (wbc->for_reclaim) { 1368 if (!down_read_trylock(&sbi->node_write)) 1369 goto redirty_out; 1370 } else { 1371 down_read(&sbi->node_write); 1372 } 1373 1374 get_node_info(sbi, nid, &ni); 1375 1376 /* This page is already truncated */ 1377 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1378 ClearPageUptodate(page); 1379 dec_page_count(sbi, F2FS_DIRTY_NODES); 1380 up_read(&sbi->node_write); 1381 unlock_page(page); 1382 return 0; 1383 } 1384 1385 if (atomic && !test_opt(sbi, NOBARRIER)) 1386 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1387 1388 set_page_writeback(page); 1389 fio.old_blkaddr = ni.blk_addr; 1390 write_node_page(nid, &fio); 1391 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1392 dec_page_count(sbi, F2FS_DIRTY_NODES); 1393 up_read(&sbi->node_write); 1394 1395 if (wbc->for_reclaim) { 1396 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0, 1397 page->index, NODE); 1398 submitted = NULL; 1399 } 1400 1401 unlock_page(page); 1402 1403 if (unlikely(f2fs_cp_error(sbi))) { 1404 f2fs_submit_merged_write(sbi, NODE); 1405 submitted = NULL; 1406 } 1407 if (submitted) 1408 *submitted = fio.submitted; 1409 1410 if (do_balance) 1411 f2fs_balance_fs(sbi, false); 1412 return 0; 1413 1414 redirty_out: 1415 redirty_page_for_writepage(wbc, page); 1416 return AOP_WRITEPAGE_ACTIVATE; 1417 } 1418 1419 static int f2fs_write_node_page(struct page *page, 1420 struct writeback_control *wbc) 1421 { 1422 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO); 1423 } 1424 1425 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1426 struct writeback_control *wbc, bool atomic) 1427 { 1428 pgoff_t index, end; 1429 pgoff_t last_idx = ULONG_MAX; 1430 struct pagevec pvec; 1431 int ret = 0; 1432 struct page *last_page = NULL; 1433 bool marked = false; 1434 nid_t ino = inode->i_ino; 1435 1436 if (atomic) { 1437 last_page = last_fsync_dnode(sbi, ino); 1438 if (IS_ERR_OR_NULL(last_page)) 1439 return PTR_ERR_OR_ZERO(last_page); 1440 } 1441 retry: 1442 pagevec_init(&pvec, 0); 1443 index = 0; 1444 end = ULONG_MAX; 1445 1446 while (index <= end) { 1447 int i, nr_pages; 1448 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1449 PAGECACHE_TAG_DIRTY, 1450 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1451 if (nr_pages == 0) 1452 break; 1453 1454 for (i = 0; i < nr_pages; i++) { 1455 struct page *page = pvec.pages[i]; 1456 bool submitted = false; 1457 1458 if (unlikely(f2fs_cp_error(sbi))) { 1459 f2fs_put_page(last_page, 0); 1460 pagevec_release(&pvec); 1461 ret = -EIO; 1462 goto out; 1463 } 1464 1465 if (!IS_DNODE(page) || !is_cold_node(page)) 1466 continue; 1467 if (ino_of_node(page) != ino) 1468 continue; 1469 1470 lock_page(page); 1471 1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1473 continue_unlock: 1474 unlock_page(page); 1475 continue; 1476 } 1477 if (ino_of_node(page) != ino) 1478 goto continue_unlock; 1479 1480 if (!PageDirty(page) && page != last_page) { 1481 /* someone wrote it for us */ 1482 goto continue_unlock; 1483 } 1484 1485 f2fs_wait_on_page_writeback(page, NODE, true); 1486 BUG_ON(PageWriteback(page)); 1487 1488 set_fsync_mark(page, 0); 1489 set_dentry_mark(page, 0); 1490 1491 if (!atomic || page == last_page) { 1492 set_fsync_mark(page, 1); 1493 if (IS_INODE(page)) { 1494 if (is_inode_flag_set(inode, 1495 FI_DIRTY_INODE)) 1496 update_inode(inode, page); 1497 set_dentry_mark(page, 1498 need_dentry_mark(sbi, ino)); 1499 } 1500 /* may be written by other thread */ 1501 if (!PageDirty(page)) 1502 set_page_dirty(page); 1503 } 1504 1505 if (!clear_page_dirty_for_io(page)) 1506 goto continue_unlock; 1507 1508 ret = __write_node_page(page, atomic && 1509 page == last_page, 1510 &submitted, wbc, true, 1511 FS_NODE_IO); 1512 if (ret) { 1513 unlock_page(page); 1514 f2fs_put_page(last_page, 0); 1515 break; 1516 } else if (submitted) { 1517 last_idx = page->index; 1518 } 1519 1520 if (page == last_page) { 1521 f2fs_put_page(page, 0); 1522 marked = true; 1523 break; 1524 } 1525 } 1526 pagevec_release(&pvec); 1527 cond_resched(); 1528 1529 if (ret || marked) 1530 break; 1531 } 1532 if (!ret && atomic && !marked) { 1533 f2fs_msg(sbi->sb, KERN_DEBUG, 1534 "Retry to write fsync mark: ino=%u, idx=%lx", 1535 ino, last_page->index); 1536 lock_page(last_page); 1537 f2fs_wait_on_page_writeback(last_page, NODE, true); 1538 set_page_dirty(last_page); 1539 unlock_page(last_page); 1540 goto retry; 1541 } 1542 out: 1543 if (last_idx != ULONG_MAX) 1544 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE); 1545 return ret ? -EIO: 0; 1546 } 1547 1548 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 1549 bool do_balance, enum iostat_type io_type) 1550 { 1551 pgoff_t index, end; 1552 struct pagevec pvec; 1553 int step = 0; 1554 int nwritten = 0; 1555 int ret = 0; 1556 1557 pagevec_init(&pvec, 0); 1558 1559 next_step: 1560 index = 0; 1561 end = ULONG_MAX; 1562 1563 while (index <= end) { 1564 int i, nr_pages; 1565 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1566 PAGECACHE_TAG_DIRTY, 1567 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1568 if (nr_pages == 0) 1569 break; 1570 1571 for (i = 0; i < nr_pages; i++) { 1572 struct page *page = pvec.pages[i]; 1573 bool submitted = false; 1574 1575 if (unlikely(f2fs_cp_error(sbi))) { 1576 pagevec_release(&pvec); 1577 ret = -EIO; 1578 goto out; 1579 } 1580 1581 /* 1582 * flushing sequence with step: 1583 * 0. indirect nodes 1584 * 1. dentry dnodes 1585 * 2. file dnodes 1586 */ 1587 if (step == 0 && IS_DNODE(page)) 1588 continue; 1589 if (step == 1 && (!IS_DNODE(page) || 1590 is_cold_node(page))) 1591 continue; 1592 if (step == 2 && (!IS_DNODE(page) || 1593 !is_cold_node(page))) 1594 continue; 1595 lock_node: 1596 if (!trylock_page(page)) 1597 continue; 1598 1599 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1600 continue_unlock: 1601 unlock_page(page); 1602 continue; 1603 } 1604 1605 if (!PageDirty(page)) { 1606 /* someone wrote it for us */ 1607 goto continue_unlock; 1608 } 1609 1610 /* flush inline_data */ 1611 if (is_inline_node(page)) { 1612 clear_inline_node(page); 1613 unlock_page(page); 1614 flush_inline_data(sbi, ino_of_node(page)); 1615 goto lock_node; 1616 } 1617 1618 f2fs_wait_on_page_writeback(page, NODE, true); 1619 1620 BUG_ON(PageWriteback(page)); 1621 if (!clear_page_dirty_for_io(page)) 1622 goto continue_unlock; 1623 1624 set_fsync_mark(page, 0); 1625 set_dentry_mark(page, 0); 1626 1627 ret = __write_node_page(page, false, &submitted, 1628 wbc, do_balance, io_type); 1629 if (ret) 1630 unlock_page(page); 1631 else if (submitted) 1632 nwritten++; 1633 1634 if (--wbc->nr_to_write == 0) 1635 break; 1636 } 1637 pagevec_release(&pvec); 1638 cond_resched(); 1639 1640 if (wbc->nr_to_write == 0) { 1641 step = 2; 1642 break; 1643 } 1644 } 1645 1646 if (step < 2) { 1647 step++; 1648 goto next_step; 1649 } 1650 out: 1651 if (nwritten) 1652 f2fs_submit_merged_write(sbi, NODE); 1653 return ret; 1654 } 1655 1656 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1657 { 1658 pgoff_t index = 0, end = ULONG_MAX; 1659 struct pagevec pvec; 1660 int ret2, ret = 0; 1661 1662 pagevec_init(&pvec, 0); 1663 1664 while (index <= end) { 1665 int i, nr_pages; 1666 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1667 PAGECACHE_TAG_WRITEBACK, 1668 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1669 if (nr_pages == 0) 1670 break; 1671 1672 for (i = 0; i < nr_pages; i++) { 1673 struct page *page = pvec.pages[i]; 1674 1675 /* until radix tree lookup accepts end_index */ 1676 if (unlikely(page->index > end)) 1677 continue; 1678 1679 if (ino && ino_of_node(page) == ino) { 1680 f2fs_wait_on_page_writeback(page, NODE, true); 1681 if (TestClearPageError(page)) 1682 ret = -EIO; 1683 } 1684 } 1685 pagevec_release(&pvec); 1686 cond_resched(); 1687 } 1688 1689 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1690 if (!ret) 1691 ret = ret2; 1692 return ret; 1693 } 1694 1695 static int f2fs_write_node_pages(struct address_space *mapping, 1696 struct writeback_control *wbc) 1697 { 1698 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1699 struct blk_plug plug; 1700 long diff; 1701 1702 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1703 goto skip_write; 1704 1705 /* balancing f2fs's metadata in background */ 1706 f2fs_balance_fs_bg(sbi); 1707 1708 /* collect a number of dirty node pages and write together */ 1709 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1710 goto skip_write; 1711 1712 trace_f2fs_writepages(mapping->host, wbc, NODE); 1713 1714 diff = nr_pages_to_write(sbi, NODE, wbc); 1715 wbc->sync_mode = WB_SYNC_NONE; 1716 blk_start_plug(&plug); 1717 sync_node_pages(sbi, wbc, true, FS_NODE_IO); 1718 blk_finish_plug(&plug); 1719 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1720 return 0; 1721 1722 skip_write: 1723 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1724 trace_f2fs_writepages(mapping->host, wbc, NODE); 1725 return 0; 1726 } 1727 1728 static int f2fs_set_node_page_dirty(struct page *page) 1729 { 1730 trace_f2fs_set_page_dirty(page, NODE); 1731 1732 if (!PageUptodate(page)) 1733 SetPageUptodate(page); 1734 if (!PageDirty(page)) { 1735 f2fs_set_page_dirty_nobuffers(page); 1736 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1737 SetPagePrivate(page); 1738 f2fs_trace_pid(page); 1739 return 1; 1740 } 1741 return 0; 1742 } 1743 1744 /* 1745 * Structure of the f2fs node operations 1746 */ 1747 const struct address_space_operations f2fs_node_aops = { 1748 .writepage = f2fs_write_node_page, 1749 .writepages = f2fs_write_node_pages, 1750 .set_page_dirty = f2fs_set_node_page_dirty, 1751 .invalidatepage = f2fs_invalidate_page, 1752 .releasepage = f2fs_release_page, 1753 #ifdef CONFIG_MIGRATION 1754 .migratepage = f2fs_migrate_page, 1755 #endif 1756 }; 1757 1758 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1759 nid_t n) 1760 { 1761 return radix_tree_lookup(&nm_i->free_nid_root, n); 1762 } 1763 1764 static int __insert_nid_to_list(struct f2fs_sb_info *sbi, 1765 struct free_nid *i, enum nid_list list, bool new) 1766 { 1767 struct f2fs_nm_info *nm_i = NM_I(sbi); 1768 1769 if (new) { 1770 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1771 if (err) 1772 return err; 1773 } 1774 1775 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1776 i->state != NID_ALLOC); 1777 nm_i->nid_cnt[list]++; 1778 list_add_tail(&i->list, &nm_i->nid_list[list]); 1779 return 0; 1780 } 1781 1782 static void __remove_nid_from_list(struct f2fs_sb_info *sbi, 1783 struct free_nid *i, enum nid_list list, bool reuse) 1784 { 1785 struct f2fs_nm_info *nm_i = NM_I(sbi); 1786 1787 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1788 i->state != NID_ALLOC); 1789 nm_i->nid_cnt[list]--; 1790 list_del(&i->list); 1791 if (!reuse) 1792 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1793 } 1794 1795 /* return if the nid is recognized as free */ 1796 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1797 { 1798 struct f2fs_nm_info *nm_i = NM_I(sbi); 1799 struct free_nid *i, *e; 1800 struct nat_entry *ne; 1801 int err = -EINVAL; 1802 bool ret = false; 1803 1804 /* 0 nid should not be used */ 1805 if (unlikely(nid == 0)) 1806 return false; 1807 1808 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1809 i->nid = nid; 1810 i->state = NID_NEW; 1811 1812 if (radix_tree_preload(GFP_NOFS)) 1813 goto err; 1814 1815 spin_lock(&nm_i->nid_list_lock); 1816 1817 if (build) { 1818 /* 1819 * Thread A Thread B 1820 * - f2fs_create 1821 * - f2fs_new_inode 1822 * - alloc_nid 1823 * - __insert_nid_to_list(ALLOC_NID_LIST) 1824 * - f2fs_balance_fs_bg 1825 * - build_free_nids 1826 * - __build_free_nids 1827 * - scan_nat_page 1828 * - add_free_nid 1829 * - __lookup_nat_cache 1830 * - f2fs_add_link 1831 * - init_inode_metadata 1832 * - new_inode_page 1833 * - new_node_page 1834 * - set_node_addr 1835 * - alloc_nid_done 1836 * - __remove_nid_from_list(ALLOC_NID_LIST) 1837 * - __insert_nid_to_list(FREE_NID_LIST) 1838 */ 1839 ne = __lookup_nat_cache(nm_i, nid); 1840 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1841 nat_get_blkaddr(ne) != NULL_ADDR)) 1842 goto err_out; 1843 1844 e = __lookup_free_nid_list(nm_i, nid); 1845 if (e) { 1846 if (e->state == NID_NEW) 1847 ret = true; 1848 goto err_out; 1849 } 1850 } 1851 ret = true; 1852 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); 1853 err_out: 1854 spin_unlock(&nm_i->nid_list_lock); 1855 radix_tree_preload_end(); 1856 err: 1857 if (err) 1858 kmem_cache_free(free_nid_slab, i); 1859 return ret; 1860 } 1861 1862 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1863 { 1864 struct f2fs_nm_info *nm_i = NM_I(sbi); 1865 struct free_nid *i; 1866 bool need_free = false; 1867 1868 spin_lock(&nm_i->nid_list_lock); 1869 i = __lookup_free_nid_list(nm_i, nid); 1870 if (i && i->state == NID_NEW) { 1871 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1872 need_free = true; 1873 } 1874 spin_unlock(&nm_i->nid_list_lock); 1875 1876 if (need_free) 1877 kmem_cache_free(free_nid_slab, i); 1878 } 1879 1880 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 1881 bool set, bool build) 1882 { 1883 struct f2fs_nm_info *nm_i = NM_I(sbi); 1884 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1885 unsigned int nid_ofs = nid - START_NID(nid); 1886 1887 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1888 return; 1889 1890 if (set) 1891 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1892 else 1893 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1894 1895 if (set) 1896 nm_i->free_nid_count[nat_ofs]++; 1897 else if (!build) 1898 nm_i->free_nid_count[nat_ofs]--; 1899 } 1900 1901 static void scan_nat_page(struct f2fs_sb_info *sbi, 1902 struct page *nat_page, nid_t start_nid) 1903 { 1904 struct f2fs_nm_info *nm_i = NM_I(sbi); 1905 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1906 block_t blk_addr; 1907 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1908 int i; 1909 1910 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1911 return; 1912 1913 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1914 1915 i = start_nid % NAT_ENTRY_PER_BLOCK; 1916 1917 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1918 bool freed = false; 1919 1920 if (unlikely(start_nid >= nm_i->max_nid)) 1921 break; 1922 1923 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1924 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1925 if (blk_addr == NULL_ADDR) 1926 freed = add_free_nid(sbi, start_nid, true); 1927 spin_lock(&NM_I(sbi)->nid_list_lock); 1928 update_free_nid_bitmap(sbi, start_nid, freed, true); 1929 spin_unlock(&NM_I(sbi)->nid_list_lock); 1930 } 1931 } 1932 1933 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 1934 { 1935 struct f2fs_nm_info *nm_i = NM_I(sbi); 1936 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1937 struct f2fs_journal *journal = curseg->journal; 1938 unsigned int i, idx; 1939 1940 down_read(&nm_i->nat_tree_lock); 1941 1942 for (i = 0; i < nm_i->nat_blocks; i++) { 1943 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 1944 continue; 1945 if (!nm_i->free_nid_count[i]) 1946 continue; 1947 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 1948 nid_t nid; 1949 1950 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i])) 1951 continue; 1952 1953 nid = i * NAT_ENTRY_PER_BLOCK + idx; 1954 add_free_nid(sbi, nid, true); 1955 1956 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS) 1957 goto out; 1958 } 1959 } 1960 out: 1961 down_read(&curseg->journal_rwsem); 1962 for (i = 0; i < nats_in_cursum(journal); i++) { 1963 block_t addr; 1964 nid_t nid; 1965 1966 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1967 nid = le32_to_cpu(nid_in_journal(journal, i)); 1968 if (addr == NULL_ADDR) 1969 add_free_nid(sbi, nid, true); 1970 else 1971 remove_free_nid(sbi, nid); 1972 } 1973 up_read(&curseg->journal_rwsem); 1974 up_read(&nm_i->nat_tree_lock); 1975 } 1976 1977 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 1978 { 1979 struct f2fs_nm_info *nm_i = NM_I(sbi); 1980 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1981 struct f2fs_journal *journal = curseg->journal; 1982 int i = 0; 1983 nid_t nid = nm_i->next_scan_nid; 1984 1985 if (unlikely(nid >= nm_i->max_nid)) 1986 nid = 0; 1987 1988 /* Enough entries */ 1989 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK) 1990 return; 1991 1992 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 1993 return; 1994 1995 if (!mount) { 1996 /* try to find free nids in free_nid_bitmap */ 1997 scan_free_nid_bits(sbi); 1998 1999 if (nm_i->nid_cnt[FREE_NID_LIST]) 2000 return; 2001 } 2002 2003 /* readahead nat pages to be scanned */ 2004 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2005 META_NAT, true); 2006 2007 down_read(&nm_i->nat_tree_lock); 2008 2009 while (1) { 2010 struct page *page = get_current_nat_page(sbi, nid); 2011 2012 scan_nat_page(sbi, page, nid); 2013 f2fs_put_page(page, 1); 2014 2015 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2016 if (unlikely(nid >= nm_i->max_nid)) 2017 nid = 0; 2018 2019 if (++i >= FREE_NID_PAGES) 2020 break; 2021 } 2022 2023 /* go to the next free nat pages to find free nids abundantly */ 2024 nm_i->next_scan_nid = nid; 2025 2026 /* find free nids from current sum_pages */ 2027 down_read(&curseg->journal_rwsem); 2028 for (i = 0; i < nats_in_cursum(journal); i++) { 2029 block_t addr; 2030 2031 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2032 nid = le32_to_cpu(nid_in_journal(journal, i)); 2033 if (addr == NULL_ADDR) 2034 add_free_nid(sbi, nid, true); 2035 else 2036 remove_free_nid(sbi, nid); 2037 } 2038 up_read(&curseg->journal_rwsem); 2039 up_read(&nm_i->nat_tree_lock); 2040 2041 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2042 nm_i->ra_nid_pages, META_NAT, false); 2043 } 2044 2045 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2046 { 2047 mutex_lock(&NM_I(sbi)->build_lock); 2048 __build_free_nids(sbi, sync, mount); 2049 mutex_unlock(&NM_I(sbi)->build_lock); 2050 } 2051 2052 /* 2053 * If this function returns success, caller can obtain a new nid 2054 * from second parameter of this function. 2055 * The returned nid could be used ino as well as nid when inode is created. 2056 */ 2057 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2058 { 2059 struct f2fs_nm_info *nm_i = NM_I(sbi); 2060 struct free_nid *i = NULL; 2061 retry: 2062 #ifdef CONFIG_F2FS_FAULT_INJECTION 2063 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2064 f2fs_show_injection_info(FAULT_ALLOC_NID); 2065 return false; 2066 } 2067 #endif 2068 spin_lock(&nm_i->nid_list_lock); 2069 2070 if (unlikely(nm_i->available_nids == 0)) { 2071 spin_unlock(&nm_i->nid_list_lock); 2072 return false; 2073 } 2074 2075 /* We should not use stale free nids created by build_free_nids */ 2076 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) { 2077 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST])); 2078 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 2079 struct free_nid, list); 2080 *nid = i->nid; 2081 2082 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true); 2083 i->state = NID_ALLOC; 2084 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false); 2085 nm_i->available_nids--; 2086 2087 update_free_nid_bitmap(sbi, *nid, false, false); 2088 2089 spin_unlock(&nm_i->nid_list_lock); 2090 return true; 2091 } 2092 spin_unlock(&nm_i->nid_list_lock); 2093 2094 /* Let's scan nat pages and its caches to get free nids */ 2095 build_free_nids(sbi, true, false); 2096 goto retry; 2097 } 2098 2099 /* 2100 * alloc_nid() should be called prior to this function. 2101 */ 2102 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2103 { 2104 struct f2fs_nm_info *nm_i = NM_I(sbi); 2105 struct free_nid *i; 2106 2107 spin_lock(&nm_i->nid_list_lock); 2108 i = __lookup_free_nid_list(nm_i, nid); 2109 f2fs_bug_on(sbi, !i); 2110 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2111 spin_unlock(&nm_i->nid_list_lock); 2112 2113 kmem_cache_free(free_nid_slab, i); 2114 } 2115 2116 /* 2117 * alloc_nid() should be called prior to this function. 2118 */ 2119 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2120 { 2121 struct f2fs_nm_info *nm_i = NM_I(sbi); 2122 struct free_nid *i; 2123 bool need_free = false; 2124 2125 if (!nid) 2126 return; 2127 2128 spin_lock(&nm_i->nid_list_lock); 2129 i = __lookup_free_nid_list(nm_i, nid); 2130 f2fs_bug_on(sbi, !i); 2131 2132 if (!available_free_memory(sbi, FREE_NIDS)) { 2133 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2134 need_free = true; 2135 } else { 2136 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true); 2137 i->state = NID_NEW; 2138 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false); 2139 } 2140 2141 nm_i->available_nids++; 2142 2143 update_free_nid_bitmap(sbi, nid, true, false); 2144 2145 spin_unlock(&nm_i->nid_list_lock); 2146 2147 if (need_free) 2148 kmem_cache_free(free_nid_slab, i); 2149 } 2150 2151 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2152 { 2153 struct f2fs_nm_info *nm_i = NM_I(sbi); 2154 struct free_nid *i, *next; 2155 int nr = nr_shrink; 2156 2157 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2158 return 0; 2159 2160 if (!mutex_trylock(&nm_i->build_lock)) 2161 return 0; 2162 2163 spin_lock(&nm_i->nid_list_lock); 2164 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST], 2165 list) { 2166 if (nr_shrink <= 0 || 2167 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2168 break; 2169 2170 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2171 kmem_cache_free(free_nid_slab, i); 2172 nr_shrink--; 2173 } 2174 spin_unlock(&nm_i->nid_list_lock); 2175 mutex_unlock(&nm_i->build_lock); 2176 2177 return nr - nr_shrink; 2178 } 2179 2180 void recover_inline_xattr(struct inode *inode, struct page *page) 2181 { 2182 void *src_addr, *dst_addr; 2183 size_t inline_size; 2184 struct page *ipage; 2185 struct f2fs_inode *ri; 2186 2187 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2188 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2189 2190 ri = F2FS_INODE(page); 2191 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 2192 clear_inode_flag(inode, FI_INLINE_XATTR); 2193 goto update_inode; 2194 } 2195 2196 dst_addr = inline_xattr_addr(ipage); 2197 src_addr = inline_xattr_addr(page); 2198 inline_size = inline_xattr_size(inode); 2199 2200 f2fs_wait_on_page_writeback(ipage, NODE, true); 2201 memcpy(dst_addr, src_addr, inline_size); 2202 update_inode: 2203 update_inode(inode, ipage); 2204 f2fs_put_page(ipage, 1); 2205 } 2206 2207 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 2208 { 2209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2210 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2211 nid_t new_xnid; 2212 struct dnode_of_data dn; 2213 struct node_info ni; 2214 struct page *xpage; 2215 2216 if (!prev_xnid) 2217 goto recover_xnid; 2218 2219 /* 1: invalidate the previous xattr nid */ 2220 get_node_info(sbi, prev_xnid, &ni); 2221 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 2222 invalidate_blocks(sbi, ni.blk_addr); 2223 dec_valid_node_count(sbi, inode, false); 2224 set_node_addr(sbi, &ni, NULL_ADDR, false); 2225 2226 recover_xnid: 2227 /* 2: update xattr nid in inode */ 2228 if (!alloc_nid(sbi, &new_xnid)) 2229 return -ENOSPC; 2230 2231 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2232 xpage = new_node_page(&dn, XATTR_NODE_OFFSET); 2233 if (IS_ERR(xpage)) { 2234 alloc_nid_failed(sbi, new_xnid); 2235 return PTR_ERR(xpage); 2236 } 2237 2238 alloc_nid_done(sbi, new_xnid); 2239 update_inode_page(inode); 2240 2241 /* 3: update and set xattr node page dirty */ 2242 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2243 2244 set_page_dirty(xpage); 2245 f2fs_put_page(xpage, 1); 2246 2247 return 0; 2248 } 2249 2250 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2251 { 2252 struct f2fs_inode *src, *dst; 2253 nid_t ino = ino_of_node(page); 2254 struct node_info old_ni, new_ni; 2255 struct page *ipage; 2256 2257 get_node_info(sbi, ino, &old_ni); 2258 2259 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2260 return -EINVAL; 2261 retry: 2262 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2263 if (!ipage) { 2264 congestion_wait(BLK_RW_ASYNC, HZ/50); 2265 goto retry; 2266 } 2267 2268 /* Should not use this inode from free nid list */ 2269 remove_free_nid(sbi, ino); 2270 2271 if (!PageUptodate(ipage)) 2272 SetPageUptodate(ipage); 2273 fill_node_footer(ipage, ino, ino, 0, true); 2274 2275 src = F2FS_INODE(page); 2276 dst = F2FS_INODE(ipage); 2277 2278 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2279 dst->i_size = 0; 2280 dst->i_blocks = cpu_to_le64(1); 2281 dst->i_links = cpu_to_le32(1); 2282 dst->i_xattr_nid = 0; 2283 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2284 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2285 dst->i_extra_isize = src->i_extra_isize; 2286 if (f2fs_sb_has_project_quota(sbi->sb) && 2287 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2288 i_projid)) 2289 dst->i_projid = src->i_projid; 2290 } 2291 2292 new_ni = old_ni; 2293 new_ni.ino = ino; 2294 2295 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2296 WARN_ON(1); 2297 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2298 inc_valid_inode_count(sbi); 2299 set_page_dirty(ipage); 2300 f2fs_put_page(ipage, 1); 2301 return 0; 2302 } 2303 2304 int restore_node_summary(struct f2fs_sb_info *sbi, 2305 unsigned int segno, struct f2fs_summary_block *sum) 2306 { 2307 struct f2fs_node *rn; 2308 struct f2fs_summary *sum_entry; 2309 block_t addr; 2310 int i, idx, last_offset, nrpages; 2311 2312 /* scan the node segment */ 2313 last_offset = sbi->blocks_per_seg; 2314 addr = START_BLOCK(sbi, segno); 2315 sum_entry = &sum->entries[0]; 2316 2317 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2318 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2319 2320 /* readahead node pages */ 2321 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2322 2323 for (idx = addr; idx < addr + nrpages; idx++) { 2324 struct page *page = get_tmp_page(sbi, idx); 2325 2326 rn = F2FS_NODE(page); 2327 sum_entry->nid = rn->footer.nid; 2328 sum_entry->version = 0; 2329 sum_entry->ofs_in_node = 0; 2330 sum_entry++; 2331 f2fs_put_page(page, 1); 2332 } 2333 2334 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2335 addr + nrpages); 2336 } 2337 return 0; 2338 } 2339 2340 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2341 { 2342 struct f2fs_nm_info *nm_i = NM_I(sbi); 2343 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2344 struct f2fs_journal *journal = curseg->journal; 2345 int i; 2346 2347 down_write(&curseg->journal_rwsem); 2348 for (i = 0; i < nats_in_cursum(journal); i++) { 2349 struct nat_entry *ne; 2350 struct f2fs_nat_entry raw_ne; 2351 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2352 2353 raw_ne = nat_in_journal(journal, i); 2354 2355 ne = __lookup_nat_cache(nm_i, nid); 2356 if (!ne) { 2357 ne = grab_nat_entry(nm_i, nid, true); 2358 node_info_from_raw_nat(&ne->ni, &raw_ne); 2359 } 2360 2361 /* 2362 * if a free nat in journal has not been used after last 2363 * checkpoint, we should remove it from available nids, 2364 * since later we will add it again. 2365 */ 2366 if (!get_nat_flag(ne, IS_DIRTY) && 2367 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2368 spin_lock(&nm_i->nid_list_lock); 2369 nm_i->available_nids--; 2370 spin_unlock(&nm_i->nid_list_lock); 2371 } 2372 2373 __set_nat_cache_dirty(nm_i, ne); 2374 } 2375 update_nats_in_cursum(journal, -i); 2376 up_write(&curseg->journal_rwsem); 2377 } 2378 2379 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2380 struct list_head *head, int max) 2381 { 2382 struct nat_entry_set *cur; 2383 2384 if (nes->entry_cnt >= max) 2385 goto add_out; 2386 2387 list_for_each_entry(cur, head, set_list) { 2388 if (cur->entry_cnt >= nes->entry_cnt) { 2389 list_add(&nes->set_list, cur->set_list.prev); 2390 return; 2391 } 2392 } 2393 add_out: 2394 list_add_tail(&nes->set_list, head); 2395 } 2396 2397 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2398 struct page *page) 2399 { 2400 struct f2fs_nm_info *nm_i = NM_I(sbi); 2401 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2402 struct f2fs_nat_block *nat_blk = page_address(page); 2403 int valid = 0; 2404 int i; 2405 2406 if (!enabled_nat_bits(sbi, NULL)) 2407 return; 2408 2409 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { 2410 if (start_nid == 0 && i == 0) 2411 valid++; 2412 if (nat_blk->entries[i].block_addr) 2413 valid++; 2414 } 2415 if (valid == 0) { 2416 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2417 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2418 return; 2419 } 2420 2421 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2422 if (valid == NAT_ENTRY_PER_BLOCK) 2423 __set_bit_le(nat_index, nm_i->full_nat_bits); 2424 else 2425 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2426 } 2427 2428 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2429 struct nat_entry_set *set, struct cp_control *cpc) 2430 { 2431 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2432 struct f2fs_journal *journal = curseg->journal; 2433 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2434 bool to_journal = true; 2435 struct f2fs_nat_block *nat_blk; 2436 struct nat_entry *ne, *cur; 2437 struct page *page = NULL; 2438 2439 /* 2440 * there are two steps to flush nat entries: 2441 * #1, flush nat entries to journal in current hot data summary block. 2442 * #2, flush nat entries to nat page. 2443 */ 2444 if (enabled_nat_bits(sbi, cpc) || 2445 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2446 to_journal = false; 2447 2448 if (to_journal) { 2449 down_write(&curseg->journal_rwsem); 2450 } else { 2451 page = get_next_nat_page(sbi, start_nid); 2452 nat_blk = page_address(page); 2453 f2fs_bug_on(sbi, !nat_blk); 2454 } 2455 2456 /* flush dirty nats in nat entry set */ 2457 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2458 struct f2fs_nat_entry *raw_ne; 2459 nid_t nid = nat_get_nid(ne); 2460 int offset; 2461 2462 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2463 2464 if (to_journal) { 2465 offset = lookup_journal_in_cursum(journal, 2466 NAT_JOURNAL, nid, 1); 2467 f2fs_bug_on(sbi, offset < 0); 2468 raw_ne = &nat_in_journal(journal, offset); 2469 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2470 } else { 2471 raw_ne = &nat_blk->entries[nid - start_nid]; 2472 } 2473 raw_nat_from_node_info(raw_ne, &ne->ni); 2474 nat_reset_flag(ne); 2475 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2476 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2477 add_free_nid(sbi, nid, false); 2478 spin_lock(&NM_I(sbi)->nid_list_lock); 2479 NM_I(sbi)->available_nids++; 2480 update_free_nid_bitmap(sbi, nid, true, false); 2481 spin_unlock(&NM_I(sbi)->nid_list_lock); 2482 } else { 2483 spin_lock(&NM_I(sbi)->nid_list_lock); 2484 update_free_nid_bitmap(sbi, nid, false, false); 2485 spin_unlock(&NM_I(sbi)->nid_list_lock); 2486 } 2487 } 2488 2489 if (to_journal) { 2490 up_write(&curseg->journal_rwsem); 2491 } else { 2492 __update_nat_bits(sbi, start_nid, page); 2493 f2fs_put_page(page, 1); 2494 } 2495 2496 /* Allow dirty nats by node block allocation in write_begin */ 2497 if (!set->entry_cnt) { 2498 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2499 kmem_cache_free(nat_entry_set_slab, set); 2500 } 2501 } 2502 2503 /* 2504 * This function is called during the checkpointing process. 2505 */ 2506 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2507 { 2508 struct f2fs_nm_info *nm_i = NM_I(sbi); 2509 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2510 struct f2fs_journal *journal = curseg->journal; 2511 struct nat_entry_set *setvec[SETVEC_SIZE]; 2512 struct nat_entry_set *set, *tmp; 2513 unsigned int found; 2514 nid_t set_idx = 0; 2515 LIST_HEAD(sets); 2516 2517 if (!nm_i->dirty_nat_cnt) 2518 return; 2519 2520 down_write(&nm_i->nat_tree_lock); 2521 2522 /* 2523 * if there are no enough space in journal to store dirty nat 2524 * entries, remove all entries from journal and merge them 2525 * into nat entry set. 2526 */ 2527 if (enabled_nat_bits(sbi, cpc) || 2528 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2529 remove_nats_in_journal(sbi); 2530 2531 while ((found = __gang_lookup_nat_set(nm_i, 2532 set_idx, SETVEC_SIZE, setvec))) { 2533 unsigned idx; 2534 set_idx = setvec[found - 1]->set + 1; 2535 for (idx = 0; idx < found; idx++) 2536 __adjust_nat_entry_set(setvec[idx], &sets, 2537 MAX_NAT_JENTRIES(journal)); 2538 } 2539 2540 /* flush dirty nats in nat entry set */ 2541 list_for_each_entry_safe(set, tmp, &sets, set_list) 2542 __flush_nat_entry_set(sbi, set, cpc); 2543 2544 up_write(&nm_i->nat_tree_lock); 2545 /* Allow dirty nats by node block allocation in write_begin */ 2546 } 2547 2548 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2549 { 2550 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2551 struct f2fs_nm_info *nm_i = NM_I(sbi); 2552 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2553 unsigned int i; 2554 __u64 cp_ver = cur_cp_version(ckpt); 2555 block_t nat_bits_addr; 2556 2557 if (!enabled_nat_bits(sbi, NULL)) 2558 return 0; 2559 2560 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + 2561 F2FS_BLKSIZE - 1); 2562 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, 2563 GFP_KERNEL); 2564 if (!nm_i->nat_bits) 2565 return -ENOMEM; 2566 2567 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2568 nm_i->nat_bits_blocks; 2569 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2570 struct page *page = get_meta_page(sbi, nat_bits_addr++); 2571 2572 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2573 page_address(page), F2FS_BLKSIZE); 2574 f2fs_put_page(page, 1); 2575 } 2576 2577 cp_ver |= (cur_cp_crc(ckpt) << 32); 2578 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2579 disable_nat_bits(sbi, true); 2580 return 0; 2581 } 2582 2583 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2584 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2585 2586 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2587 return 0; 2588 } 2589 2590 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2591 { 2592 struct f2fs_nm_info *nm_i = NM_I(sbi); 2593 unsigned int i = 0; 2594 nid_t nid, last_nid; 2595 2596 if (!enabled_nat_bits(sbi, NULL)) 2597 return; 2598 2599 for (i = 0; i < nm_i->nat_blocks; i++) { 2600 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2601 if (i >= nm_i->nat_blocks) 2602 break; 2603 2604 __set_bit_le(i, nm_i->nat_block_bitmap); 2605 2606 nid = i * NAT_ENTRY_PER_BLOCK; 2607 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK; 2608 2609 spin_lock(&NM_I(sbi)->nid_list_lock); 2610 for (; nid < last_nid; nid++) 2611 update_free_nid_bitmap(sbi, nid, true, true); 2612 spin_unlock(&NM_I(sbi)->nid_list_lock); 2613 } 2614 2615 for (i = 0; i < nm_i->nat_blocks; i++) { 2616 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2617 if (i >= nm_i->nat_blocks) 2618 break; 2619 2620 __set_bit_le(i, nm_i->nat_block_bitmap); 2621 } 2622 } 2623 2624 static int init_node_manager(struct f2fs_sb_info *sbi) 2625 { 2626 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2627 struct f2fs_nm_info *nm_i = NM_I(sbi); 2628 unsigned char *version_bitmap; 2629 unsigned int nat_segs; 2630 int err; 2631 2632 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2633 2634 /* segment_count_nat includes pair segment so divide to 2. */ 2635 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2636 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2637 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2638 2639 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2640 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2641 F2FS_RESERVED_NODE_NUM; 2642 nm_i->nid_cnt[FREE_NID_LIST] = 0; 2643 nm_i->nid_cnt[ALLOC_NID_LIST] = 0; 2644 nm_i->nat_cnt = 0; 2645 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2646 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2647 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2648 2649 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2650 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]); 2651 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]); 2652 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2653 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2654 INIT_LIST_HEAD(&nm_i->nat_entries); 2655 2656 mutex_init(&nm_i->build_lock); 2657 spin_lock_init(&nm_i->nid_list_lock); 2658 init_rwsem(&nm_i->nat_tree_lock); 2659 2660 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2661 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2662 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2663 if (!version_bitmap) 2664 return -EFAULT; 2665 2666 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2667 GFP_KERNEL); 2668 if (!nm_i->nat_bitmap) 2669 return -ENOMEM; 2670 2671 err = __get_nat_bitmaps(sbi); 2672 if (err) 2673 return err; 2674 2675 #ifdef CONFIG_F2FS_CHECK_FS 2676 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2677 GFP_KERNEL); 2678 if (!nm_i->nat_bitmap_mir) 2679 return -ENOMEM; 2680 #endif 2681 2682 return 0; 2683 } 2684 2685 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2686 { 2687 struct f2fs_nm_info *nm_i = NM_I(sbi); 2688 2689 nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks * 2690 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL); 2691 if (!nm_i->free_nid_bitmap) 2692 return -ENOMEM; 2693 2694 nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8, 2695 GFP_KERNEL); 2696 if (!nm_i->nat_block_bitmap) 2697 return -ENOMEM; 2698 2699 nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks * 2700 sizeof(unsigned short), GFP_KERNEL); 2701 if (!nm_i->free_nid_count) 2702 return -ENOMEM; 2703 return 0; 2704 } 2705 2706 int build_node_manager(struct f2fs_sb_info *sbi) 2707 { 2708 int err; 2709 2710 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2711 if (!sbi->nm_info) 2712 return -ENOMEM; 2713 2714 err = init_node_manager(sbi); 2715 if (err) 2716 return err; 2717 2718 err = init_free_nid_cache(sbi); 2719 if (err) 2720 return err; 2721 2722 /* load free nid status from nat_bits table */ 2723 load_free_nid_bitmap(sbi); 2724 2725 build_free_nids(sbi, true, true); 2726 return 0; 2727 } 2728 2729 void destroy_node_manager(struct f2fs_sb_info *sbi) 2730 { 2731 struct f2fs_nm_info *nm_i = NM_I(sbi); 2732 struct free_nid *i, *next_i; 2733 struct nat_entry *natvec[NATVEC_SIZE]; 2734 struct nat_entry_set *setvec[SETVEC_SIZE]; 2735 nid_t nid = 0; 2736 unsigned int found; 2737 2738 if (!nm_i) 2739 return; 2740 2741 /* destroy free nid list */ 2742 spin_lock(&nm_i->nid_list_lock); 2743 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST], 2744 list) { 2745 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2746 spin_unlock(&nm_i->nid_list_lock); 2747 kmem_cache_free(free_nid_slab, i); 2748 spin_lock(&nm_i->nid_list_lock); 2749 } 2750 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]); 2751 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]); 2752 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST])); 2753 spin_unlock(&nm_i->nid_list_lock); 2754 2755 /* destroy nat cache */ 2756 down_write(&nm_i->nat_tree_lock); 2757 while ((found = __gang_lookup_nat_cache(nm_i, 2758 nid, NATVEC_SIZE, natvec))) { 2759 unsigned idx; 2760 2761 nid = nat_get_nid(natvec[found - 1]) + 1; 2762 for (idx = 0; idx < found; idx++) 2763 __del_from_nat_cache(nm_i, natvec[idx]); 2764 } 2765 f2fs_bug_on(sbi, nm_i->nat_cnt); 2766 2767 /* destroy nat set cache */ 2768 nid = 0; 2769 while ((found = __gang_lookup_nat_set(nm_i, 2770 nid, SETVEC_SIZE, setvec))) { 2771 unsigned idx; 2772 2773 nid = setvec[found - 1]->set + 1; 2774 for (idx = 0; idx < found; idx++) { 2775 /* entry_cnt is not zero, when cp_error was occurred */ 2776 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2777 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2778 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2779 } 2780 } 2781 up_write(&nm_i->nat_tree_lock); 2782 2783 kvfree(nm_i->nat_block_bitmap); 2784 kvfree(nm_i->free_nid_bitmap); 2785 kvfree(nm_i->free_nid_count); 2786 2787 kfree(nm_i->nat_bitmap); 2788 kfree(nm_i->nat_bits); 2789 #ifdef CONFIG_F2FS_CHECK_FS 2790 kfree(nm_i->nat_bitmap_mir); 2791 #endif 2792 sbi->nm_info = NULL; 2793 kfree(nm_i); 2794 } 2795 2796 int __init create_node_manager_caches(void) 2797 { 2798 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2799 sizeof(struct nat_entry)); 2800 if (!nat_entry_slab) 2801 goto fail; 2802 2803 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2804 sizeof(struct free_nid)); 2805 if (!free_nid_slab) 2806 goto destroy_nat_entry; 2807 2808 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2809 sizeof(struct nat_entry_set)); 2810 if (!nat_entry_set_slab) 2811 goto destroy_free_nid; 2812 return 0; 2813 2814 destroy_free_nid: 2815 kmem_cache_destroy(free_nid_slab); 2816 destroy_nat_entry: 2817 kmem_cache_destroy(nat_entry_slab); 2818 fail: 2819 return -ENOMEM; 2820 } 2821 2822 void destroy_node_manager_caches(void) 2823 { 2824 kmem_cache_destroy(nat_entry_set_slab); 2825 kmem_cache_destroy(free_nid_slab); 2826 kmem_cache_destroy(nat_entry_slab); 2827 } 2828