xref: /openbmc/linux/fs/f2fs/node.c (revision 7211ec63)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27 
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31 
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34 	struct f2fs_nm_info *nm_i = NM_I(sbi);
35 	struct sysinfo val;
36 	unsigned long avail_ram;
37 	unsigned long mem_size = 0;
38 	bool res = false;
39 
40 	si_meminfo(&val);
41 
42 	/* only uses low memory */
43 	avail_ram = val.totalram - val.totalhigh;
44 
45 	/*
46 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 	 */
48 	if (type == FREE_NIDS) {
49 		mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
50 				sizeof(struct free_nid)) >> PAGE_SHIFT;
51 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 	} else if (type == NAT_ENTRIES) {
53 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 							PAGE_SHIFT;
55 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 		if (excess_cached_nats(sbi))
57 			res = false;
58 	} else if (type == DIRTY_DENTS) {
59 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 			return false;
61 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 	} else if (type == INO_ENTRIES) {
64 		int i;
65 
66 		for (i = 0; i <= UPDATE_INO; i++)
67 			mem_size += sbi->im[i].ino_num *
68 						sizeof(struct ino_entry);
69 		mem_size >>= PAGE_SHIFT;
70 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 	} else if (type == EXTENT_CACHE) {
72 		mem_size = (atomic_read(&sbi->total_ext_tree) *
73 				sizeof(struct extent_tree) +
74 				atomic_read(&sbi->total_ext_node) *
75 				sizeof(struct extent_node)) >> PAGE_SHIFT;
76 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 	} else {
78 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
79 			return true;
80 	}
81 	return res;
82 }
83 
84 static void clear_node_page_dirty(struct page *page)
85 {
86 	struct address_space *mapping = page->mapping;
87 	unsigned int long flags;
88 
89 	if (PageDirty(page)) {
90 		spin_lock_irqsave(&mapping->tree_lock, flags);
91 		radix_tree_tag_clear(&mapping->page_tree,
92 				page_index(page),
93 				PAGECACHE_TAG_DIRTY);
94 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
95 
96 		clear_page_dirty_for_io(page);
97 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
98 	}
99 	ClearPageUptodate(page);
100 }
101 
102 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
103 {
104 	pgoff_t index = current_nat_addr(sbi, nid);
105 	return get_meta_page(sbi, index);
106 }
107 
108 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
109 {
110 	struct page *src_page;
111 	struct page *dst_page;
112 	pgoff_t src_off;
113 	pgoff_t dst_off;
114 	void *src_addr;
115 	void *dst_addr;
116 	struct f2fs_nm_info *nm_i = NM_I(sbi);
117 
118 	src_off = current_nat_addr(sbi, nid);
119 	dst_off = next_nat_addr(sbi, src_off);
120 
121 	/* get current nat block page with lock */
122 	src_page = get_meta_page(sbi, src_off);
123 	dst_page = grab_meta_page(sbi, dst_off);
124 	f2fs_bug_on(sbi, PageDirty(src_page));
125 
126 	src_addr = page_address(src_page);
127 	dst_addr = page_address(dst_page);
128 	memcpy(dst_addr, src_addr, PAGE_SIZE);
129 	set_page_dirty(dst_page);
130 	f2fs_put_page(src_page, 1);
131 
132 	set_to_next_nat(nm_i, nid);
133 
134 	return dst_page;
135 }
136 
137 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
138 {
139 	return radix_tree_lookup(&nm_i->nat_root, n);
140 }
141 
142 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
143 		nid_t start, unsigned int nr, struct nat_entry **ep)
144 {
145 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
146 }
147 
148 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
149 {
150 	list_del(&e->list);
151 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
152 	nm_i->nat_cnt--;
153 	kmem_cache_free(nat_entry_slab, e);
154 }
155 
156 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
157 						struct nat_entry *ne)
158 {
159 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
160 	struct nat_entry_set *head;
161 
162 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
163 	if (!head) {
164 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
165 
166 		INIT_LIST_HEAD(&head->entry_list);
167 		INIT_LIST_HEAD(&head->set_list);
168 		head->set = set;
169 		head->entry_cnt = 0;
170 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
171 	}
172 
173 	if (get_nat_flag(ne, IS_DIRTY))
174 		goto refresh_list;
175 
176 	nm_i->dirty_nat_cnt++;
177 	head->entry_cnt++;
178 	set_nat_flag(ne, IS_DIRTY, true);
179 refresh_list:
180 	if (nat_get_blkaddr(ne) == NEW_ADDR)
181 		list_del_init(&ne->list);
182 	else
183 		list_move_tail(&ne->list, &head->entry_list);
184 }
185 
186 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
187 		struct nat_entry_set *set, struct nat_entry *ne)
188 {
189 	list_move_tail(&ne->list, &nm_i->nat_entries);
190 	set_nat_flag(ne, IS_DIRTY, false);
191 	set->entry_cnt--;
192 	nm_i->dirty_nat_cnt--;
193 }
194 
195 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
196 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
197 {
198 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
199 							start, nr);
200 }
201 
202 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
203 {
204 	struct f2fs_nm_info *nm_i = NM_I(sbi);
205 	struct nat_entry *e;
206 	bool need = false;
207 
208 	down_read(&nm_i->nat_tree_lock);
209 	e = __lookup_nat_cache(nm_i, nid);
210 	if (e) {
211 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
212 				!get_nat_flag(e, HAS_FSYNCED_INODE))
213 			need = true;
214 	}
215 	up_read(&nm_i->nat_tree_lock);
216 	return need;
217 }
218 
219 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
220 {
221 	struct f2fs_nm_info *nm_i = NM_I(sbi);
222 	struct nat_entry *e;
223 	bool is_cp = true;
224 
225 	down_read(&nm_i->nat_tree_lock);
226 	e = __lookup_nat_cache(nm_i, nid);
227 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
228 		is_cp = false;
229 	up_read(&nm_i->nat_tree_lock);
230 	return is_cp;
231 }
232 
233 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
234 {
235 	struct f2fs_nm_info *nm_i = NM_I(sbi);
236 	struct nat_entry *e;
237 	bool need_update = true;
238 
239 	down_read(&nm_i->nat_tree_lock);
240 	e = __lookup_nat_cache(nm_i, ino);
241 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
242 			(get_nat_flag(e, IS_CHECKPOINTED) ||
243 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
244 		need_update = false;
245 	up_read(&nm_i->nat_tree_lock);
246 	return need_update;
247 }
248 
249 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
250 								bool no_fail)
251 {
252 	struct nat_entry *new;
253 
254 	if (no_fail) {
255 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
256 		f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
257 	} else {
258 		new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
259 		if (!new)
260 			return NULL;
261 		if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
262 			kmem_cache_free(nat_entry_slab, new);
263 			return NULL;
264 		}
265 	}
266 
267 	memset(new, 0, sizeof(struct nat_entry));
268 	nat_set_nid(new, nid);
269 	nat_reset_flag(new);
270 	list_add_tail(&new->list, &nm_i->nat_entries);
271 	nm_i->nat_cnt++;
272 	return new;
273 }
274 
275 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
276 						struct f2fs_nat_entry *ne)
277 {
278 	struct f2fs_nm_info *nm_i = NM_I(sbi);
279 	struct nat_entry *e;
280 
281 	e = __lookup_nat_cache(nm_i, nid);
282 	if (!e) {
283 		e = grab_nat_entry(nm_i, nid, false);
284 		if (e)
285 			node_info_from_raw_nat(&e->ni, ne);
286 	} else {
287 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
288 				nat_get_blkaddr(e) !=
289 					le32_to_cpu(ne->block_addr) ||
290 				nat_get_version(e) != ne->version);
291 	}
292 }
293 
294 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
295 			block_t new_blkaddr, bool fsync_done)
296 {
297 	struct f2fs_nm_info *nm_i = NM_I(sbi);
298 	struct nat_entry *e;
299 
300 	down_write(&nm_i->nat_tree_lock);
301 	e = __lookup_nat_cache(nm_i, ni->nid);
302 	if (!e) {
303 		e = grab_nat_entry(nm_i, ni->nid, true);
304 		copy_node_info(&e->ni, ni);
305 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
306 	} else if (new_blkaddr == NEW_ADDR) {
307 		/*
308 		 * when nid is reallocated,
309 		 * previous nat entry can be remained in nat cache.
310 		 * So, reinitialize it with new information.
311 		 */
312 		copy_node_info(&e->ni, ni);
313 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
314 	}
315 
316 	/* sanity check */
317 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
318 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
319 			new_blkaddr == NULL_ADDR);
320 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
321 			new_blkaddr == NEW_ADDR);
322 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
323 			nat_get_blkaddr(e) != NULL_ADDR &&
324 			new_blkaddr == NEW_ADDR);
325 
326 	/* increment version no as node is removed */
327 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
328 		unsigned char version = nat_get_version(e);
329 		nat_set_version(e, inc_node_version(version));
330 
331 		/* in order to reuse the nid */
332 		if (nm_i->next_scan_nid > ni->nid)
333 			nm_i->next_scan_nid = ni->nid;
334 	}
335 
336 	/* change address */
337 	nat_set_blkaddr(e, new_blkaddr);
338 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
339 		set_nat_flag(e, IS_CHECKPOINTED, false);
340 	__set_nat_cache_dirty(nm_i, e);
341 
342 	/* update fsync_mark if its inode nat entry is still alive */
343 	if (ni->nid != ni->ino)
344 		e = __lookup_nat_cache(nm_i, ni->ino);
345 	if (e) {
346 		if (fsync_done && ni->nid == ni->ino)
347 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
348 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
349 	}
350 	up_write(&nm_i->nat_tree_lock);
351 }
352 
353 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
354 {
355 	struct f2fs_nm_info *nm_i = NM_I(sbi);
356 	int nr = nr_shrink;
357 
358 	if (!down_write_trylock(&nm_i->nat_tree_lock))
359 		return 0;
360 
361 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
362 		struct nat_entry *ne;
363 		ne = list_first_entry(&nm_i->nat_entries,
364 					struct nat_entry, list);
365 		__del_from_nat_cache(nm_i, ne);
366 		nr_shrink--;
367 	}
368 	up_write(&nm_i->nat_tree_lock);
369 	return nr - nr_shrink;
370 }
371 
372 /*
373  * This function always returns success
374  */
375 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
376 {
377 	struct f2fs_nm_info *nm_i = NM_I(sbi);
378 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
379 	struct f2fs_journal *journal = curseg->journal;
380 	nid_t start_nid = START_NID(nid);
381 	struct f2fs_nat_block *nat_blk;
382 	struct page *page = NULL;
383 	struct f2fs_nat_entry ne;
384 	struct nat_entry *e;
385 	pgoff_t index;
386 	int i;
387 
388 	ni->nid = nid;
389 
390 	/* Check nat cache */
391 	down_read(&nm_i->nat_tree_lock);
392 	e = __lookup_nat_cache(nm_i, nid);
393 	if (e) {
394 		ni->ino = nat_get_ino(e);
395 		ni->blk_addr = nat_get_blkaddr(e);
396 		ni->version = nat_get_version(e);
397 		up_read(&nm_i->nat_tree_lock);
398 		return;
399 	}
400 
401 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
402 
403 	/* Check current segment summary */
404 	down_read(&curseg->journal_rwsem);
405 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
406 	if (i >= 0) {
407 		ne = nat_in_journal(journal, i);
408 		node_info_from_raw_nat(ni, &ne);
409 	}
410 	up_read(&curseg->journal_rwsem);
411 	if (i >= 0) {
412 		up_read(&nm_i->nat_tree_lock);
413 		goto cache;
414 	}
415 
416 	/* Fill node_info from nat page */
417 	index = current_nat_addr(sbi, nid);
418 	up_read(&nm_i->nat_tree_lock);
419 
420 	page = get_meta_page(sbi, index);
421 	nat_blk = (struct f2fs_nat_block *)page_address(page);
422 	ne = nat_blk->entries[nid - start_nid];
423 	node_info_from_raw_nat(ni, &ne);
424 	f2fs_put_page(page, 1);
425 cache:
426 	/* cache nat entry */
427 	down_write(&nm_i->nat_tree_lock);
428 	cache_nat_entry(sbi, nid, &ne);
429 	up_write(&nm_i->nat_tree_lock);
430 }
431 
432 /*
433  * readahead MAX_RA_NODE number of node pages.
434  */
435 static void ra_node_pages(struct page *parent, int start, int n)
436 {
437 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
438 	struct blk_plug plug;
439 	int i, end;
440 	nid_t nid;
441 
442 	blk_start_plug(&plug);
443 
444 	/* Then, try readahead for siblings of the desired node */
445 	end = start + n;
446 	end = min(end, NIDS_PER_BLOCK);
447 	for (i = start; i < end; i++) {
448 		nid = get_nid(parent, i, false);
449 		ra_node_page(sbi, nid);
450 	}
451 
452 	blk_finish_plug(&plug);
453 }
454 
455 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
456 {
457 	const long direct_index = ADDRS_PER_INODE(dn->inode);
458 	const long direct_blks = ADDRS_PER_BLOCK;
459 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
460 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
461 	int cur_level = dn->cur_level;
462 	int max_level = dn->max_level;
463 	pgoff_t base = 0;
464 
465 	if (!dn->max_level)
466 		return pgofs + 1;
467 
468 	while (max_level-- > cur_level)
469 		skipped_unit *= NIDS_PER_BLOCK;
470 
471 	switch (dn->max_level) {
472 	case 3:
473 		base += 2 * indirect_blks;
474 	case 2:
475 		base += 2 * direct_blks;
476 	case 1:
477 		base += direct_index;
478 		break;
479 	default:
480 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
481 	}
482 
483 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
484 }
485 
486 /*
487  * The maximum depth is four.
488  * Offset[0] will have raw inode offset.
489  */
490 static int get_node_path(struct inode *inode, long block,
491 				int offset[4], unsigned int noffset[4])
492 {
493 	const long direct_index = ADDRS_PER_INODE(inode);
494 	const long direct_blks = ADDRS_PER_BLOCK;
495 	const long dptrs_per_blk = NIDS_PER_BLOCK;
496 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
497 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
498 	int n = 0;
499 	int level = 0;
500 
501 	noffset[0] = 0;
502 
503 	if (block < direct_index) {
504 		offset[n] = block;
505 		goto got;
506 	}
507 	block -= direct_index;
508 	if (block < direct_blks) {
509 		offset[n++] = NODE_DIR1_BLOCK;
510 		noffset[n] = 1;
511 		offset[n] = block;
512 		level = 1;
513 		goto got;
514 	}
515 	block -= direct_blks;
516 	if (block < direct_blks) {
517 		offset[n++] = NODE_DIR2_BLOCK;
518 		noffset[n] = 2;
519 		offset[n] = block;
520 		level = 1;
521 		goto got;
522 	}
523 	block -= direct_blks;
524 	if (block < indirect_blks) {
525 		offset[n++] = NODE_IND1_BLOCK;
526 		noffset[n] = 3;
527 		offset[n++] = block / direct_blks;
528 		noffset[n] = 4 + offset[n - 1];
529 		offset[n] = block % direct_blks;
530 		level = 2;
531 		goto got;
532 	}
533 	block -= indirect_blks;
534 	if (block < indirect_blks) {
535 		offset[n++] = NODE_IND2_BLOCK;
536 		noffset[n] = 4 + dptrs_per_blk;
537 		offset[n++] = block / direct_blks;
538 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
539 		offset[n] = block % direct_blks;
540 		level = 2;
541 		goto got;
542 	}
543 	block -= indirect_blks;
544 	if (block < dindirect_blks) {
545 		offset[n++] = NODE_DIND_BLOCK;
546 		noffset[n] = 5 + (dptrs_per_blk * 2);
547 		offset[n++] = block / indirect_blks;
548 		noffset[n] = 6 + (dptrs_per_blk * 2) +
549 			      offset[n - 1] * (dptrs_per_blk + 1);
550 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
551 		noffset[n] = 7 + (dptrs_per_blk * 2) +
552 			      offset[n - 2] * (dptrs_per_blk + 1) +
553 			      offset[n - 1];
554 		offset[n] = block % direct_blks;
555 		level = 3;
556 		goto got;
557 	} else {
558 		return -E2BIG;
559 	}
560 got:
561 	return level;
562 }
563 
564 /*
565  * Caller should call f2fs_put_dnode(dn).
566  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
567  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
568  * In the case of RDONLY_NODE, we don't need to care about mutex.
569  */
570 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
571 {
572 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
573 	struct page *npage[4];
574 	struct page *parent = NULL;
575 	int offset[4];
576 	unsigned int noffset[4];
577 	nid_t nids[4];
578 	int level, i = 0;
579 	int err = 0;
580 
581 	level = get_node_path(dn->inode, index, offset, noffset);
582 	if (level < 0)
583 		return level;
584 
585 	nids[0] = dn->inode->i_ino;
586 	npage[0] = dn->inode_page;
587 
588 	if (!npage[0]) {
589 		npage[0] = get_node_page(sbi, nids[0]);
590 		if (IS_ERR(npage[0]))
591 			return PTR_ERR(npage[0]);
592 	}
593 
594 	/* if inline_data is set, should not report any block indices */
595 	if (f2fs_has_inline_data(dn->inode) && index) {
596 		err = -ENOENT;
597 		f2fs_put_page(npage[0], 1);
598 		goto release_out;
599 	}
600 
601 	parent = npage[0];
602 	if (level != 0)
603 		nids[1] = get_nid(parent, offset[0], true);
604 	dn->inode_page = npage[0];
605 	dn->inode_page_locked = true;
606 
607 	/* get indirect or direct nodes */
608 	for (i = 1; i <= level; i++) {
609 		bool done = false;
610 
611 		if (!nids[i] && mode == ALLOC_NODE) {
612 			/* alloc new node */
613 			if (!alloc_nid(sbi, &(nids[i]))) {
614 				err = -ENOSPC;
615 				goto release_pages;
616 			}
617 
618 			dn->nid = nids[i];
619 			npage[i] = new_node_page(dn, noffset[i]);
620 			if (IS_ERR(npage[i])) {
621 				alloc_nid_failed(sbi, nids[i]);
622 				err = PTR_ERR(npage[i]);
623 				goto release_pages;
624 			}
625 
626 			set_nid(parent, offset[i - 1], nids[i], i == 1);
627 			alloc_nid_done(sbi, nids[i]);
628 			done = true;
629 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
630 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
631 			if (IS_ERR(npage[i])) {
632 				err = PTR_ERR(npage[i]);
633 				goto release_pages;
634 			}
635 			done = true;
636 		}
637 		if (i == 1) {
638 			dn->inode_page_locked = false;
639 			unlock_page(parent);
640 		} else {
641 			f2fs_put_page(parent, 1);
642 		}
643 
644 		if (!done) {
645 			npage[i] = get_node_page(sbi, nids[i]);
646 			if (IS_ERR(npage[i])) {
647 				err = PTR_ERR(npage[i]);
648 				f2fs_put_page(npage[0], 0);
649 				goto release_out;
650 			}
651 		}
652 		if (i < level) {
653 			parent = npage[i];
654 			nids[i + 1] = get_nid(parent, offset[i], false);
655 		}
656 	}
657 	dn->nid = nids[level];
658 	dn->ofs_in_node = offset[level];
659 	dn->node_page = npage[level];
660 	dn->data_blkaddr = datablock_addr(dn->inode,
661 				dn->node_page, dn->ofs_in_node);
662 	return 0;
663 
664 release_pages:
665 	f2fs_put_page(parent, 1);
666 	if (i > 1)
667 		f2fs_put_page(npage[0], 0);
668 release_out:
669 	dn->inode_page = NULL;
670 	dn->node_page = NULL;
671 	if (err == -ENOENT) {
672 		dn->cur_level = i;
673 		dn->max_level = level;
674 		dn->ofs_in_node = offset[level];
675 	}
676 	return err;
677 }
678 
679 static void truncate_node(struct dnode_of_data *dn)
680 {
681 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
682 	struct node_info ni;
683 
684 	get_node_info(sbi, dn->nid, &ni);
685 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
686 
687 	/* Deallocate node address */
688 	invalidate_blocks(sbi, ni.blk_addr);
689 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
690 	set_node_addr(sbi, &ni, NULL_ADDR, false);
691 
692 	if (dn->nid == dn->inode->i_ino) {
693 		remove_orphan_inode(sbi, dn->nid);
694 		dec_valid_inode_count(sbi);
695 		f2fs_inode_synced(dn->inode);
696 	}
697 
698 	clear_node_page_dirty(dn->node_page);
699 	set_sbi_flag(sbi, SBI_IS_DIRTY);
700 
701 	f2fs_put_page(dn->node_page, 1);
702 
703 	invalidate_mapping_pages(NODE_MAPPING(sbi),
704 			dn->node_page->index, dn->node_page->index);
705 
706 	dn->node_page = NULL;
707 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
708 }
709 
710 static int truncate_dnode(struct dnode_of_data *dn)
711 {
712 	struct page *page;
713 
714 	if (dn->nid == 0)
715 		return 1;
716 
717 	/* get direct node */
718 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
719 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
720 		return 1;
721 	else if (IS_ERR(page))
722 		return PTR_ERR(page);
723 
724 	/* Make dnode_of_data for parameter */
725 	dn->node_page = page;
726 	dn->ofs_in_node = 0;
727 	truncate_data_blocks(dn);
728 	truncate_node(dn);
729 	return 1;
730 }
731 
732 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
733 						int ofs, int depth)
734 {
735 	struct dnode_of_data rdn = *dn;
736 	struct page *page;
737 	struct f2fs_node *rn;
738 	nid_t child_nid;
739 	unsigned int child_nofs;
740 	int freed = 0;
741 	int i, ret;
742 
743 	if (dn->nid == 0)
744 		return NIDS_PER_BLOCK + 1;
745 
746 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
747 
748 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
749 	if (IS_ERR(page)) {
750 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
751 		return PTR_ERR(page);
752 	}
753 
754 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
755 
756 	rn = F2FS_NODE(page);
757 	if (depth < 3) {
758 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
759 			child_nid = le32_to_cpu(rn->in.nid[i]);
760 			if (child_nid == 0)
761 				continue;
762 			rdn.nid = child_nid;
763 			ret = truncate_dnode(&rdn);
764 			if (ret < 0)
765 				goto out_err;
766 			if (set_nid(page, i, 0, false))
767 				dn->node_changed = true;
768 		}
769 	} else {
770 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
771 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
772 			child_nid = le32_to_cpu(rn->in.nid[i]);
773 			if (child_nid == 0) {
774 				child_nofs += NIDS_PER_BLOCK + 1;
775 				continue;
776 			}
777 			rdn.nid = child_nid;
778 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
779 			if (ret == (NIDS_PER_BLOCK + 1)) {
780 				if (set_nid(page, i, 0, false))
781 					dn->node_changed = true;
782 				child_nofs += ret;
783 			} else if (ret < 0 && ret != -ENOENT) {
784 				goto out_err;
785 			}
786 		}
787 		freed = child_nofs;
788 	}
789 
790 	if (!ofs) {
791 		/* remove current indirect node */
792 		dn->node_page = page;
793 		truncate_node(dn);
794 		freed++;
795 	} else {
796 		f2fs_put_page(page, 1);
797 	}
798 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
799 	return freed;
800 
801 out_err:
802 	f2fs_put_page(page, 1);
803 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
804 	return ret;
805 }
806 
807 static int truncate_partial_nodes(struct dnode_of_data *dn,
808 			struct f2fs_inode *ri, int *offset, int depth)
809 {
810 	struct page *pages[2];
811 	nid_t nid[3];
812 	nid_t child_nid;
813 	int err = 0;
814 	int i;
815 	int idx = depth - 2;
816 
817 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
818 	if (!nid[0])
819 		return 0;
820 
821 	/* get indirect nodes in the path */
822 	for (i = 0; i < idx + 1; i++) {
823 		/* reference count'll be increased */
824 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
825 		if (IS_ERR(pages[i])) {
826 			err = PTR_ERR(pages[i]);
827 			idx = i - 1;
828 			goto fail;
829 		}
830 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
831 	}
832 
833 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
834 
835 	/* free direct nodes linked to a partial indirect node */
836 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
837 		child_nid = get_nid(pages[idx], i, false);
838 		if (!child_nid)
839 			continue;
840 		dn->nid = child_nid;
841 		err = truncate_dnode(dn);
842 		if (err < 0)
843 			goto fail;
844 		if (set_nid(pages[idx], i, 0, false))
845 			dn->node_changed = true;
846 	}
847 
848 	if (offset[idx + 1] == 0) {
849 		dn->node_page = pages[idx];
850 		dn->nid = nid[idx];
851 		truncate_node(dn);
852 	} else {
853 		f2fs_put_page(pages[idx], 1);
854 	}
855 	offset[idx]++;
856 	offset[idx + 1] = 0;
857 	idx--;
858 fail:
859 	for (i = idx; i >= 0; i--)
860 		f2fs_put_page(pages[i], 1);
861 
862 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
863 
864 	return err;
865 }
866 
867 /*
868  * All the block addresses of data and nodes should be nullified.
869  */
870 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
871 {
872 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
873 	int err = 0, cont = 1;
874 	int level, offset[4], noffset[4];
875 	unsigned int nofs = 0;
876 	struct f2fs_inode *ri;
877 	struct dnode_of_data dn;
878 	struct page *page;
879 
880 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
881 
882 	level = get_node_path(inode, from, offset, noffset);
883 	if (level < 0)
884 		return level;
885 
886 	page = get_node_page(sbi, inode->i_ino);
887 	if (IS_ERR(page)) {
888 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
889 		return PTR_ERR(page);
890 	}
891 
892 	set_new_dnode(&dn, inode, page, NULL, 0);
893 	unlock_page(page);
894 
895 	ri = F2FS_INODE(page);
896 	switch (level) {
897 	case 0:
898 	case 1:
899 		nofs = noffset[1];
900 		break;
901 	case 2:
902 		nofs = noffset[1];
903 		if (!offset[level - 1])
904 			goto skip_partial;
905 		err = truncate_partial_nodes(&dn, ri, offset, level);
906 		if (err < 0 && err != -ENOENT)
907 			goto fail;
908 		nofs += 1 + NIDS_PER_BLOCK;
909 		break;
910 	case 3:
911 		nofs = 5 + 2 * NIDS_PER_BLOCK;
912 		if (!offset[level - 1])
913 			goto skip_partial;
914 		err = truncate_partial_nodes(&dn, ri, offset, level);
915 		if (err < 0 && err != -ENOENT)
916 			goto fail;
917 		break;
918 	default:
919 		BUG();
920 	}
921 
922 skip_partial:
923 	while (cont) {
924 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
925 		switch (offset[0]) {
926 		case NODE_DIR1_BLOCK:
927 		case NODE_DIR2_BLOCK:
928 			err = truncate_dnode(&dn);
929 			break;
930 
931 		case NODE_IND1_BLOCK:
932 		case NODE_IND2_BLOCK:
933 			err = truncate_nodes(&dn, nofs, offset[1], 2);
934 			break;
935 
936 		case NODE_DIND_BLOCK:
937 			err = truncate_nodes(&dn, nofs, offset[1], 3);
938 			cont = 0;
939 			break;
940 
941 		default:
942 			BUG();
943 		}
944 		if (err < 0 && err != -ENOENT)
945 			goto fail;
946 		if (offset[1] == 0 &&
947 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
948 			lock_page(page);
949 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
950 			f2fs_wait_on_page_writeback(page, NODE, true);
951 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
952 			set_page_dirty(page);
953 			unlock_page(page);
954 		}
955 		offset[1] = 0;
956 		offset[0]++;
957 		nofs += err;
958 	}
959 fail:
960 	f2fs_put_page(page, 0);
961 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
962 	return err > 0 ? 0 : err;
963 }
964 
965 int truncate_xattr_node(struct inode *inode, struct page *page)
966 {
967 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
968 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
969 	struct dnode_of_data dn;
970 	struct page *npage;
971 
972 	if (!nid)
973 		return 0;
974 
975 	npage = get_node_page(sbi, nid);
976 	if (IS_ERR(npage))
977 		return PTR_ERR(npage);
978 
979 	f2fs_i_xnid_write(inode, 0);
980 
981 	set_new_dnode(&dn, inode, page, npage, nid);
982 
983 	if (page)
984 		dn.inode_page_locked = true;
985 	truncate_node(&dn);
986 	return 0;
987 }
988 
989 /*
990  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
991  * f2fs_unlock_op().
992  */
993 int remove_inode_page(struct inode *inode)
994 {
995 	struct dnode_of_data dn;
996 	int err;
997 
998 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
999 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1000 	if (err)
1001 		return err;
1002 
1003 	err = truncate_xattr_node(inode, dn.inode_page);
1004 	if (err) {
1005 		f2fs_put_dnode(&dn);
1006 		return err;
1007 	}
1008 
1009 	/* remove potential inline_data blocks */
1010 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1011 				S_ISLNK(inode->i_mode))
1012 		truncate_data_blocks_range(&dn, 1);
1013 
1014 	/* 0 is possible, after f2fs_new_inode() has failed */
1015 	f2fs_bug_on(F2FS_I_SB(inode),
1016 			inode->i_blocks != 0 && inode->i_blocks != 8);
1017 
1018 	/* will put inode & node pages */
1019 	truncate_node(&dn);
1020 	return 0;
1021 }
1022 
1023 struct page *new_inode_page(struct inode *inode)
1024 {
1025 	struct dnode_of_data dn;
1026 
1027 	/* allocate inode page for new inode */
1028 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1029 
1030 	/* caller should f2fs_put_page(page, 1); */
1031 	return new_node_page(&dn, 0);
1032 }
1033 
1034 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1035 {
1036 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1037 	struct node_info new_ni;
1038 	struct page *page;
1039 	int err;
1040 
1041 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1042 		return ERR_PTR(-EPERM);
1043 
1044 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1045 	if (!page)
1046 		return ERR_PTR(-ENOMEM);
1047 
1048 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1049 		goto fail;
1050 
1051 #ifdef CONFIG_F2FS_CHECK_FS
1052 	get_node_info(sbi, dn->nid, &new_ni);
1053 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1054 #endif
1055 	new_ni.nid = dn->nid;
1056 	new_ni.ino = dn->inode->i_ino;
1057 	new_ni.blk_addr = NULL_ADDR;
1058 	new_ni.flag = 0;
1059 	new_ni.version = 0;
1060 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1061 
1062 	f2fs_wait_on_page_writeback(page, NODE, true);
1063 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1064 	set_cold_node(dn->inode, page);
1065 	if (!PageUptodate(page))
1066 		SetPageUptodate(page);
1067 	if (set_page_dirty(page))
1068 		dn->node_changed = true;
1069 
1070 	if (f2fs_has_xattr_block(ofs))
1071 		f2fs_i_xnid_write(dn->inode, dn->nid);
1072 
1073 	if (ofs == 0)
1074 		inc_valid_inode_count(sbi);
1075 	return page;
1076 
1077 fail:
1078 	clear_node_page_dirty(page);
1079 	f2fs_put_page(page, 1);
1080 	return ERR_PTR(err);
1081 }
1082 
1083 /*
1084  * Caller should do after getting the following values.
1085  * 0: f2fs_put_page(page, 0)
1086  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1087  */
1088 static int read_node_page(struct page *page, int op_flags)
1089 {
1090 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1091 	struct node_info ni;
1092 	struct f2fs_io_info fio = {
1093 		.sbi = sbi,
1094 		.type = NODE,
1095 		.op = REQ_OP_READ,
1096 		.op_flags = op_flags,
1097 		.page = page,
1098 		.encrypted_page = NULL,
1099 	};
1100 
1101 	if (PageUptodate(page))
1102 		return LOCKED_PAGE;
1103 
1104 	get_node_info(sbi, page->index, &ni);
1105 
1106 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1107 		ClearPageUptodate(page);
1108 		return -ENOENT;
1109 	}
1110 
1111 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1112 	return f2fs_submit_page_bio(&fio);
1113 }
1114 
1115 /*
1116  * Readahead a node page
1117  */
1118 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1119 {
1120 	struct page *apage;
1121 	int err;
1122 
1123 	if (!nid)
1124 		return;
1125 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1126 
1127 	rcu_read_lock();
1128 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1129 	rcu_read_unlock();
1130 	if (apage)
1131 		return;
1132 
1133 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1134 	if (!apage)
1135 		return;
1136 
1137 	err = read_node_page(apage, REQ_RAHEAD);
1138 	f2fs_put_page(apage, err ? 1 : 0);
1139 }
1140 
1141 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1142 					struct page *parent, int start)
1143 {
1144 	struct page *page;
1145 	int err;
1146 
1147 	if (!nid)
1148 		return ERR_PTR(-ENOENT);
1149 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1150 repeat:
1151 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1152 	if (!page)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	err = read_node_page(page, 0);
1156 	if (err < 0) {
1157 		f2fs_put_page(page, 1);
1158 		return ERR_PTR(err);
1159 	} else if (err == LOCKED_PAGE) {
1160 		err = 0;
1161 		goto page_hit;
1162 	}
1163 
1164 	if (parent)
1165 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1166 
1167 	lock_page(page);
1168 
1169 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1170 		f2fs_put_page(page, 1);
1171 		goto repeat;
1172 	}
1173 
1174 	if (unlikely(!PageUptodate(page))) {
1175 		err = -EIO;
1176 		goto out_err;
1177 	}
1178 
1179 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1180 		err = -EBADMSG;
1181 		goto out_err;
1182 	}
1183 page_hit:
1184 	if(unlikely(nid != nid_of_node(page))) {
1185 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1186 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1187 			nid, nid_of_node(page), ino_of_node(page),
1188 			ofs_of_node(page), cpver_of_node(page),
1189 			next_blkaddr_of_node(page));
1190 		err = -EINVAL;
1191 out_err:
1192 		ClearPageUptodate(page);
1193 		f2fs_put_page(page, 1);
1194 		return ERR_PTR(err);
1195 	}
1196 	return page;
1197 }
1198 
1199 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1200 {
1201 	return __get_node_page(sbi, nid, NULL, 0);
1202 }
1203 
1204 struct page *get_node_page_ra(struct page *parent, int start)
1205 {
1206 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1207 	nid_t nid = get_nid(parent, start, false);
1208 
1209 	return __get_node_page(sbi, nid, parent, start);
1210 }
1211 
1212 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1213 {
1214 	struct inode *inode;
1215 	struct page *page;
1216 	int ret;
1217 
1218 	/* should flush inline_data before evict_inode */
1219 	inode = ilookup(sbi->sb, ino);
1220 	if (!inode)
1221 		return;
1222 
1223 	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1224 	if (!page)
1225 		goto iput_out;
1226 
1227 	if (!PageUptodate(page))
1228 		goto page_out;
1229 
1230 	if (!PageDirty(page))
1231 		goto page_out;
1232 
1233 	if (!clear_page_dirty_for_io(page))
1234 		goto page_out;
1235 
1236 	ret = f2fs_write_inline_data(inode, page);
1237 	inode_dec_dirty_pages(inode);
1238 	remove_dirty_inode(inode);
1239 	if (ret)
1240 		set_page_dirty(page);
1241 page_out:
1242 	f2fs_put_page(page, 1);
1243 iput_out:
1244 	iput(inode);
1245 }
1246 
1247 void move_node_page(struct page *node_page, int gc_type)
1248 {
1249 	if (gc_type == FG_GC) {
1250 		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1251 		struct writeback_control wbc = {
1252 			.sync_mode = WB_SYNC_ALL,
1253 			.nr_to_write = 1,
1254 			.for_reclaim = 0,
1255 		};
1256 
1257 		set_page_dirty(node_page);
1258 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1259 
1260 		f2fs_bug_on(sbi, PageWriteback(node_page));
1261 		if (!clear_page_dirty_for_io(node_page))
1262 			goto out_page;
1263 
1264 		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1265 			unlock_page(node_page);
1266 		goto release_page;
1267 	} else {
1268 		/* set page dirty and write it */
1269 		if (!PageWriteback(node_page))
1270 			set_page_dirty(node_page);
1271 	}
1272 out_page:
1273 	unlock_page(node_page);
1274 release_page:
1275 	f2fs_put_page(node_page, 0);
1276 }
1277 
1278 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1279 {
1280 	pgoff_t index, end;
1281 	struct pagevec pvec;
1282 	struct page *last_page = NULL;
1283 
1284 	pagevec_init(&pvec, 0);
1285 	index = 0;
1286 	end = ULONG_MAX;
1287 
1288 	while (index <= end) {
1289 		int i, nr_pages;
1290 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1291 				PAGECACHE_TAG_DIRTY,
1292 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1293 		if (nr_pages == 0)
1294 			break;
1295 
1296 		for (i = 0; i < nr_pages; i++) {
1297 			struct page *page = pvec.pages[i];
1298 
1299 			if (unlikely(f2fs_cp_error(sbi))) {
1300 				f2fs_put_page(last_page, 0);
1301 				pagevec_release(&pvec);
1302 				return ERR_PTR(-EIO);
1303 			}
1304 
1305 			if (!IS_DNODE(page) || !is_cold_node(page))
1306 				continue;
1307 			if (ino_of_node(page) != ino)
1308 				continue;
1309 
1310 			lock_page(page);
1311 
1312 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1313 continue_unlock:
1314 				unlock_page(page);
1315 				continue;
1316 			}
1317 			if (ino_of_node(page) != ino)
1318 				goto continue_unlock;
1319 
1320 			if (!PageDirty(page)) {
1321 				/* someone wrote it for us */
1322 				goto continue_unlock;
1323 			}
1324 
1325 			if (last_page)
1326 				f2fs_put_page(last_page, 0);
1327 
1328 			get_page(page);
1329 			last_page = page;
1330 			unlock_page(page);
1331 		}
1332 		pagevec_release(&pvec);
1333 		cond_resched();
1334 	}
1335 	return last_page;
1336 }
1337 
1338 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1339 				struct writeback_control *wbc, bool do_balance,
1340 				enum iostat_type io_type)
1341 {
1342 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343 	nid_t nid;
1344 	struct node_info ni;
1345 	struct f2fs_io_info fio = {
1346 		.sbi = sbi,
1347 		.type = NODE,
1348 		.op = REQ_OP_WRITE,
1349 		.op_flags = wbc_to_write_flags(wbc),
1350 		.page = page,
1351 		.encrypted_page = NULL,
1352 		.submitted = false,
1353 		.io_type = io_type,
1354 	};
1355 
1356 	trace_f2fs_writepage(page, NODE);
1357 
1358 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1359 		goto redirty_out;
1360 	if (unlikely(f2fs_cp_error(sbi)))
1361 		goto redirty_out;
1362 
1363 	/* get old block addr of this node page */
1364 	nid = nid_of_node(page);
1365 	f2fs_bug_on(sbi, page->index != nid);
1366 
1367 	if (wbc->for_reclaim) {
1368 		if (!down_read_trylock(&sbi->node_write))
1369 			goto redirty_out;
1370 	} else {
1371 		down_read(&sbi->node_write);
1372 	}
1373 
1374 	get_node_info(sbi, nid, &ni);
1375 
1376 	/* This page is already truncated */
1377 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1378 		ClearPageUptodate(page);
1379 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1380 		up_read(&sbi->node_write);
1381 		unlock_page(page);
1382 		return 0;
1383 	}
1384 
1385 	if (atomic && !test_opt(sbi, NOBARRIER))
1386 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1387 
1388 	set_page_writeback(page);
1389 	fio.old_blkaddr = ni.blk_addr;
1390 	write_node_page(nid, &fio);
1391 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1392 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1393 	up_read(&sbi->node_write);
1394 
1395 	if (wbc->for_reclaim) {
1396 		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1397 						page->index, NODE);
1398 		submitted = NULL;
1399 	}
1400 
1401 	unlock_page(page);
1402 
1403 	if (unlikely(f2fs_cp_error(sbi))) {
1404 		f2fs_submit_merged_write(sbi, NODE);
1405 		submitted = NULL;
1406 	}
1407 	if (submitted)
1408 		*submitted = fio.submitted;
1409 
1410 	if (do_balance)
1411 		f2fs_balance_fs(sbi, false);
1412 	return 0;
1413 
1414 redirty_out:
1415 	redirty_page_for_writepage(wbc, page);
1416 	return AOP_WRITEPAGE_ACTIVATE;
1417 }
1418 
1419 static int f2fs_write_node_page(struct page *page,
1420 				struct writeback_control *wbc)
1421 {
1422 	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1423 }
1424 
1425 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1426 			struct writeback_control *wbc, bool atomic)
1427 {
1428 	pgoff_t index, end;
1429 	pgoff_t last_idx = ULONG_MAX;
1430 	struct pagevec pvec;
1431 	int ret = 0;
1432 	struct page *last_page = NULL;
1433 	bool marked = false;
1434 	nid_t ino = inode->i_ino;
1435 
1436 	if (atomic) {
1437 		last_page = last_fsync_dnode(sbi, ino);
1438 		if (IS_ERR_OR_NULL(last_page))
1439 			return PTR_ERR_OR_ZERO(last_page);
1440 	}
1441 retry:
1442 	pagevec_init(&pvec, 0);
1443 	index = 0;
1444 	end = ULONG_MAX;
1445 
1446 	while (index <= end) {
1447 		int i, nr_pages;
1448 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1449 				PAGECACHE_TAG_DIRTY,
1450 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1451 		if (nr_pages == 0)
1452 			break;
1453 
1454 		for (i = 0; i < nr_pages; i++) {
1455 			struct page *page = pvec.pages[i];
1456 			bool submitted = false;
1457 
1458 			if (unlikely(f2fs_cp_error(sbi))) {
1459 				f2fs_put_page(last_page, 0);
1460 				pagevec_release(&pvec);
1461 				ret = -EIO;
1462 				goto out;
1463 			}
1464 
1465 			if (!IS_DNODE(page) || !is_cold_node(page))
1466 				continue;
1467 			if (ino_of_node(page) != ino)
1468 				continue;
1469 
1470 			lock_page(page);
1471 
1472 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474 				unlock_page(page);
1475 				continue;
1476 			}
1477 			if (ino_of_node(page) != ino)
1478 				goto continue_unlock;
1479 
1480 			if (!PageDirty(page) && page != last_page) {
1481 				/* someone wrote it for us */
1482 				goto continue_unlock;
1483 			}
1484 
1485 			f2fs_wait_on_page_writeback(page, NODE, true);
1486 			BUG_ON(PageWriteback(page));
1487 
1488 			set_fsync_mark(page, 0);
1489 			set_dentry_mark(page, 0);
1490 
1491 			if (!atomic || page == last_page) {
1492 				set_fsync_mark(page, 1);
1493 				if (IS_INODE(page)) {
1494 					if (is_inode_flag_set(inode,
1495 								FI_DIRTY_INODE))
1496 						update_inode(inode, page);
1497 					set_dentry_mark(page,
1498 						need_dentry_mark(sbi, ino));
1499 				}
1500 				/*  may be written by other thread */
1501 				if (!PageDirty(page))
1502 					set_page_dirty(page);
1503 			}
1504 
1505 			if (!clear_page_dirty_for_io(page))
1506 				goto continue_unlock;
1507 
1508 			ret = __write_node_page(page, atomic &&
1509 						page == last_page,
1510 						&submitted, wbc, true,
1511 						FS_NODE_IO);
1512 			if (ret) {
1513 				unlock_page(page);
1514 				f2fs_put_page(last_page, 0);
1515 				break;
1516 			} else if (submitted) {
1517 				last_idx = page->index;
1518 			}
1519 
1520 			if (page == last_page) {
1521 				f2fs_put_page(page, 0);
1522 				marked = true;
1523 				break;
1524 			}
1525 		}
1526 		pagevec_release(&pvec);
1527 		cond_resched();
1528 
1529 		if (ret || marked)
1530 			break;
1531 	}
1532 	if (!ret && atomic && !marked) {
1533 		f2fs_msg(sbi->sb, KERN_DEBUG,
1534 			"Retry to write fsync mark: ino=%u, idx=%lx",
1535 					ino, last_page->index);
1536 		lock_page(last_page);
1537 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1538 		set_page_dirty(last_page);
1539 		unlock_page(last_page);
1540 		goto retry;
1541 	}
1542 out:
1543 	if (last_idx != ULONG_MAX)
1544 		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1545 	return ret ? -EIO: 0;
1546 }
1547 
1548 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1549 				bool do_balance, enum iostat_type io_type)
1550 {
1551 	pgoff_t index, end;
1552 	struct pagevec pvec;
1553 	int step = 0;
1554 	int nwritten = 0;
1555 	int ret = 0;
1556 
1557 	pagevec_init(&pvec, 0);
1558 
1559 next_step:
1560 	index = 0;
1561 	end = ULONG_MAX;
1562 
1563 	while (index <= end) {
1564 		int i, nr_pages;
1565 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1566 				PAGECACHE_TAG_DIRTY,
1567 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1568 		if (nr_pages == 0)
1569 			break;
1570 
1571 		for (i = 0; i < nr_pages; i++) {
1572 			struct page *page = pvec.pages[i];
1573 			bool submitted = false;
1574 
1575 			if (unlikely(f2fs_cp_error(sbi))) {
1576 				pagevec_release(&pvec);
1577 				ret = -EIO;
1578 				goto out;
1579 			}
1580 
1581 			/*
1582 			 * flushing sequence with step:
1583 			 * 0. indirect nodes
1584 			 * 1. dentry dnodes
1585 			 * 2. file dnodes
1586 			 */
1587 			if (step == 0 && IS_DNODE(page))
1588 				continue;
1589 			if (step == 1 && (!IS_DNODE(page) ||
1590 						is_cold_node(page)))
1591 				continue;
1592 			if (step == 2 && (!IS_DNODE(page) ||
1593 						!is_cold_node(page)))
1594 				continue;
1595 lock_node:
1596 			if (!trylock_page(page))
1597 				continue;
1598 
1599 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1600 continue_unlock:
1601 				unlock_page(page);
1602 				continue;
1603 			}
1604 
1605 			if (!PageDirty(page)) {
1606 				/* someone wrote it for us */
1607 				goto continue_unlock;
1608 			}
1609 
1610 			/* flush inline_data */
1611 			if (is_inline_node(page)) {
1612 				clear_inline_node(page);
1613 				unlock_page(page);
1614 				flush_inline_data(sbi, ino_of_node(page));
1615 				goto lock_node;
1616 			}
1617 
1618 			f2fs_wait_on_page_writeback(page, NODE, true);
1619 
1620 			BUG_ON(PageWriteback(page));
1621 			if (!clear_page_dirty_for_io(page))
1622 				goto continue_unlock;
1623 
1624 			set_fsync_mark(page, 0);
1625 			set_dentry_mark(page, 0);
1626 
1627 			ret = __write_node_page(page, false, &submitted,
1628 						wbc, do_balance, io_type);
1629 			if (ret)
1630 				unlock_page(page);
1631 			else if (submitted)
1632 				nwritten++;
1633 
1634 			if (--wbc->nr_to_write == 0)
1635 				break;
1636 		}
1637 		pagevec_release(&pvec);
1638 		cond_resched();
1639 
1640 		if (wbc->nr_to_write == 0) {
1641 			step = 2;
1642 			break;
1643 		}
1644 	}
1645 
1646 	if (step < 2) {
1647 		step++;
1648 		goto next_step;
1649 	}
1650 out:
1651 	if (nwritten)
1652 		f2fs_submit_merged_write(sbi, NODE);
1653 	return ret;
1654 }
1655 
1656 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1657 {
1658 	pgoff_t index = 0, end = ULONG_MAX;
1659 	struct pagevec pvec;
1660 	int ret2, ret = 0;
1661 
1662 	pagevec_init(&pvec, 0);
1663 
1664 	while (index <= end) {
1665 		int i, nr_pages;
1666 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1667 				PAGECACHE_TAG_WRITEBACK,
1668 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1669 		if (nr_pages == 0)
1670 			break;
1671 
1672 		for (i = 0; i < nr_pages; i++) {
1673 			struct page *page = pvec.pages[i];
1674 
1675 			/* until radix tree lookup accepts end_index */
1676 			if (unlikely(page->index > end))
1677 				continue;
1678 
1679 			if (ino && ino_of_node(page) == ino) {
1680 				f2fs_wait_on_page_writeback(page, NODE, true);
1681 				if (TestClearPageError(page))
1682 					ret = -EIO;
1683 			}
1684 		}
1685 		pagevec_release(&pvec);
1686 		cond_resched();
1687 	}
1688 
1689 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1690 	if (!ret)
1691 		ret = ret2;
1692 	return ret;
1693 }
1694 
1695 static int f2fs_write_node_pages(struct address_space *mapping,
1696 			    struct writeback_control *wbc)
1697 {
1698 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1699 	struct blk_plug plug;
1700 	long diff;
1701 
1702 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1703 		goto skip_write;
1704 
1705 	/* balancing f2fs's metadata in background */
1706 	f2fs_balance_fs_bg(sbi);
1707 
1708 	/* collect a number of dirty node pages and write together */
1709 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1710 		goto skip_write;
1711 
1712 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1713 
1714 	diff = nr_pages_to_write(sbi, NODE, wbc);
1715 	wbc->sync_mode = WB_SYNC_NONE;
1716 	blk_start_plug(&plug);
1717 	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1718 	blk_finish_plug(&plug);
1719 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1720 	return 0;
1721 
1722 skip_write:
1723 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1724 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1725 	return 0;
1726 }
1727 
1728 static int f2fs_set_node_page_dirty(struct page *page)
1729 {
1730 	trace_f2fs_set_page_dirty(page, NODE);
1731 
1732 	if (!PageUptodate(page))
1733 		SetPageUptodate(page);
1734 	if (!PageDirty(page)) {
1735 		f2fs_set_page_dirty_nobuffers(page);
1736 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1737 		SetPagePrivate(page);
1738 		f2fs_trace_pid(page);
1739 		return 1;
1740 	}
1741 	return 0;
1742 }
1743 
1744 /*
1745  * Structure of the f2fs node operations
1746  */
1747 const struct address_space_operations f2fs_node_aops = {
1748 	.writepage	= f2fs_write_node_page,
1749 	.writepages	= f2fs_write_node_pages,
1750 	.set_page_dirty	= f2fs_set_node_page_dirty,
1751 	.invalidatepage	= f2fs_invalidate_page,
1752 	.releasepage	= f2fs_release_page,
1753 #ifdef CONFIG_MIGRATION
1754 	.migratepage    = f2fs_migrate_page,
1755 #endif
1756 };
1757 
1758 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1759 						nid_t n)
1760 {
1761 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1762 }
1763 
1764 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1765 			struct free_nid *i, enum nid_list list, bool new)
1766 {
1767 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1768 
1769 	if (new) {
1770 		int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1771 		if (err)
1772 			return err;
1773 	}
1774 
1775 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1776 						i->state != NID_ALLOC);
1777 	nm_i->nid_cnt[list]++;
1778 	list_add_tail(&i->list, &nm_i->nid_list[list]);
1779 	return 0;
1780 }
1781 
1782 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1783 			struct free_nid *i, enum nid_list list, bool reuse)
1784 {
1785 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1786 
1787 	f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1788 						i->state != NID_ALLOC);
1789 	nm_i->nid_cnt[list]--;
1790 	list_del(&i->list);
1791 	if (!reuse)
1792 		radix_tree_delete(&nm_i->free_nid_root, i->nid);
1793 }
1794 
1795 /* return if the nid is recognized as free */
1796 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1797 {
1798 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1799 	struct free_nid *i, *e;
1800 	struct nat_entry *ne;
1801 	int err = -EINVAL;
1802 	bool ret = false;
1803 
1804 	/* 0 nid should not be used */
1805 	if (unlikely(nid == 0))
1806 		return false;
1807 
1808 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1809 	i->nid = nid;
1810 	i->state = NID_NEW;
1811 
1812 	if (radix_tree_preload(GFP_NOFS))
1813 		goto err;
1814 
1815 	spin_lock(&nm_i->nid_list_lock);
1816 
1817 	if (build) {
1818 		/*
1819 		 *   Thread A             Thread B
1820 		 *  - f2fs_create
1821 		 *   - f2fs_new_inode
1822 		 *    - alloc_nid
1823 		 *     - __insert_nid_to_list(ALLOC_NID_LIST)
1824 		 *                     - f2fs_balance_fs_bg
1825 		 *                      - build_free_nids
1826 		 *                       - __build_free_nids
1827 		 *                        - scan_nat_page
1828 		 *                         - add_free_nid
1829 		 *                          - __lookup_nat_cache
1830 		 *  - f2fs_add_link
1831 		 *   - init_inode_metadata
1832 		 *    - new_inode_page
1833 		 *     - new_node_page
1834 		 *      - set_node_addr
1835 		 *  - alloc_nid_done
1836 		 *   - __remove_nid_from_list(ALLOC_NID_LIST)
1837 		 *                         - __insert_nid_to_list(FREE_NID_LIST)
1838 		 */
1839 		ne = __lookup_nat_cache(nm_i, nid);
1840 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1841 				nat_get_blkaddr(ne) != NULL_ADDR))
1842 			goto err_out;
1843 
1844 		e = __lookup_free_nid_list(nm_i, nid);
1845 		if (e) {
1846 			if (e->state == NID_NEW)
1847 				ret = true;
1848 			goto err_out;
1849 		}
1850 	}
1851 	ret = true;
1852 	err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1853 err_out:
1854 	spin_unlock(&nm_i->nid_list_lock);
1855 	radix_tree_preload_end();
1856 err:
1857 	if (err)
1858 		kmem_cache_free(free_nid_slab, i);
1859 	return ret;
1860 }
1861 
1862 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1863 {
1864 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1865 	struct free_nid *i;
1866 	bool need_free = false;
1867 
1868 	spin_lock(&nm_i->nid_list_lock);
1869 	i = __lookup_free_nid_list(nm_i, nid);
1870 	if (i && i->state == NID_NEW) {
1871 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1872 		need_free = true;
1873 	}
1874 	spin_unlock(&nm_i->nid_list_lock);
1875 
1876 	if (need_free)
1877 		kmem_cache_free(free_nid_slab, i);
1878 }
1879 
1880 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1881 							bool set, bool build)
1882 {
1883 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1884 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1885 	unsigned int nid_ofs = nid - START_NID(nid);
1886 
1887 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1888 		return;
1889 
1890 	if (set)
1891 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1892 	else
1893 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1894 
1895 	if (set)
1896 		nm_i->free_nid_count[nat_ofs]++;
1897 	else if (!build)
1898 		nm_i->free_nid_count[nat_ofs]--;
1899 }
1900 
1901 static void scan_nat_page(struct f2fs_sb_info *sbi,
1902 			struct page *nat_page, nid_t start_nid)
1903 {
1904 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1905 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1906 	block_t blk_addr;
1907 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1908 	int i;
1909 
1910 	if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1911 		return;
1912 
1913 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1914 
1915 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1916 
1917 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1918 		bool freed = false;
1919 
1920 		if (unlikely(start_nid >= nm_i->max_nid))
1921 			break;
1922 
1923 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1924 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1925 		if (blk_addr == NULL_ADDR)
1926 			freed = add_free_nid(sbi, start_nid, true);
1927 		spin_lock(&NM_I(sbi)->nid_list_lock);
1928 		update_free_nid_bitmap(sbi, start_nid, freed, true);
1929 		spin_unlock(&NM_I(sbi)->nid_list_lock);
1930 	}
1931 }
1932 
1933 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1934 {
1935 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1936 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1937 	struct f2fs_journal *journal = curseg->journal;
1938 	unsigned int i, idx;
1939 
1940 	down_read(&nm_i->nat_tree_lock);
1941 
1942 	for (i = 0; i < nm_i->nat_blocks; i++) {
1943 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
1944 			continue;
1945 		if (!nm_i->free_nid_count[i])
1946 			continue;
1947 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1948 			nid_t nid;
1949 
1950 			if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1951 				continue;
1952 
1953 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
1954 			add_free_nid(sbi, nid, true);
1955 
1956 			if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1957 				goto out;
1958 		}
1959 	}
1960 out:
1961 	down_read(&curseg->journal_rwsem);
1962 	for (i = 0; i < nats_in_cursum(journal); i++) {
1963 		block_t addr;
1964 		nid_t nid;
1965 
1966 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1967 		nid = le32_to_cpu(nid_in_journal(journal, i));
1968 		if (addr == NULL_ADDR)
1969 			add_free_nid(sbi, nid, true);
1970 		else
1971 			remove_free_nid(sbi, nid);
1972 	}
1973 	up_read(&curseg->journal_rwsem);
1974 	up_read(&nm_i->nat_tree_lock);
1975 }
1976 
1977 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1978 {
1979 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1980 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981 	struct f2fs_journal *journal = curseg->journal;
1982 	int i = 0;
1983 	nid_t nid = nm_i->next_scan_nid;
1984 
1985 	if (unlikely(nid >= nm_i->max_nid))
1986 		nid = 0;
1987 
1988 	/* Enough entries */
1989 	if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1990 		return;
1991 
1992 	if (!sync && !available_free_memory(sbi, FREE_NIDS))
1993 		return;
1994 
1995 	if (!mount) {
1996 		/* try to find free nids in free_nid_bitmap */
1997 		scan_free_nid_bits(sbi);
1998 
1999 		if (nm_i->nid_cnt[FREE_NID_LIST])
2000 			return;
2001 	}
2002 
2003 	/* readahead nat pages to be scanned */
2004 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2005 							META_NAT, true);
2006 
2007 	down_read(&nm_i->nat_tree_lock);
2008 
2009 	while (1) {
2010 		struct page *page = get_current_nat_page(sbi, nid);
2011 
2012 		scan_nat_page(sbi, page, nid);
2013 		f2fs_put_page(page, 1);
2014 
2015 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2016 		if (unlikely(nid >= nm_i->max_nid))
2017 			nid = 0;
2018 
2019 		if (++i >= FREE_NID_PAGES)
2020 			break;
2021 	}
2022 
2023 	/* go to the next free nat pages to find free nids abundantly */
2024 	nm_i->next_scan_nid = nid;
2025 
2026 	/* find free nids from current sum_pages */
2027 	down_read(&curseg->journal_rwsem);
2028 	for (i = 0; i < nats_in_cursum(journal); i++) {
2029 		block_t addr;
2030 
2031 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2032 		nid = le32_to_cpu(nid_in_journal(journal, i));
2033 		if (addr == NULL_ADDR)
2034 			add_free_nid(sbi, nid, true);
2035 		else
2036 			remove_free_nid(sbi, nid);
2037 	}
2038 	up_read(&curseg->journal_rwsem);
2039 	up_read(&nm_i->nat_tree_lock);
2040 
2041 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2042 					nm_i->ra_nid_pages, META_NAT, false);
2043 }
2044 
2045 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2046 {
2047 	mutex_lock(&NM_I(sbi)->build_lock);
2048 	__build_free_nids(sbi, sync, mount);
2049 	mutex_unlock(&NM_I(sbi)->build_lock);
2050 }
2051 
2052 /*
2053  * If this function returns success, caller can obtain a new nid
2054  * from second parameter of this function.
2055  * The returned nid could be used ino as well as nid when inode is created.
2056  */
2057 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2058 {
2059 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2060 	struct free_nid *i = NULL;
2061 retry:
2062 #ifdef CONFIG_F2FS_FAULT_INJECTION
2063 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2064 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2065 		return false;
2066 	}
2067 #endif
2068 	spin_lock(&nm_i->nid_list_lock);
2069 
2070 	if (unlikely(nm_i->available_nids == 0)) {
2071 		spin_unlock(&nm_i->nid_list_lock);
2072 		return false;
2073 	}
2074 
2075 	/* We should not use stale free nids created by build_free_nids */
2076 	if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2077 		f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2078 		i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2079 					struct free_nid, list);
2080 		*nid = i->nid;
2081 
2082 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2083 		i->state = NID_ALLOC;
2084 		__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2085 		nm_i->available_nids--;
2086 
2087 		update_free_nid_bitmap(sbi, *nid, false, false);
2088 
2089 		spin_unlock(&nm_i->nid_list_lock);
2090 		return true;
2091 	}
2092 	spin_unlock(&nm_i->nid_list_lock);
2093 
2094 	/* Let's scan nat pages and its caches to get free nids */
2095 	build_free_nids(sbi, true, false);
2096 	goto retry;
2097 }
2098 
2099 /*
2100  * alloc_nid() should be called prior to this function.
2101  */
2102 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2103 {
2104 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2105 	struct free_nid *i;
2106 
2107 	spin_lock(&nm_i->nid_list_lock);
2108 	i = __lookup_free_nid_list(nm_i, nid);
2109 	f2fs_bug_on(sbi, !i);
2110 	__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2111 	spin_unlock(&nm_i->nid_list_lock);
2112 
2113 	kmem_cache_free(free_nid_slab, i);
2114 }
2115 
2116 /*
2117  * alloc_nid() should be called prior to this function.
2118  */
2119 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2120 {
2121 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2122 	struct free_nid *i;
2123 	bool need_free = false;
2124 
2125 	if (!nid)
2126 		return;
2127 
2128 	spin_lock(&nm_i->nid_list_lock);
2129 	i = __lookup_free_nid_list(nm_i, nid);
2130 	f2fs_bug_on(sbi, !i);
2131 
2132 	if (!available_free_memory(sbi, FREE_NIDS)) {
2133 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2134 		need_free = true;
2135 	} else {
2136 		__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2137 		i->state = NID_NEW;
2138 		__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2139 	}
2140 
2141 	nm_i->available_nids++;
2142 
2143 	update_free_nid_bitmap(sbi, nid, true, false);
2144 
2145 	spin_unlock(&nm_i->nid_list_lock);
2146 
2147 	if (need_free)
2148 		kmem_cache_free(free_nid_slab, i);
2149 }
2150 
2151 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2152 {
2153 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2154 	struct free_nid *i, *next;
2155 	int nr = nr_shrink;
2156 
2157 	if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2158 		return 0;
2159 
2160 	if (!mutex_trylock(&nm_i->build_lock))
2161 		return 0;
2162 
2163 	spin_lock(&nm_i->nid_list_lock);
2164 	list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2165 									list) {
2166 		if (nr_shrink <= 0 ||
2167 				nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2168 			break;
2169 
2170 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2171 		kmem_cache_free(free_nid_slab, i);
2172 		nr_shrink--;
2173 	}
2174 	spin_unlock(&nm_i->nid_list_lock);
2175 	mutex_unlock(&nm_i->build_lock);
2176 
2177 	return nr - nr_shrink;
2178 }
2179 
2180 void recover_inline_xattr(struct inode *inode, struct page *page)
2181 {
2182 	void *src_addr, *dst_addr;
2183 	size_t inline_size;
2184 	struct page *ipage;
2185 	struct f2fs_inode *ri;
2186 
2187 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2188 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2189 
2190 	ri = F2FS_INODE(page);
2191 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2192 		clear_inode_flag(inode, FI_INLINE_XATTR);
2193 		goto update_inode;
2194 	}
2195 
2196 	dst_addr = inline_xattr_addr(ipage);
2197 	src_addr = inline_xattr_addr(page);
2198 	inline_size = inline_xattr_size(inode);
2199 
2200 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2201 	memcpy(dst_addr, src_addr, inline_size);
2202 update_inode:
2203 	update_inode(inode, ipage);
2204 	f2fs_put_page(ipage, 1);
2205 }
2206 
2207 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2208 {
2209 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2210 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2211 	nid_t new_xnid;
2212 	struct dnode_of_data dn;
2213 	struct node_info ni;
2214 	struct page *xpage;
2215 
2216 	if (!prev_xnid)
2217 		goto recover_xnid;
2218 
2219 	/* 1: invalidate the previous xattr nid */
2220 	get_node_info(sbi, prev_xnid, &ni);
2221 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2222 	invalidate_blocks(sbi, ni.blk_addr);
2223 	dec_valid_node_count(sbi, inode, false);
2224 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2225 
2226 recover_xnid:
2227 	/* 2: update xattr nid in inode */
2228 	if (!alloc_nid(sbi, &new_xnid))
2229 		return -ENOSPC;
2230 
2231 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2232 	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2233 	if (IS_ERR(xpage)) {
2234 		alloc_nid_failed(sbi, new_xnid);
2235 		return PTR_ERR(xpage);
2236 	}
2237 
2238 	alloc_nid_done(sbi, new_xnid);
2239 	update_inode_page(inode);
2240 
2241 	/* 3: update and set xattr node page dirty */
2242 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2243 
2244 	set_page_dirty(xpage);
2245 	f2fs_put_page(xpage, 1);
2246 
2247 	return 0;
2248 }
2249 
2250 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2251 {
2252 	struct f2fs_inode *src, *dst;
2253 	nid_t ino = ino_of_node(page);
2254 	struct node_info old_ni, new_ni;
2255 	struct page *ipage;
2256 
2257 	get_node_info(sbi, ino, &old_ni);
2258 
2259 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2260 		return -EINVAL;
2261 retry:
2262 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2263 	if (!ipage) {
2264 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2265 		goto retry;
2266 	}
2267 
2268 	/* Should not use this inode from free nid list */
2269 	remove_free_nid(sbi, ino);
2270 
2271 	if (!PageUptodate(ipage))
2272 		SetPageUptodate(ipage);
2273 	fill_node_footer(ipage, ino, ino, 0, true);
2274 
2275 	src = F2FS_INODE(page);
2276 	dst = F2FS_INODE(ipage);
2277 
2278 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2279 	dst->i_size = 0;
2280 	dst->i_blocks = cpu_to_le64(1);
2281 	dst->i_links = cpu_to_le32(1);
2282 	dst->i_xattr_nid = 0;
2283 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2284 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2285 		dst->i_extra_isize = src->i_extra_isize;
2286 		if (f2fs_sb_has_project_quota(sbi->sb) &&
2287 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2288 								i_projid))
2289 			dst->i_projid = src->i_projid;
2290 	}
2291 
2292 	new_ni = old_ni;
2293 	new_ni.ino = ino;
2294 
2295 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2296 		WARN_ON(1);
2297 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2298 	inc_valid_inode_count(sbi);
2299 	set_page_dirty(ipage);
2300 	f2fs_put_page(ipage, 1);
2301 	return 0;
2302 }
2303 
2304 int restore_node_summary(struct f2fs_sb_info *sbi,
2305 			unsigned int segno, struct f2fs_summary_block *sum)
2306 {
2307 	struct f2fs_node *rn;
2308 	struct f2fs_summary *sum_entry;
2309 	block_t addr;
2310 	int i, idx, last_offset, nrpages;
2311 
2312 	/* scan the node segment */
2313 	last_offset = sbi->blocks_per_seg;
2314 	addr = START_BLOCK(sbi, segno);
2315 	sum_entry = &sum->entries[0];
2316 
2317 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2318 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2319 
2320 		/* readahead node pages */
2321 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2322 
2323 		for (idx = addr; idx < addr + nrpages; idx++) {
2324 			struct page *page = get_tmp_page(sbi, idx);
2325 
2326 			rn = F2FS_NODE(page);
2327 			sum_entry->nid = rn->footer.nid;
2328 			sum_entry->version = 0;
2329 			sum_entry->ofs_in_node = 0;
2330 			sum_entry++;
2331 			f2fs_put_page(page, 1);
2332 		}
2333 
2334 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2335 							addr + nrpages);
2336 	}
2337 	return 0;
2338 }
2339 
2340 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2341 {
2342 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2343 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2344 	struct f2fs_journal *journal = curseg->journal;
2345 	int i;
2346 
2347 	down_write(&curseg->journal_rwsem);
2348 	for (i = 0; i < nats_in_cursum(journal); i++) {
2349 		struct nat_entry *ne;
2350 		struct f2fs_nat_entry raw_ne;
2351 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2352 
2353 		raw_ne = nat_in_journal(journal, i);
2354 
2355 		ne = __lookup_nat_cache(nm_i, nid);
2356 		if (!ne) {
2357 			ne = grab_nat_entry(nm_i, nid, true);
2358 			node_info_from_raw_nat(&ne->ni, &raw_ne);
2359 		}
2360 
2361 		/*
2362 		 * if a free nat in journal has not been used after last
2363 		 * checkpoint, we should remove it from available nids,
2364 		 * since later we will add it again.
2365 		 */
2366 		if (!get_nat_flag(ne, IS_DIRTY) &&
2367 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2368 			spin_lock(&nm_i->nid_list_lock);
2369 			nm_i->available_nids--;
2370 			spin_unlock(&nm_i->nid_list_lock);
2371 		}
2372 
2373 		__set_nat_cache_dirty(nm_i, ne);
2374 	}
2375 	update_nats_in_cursum(journal, -i);
2376 	up_write(&curseg->journal_rwsem);
2377 }
2378 
2379 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2380 						struct list_head *head, int max)
2381 {
2382 	struct nat_entry_set *cur;
2383 
2384 	if (nes->entry_cnt >= max)
2385 		goto add_out;
2386 
2387 	list_for_each_entry(cur, head, set_list) {
2388 		if (cur->entry_cnt >= nes->entry_cnt) {
2389 			list_add(&nes->set_list, cur->set_list.prev);
2390 			return;
2391 		}
2392 	}
2393 add_out:
2394 	list_add_tail(&nes->set_list, head);
2395 }
2396 
2397 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2398 						struct page *page)
2399 {
2400 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2401 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2402 	struct f2fs_nat_block *nat_blk = page_address(page);
2403 	int valid = 0;
2404 	int i;
2405 
2406 	if (!enabled_nat_bits(sbi, NULL))
2407 		return;
2408 
2409 	for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2410 		if (start_nid == 0 && i == 0)
2411 			valid++;
2412 		if (nat_blk->entries[i].block_addr)
2413 			valid++;
2414 	}
2415 	if (valid == 0) {
2416 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2417 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2418 		return;
2419 	}
2420 
2421 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2422 	if (valid == NAT_ENTRY_PER_BLOCK)
2423 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2424 	else
2425 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2426 }
2427 
2428 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2429 		struct nat_entry_set *set, struct cp_control *cpc)
2430 {
2431 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2432 	struct f2fs_journal *journal = curseg->journal;
2433 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2434 	bool to_journal = true;
2435 	struct f2fs_nat_block *nat_blk;
2436 	struct nat_entry *ne, *cur;
2437 	struct page *page = NULL;
2438 
2439 	/*
2440 	 * there are two steps to flush nat entries:
2441 	 * #1, flush nat entries to journal in current hot data summary block.
2442 	 * #2, flush nat entries to nat page.
2443 	 */
2444 	if (enabled_nat_bits(sbi, cpc) ||
2445 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2446 		to_journal = false;
2447 
2448 	if (to_journal) {
2449 		down_write(&curseg->journal_rwsem);
2450 	} else {
2451 		page = get_next_nat_page(sbi, start_nid);
2452 		nat_blk = page_address(page);
2453 		f2fs_bug_on(sbi, !nat_blk);
2454 	}
2455 
2456 	/* flush dirty nats in nat entry set */
2457 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2458 		struct f2fs_nat_entry *raw_ne;
2459 		nid_t nid = nat_get_nid(ne);
2460 		int offset;
2461 
2462 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2463 
2464 		if (to_journal) {
2465 			offset = lookup_journal_in_cursum(journal,
2466 							NAT_JOURNAL, nid, 1);
2467 			f2fs_bug_on(sbi, offset < 0);
2468 			raw_ne = &nat_in_journal(journal, offset);
2469 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2470 		} else {
2471 			raw_ne = &nat_blk->entries[nid - start_nid];
2472 		}
2473 		raw_nat_from_node_info(raw_ne, &ne->ni);
2474 		nat_reset_flag(ne);
2475 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2476 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2477 			add_free_nid(sbi, nid, false);
2478 			spin_lock(&NM_I(sbi)->nid_list_lock);
2479 			NM_I(sbi)->available_nids++;
2480 			update_free_nid_bitmap(sbi, nid, true, false);
2481 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2482 		} else {
2483 			spin_lock(&NM_I(sbi)->nid_list_lock);
2484 			update_free_nid_bitmap(sbi, nid, false, false);
2485 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2486 		}
2487 	}
2488 
2489 	if (to_journal) {
2490 		up_write(&curseg->journal_rwsem);
2491 	} else {
2492 		__update_nat_bits(sbi, start_nid, page);
2493 		f2fs_put_page(page, 1);
2494 	}
2495 
2496 	/* Allow dirty nats by node block allocation in write_begin */
2497 	if (!set->entry_cnt) {
2498 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2499 		kmem_cache_free(nat_entry_set_slab, set);
2500 	}
2501 }
2502 
2503 /*
2504  * This function is called during the checkpointing process.
2505  */
2506 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2507 {
2508 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2509 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2510 	struct f2fs_journal *journal = curseg->journal;
2511 	struct nat_entry_set *setvec[SETVEC_SIZE];
2512 	struct nat_entry_set *set, *tmp;
2513 	unsigned int found;
2514 	nid_t set_idx = 0;
2515 	LIST_HEAD(sets);
2516 
2517 	if (!nm_i->dirty_nat_cnt)
2518 		return;
2519 
2520 	down_write(&nm_i->nat_tree_lock);
2521 
2522 	/*
2523 	 * if there are no enough space in journal to store dirty nat
2524 	 * entries, remove all entries from journal and merge them
2525 	 * into nat entry set.
2526 	 */
2527 	if (enabled_nat_bits(sbi, cpc) ||
2528 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2529 		remove_nats_in_journal(sbi);
2530 
2531 	while ((found = __gang_lookup_nat_set(nm_i,
2532 					set_idx, SETVEC_SIZE, setvec))) {
2533 		unsigned idx;
2534 		set_idx = setvec[found - 1]->set + 1;
2535 		for (idx = 0; idx < found; idx++)
2536 			__adjust_nat_entry_set(setvec[idx], &sets,
2537 						MAX_NAT_JENTRIES(journal));
2538 	}
2539 
2540 	/* flush dirty nats in nat entry set */
2541 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2542 		__flush_nat_entry_set(sbi, set, cpc);
2543 
2544 	up_write(&nm_i->nat_tree_lock);
2545 	/* Allow dirty nats by node block allocation in write_begin */
2546 }
2547 
2548 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2549 {
2550 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2551 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2552 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2553 	unsigned int i;
2554 	__u64 cp_ver = cur_cp_version(ckpt);
2555 	block_t nat_bits_addr;
2556 
2557 	if (!enabled_nat_bits(sbi, NULL))
2558 		return 0;
2559 
2560 	nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2561 						F2FS_BLKSIZE - 1);
2562 	nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2563 						GFP_KERNEL);
2564 	if (!nm_i->nat_bits)
2565 		return -ENOMEM;
2566 
2567 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2568 						nm_i->nat_bits_blocks;
2569 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2570 		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2571 
2572 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2573 					page_address(page), F2FS_BLKSIZE);
2574 		f2fs_put_page(page, 1);
2575 	}
2576 
2577 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2578 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2579 		disable_nat_bits(sbi, true);
2580 		return 0;
2581 	}
2582 
2583 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2584 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2585 
2586 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2587 	return 0;
2588 }
2589 
2590 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2591 {
2592 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2593 	unsigned int i = 0;
2594 	nid_t nid, last_nid;
2595 
2596 	if (!enabled_nat_bits(sbi, NULL))
2597 		return;
2598 
2599 	for (i = 0; i < nm_i->nat_blocks; i++) {
2600 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2601 		if (i >= nm_i->nat_blocks)
2602 			break;
2603 
2604 		__set_bit_le(i, nm_i->nat_block_bitmap);
2605 
2606 		nid = i * NAT_ENTRY_PER_BLOCK;
2607 		last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2608 
2609 		spin_lock(&NM_I(sbi)->nid_list_lock);
2610 		for (; nid < last_nid; nid++)
2611 			update_free_nid_bitmap(sbi, nid, true, true);
2612 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2613 	}
2614 
2615 	for (i = 0; i < nm_i->nat_blocks; i++) {
2616 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2617 		if (i >= nm_i->nat_blocks)
2618 			break;
2619 
2620 		__set_bit_le(i, nm_i->nat_block_bitmap);
2621 	}
2622 }
2623 
2624 static int init_node_manager(struct f2fs_sb_info *sbi)
2625 {
2626 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2627 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2628 	unsigned char *version_bitmap;
2629 	unsigned int nat_segs;
2630 	int err;
2631 
2632 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2633 
2634 	/* segment_count_nat includes pair segment so divide to 2. */
2635 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2636 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2637 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2638 
2639 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2640 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2641 							F2FS_RESERVED_NODE_NUM;
2642 	nm_i->nid_cnt[FREE_NID_LIST] = 0;
2643 	nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2644 	nm_i->nat_cnt = 0;
2645 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2646 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2647 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2648 
2649 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2650 	INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2651 	INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2652 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2653 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2654 	INIT_LIST_HEAD(&nm_i->nat_entries);
2655 
2656 	mutex_init(&nm_i->build_lock);
2657 	spin_lock_init(&nm_i->nid_list_lock);
2658 	init_rwsem(&nm_i->nat_tree_lock);
2659 
2660 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2661 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2662 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2663 	if (!version_bitmap)
2664 		return -EFAULT;
2665 
2666 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2667 					GFP_KERNEL);
2668 	if (!nm_i->nat_bitmap)
2669 		return -ENOMEM;
2670 
2671 	err = __get_nat_bitmaps(sbi);
2672 	if (err)
2673 		return err;
2674 
2675 #ifdef CONFIG_F2FS_CHECK_FS
2676 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2677 					GFP_KERNEL);
2678 	if (!nm_i->nat_bitmap_mir)
2679 		return -ENOMEM;
2680 #endif
2681 
2682 	return 0;
2683 }
2684 
2685 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2686 {
2687 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2688 
2689 	nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
2690 					NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2691 	if (!nm_i->free_nid_bitmap)
2692 		return -ENOMEM;
2693 
2694 	nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
2695 								GFP_KERNEL);
2696 	if (!nm_i->nat_block_bitmap)
2697 		return -ENOMEM;
2698 
2699 	nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
2700 					sizeof(unsigned short), GFP_KERNEL);
2701 	if (!nm_i->free_nid_count)
2702 		return -ENOMEM;
2703 	return 0;
2704 }
2705 
2706 int build_node_manager(struct f2fs_sb_info *sbi)
2707 {
2708 	int err;
2709 
2710 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2711 	if (!sbi->nm_info)
2712 		return -ENOMEM;
2713 
2714 	err = init_node_manager(sbi);
2715 	if (err)
2716 		return err;
2717 
2718 	err = init_free_nid_cache(sbi);
2719 	if (err)
2720 		return err;
2721 
2722 	/* load free nid status from nat_bits table */
2723 	load_free_nid_bitmap(sbi);
2724 
2725 	build_free_nids(sbi, true, true);
2726 	return 0;
2727 }
2728 
2729 void destroy_node_manager(struct f2fs_sb_info *sbi)
2730 {
2731 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2732 	struct free_nid *i, *next_i;
2733 	struct nat_entry *natvec[NATVEC_SIZE];
2734 	struct nat_entry_set *setvec[SETVEC_SIZE];
2735 	nid_t nid = 0;
2736 	unsigned int found;
2737 
2738 	if (!nm_i)
2739 		return;
2740 
2741 	/* destroy free nid list */
2742 	spin_lock(&nm_i->nid_list_lock);
2743 	list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2744 									list) {
2745 		__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2746 		spin_unlock(&nm_i->nid_list_lock);
2747 		kmem_cache_free(free_nid_slab, i);
2748 		spin_lock(&nm_i->nid_list_lock);
2749 	}
2750 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2751 	f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2752 	f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2753 	spin_unlock(&nm_i->nid_list_lock);
2754 
2755 	/* destroy nat cache */
2756 	down_write(&nm_i->nat_tree_lock);
2757 	while ((found = __gang_lookup_nat_cache(nm_i,
2758 					nid, NATVEC_SIZE, natvec))) {
2759 		unsigned idx;
2760 
2761 		nid = nat_get_nid(natvec[found - 1]) + 1;
2762 		for (idx = 0; idx < found; idx++)
2763 			__del_from_nat_cache(nm_i, natvec[idx]);
2764 	}
2765 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2766 
2767 	/* destroy nat set cache */
2768 	nid = 0;
2769 	while ((found = __gang_lookup_nat_set(nm_i,
2770 					nid, SETVEC_SIZE, setvec))) {
2771 		unsigned idx;
2772 
2773 		nid = setvec[found - 1]->set + 1;
2774 		for (idx = 0; idx < found; idx++) {
2775 			/* entry_cnt is not zero, when cp_error was occurred */
2776 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2777 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2778 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2779 		}
2780 	}
2781 	up_write(&nm_i->nat_tree_lock);
2782 
2783 	kvfree(nm_i->nat_block_bitmap);
2784 	kvfree(nm_i->free_nid_bitmap);
2785 	kvfree(nm_i->free_nid_count);
2786 
2787 	kfree(nm_i->nat_bitmap);
2788 	kfree(nm_i->nat_bits);
2789 #ifdef CONFIG_F2FS_CHECK_FS
2790 	kfree(nm_i->nat_bitmap_mir);
2791 #endif
2792 	sbi->nm_info = NULL;
2793 	kfree(nm_i);
2794 }
2795 
2796 int __init create_node_manager_caches(void)
2797 {
2798 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2799 			sizeof(struct nat_entry));
2800 	if (!nat_entry_slab)
2801 		goto fail;
2802 
2803 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2804 			sizeof(struct free_nid));
2805 	if (!free_nid_slab)
2806 		goto destroy_nat_entry;
2807 
2808 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2809 			sizeof(struct nat_entry_set));
2810 	if (!nat_entry_set_slab)
2811 		goto destroy_free_nid;
2812 	return 0;
2813 
2814 destroy_free_nid:
2815 	kmem_cache_destroy(free_nid_slab);
2816 destroy_nat_entry:
2817 	kmem_cache_destroy(nat_entry_slab);
2818 fail:
2819 	return -ENOMEM;
2820 }
2821 
2822 void destroy_node_manager_caches(void)
2823 {
2824 	kmem_cache_destroy(nat_entry_set_slab);
2825 	kmem_cache_destroy(free_nid_slab);
2826 	kmem_cache_destroy(nat_entry_slab);
2827 }
2828