1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 314 { 315 return NODE_MAPPING(sbi) == page->mapping && 316 IS_DNODE(page) && is_cold_node(page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->nid = nid; 562 retry: 563 /* Check nat cache */ 564 f2fs_down_read(&nm_i->nat_tree_lock); 565 e = __lookup_nat_cache(nm_i, nid); 566 if (e) { 567 ni->ino = nat_get_ino(e); 568 ni->blk_addr = nat_get_blkaddr(e); 569 ni->version = nat_get_version(e); 570 f2fs_up_read(&nm_i->nat_tree_lock); 571 return 0; 572 } 573 574 /* 575 * Check current segment summary by trying to grab journal_rwsem first. 576 * This sem is on the critical path on the checkpoint requiring the above 577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 578 * while not bothering checkpoint. 579 */ 580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 581 down_read(&curseg->journal_rwsem); 582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 583 !down_read_trylock(&curseg->journal_rwsem)) { 584 f2fs_up_read(&nm_i->nat_tree_lock); 585 goto retry; 586 } 587 588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 589 if (i >= 0) { 590 ne = nat_in_journal(journal, i); 591 node_info_from_raw_nat(ni, &ne); 592 } 593 up_read(&curseg->journal_rwsem); 594 if (i >= 0) { 595 f2fs_up_read(&nm_i->nat_tree_lock); 596 goto cache; 597 } 598 599 /* Fill node_info from nat page */ 600 index = current_nat_addr(sbi, nid); 601 f2fs_up_read(&nm_i->nat_tree_lock); 602 603 page = f2fs_get_meta_page(sbi, index); 604 if (IS_ERR(page)) 605 return PTR_ERR(page); 606 607 nat_blk = (struct f2fs_nat_block *)page_address(page); 608 ne = nat_blk->entries[nid - start_nid]; 609 node_info_from_raw_nat(ni, &ne); 610 f2fs_put_page(page, 1); 611 cache: 612 blkaddr = le32_to_cpu(ne.block_addr); 613 if (__is_valid_data_blkaddr(blkaddr) && 614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 615 return -EFAULT; 616 617 /* cache nat entry */ 618 cache_nat_entry(sbi, nid, &ne); 619 return 0; 620 } 621 622 /* 623 * readahead MAX_RA_NODE number of node pages. 624 */ 625 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 626 { 627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 628 struct blk_plug plug; 629 int i, end; 630 nid_t nid; 631 632 blk_start_plug(&plug); 633 634 /* Then, try readahead for siblings of the desired node */ 635 end = start + n; 636 end = min(end, NIDS_PER_BLOCK); 637 for (i = start; i < end; i++) { 638 nid = get_nid(parent, i, false); 639 f2fs_ra_node_page(sbi, nid); 640 } 641 642 blk_finish_plug(&plug); 643 } 644 645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 646 { 647 const long direct_index = ADDRS_PER_INODE(dn->inode); 648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 651 int cur_level = dn->cur_level; 652 int max_level = dn->max_level; 653 pgoff_t base = 0; 654 655 if (!dn->max_level) 656 return pgofs + 1; 657 658 while (max_level-- > cur_level) 659 skipped_unit *= NIDS_PER_BLOCK; 660 661 switch (dn->max_level) { 662 case 3: 663 base += 2 * indirect_blks; 664 fallthrough; 665 case 2: 666 base += 2 * direct_blks; 667 fallthrough; 668 case 1: 669 base += direct_index; 670 break; 671 default: 672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 673 } 674 675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 676 } 677 678 /* 679 * The maximum depth is four. 680 * Offset[0] will have raw inode offset. 681 */ 682 static int get_node_path(struct inode *inode, long block, 683 int offset[4], unsigned int noffset[4]) 684 { 685 const long direct_index = ADDRS_PER_INODE(inode); 686 const long direct_blks = ADDRS_PER_BLOCK(inode); 687 const long dptrs_per_blk = NIDS_PER_BLOCK; 688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 690 int n = 0; 691 int level = 0; 692 693 noffset[0] = 0; 694 695 if (block < direct_index) { 696 offset[n] = block; 697 goto got; 698 } 699 block -= direct_index; 700 if (block < direct_blks) { 701 offset[n++] = NODE_DIR1_BLOCK; 702 noffset[n] = 1; 703 offset[n] = block; 704 level = 1; 705 goto got; 706 } 707 block -= direct_blks; 708 if (block < direct_blks) { 709 offset[n++] = NODE_DIR2_BLOCK; 710 noffset[n] = 2; 711 offset[n] = block; 712 level = 1; 713 goto got; 714 } 715 block -= direct_blks; 716 if (block < indirect_blks) { 717 offset[n++] = NODE_IND1_BLOCK; 718 noffset[n] = 3; 719 offset[n++] = block / direct_blks; 720 noffset[n] = 4 + offset[n - 1]; 721 offset[n] = block % direct_blks; 722 level = 2; 723 goto got; 724 } 725 block -= indirect_blks; 726 if (block < indirect_blks) { 727 offset[n++] = NODE_IND2_BLOCK; 728 noffset[n] = 4 + dptrs_per_blk; 729 offset[n++] = block / direct_blks; 730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 731 offset[n] = block % direct_blks; 732 level = 2; 733 goto got; 734 } 735 block -= indirect_blks; 736 if (block < dindirect_blks) { 737 offset[n++] = NODE_DIND_BLOCK; 738 noffset[n] = 5 + (dptrs_per_blk * 2); 739 offset[n++] = block / indirect_blks; 740 noffset[n] = 6 + (dptrs_per_blk * 2) + 741 offset[n - 1] * (dptrs_per_blk + 1); 742 offset[n++] = (block / direct_blks) % dptrs_per_blk; 743 noffset[n] = 7 + (dptrs_per_blk * 2) + 744 offset[n - 2] * (dptrs_per_blk + 1) + 745 offset[n - 1]; 746 offset[n] = block % direct_blks; 747 level = 3; 748 goto got; 749 } else { 750 return -E2BIG; 751 } 752 got: 753 return level; 754 } 755 756 /* 757 * Caller should call f2fs_put_dnode(dn). 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 760 */ 761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 764 struct page *npage[4]; 765 struct page *parent = NULL; 766 int offset[4]; 767 unsigned int noffset[4]; 768 nid_t nids[4]; 769 int level, i = 0; 770 int err = 0; 771 772 level = get_node_path(dn->inode, index, offset, noffset); 773 if (level < 0) 774 return level; 775 776 nids[0] = dn->inode->i_ino; 777 npage[0] = dn->inode_page; 778 779 if (!npage[0]) { 780 npage[0] = f2fs_get_node_page(sbi, nids[0]); 781 if (IS_ERR(npage[0])) 782 return PTR_ERR(npage[0]); 783 } 784 785 /* if inline_data is set, should not report any block indices */ 786 if (f2fs_has_inline_data(dn->inode) && index) { 787 err = -ENOENT; 788 f2fs_put_page(npage[0], 1); 789 goto release_out; 790 } 791 792 parent = npage[0]; 793 if (level != 0) 794 nids[1] = get_nid(parent, offset[0], true); 795 dn->inode_page = npage[0]; 796 dn->inode_page_locked = true; 797 798 /* get indirect or direct nodes */ 799 for (i = 1; i <= level; i++) { 800 bool done = false; 801 802 if (!nids[i] && mode == ALLOC_NODE) { 803 /* alloc new node */ 804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 805 err = -ENOSPC; 806 goto release_pages; 807 } 808 809 dn->nid = nids[i]; 810 npage[i] = f2fs_new_node_page(dn, noffset[i]); 811 if (IS_ERR(npage[i])) { 812 f2fs_alloc_nid_failed(sbi, nids[i]); 813 err = PTR_ERR(npage[i]); 814 goto release_pages; 815 } 816 817 set_nid(parent, offset[i - 1], nids[i], i == 1); 818 f2fs_alloc_nid_done(sbi, nids[i]); 819 done = true; 820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 822 if (IS_ERR(npage[i])) { 823 err = PTR_ERR(npage[i]); 824 goto release_pages; 825 } 826 done = true; 827 } 828 if (i == 1) { 829 dn->inode_page_locked = false; 830 unlock_page(parent); 831 } else { 832 f2fs_put_page(parent, 1); 833 } 834 835 if (!done) { 836 npage[i] = f2fs_get_node_page(sbi, nids[i]); 837 if (IS_ERR(npage[i])) { 838 err = PTR_ERR(npage[i]); 839 f2fs_put_page(npage[0], 0); 840 goto release_out; 841 } 842 } 843 if (i < level) { 844 parent = npage[i]; 845 nids[i + 1] = get_nid(parent, offset[i], false); 846 } 847 } 848 dn->nid = nids[level]; 849 dn->ofs_in_node = offset[level]; 850 dn->node_page = npage[level]; 851 dn->data_blkaddr = f2fs_data_blkaddr(dn); 852 853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 854 f2fs_sb_has_readonly(sbi)) { 855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 856 block_t blkaddr; 857 858 if (!c_len) 859 goto out; 860 861 blkaddr = f2fs_data_blkaddr(dn); 862 if (blkaddr == COMPRESS_ADDR) 863 blkaddr = data_blkaddr(dn->inode, dn->node_page, 864 dn->ofs_in_node + 1); 865 866 f2fs_update_read_extent_tree_range_compressed(dn->inode, 867 index, blkaddr, 868 F2FS_I(dn->inode)->i_cluster_size, 869 c_len); 870 } 871 out: 872 return 0; 873 874 release_pages: 875 f2fs_put_page(parent, 1); 876 if (i > 1) 877 f2fs_put_page(npage[0], 0); 878 release_out: 879 dn->inode_page = NULL; 880 dn->node_page = NULL; 881 if (err == -ENOENT) { 882 dn->cur_level = i; 883 dn->max_level = level; 884 dn->ofs_in_node = offset[level]; 885 } 886 return err; 887 } 888 889 static int truncate_node(struct dnode_of_data *dn) 890 { 891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 892 struct node_info ni; 893 int err; 894 pgoff_t index; 895 896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 897 if (err) 898 return err; 899 900 /* Deallocate node address */ 901 f2fs_invalidate_blocks(sbi, ni.blk_addr); 902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 903 set_node_addr(sbi, &ni, NULL_ADDR, false); 904 905 if (dn->nid == dn->inode->i_ino) { 906 f2fs_remove_orphan_inode(sbi, dn->nid); 907 dec_valid_inode_count(sbi); 908 f2fs_inode_synced(dn->inode); 909 } 910 911 clear_node_page_dirty(dn->node_page); 912 set_sbi_flag(sbi, SBI_IS_DIRTY); 913 914 index = dn->node_page->index; 915 f2fs_put_page(dn->node_page, 1); 916 917 invalidate_mapping_pages(NODE_MAPPING(sbi), 918 index, index); 919 920 dn->node_page = NULL; 921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 922 923 return 0; 924 } 925 926 static int truncate_dnode(struct dnode_of_data *dn) 927 { 928 struct page *page; 929 int err; 930 931 if (dn->nid == 0) 932 return 1; 933 934 /* get direct node */ 935 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 936 if (PTR_ERR(page) == -ENOENT) 937 return 1; 938 else if (IS_ERR(page)) 939 return PTR_ERR(page); 940 941 /* Make dnode_of_data for parameter */ 942 dn->node_page = page; 943 dn->ofs_in_node = 0; 944 f2fs_truncate_data_blocks(dn); 945 err = truncate_node(dn); 946 if (err) 947 return err; 948 949 return 1; 950 } 951 952 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 953 int ofs, int depth) 954 { 955 struct dnode_of_data rdn = *dn; 956 struct page *page; 957 struct f2fs_node *rn; 958 nid_t child_nid; 959 unsigned int child_nofs; 960 int freed = 0; 961 int i, ret; 962 963 if (dn->nid == 0) 964 return NIDS_PER_BLOCK + 1; 965 966 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 967 968 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 969 if (IS_ERR(page)) { 970 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 971 return PTR_ERR(page); 972 } 973 974 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 975 976 rn = F2FS_NODE(page); 977 if (depth < 3) { 978 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 979 child_nid = le32_to_cpu(rn->in.nid[i]); 980 if (child_nid == 0) 981 continue; 982 rdn.nid = child_nid; 983 ret = truncate_dnode(&rdn); 984 if (ret < 0) 985 goto out_err; 986 if (set_nid(page, i, 0, false)) 987 dn->node_changed = true; 988 } 989 } else { 990 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 991 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 992 child_nid = le32_to_cpu(rn->in.nid[i]); 993 if (child_nid == 0) { 994 child_nofs += NIDS_PER_BLOCK + 1; 995 continue; 996 } 997 rdn.nid = child_nid; 998 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 999 if (ret == (NIDS_PER_BLOCK + 1)) { 1000 if (set_nid(page, i, 0, false)) 1001 dn->node_changed = true; 1002 child_nofs += ret; 1003 } else if (ret < 0 && ret != -ENOENT) { 1004 goto out_err; 1005 } 1006 } 1007 freed = child_nofs; 1008 } 1009 1010 if (!ofs) { 1011 /* remove current indirect node */ 1012 dn->node_page = page; 1013 ret = truncate_node(dn); 1014 if (ret) 1015 goto out_err; 1016 freed++; 1017 } else { 1018 f2fs_put_page(page, 1); 1019 } 1020 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1021 return freed; 1022 1023 out_err: 1024 f2fs_put_page(page, 1); 1025 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1026 return ret; 1027 } 1028 1029 static int truncate_partial_nodes(struct dnode_of_data *dn, 1030 struct f2fs_inode *ri, int *offset, int depth) 1031 { 1032 struct page *pages[2]; 1033 nid_t nid[3]; 1034 nid_t child_nid; 1035 int err = 0; 1036 int i; 1037 int idx = depth - 2; 1038 1039 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1040 if (!nid[0]) 1041 return 0; 1042 1043 /* get indirect nodes in the path */ 1044 for (i = 0; i < idx + 1; i++) { 1045 /* reference count'll be increased */ 1046 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1047 if (IS_ERR(pages[i])) { 1048 err = PTR_ERR(pages[i]); 1049 idx = i - 1; 1050 goto fail; 1051 } 1052 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1053 } 1054 1055 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1056 1057 /* free direct nodes linked to a partial indirect node */ 1058 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1059 child_nid = get_nid(pages[idx], i, false); 1060 if (!child_nid) 1061 continue; 1062 dn->nid = child_nid; 1063 err = truncate_dnode(dn); 1064 if (err < 0) 1065 goto fail; 1066 if (set_nid(pages[idx], i, 0, false)) 1067 dn->node_changed = true; 1068 } 1069 1070 if (offset[idx + 1] == 0) { 1071 dn->node_page = pages[idx]; 1072 dn->nid = nid[idx]; 1073 err = truncate_node(dn); 1074 if (err) 1075 goto fail; 1076 } else { 1077 f2fs_put_page(pages[idx], 1); 1078 } 1079 offset[idx]++; 1080 offset[idx + 1] = 0; 1081 idx--; 1082 fail: 1083 for (i = idx; i >= 0; i--) 1084 f2fs_put_page(pages[i], 1); 1085 1086 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1087 1088 return err; 1089 } 1090 1091 /* 1092 * All the block addresses of data and nodes should be nullified. 1093 */ 1094 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1095 { 1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1097 int err = 0, cont = 1; 1098 int level, offset[4], noffset[4]; 1099 unsigned int nofs = 0; 1100 struct f2fs_inode *ri; 1101 struct dnode_of_data dn; 1102 struct page *page; 1103 1104 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1105 1106 level = get_node_path(inode, from, offset, noffset); 1107 if (level < 0) { 1108 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1109 return level; 1110 } 1111 1112 page = f2fs_get_node_page(sbi, inode->i_ino); 1113 if (IS_ERR(page)) { 1114 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1115 return PTR_ERR(page); 1116 } 1117 1118 set_new_dnode(&dn, inode, page, NULL, 0); 1119 unlock_page(page); 1120 1121 ri = F2FS_INODE(page); 1122 switch (level) { 1123 case 0: 1124 case 1: 1125 nofs = noffset[1]; 1126 break; 1127 case 2: 1128 nofs = noffset[1]; 1129 if (!offset[level - 1]) 1130 goto skip_partial; 1131 err = truncate_partial_nodes(&dn, ri, offset, level); 1132 if (err < 0 && err != -ENOENT) 1133 goto fail; 1134 nofs += 1 + NIDS_PER_BLOCK; 1135 break; 1136 case 3: 1137 nofs = 5 + 2 * NIDS_PER_BLOCK; 1138 if (!offset[level - 1]) 1139 goto skip_partial; 1140 err = truncate_partial_nodes(&dn, ri, offset, level); 1141 if (err < 0 && err != -ENOENT) 1142 goto fail; 1143 break; 1144 default: 1145 BUG(); 1146 } 1147 1148 skip_partial: 1149 while (cont) { 1150 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1151 switch (offset[0]) { 1152 case NODE_DIR1_BLOCK: 1153 case NODE_DIR2_BLOCK: 1154 err = truncate_dnode(&dn); 1155 break; 1156 1157 case NODE_IND1_BLOCK: 1158 case NODE_IND2_BLOCK: 1159 err = truncate_nodes(&dn, nofs, offset[1], 2); 1160 break; 1161 1162 case NODE_DIND_BLOCK: 1163 err = truncate_nodes(&dn, nofs, offset[1], 3); 1164 cont = 0; 1165 break; 1166 1167 default: 1168 BUG(); 1169 } 1170 if (err < 0 && err != -ENOENT) 1171 goto fail; 1172 if (offset[1] == 0 && 1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1174 lock_page(page); 1175 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1176 f2fs_wait_on_page_writeback(page, NODE, true, true); 1177 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1178 set_page_dirty(page); 1179 unlock_page(page); 1180 } 1181 offset[1] = 0; 1182 offset[0]++; 1183 nofs += err; 1184 } 1185 fail: 1186 f2fs_put_page(page, 0); 1187 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1188 return err > 0 ? 0 : err; 1189 } 1190 1191 /* caller must lock inode page */ 1192 int f2fs_truncate_xattr_node(struct inode *inode) 1193 { 1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1195 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1196 struct dnode_of_data dn; 1197 struct page *npage; 1198 int err; 1199 1200 if (!nid) 1201 return 0; 1202 1203 npage = f2fs_get_node_page(sbi, nid); 1204 if (IS_ERR(npage)) 1205 return PTR_ERR(npage); 1206 1207 set_new_dnode(&dn, inode, NULL, npage, nid); 1208 err = truncate_node(&dn); 1209 if (err) { 1210 f2fs_put_page(npage, 1); 1211 return err; 1212 } 1213 1214 f2fs_i_xnid_write(inode, 0); 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1221 * f2fs_unlock_op(). 1222 */ 1223 int f2fs_remove_inode_page(struct inode *inode) 1224 { 1225 struct dnode_of_data dn; 1226 int err; 1227 1228 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1229 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1230 if (err) 1231 return err; 1232 1233 err = f2fs_truncate_xattr_node(inode); 1234 if (err) { 1235 f2fs_put_dnode(&dn); 1236 return err; 1237 } 1238 1239 /* remove potential inline_data blocks */ 1240 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1241 S_ISLNK(inode->i_mode)) 1242 f2fs_truncate_data_blocks_range(&dn, 1); 1243 1244 /* 0 is possible, after f2fs_new_inode() has failed */ 1245 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1246 f2fs_put_dnode(&dn); 1247 return -EIO; 1248 } 1249 1250 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1251 f2fs_warn(F2FS_I_SB(inode), 1252 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1253 inode->i_ino, (unsigned long long)inode->i_blocks); 1254 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1255 } 1256 1257 /* will put inode & node pages */ 1258 err = truncate_node(&dn); 1259 if (err) { 1260 f2fs_put_dnode(&dn); 1261 return err; 1262 } 1263 return 0; 1264 } 1265 1266 struct page *f2fs_new_inode_page(struct inode *inode) 1267 { 1268 struct dnode_of_data dn; 1269 1270 /* allocate inode page for new inode */ 1271 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1272 1273 /* caller should f2fs_put_page(page, 1); */ 1274 return f2fs_new_node_page(&dn, 0); 1275 } 1276 1277 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1278 { 1279 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1280 struct node_info new_ni; 1281 struct page *page; 1282 int err; 1283 1284 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1285 return ERR_PTR(-EPERM); 1286 1287 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1288 if (!page) 1289 return ERR_PTR(-ENOMEM); 1290 1291 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1292 goto fail; 1293 1294 #ifdef CONFIG_F2FS_CHECK_FS 1295 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1296 if (err) { 1297 dec_valid_node_count(sbi, dn->inode, !ofs); 1298 goto fail; 1299 } 1300 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1301 err = -EFSCORRUPTED; 1302 set_sbi_flag(sbi, SBI_NEED_FSCK); 1303 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1304 goto fail; 1305 } 1306 #endif 1307 new_ni.nid = dn->nid; 1308 new_ni.ino = dn->inode->i_ino; 1309 new_ni.blk_addr = NULL_ADDR; 1310 new_ni.flag = 0; 1311 new_ni.version = 0; 1312 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1313 1314 f2fs_wait_on_page_writeback(page, NODE, true, true); 1315 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1316 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1317 if (!PageUptodate(page)) 1318 SetPageUptodate(page); 1319 if (set_page_dirty(page)) 1320 dn->node_changed = true; 1321 1322 if (f2fs_has_xattr_block(ofs)) 1323 f2fs_i_xnid_write(dn->inode, dn->nid); 1324 1325 if (ofs == 0) 1326 inc_valid_inode_count(sbi); 1327 return page; 1328 1329 fail: 1330 clear_node_page_dirty(page); 1331 f2fs_put_page(page, 1); 1332 return ERR_PTR(err); 1333 } 1334 1335 /* 1336 * Caller should do after getting the following values. 1337 * 0: f2fs_put_page(page, 0) 1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1339 */ 1340 static int read_node_page(struct page *page, blk_opf_t op_flags) 1341 { 1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1343 struct node_info ni; 1344 struct f2fs_io_info fio = { 1345 .sbi = sbi, 1346 .type = NODE, 1347 .op = REQ_OP_READ, 1348 .op_flags = op_flags, 1349 .page = page, 1350 .encrypted_page = NULL, 1351 }; 1352 int err; 1353 1354 if (PageUptodate(page)) { 1355 if (!f2fs_inode_chksum_verify(sbi, page)) { 1356 ClearPageUptodate(page); 1357 return -EFSBADCRC; 1358 } 1359 return LOCKED_PAGE; 1360 } 1361 1362 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1363 if (err) 1364 return err; 1365 1366 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1367 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1368 ClearPageUptodate(page); 1369 return -ENOENT; 1370 } 1371 1372 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1373 1374 err = f2fs_submit_page_bio(&fio); 1375 1376 if (!err) 1377 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1378 1379 return err; 1380 } 1381 1382 /* 1383 * Readahead a node page 1384 */ 1385 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1386 { 1387 struct page *apage; 1388 int err; 1389 1390 if (!nid) 1391 return; 1392 if (f2fs_check_nid_range(sbi, nid)) 1393 return; 1394 1395 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1396 if (apage) 1397 return; 1398 1399 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1400 if (!apage) 1401 return; 1402 1403 err = read_node_page(apage, REQ_RAHEAD); 1404 f2fs_put_page(apage, err ? 1 : 0); 1405 } 1406 1407 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1408 struct page *parent, int start) 1409 { 1410 struct page *page; 1411 int err; 1412 1413 if (!nid) 1414 return ERR_PTR(-ENOENT); 1415 if (f2fs_check_nid_range(sbi, nid)) 1416 return ERR_PTR(-EINVAL); 1417 repeat: 1418 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1419 if (!page) 1420 return ERR_PTR(-ENOMEM); 1421 1422 err = read_node_page(page, 0); 1423 if (err < 0) { 1424 goto out_put_err; 1425 } else if (err == LOCKED_PAGE) { 1426 err = 0; 1427 goto page_hit; 1428 } 1429 1430 if (parent) 1431 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1432 1433 lock_page(page); 1434 1435 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1436 f2fs_put_page(page, 1); 1437 goto repeat; 1438 } 1439 1440 if (unlikely(!PageUptodate(page))) { 1441 err = -EIO; 1442 goto out_err; 1443 } 1444 1445 if (!f2fs_inode_chksum_verify(sbi, page)) { 1446 err = -EFSBADCRC; 1447 goto out_err; 1448 } 1449 page_hit: 1450 if (likely(nid == nid_of_node(page))) 1451 return page; 1452 1453 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1454 nid, nid_of_node(page), ino_of_node(page), 1455 ofs_of_node(page), cpver_of_node(page), 1456 next_blkaddr_of_node(page)); 1457 set_sbi_flag(sbi, SBI_NEED_FSCK); 1458 err = -EINVAL; 1459 out_err: 1460 ClearPageUptodate(page); 1461 out_put_err: 1462 /* ENOENT comes from read_node_page which is not an error. */ 1463 if (err != -ENOENT) 1464 f2fs_handle_page_eio(sbi, page->index, NODE); 1465 f2fs_put_page(page, 1); 1466 return ERR_PTR(err); 1467 } 1468 1469 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1470 { 1471 return __get_node_page(sbi, nid, NULL, 0); 1472 } 1473 1474 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1475 { 1476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1477 nid_t nid = get_nid(parent, start, false); 1478 1479 return __get_node_page(sbi, nid, parent, start); 1480 } 1481 1482 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1483 { 1484 struct inode *inode; 1485 struct page *page; 1486 int ret; 1487 1488 /* should flush inline_data before evict_inode */ 1489 inode = ilookup(sbi->sb, ino); 1490 if (!inode) 1491 return; 1492 1493 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1494 FGP_LOCK|FGP_NOWAIT, 0); 1495 if (!page) 1496 goto iput_out; 1497 1498 if (!PageUptodate(page)) 1499 goto page_out; 1500 1501 if (!PageDirty(page)) 1502 goto page_out; 1503 1504 if (!clear_page_dirty_for_io(page)) 1505 goto page_out; 1506 1507 ret = f2fs_write_inline_data(inode, page); 1508 inode_dec_dirty_pages(inode); 1509 f2fs_remove_dirty_inode(inode); 1510 if (ret) 1511 set_page_dirty(page); 1512 page_out: 1513 f2fs_put_page(page, 1); 1514 iput_out: 1515 iput(inode); 1516 } 1517 1518 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1519 { 1520 pgoff_t index; 1521 struct folio_batch fbatch; 1522 struct page *last_page = NULL; 1523 int nr_folios; 1524 1525 folio_batch_init(&fbatch); 1526 index = 0; 1527 1528 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1529 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1530 &fbatch))) { 1531 int i; 1532 1533 for (i = 0; i < nr_folios; i++) { 1534 struct page *page = &fbatch.folios[i]->page; 1535 1536 if (unlikely(f2fs_cp_error(sbi))) { 1537 f2fs_put_page(last_page, 0); 1538 folio_batch_release(&fbatch); 1539 return ERR_PTR(-EIO); 1540 } 1541 1542 if (!IS_DNODE(page) || !is_cold_node(page)) 1543 continue; 1544 if (ino_of_node(page) != ino) 1545 continue; 1546 1547 lock_page(page); 1548 1549 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1550 continue_unlock: 1551 unlock_page(page); 1552 continue; 1553 } 1554 if (ino_of_node(page) != ino) 1555 goto continue_unlock; 1556 1557 if (!PageDirty(page)) { 1558 /* someone wrote it for us */ 1559 goto continue_unlock; 1560 } 1561 1562 if (last_page) 1563 f2fs_put_page(last_page, 0); 1564 1565 get_page(page); 1566 last_page = page; 1567 unlock_page(page); 1568 } 1569 folio_batch_release(&fbatch); 1570 cond_resched(); 1571 } 1572 return last_page; 1573 } 1574 1575 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1576 struct writeback_control *wbc, bool do_balance, 1577 enum iostat_type io_type, unsigned int *seq_id) 1578 { 1579 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1580 nid_t nid; 1581 struct node_info ni; 1582 struct f2fs_io_info fio = { 1583 .sbi = sbi, 1584 .ino = ino_of_node(page), 1585 .type = NODE, 1586 .op = REQ_OP_WRITE, 1587 .op_flags = wbc_to_write_flags(wbc), 1588 .page = page, 1589 .encrypted_page = NULL, 1590 .submitted = 0, 1591 .io_type = io_type, 1592 .io_wbc = wbc, 1593 }; 1594 unsigned int seq; 1595 1596 trace_f2fs_writepage(page, NODE); 1597 1598 if (unlikely(f2fs_cp_error(sbi))) { 1599 ClearPageUptodate(page); 1600 dec_page_count(sbi, F2FS_DIRTY_NODES); 1601 unlock_page(page); 1602 return 0; 1603 } 1604 1605 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1606 goto redirty_out; 1607 1608 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1609 wbc->sync_mode == WB_SYNC_NONE && 1610 IS_DNODE(page) && is_cold_node(page)) 1611 goto redirty_out; 1612 1613 /* get old block addr of this node page */ 1614 nid = nid_of_node(page); 1615 f2fs_bug_on(sbi, page->index != nid); 1616 1617 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1618 goto redirty_out; 1619 1620 if (wbc->for_reclaim) { 1621 if (!f2fs_down_read_trylock(&sbi->node_write)) 1622 goto redirty_out; 1623 } else { 1624 f2fs_down_read(&sbi->node_write); 1625 } 1626 1627 /* This page is already truncated */ 1628 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1629 ClearPageUptodate(page); 1630 dec_page_count(sbi, F2FS_DIRTY_NODES); 1631 f2fs_up_read(&sbi->node_write); 1632 unlock_page(page); 1633 return 0; 1634 } 1635 1636 if (__is_valid_data_blkaddr(ni.blk_addr) && 1637 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1638 DATA_GENERIC_ENHANCE)) { 1639 f2fs_up_read(&sbi->node_write); 1640 goto redirty_out; 1641 } 1642 1643 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1644 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1645 1646 /* should add to global list before clearing PAGECACHE status */ 1647 if (f2fs_in_warm_node_list(sbi, page)) { 1648 seq = f2fs_add_fsync_node_entry(sbi, page); 1649 if (seq_id) 1650 *seq_id = seq; 1651 } 1652 1653 set_page_writeback(page); 1654 1655 fio.old_blkaddr = ni.blk_addr; 1656 f2fs_do_write_node_page(nid, &fio); 1657 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1658 dec_page_count(sbi, F2FS_DIRTY_NODES); 1659 f2fs_up_read(&sbi->node_write); 1660 1661 if (wbc->for_reclaim) { 1662 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1663 submitted = NULL; 1664 } 1665 1666 unlock_page(page); 1667 1668 if (unlikely(f2fs_cp_error(sbi))) { 1669 f2fs_submit_merged_write(sbi, NODE); 1670 submitted = NULL; 1671 } 1672 if (submitted) 1673 *submitted = fio.submitted; 1674 1675 if (do_balance) 1676 f2fs_balance_fs(sbi, false); 1677 return 0; 1678 1679 redirty_out: 1680 redirty_page_for_writepage(wbc, page); 1681 return AOP_WRITEPAGE_ACTIVATE; 1682 } 1683 1684 int f2fs_move_node_page(struct page *node_page, int gc_type) 1685 { 1686 int err = 0; 1687 1688 if (gc_type == FG_GC) { 1689 struct writeback_control wbc = { 1690 .sync_mode = WB_SYNC_ALL, 1691 .nr_to_write = 1, 1692 .for_reclaim = 0, 1693 }; 1694 1695 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1696 1697 set_page_dirty(node_page); 1698 1699 if (!clear_page_dirty_for_io(node_page)) { 1700 err = -EAGAIN; 1701 goto out_page; 1702 } 1703 1704 if (__write_node_page(node_page, false, NULL, 1705 &wbc, false, FS_GC_NODE_IO, NULL)) { 1706 err = -EAGAIN; 1707 unlock_page(node_page); 1708 } 1709 goto release_page; 1710 } else { 1711 /* set page dirty and write it */ 1712 if (!PageWriteback(node_page)) 1713 set_page_dirty(node_page); 1714 } 1715 out_page: 1716 unlock_page(node_page); 1717 release_page: 1718 f2fs_put_page(node_page, 0); 1719 return err; 1720 } 1721 1722 static int f2fs_write_node_page(struct page *page, 1723 struct writeback_control *wbc) 1724 { 1725 return __write_node_page(page, false, NULL, wbc, false, 1726 FS_NODE_IO, NULL); 1727 } 1728 1729 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1730 struct writeback_control *wbc, bool atomic, 1731 unsigned int *seq_id) 1732 { 1733 pgoff_t index; 1734 struct folio_batch fbatch; 1735 int ret = 0; 1736 struct page *last_page = NULL; 1737 bool marked = false; 1738 nid_t ino = inode->i_ino; 1739 int nr_folios; 1740 int nwritten = 0; 1741 1742 if (atomic) { 1743 last_page = last_fsync_dnode(sbi, ino); 1744 if (IS_ERR_OR_NULL(last_page)) 1745 return PTR_ERR_OR_ZERO(last_page); 1746 } 1747 retry: 1748 folio_batch_init(&fbatch); 1749 index = 0; 1750 1751 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1752 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1753 &fbatch))) { 1754 int i; 1755 1756 for (i = 0; i < nr_folios; i++) { 1757 struct page *page = &fbatch.folios[i]->page; 1758 bool submitted = false; 1759 1760 if (unlikely(f2fs_cp_error(sbi))) { 1761 f2fs_put_page(last_page, 0); 1762 folio_batch_release(&fbatch); 1763 ret = -EIO; 1764 goto out; 1765 } 1766 1767 if (!IS_DNODE(page) || !is_cold_node(page)) 1768 continue; 1769 if (ino_of_node(page) != ino) 1770 continue; 1771 1772 lock_page(page); 1773 1774 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1775 continue_unlock: 1776 unlock_page(page); 1777 continue; 1778 } 1779 if (ino_of_node(page) != ino) 1780 goto continue_unlock; 1781 1782 if (!PageDirty(page) && page != last_page) { 1783 /* someone wrote it for us */ 1784 goto continue_unlock; 1785 } 1786 1787 f2fs_wait_on_page_writeback(page, NODE, true, true); 1788 1789 set_fsync_mark(page, 0); 1790 set_dentry_mark(page, 0); 1791 1792 if (!atomic || page == last_page) { 1793 set_fsync_mark(page, 1); 1794 percpu_counter_inc(&sbi->rf_node_block_count); 1795 if (IS_INODE(page)) { 1796 if (is_inode_flag_set(inode, 1797 FI_DIRTY_INODE)) 1798 f2fs_update_inode(inode, page); 1799 set_dentry_mark(page, 1800 f2fs_need_dentry_mark(sbi, ino)); 1801 } 1802 /* may be written by other thread */ 1803 if (!PageDirty(page)) 1804 set_page_dirty(page); 1805 } 1806 1807 if (!clear_page_dirty_for_io(page)) 1808 goto continue_unlock; 1809 1810 ret = __write_node_page(page, atomic && 1811 page == last_page, 1812 &submitted, wbc, true, 1813 FS_NODE_IO, seq_id); 1814 if (ret) { 1815 unlock_page(page); 1816 f2fs_put_page(last_page, 0); 1817 break; 1818 } else if (submitted) { 1819 nwritten++; 1820 } 1821 1822 if (page == last_page) { 1823 f2fs_put_page(page, 0); 1824 marked = true; 1825 break; 1826 } 1827 } 1828 folio_batch_release(&fbatch); 1829 cond_resched(); 1830 1831 if (ret || marked) 1832 break; 1833 } 1834 if (!ret && atomic && !marked) { 1835 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1836 ino, last_page->index); 1837 lock_page(last_page); 1838 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1839 set_page_dirty(last_page); 1840 unlock_page(last_page); 1841 goto retry; 1842 } 1843 out: 1844 if (nwritten) 1845 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1846 return ret ? -EIO : 0; 1847 } 1848 1849 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1850 { 1851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1852 bool clean; 1853 1854 if (inode->i_ino != ino) 1855 return 0; 1856 1857 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1858 return 0; 1859 1860 spin_lock(&sbi->inode_lock[DIRTY_META]); 1861 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1862 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1863 1864 if (clean) 1865 return 0; 1866 1867 inode = igrab(inode); 1868 if (!inode) 1869 return 0; 1870 return 1; 1871 } 1872 1873 static bool flush_dirty_inode(struct page *page) 1874 { 1875 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1876 struct inode *inode; 1877 nid_t ino = ino_of_node(page); 1878 1879 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1880 if (!inode) 1881 return false; 1882 1883 f2fs_update_inode(inode, page); 1884 unlock_page(page); 1885 1886 iput(inode); 1887 return true; 1888 } 1889 1890 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1891 { 1892 pgoff_t index = 0; 1893 struct folio_batch fbatch; 1894 int nr_folios; 1895 1896 folio_batch_init(&fbatch); 1897 1898 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1899 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1900 &fbatch))) { 1901 int i; 1902 1903 for (i = 0; i < nr_folios; i++) { 1904 struct page *page = &fbatch.folios[i]->page; 1905 1906 if (!IS_DNODE(page)) 1907 continue; 1908 1909 lock_page(page); 1910 1911 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1912 continue_unlock: 1913 unlock_page(page); 1914 continue; 1915 } 1916 1917 if (!PageDirty(page)) { 1918 /* someone wrote it for us */ 1919 goto continue_unlock; 1920 } 1921 1922 /* flush inline_data, if it's async context. */ 1923 if (page_private_inline(page)) { 1924 clear_page_private_inline(page); 1925 unlock_page(page); 1926 flush_inline_data(sbi, ino_of_node(page)); 1927 continue; 1928 } 1929 unlock_page(page); 1930 } 1931 folio_batch_release(&fbatch); 1932 cond_resched(); 1933 } 1934 } 1935 1936 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1937 struct writeback_control *wbc, 1938 bool do_balance, enum iostat_type io_type) 1939 { 1940 pgoff_t index; 1941 struct folio_batch fbatch; 1942 int step = 0; 1943 int nwritten = 0; 1944 int ret = 0; 1945 int nr_folios, done = 0; 1946 1947 folio_batch_init(&fbatch); 1948 1949 next_step: 1950 index = 0; 1951 1952 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 1953 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1954 &fbatch))) { 1955 int i; 1956 1957 for (i = 0; i < nr_folios; i++) { 1958 struct page *page = &fbatch.folios[i]->page; 1959 bool submitted = false; 1960 1961 /* give a priority to WB_SYNC threads */ 1962 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1963 wbc->sync_mode == WB_SYNC_NONE) { 1964 done = 1; 1965 break; 1966 } 1967 1968 /* 1969 * flushing sequence with step: 1970 * 0. indirect nodes 1971 * 1. dentry dnodes 1972 * 2. file dnodes 1973 */ 1974 if (step == 0 && IS_DNODE(page)) 1975 continue; 1976 if (step == 1 && (!IS_DNODE(page) || 1977 is_cold_node(page))) 1978 continue; 1979 if (step == 2 && (!IS_DNODE(page) || 1980 !is_cold_node(page))) 1981 continue; 1982 lock_node: 1983 if (wbc->sync_mode == WB_SYNC_ALL) 1984 lock_page(page); 1985 else if (!trylock_page(page)) 1986 continue; 1987 1988 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1989 continue_unlock: 1990 unlock_page(page); 1991 continue; 1992 } 1993 1994 if (!PageDirty(page)) { 1995 /* someone wrote it for us */ 1996 goto continue_unlock; 1997 } 1998 1999 /* flush inline_data/inode, if it's async context. */ 2000 if (!do_balance) 2001 goto write_node; 2002 2003 /* flush inline_data */ 2004 if (page_private_inline(page)) { 2005 clear_page_private_inline(page); 2006 unlock_page(page); 2007 flush_inline_data(sbi, ino_of_node(page)); 2008 goto lock_node; 2009 } 2010 2011 /* flush dirty inode */ 2012 if (IS_INODE(page) && flush_dirty_inode(page)) 2013 goto lock_node; 2014 write_node: 2015 f2fs_wait_on_page_writeback(page, NODE, true, true); 2016 2017 if (!clear_page_dirty_for_io(page)) 2018 goto continue_unlock; 2019 2020 set_fsync_mark(page, 0); 2021 set_dentry_mark(page, 0); 2022 2023 ret = __write_node_page(page, false, &submitted, 2024 wbc, do_balance, io_type, NULL); 2025 if (ret) 2026 unlock_page(page); 2027 else if (submitted) 2028 nwritten++; 2029 2030 if (--wbc->nr_to_write == 0) 2031 break; 2032 } 2033 folio_batch_release(&fbatch); 2034 cond_resched(); 2035 2036 if (wbc->nr_to_write == 0) { 2037 step = 2; 2038 break; 2039 } 2040 } 2041 2042 if (step < 2) { 2043 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2044 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2045 goto out; 2046 step++; 2047 goto next_step; 2048 } 2049 out: 2050 if (nwritten) 2051 f2fs_submit_merged_write(sbi, NODE); 2052 2053 if (unlikely(f2fs_cp_error(sbi))) 2054 return -EIO; 2055 return ret; 2056 } 2057 2058 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2059 unsigned int seq_id) 2060 { 2061 struct fsync_node_entry *fn; 2062 struct page *page; 2063 struct list_head *head = &sbi->fsync_node_list; 2064 unsigned long flags; 2065 unsigned int cur_seq_id = 0; 2066 int ret2, ret = 0; 2067 2068 while (seq_id && cur_seq_id < seq_id) { 2069 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2070 if (list_empty(head)) { 2071 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2072 break; 2073 } 2074 fn = list_first_entry(head, struct fsync_node_entry, list); 2075 if (fn->seq_id > seq_id) { 2076 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2077 break; 2078 } 2079 cur_seq_id = fn->seq_id; 2080 page = fn->page; 2081 get_page(page); 2082 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2083 2084 f2fs_wait_on_page_writeback(page, NODE, true, false); 2085 2086 put_page(page); 2087 2088 if (ret) 2089 break; 2090 } 2091 2092 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2093 if (!ret) 2094 ret = ret2; 2095 2096 return ret; 2097 } 2098 2099 static int f2fs_write_node_pages(struct address_space *mapping, 2100 struct writeback_control *wbc) 2101 { 2102 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2103 struct blk_plug plug; 2104 long diff; 2105 2106 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2107 goto skip_write; 2108 2109 /* balancing f2fs's metadata in background */ 2110 f2fs_balance_fs_bg(sbi, true); 2111 2112 /* collect a number of dirty node pages and write together */ 2113 if (wbc->sync_mode != WB_SYNC_ALL && 2114 get_pages(sbi, F2FS_DIRTY_NODES) < 2115 nr_pages_to_skip(sbi, NODE)) 2116 goto skip_write; 2117 2118 if (wbc->sync_mode == WB_SYNC_ALL) 2119 atomic_inc(&sbi->wb_sync_req[NODE]); 2120 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2121 /* to avoid potential deadlock */ 2122 if (current->plug) 2123 blk_finish_plug(current->plug); 2124 goto skip_write; 2125 } 2126 2127 trace_f2fs_writepages(mapping->host, wbc, NODE); 2128 2129 diff = nr_pages_to_write(sbi, NODE, wbc); 2130 blk_start_plug(&plug); 2131 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2132 blk_finish_plug(&plug); 2133 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2134 2135 if (wbc->sync_mode == WB_SYNC_ALL) 2136 atomic_dec(&sbi->wb_sync_req[NODE]); 2137 return 0; 2138 2139 skip_write: 2140 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2141 trace_f2fs_writepages(mapping->host, wbc, NODE); 2142 return 0; 2143 } 2144 2145 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2146 struct folio *folio) 2147 { 2148 trace_f2fs_set_page_dirty(&folio->page, NODE); 2149 2150 if (!folio_test_uptodate(folio)) 2151 folio_mark_uptodate(folio); 2152 #ifdef CONFIG_F2FS_CHECK_FS 2153 if (IS_INODE(&folio->page)) 2154 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2155 #endif 2156 if (filemap_dirty_folio(mapping, folio)) { 2157 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2158 set_page_private_reference(&folio->page); 2159 return true; 2160 } 2161 return false; 2162 } 2163 2164 /* 2165 * Structure of the f2fs node operations 2166 */ 2167 const struct address_space_operations f2fs_node_aops = { 2168 .writepage = f2fs_write_node_page, 2169 .writepages = f2fs_write_node_pages, 2170 .dirty_folio = f2fs_dirty_node_folio, 2171 .invalidate_folio = f2fs_invalidate_folio, 2172 .release_folio = f2fs_release_folio, 2173 .migrate_folio = filemap_migrate_folio, 2174 }; 2175 2176 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2177 nid_t n) 2178 { 2179 return radix_tree_lookup(&nm_i->free_nid_root, n); 2180 } 2181 2182 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2183 struct free_nid *i) 2184 { 2185 struct f2fs_nm_info *nm_i = NM_I(sbi); 2186 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2187 2188 if (err) 2189 return err; 2190 2191 nm_i->nid_cnt[FREE_NID]++; 2192 list_add_tail(&i->list, &nm_i->free_nid_list); 2193 return 0; 2194 } 2195 2196 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2197 struct free_nid *i, enum nid_state state) 2198 { 2199 struct f2fs_nm_info *nm_i = NM_I(sbi); 2200 2201 f2fs_bug_on(sbi, state != i->state); 2202 nm_i->nid_cnt[state]--; 2203 if (state == FREE_NID) 2204 list_del(&i->list); 2205 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2206 } 2207 2208 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2209 enum nid_state org_state, enum nid_state dst_state) 2210 { 2211 struct f2fs_nm_info *nm_i = NM_I(sbi); 2212 2213 f2fs_bug_on(sbi, org_state != i->state); 2214 i->state = dst_state; 2215 nm_i->nid_cnt[org_state]--; 2216 nm_i->nid_cnt[dst_state]++; 2217 2218 switch (dst_state) { 2219 case PREALLOC_NID: 2220 list_del(&i->list); 2221 break; 2222 case FREE_NID: 2223 list_add_tail(&i->list, &nm_i->free_nid_list); 2224 break; 2225 default: 2226 BUG_ON(1); 2227 } 2228 } 2229 2230 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2231 { 2232 struct f2fs_nm_info *nm_i = NM_I(sbi); 2233 unsigned int i; 2234 bool ret = true; 2235 2236 f2fs_down_read(&nm_i->nat_tree_lock); 2237 for (i = 0; i < nm_i->nat_blocks; i++) { 2238 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2239 ret = false; 2240 break; 2241 } 2242 } 2243 f2fs_up_read(&nm_i->nat_tree_lock); 2244 2245 return ret; 2246 } 2247 2248 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2249 bool set, bool build) 2250 { 2251 struct f2fs_nm_info *nm_i = NM_I(sbi); 2252 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2253 unsigned int nid_ofs = nid - START_NID(nid); 2254 2255 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2256 return; 2257 2258 if (set) { 2259 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2260 return; 2261 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2262 nm_i->free_nid_count[nat_ofs]++; 2263 } else { 2264 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2265 return; 2266 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2267 if (!build) 2268 nm_i->free_nid_count[nat_ofs]--; 2269 } 2270 } 2271 2272 /* return if the nid is recognized as free */ 2273 static bool add_free_nid(struct f2fs_sb_info *sbi, 2274 nid_t nid, bool build, bool update) 2275 { 2276 struct f2fs_nm_info *nm_i = NM_I(sbi); 2277 struct free_nid *i, *e; 2278 struct nat_entry *ne; 2279 int err = -EINVAL; 2280 bool ret = false; 2281 2282 /* 0 nid should not be used */ 2283 if (unlikely(nid == 0)) 2284 return false; 2285 2286 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2287 return false; 2288 2289 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2290 i->nid = nid; 2291 i->state = FREE_NID; 2292 2293 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2294 2295 spin_lock(&nm_i->nid_list_lock); 2296 2297 if (build) { 2298 /* 2299 * Thread A Thread B 2300 * - f2fs_create 2301 * - f2fs_new_inode 2302 * - f2fs_alloc_nid 2303 * - __insert_nid_to_list(PREALLOC_NID) 2304 * - f2fs_balance_fs_bg 2305 * - f2fs_build_free_nids 2306 * - __f2fs_build_free_nids 2307 * - scan_nat_page 2308 * - add_free_nid 2309 * - __lookup_nat_cache 2310 * - f2fs_add_link 2311 * - f2fs_init_inode_metadata 2312 * - f2fs_new_inode_page 2313 * - f2fs_new_node_page 2314 * - set_node_addr 2315 * - f2fs_alloc_nid_done 2316 * - __remove_nid_from_list(PREALLOC_NID) 2317 * - __insert_nid_to_list(FREE_NID) 2318 */ 2319 ne = __lookup_nat_cache(nm_i, nid); 2320 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2321 nat_get_blkaddr(ne) != NULL_ADDR)) 2322 goto err_out; 2323 2324 e = __lookup_free_nid_list(nm_i, nid); 2325 if (e) { 2326 if (e->state == FREE_NID) 2327 ret = true; 2328 goto err_out; 2329 } 2330 } 2331 ret = true; 2332 err = __insert_free_nid(sbi, i); 2333 err_out: 2334 if (update) { 2335 update_free_nid_bitmap(sbi, nid, ret, build); 2336 if (!build) 2337 nm_i->available_nids++; 2338 } 2339 spin_unlock(&nm_i->nid_list_lock); 2340 radix_tree_preload_end(); 2341 2342 if (err) 2343 kmem_cache_free(free_nid_slab, i); 2344 return ret; 2345 } 2346 2347 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2348 { 2349 struct f2fs_nm_info *nm_i = NM_I(sbi); 2350 struct free_nid *i; 2351 bool need_free = false; 2352 2353 spin_lock(&nm_i->nid_list_lock); 2354 i = __lookup_free_nid_list(nm_i, nid); 2355 if (i && i->state == FREE_NID) { 2356 __remove_free_nid(sbi, i, FREE_NID); 2357 need_free = true; 2358 } 2359 spin_unlock(&nm_i->nid_list_lock); 2360 2361 if (need_free) 2362 kmem_cache_free(free_nid_slab, i); 2363 } 2364 2365 static int scan_nat_page(struct f2fs_sb_info *sbi, 2366 struct page *nat_page, nid_t start_nid) 2367 { 2368 struct f2fs_nm_info *nm_i = NM_I(sbi); 2369 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2370 block_t blk_addr; 2371 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2372 int i; 2373 2374 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2375 2376 i = start_nid % NAT_ENTRY_PER_BLOCK; 2377 2378 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2379 if (unlikely(start_nid >= nm_i->max_nid)) 2380 break; 2381 2382 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2383 2384 if (blk_addr == NEW_ADDR) 2385 return -EINVAL; 2386 2387 if (blk_addr == NULL_ADDR) { 2388 add_free_nid(sbi, start_nid, true, true); 2389 } else { 2390 spin_lock(&NM_I(sbi)->nid_list_lock); 2391 update_free_nid_bitmap(sbi, start_nid, false, true); 2392 spin_unlock(&NM_I(sbi)->nid_list_lock); 2393 } 2394 } 2395 2396 return 0; 2397 } 2398 2399 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2400 { 2401 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2402 struct f2fs_journal *journal = curseg->journal; 2403 int i; 2404 2405 down_read(&curseg->journal_rwsem); 2406 for (i = 0; i < nats_in_cursum(journal); i++) { 2407 block_t addr; 2408 nid_t nid; 2409 2410 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2411 nid = le32_to_cpu(nid_in_journal(journal, i)); 2412 if (addr == NULL_ADDR) 2413 add_free_nid(sbi, nid, true, false); 2414 else 2415 remove_free_nid(sbi, nid); 2416 } 2417 up_read(&curseg->journal_rwsem); 2418 } 2419 2420 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2421 { 2422 struct f2fs_nm_info *nm_i = NM_I(sbi); 2423 unsigned int i, idx; 2424 nid_t nid; 2425 2426 f2fs_down_read(&nm_i->nat_tree_lock); 2427 2428 for (i = 0; i < nm_i->nat_blocks; i++) { 2429 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2430 continue; 2431 if (!nm_i->free_nid_count[i]) 2432 continue; 2433 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2434 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2435 NAT_ENTRY_PER_BLOCK, idx); 2436 if (idx >= NAT_ENTRY_PER_BLOCK) 2437 break; 2438 2439 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2440 add_free_nid(sbi, nid, true, false); 2441 2442 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2443 goto out; 2444 } 2445 } 2446 out: 2447 scan_curseg_cache(sbi); 2448 2449 f2fs_up_read(&nm_i->nat_tree_lock); 2450 } 2451 2452 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2453 bool sync, bool mount) 2454 { 2455 struct f2fs_nm_info *nm_i = NM_I(sbi); 2456 int i = 0, ret; 2457 nid_t nid = nm_i->next_scan_nid; 2458 2459 if (unlikely(nid >= nm_i->max_nid)) 2460 nid = 0; 2461 2462 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2463 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2464 2465 /* Enough entries */ 2466 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2467 return 0; 2468 2469 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2470 return 0; 2471 2472 if (!mount) { 2473 /* try to find free nids in free_nid_bitmap */ 2474 scan_free_nid_bits(sbi); 2475 2476 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2477 return 0; 2478 } 2479 2480 /* readahead nat pages to be scanned */ 2481 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2482 META_NAT, true); 2483 2484 f2fs_down_read(&nm_i->nat_tree_lock); 2485 2486 while (1) { 2487 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2488 nm_i->nat_block_bitmap)) { 2489 struct page *page = get_current_nat_page(sbi, nid); 2490 2491 if (IS_ERR(page)) { 2492 ret = PTR_ERR(page); 2493 } else { 2494 ret = scan_nat_page(sbi, page, nid); 2495 f2fs_put_page(page, 1); 2496 } 2497 2498 if (ret) { 2499 f2fs_up_read(&nm_i->nat_tree_lock); 2500 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2501 return ret; 2502 } 2503 } 2504 2505 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2506 if (unlikely(nid >= nm_i->max_nid)) 2507 nid = 0; 2508 2509 if (++i >= FREE_NID_PAGES) 2510 break; 2511 } 2512 2513 /* go to the next free nat pages to find free nids abundantly */ 2514 nm_i->next_scan_nid = nid; 2515 2516 /* find free nids from current sum_pages */ 2517 scan_curseg_cache(sbi); 2518 2519 f2fs_up_read(&nm_i->nat_tree_lock); 2520 2521 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2522 nm_i->ra_nid_pages, META_NAT, false); 2523 2524 return 0; 2525 } 2526 2527 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2528 { 2529 int ret; 2530 2531 mutex_lock(&NM_I(sbi)->build_lock); 2532 ret = __f2fs_build_free_nids(sbi, sync, mount); 2533 mutex_unlock(&NM_I(sbi)->build_lock); 2534 2535 return ret; 2536 } 2537 2538 /* 2539 * If this function returns success, caller can obtain a new nid 2540 * from second parameter of this function. 2541 * The returned nid could be used ino as well as nid when inode is created. 2542 */ 2543 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2544 { 2545 struct f2fs_nm_info *nm_i = NM_I(sbi); 2546 struct free_nid *i = NULL; 2547 retry: 2548 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2549 return false; 2550 2551 spin_lock(&nm_i->nid_list_lock); 2552 2553 if (unlikely(nm_i->available_nids == 0)) { 2554 spin_unlock(&nm_i->nid_list_lock); 2555 return false; 2556 } 2557 2558 /* We should not use stale free nids created by f2fs_build_free_nids */ 2559 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2560 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2561 i = list_first_entry(&nm_i->free_nid_list, 2562 struct free_nid, list); 2563 *nid = i->nid; 2564 2565 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2566 nm_i->available_nids--; 2567 2568 update_free_nid_bitmap(sbi, *nid, false, false); 2569 2570 spin_unlock(&nm_i->nid_list_lock); 2571 return true; 2572 } 2573 spin_unlock(&nm_i->nid_list_lock); 2574 2575 /* Let's scan nat pages and its caches to get free nids */ 2576 if (!f2fs_build_free_nids(sbi, true, false)) 2577 goto retry; 2578 return false; 2579 } 2580 2581 /* 2582 * f2fs_alloc_nid() should be called prior to this function. 2583 */ 2584 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2585 { 2586 struct f2fs_nm_info *nm_i = NM_I(sbi); 2587 struct free_nid *i; 2588 2589 spin_lock(&nm_i->nid_list_lock); 2590 i = __lookup_free_nid_list(nm_i, nid); 2591 f2fs_bug_on(sbi, !i); 2592 __remove_free_nid(sbi, i, PREALLOC_NID); 2593 spin_unlock(&nm_i->nid_list_lock); 2594 2595 kmem_cache_free(free_nid_slab, i); 2596 } 2597 2598 /* 2599 * f2fs_alloc_nid() should be called prior to this function. 2600 */ 2601 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2602 { 2603 struct f2fs_nm_info *nm_i = NM_I(sbi); 2604 struct free_nid *i; 2605 bool need_free = false; 2606 2607 if (!nid) 2608 return; 2609 2610 spin_lock(&nm_i->nid_list_lock); 2611 i = __lookup_free_nid_list(nm_i, nid); 2612 f2fs_bug_on(sbi, !i); 2613 2614 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2615 __remove_free_nid(sbi, i, PREALLOC_NID); 2616 need_free = true; 2617 } else { 2618 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2619 } 2620 2621 nm_i->available_nids++; 2622 2623 update_free_nid_bitmap(sbi, nid, true, false); 2624 2625 spin_unlock(&nm_i->nid_list_lock); 2626 2627 if (need_free) 2628 kmem_cache_free(free_nid_slab, i); 2629 } 2630 2631 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2632 { 2633 struct f2fs_nm_info *nm_i = NM_I(sbi); 2634 int nr = nr_shrink; 2635 2636 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2637 return 0; 2638 2639 if (!mutex_trylock(&nm_i->build_lock)) 2640 return 0; 2641 2642 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2643 struct free_nid *i, *next; 2644 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2645 2646 spin_lock(&nm_i->nid_list_lock); 2647 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2648 if (!nr_shrink || !batch || 2649 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2650 break; 2651 __remove_free_nid(sbi, i, FREE_NID); 2652 kmem_cache_free(free_nid_slab, i); 2653 nr_shrink--; 2654 batch--; 2655 } 2656 spin_unlock(&nm_i->nid_list_lock); 2657 } 2658 2659 mutex_unlock(&nm_i->build_lock); 2660 2661 return nr - nr_shrink; 2662 } 2663 2664 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2665 { 2666 void *src_addr, *dst_addr; 2667 size_t inline_size; 2668 struct page *ipage; 2669 struct f2fs_inode *ri; 2670 2671 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2672 if (IS_ERR(ipage)) 2673 return PTR_ERR(ipage); 2674 2675 ri = F2FS_INODE(page); 2676 if (ri->i_inline & F2FS_INLINE_XATTR) { 2677 if (!f2fs_has_inline_xattr(inode)) { 2678 set_inode_flag(inode, FI_INLINE_XATTR); 2679 stat_inc_inline_xattr(inode); 2680 } 2681 } else { 2682 if (f2fs_has_inline_xattr(inode)) { 2683 stat_dec_inline_xattr(inode); 2684 clear_inode_flag(inode, FI_INLINE_XATTR); 2685 } 2686 goto update_inode; 2687 } 2688 2689 dst_addr = inline_xattr_addr(inode, ipage); 2690 src_addr = inline_xattr_addr(inode, page); 2691 inline_size = inline_xattr_size(inode); 2692 2693 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2694 memcpy(dst_addr, src_addr, inline_size); 2695 update_inode: 2696 f2fs_update_inode(inode, ipage); 2697 f2fs_put_page(ipage, 1); 2698 return 0; 2699 } 2700 2701 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2702 { 2703 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2704 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2705 nid_t new_xnid; 2706 struct dnode_of_data dn; 2707 struct node_info ni; 2708 struct page *xpage; 2709 int err; 2710 2711 if (!prev_xnid) 2712 goto recover_xnid; 2713 2714 /* 1: invalidate the previous xattr nid */ 2715 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2716 if (err) 2717 return err; 2718 2719 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2720 dec_valid_node_count(sbi, inode, false); 2721 set_node_addr(sbi, &ni, NULL_ADDR, false); 2722 2723 recover_xnid: 2724 /* 2: update xattr nid in inode */ 2725 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2726 return -ENOSPC; 2727 2728 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2729 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2730 if (IS_ERR(xpage)) { 2731 f2fs_alloc_nid_failed(sbi, new_xnid); 2732 return PTR_ERR(xpage); 2733 } 2734 2735 f2fs_alloc_nid_done(sbi, new_xnid); 2736 f2fs_update_inode_page(inode); 2737 2738 /* 3: update and set xattr node page dirty */ 2739 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2740 2741 set_page_dirty(xpage); 2742 f2fs_put_page(xpage, 1); 2743 2744 return 0; 2745 } 2746 2747 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2748 { 2749 struct f2fs_inode *src, *dst; 2750 nid_t ino = ino_of_node(page); 2751 struct node_info old_ni, new_ni; 2752 struct page *ipage; 2753 int err; 2754 2755 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2756 if (err) 2757 return err; 2758 2759 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2760 return -EINVAL; 2761 retry: 2762 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2763 if (!ipage) { 2764 memalloc_retry_wait(GFP_NOFS); 2765 goto retry; 2766 } 2767 2768 /* Should not use this inode from free nid list */ 2769 remove_free_nid(sbi, ino); 2770 2771 if (!PageUptodate(ipage)) 2772 SetPageUptodate(ipage); 2773 fill_node_footer(ipage, ino, ino, 0, true); 2774 set_cold_node(ipage, false); 2775 2776 src = F2FS_INODE(page); 2777 dst = F2FS_INODE(ipage); 2778 2779 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2780 dst->i_size = 0; 2781 dst->i_blocks = cpu_to_le64(1); 2782 dst->i_links = cpu_to_le32(1); 2783 dst->i_xattr_nid = 0; 2784 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2785 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2786 dst->i_extra_isize = src->i_extra_isize; 2787 2788 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2789 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2790 i_inline_xattr_size)) 2791 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2792 2793 if (f2fs_sb_has_project_quota(sbi) && 2794 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2795 i_projid)) 2796 dst->i_projid = src->i_projid; 2797 2798 if (f2fs_sb_has_inode_crtime(sbi) && 2799 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2800 i_crtime_nsec)) { 2801 dst->i_crtime = src->i_crtime; 2802 dst->i_crtime_nsec = src->i_crtime_nsec; 2803 } 2804 } 2805 2806 new_ni = old_ni; 2807 new_ni.ino = ino; 2808 2809 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2810 WARN_ON(1); 2811 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2812 inc_valid_inode_count(sbi); 2813 set_page_dirty(ipage); 2814 f2fs_put_page(ipage, 1); 2815 return 0; 2816 } 2817 2818 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2819 unsigned int segno, struct f2fs_summary_block *sum) 2820 { 2821 struct f2fs_node *rn; 2822 struct f2fs_summary *sum_entry; 2823 block_t addr; 2824 int i, idx, last_offset, nrpages; 2825 2826 /* scan the node segment */ 2827 last_offset = sbi->blocks_per_seg; 2828 addr = START_BLOCK(sbi, segno); 2829 sum_entry = &sum->entries[0]; 2830 2831 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2832 nrpages = bio_max_segs(last_offset - i); 2833 2834 /* readahead node pages */ 2835 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2836 2837 for (idx = addr; idx < addr + nrpages; idx++) { 2838 struct page *page = f2fs_get_tmp_page(sbi, idx); 2839 2840 if (IS_ERR(page)) 2841 return PTR_ERR(page); 2842 2843 rn = F2FS_NODE(page); 2844 sum_entry->nid = rn->footer.nid; 2845 sum_entry->version = 0; 2846 sum_entry->ofs_in_node = 0; 2847 sum_entry++; 2848 f2fs_put_page(page, 1); 2849 } 2850 2851 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2852 addr + nrpages); 2853 } 2854 return 0; 2855 } 2856 2857 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2858 { 2859 struct f2fs_nm_info *nm_i = NM_I(sbi); 2860 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2861 struct f2fs_journal *journal = curseg->journal; 2862 int i; 2863 2864 down_write(&curseg->journal_rwsem); 2865 for (i = 0; i < nats_in_cursum(journal); i++) { 2866 struct nat_entry *ne; 2867 struct f2fs_nat_entry raw_ne; 2868 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2869 2870 if (f2fs_check_nid_range(sbi, nid)) 2871 continue; 2872 2873 raw_ne = nat_in_journal(journal, i); 2874 2875 ne = __lookup_nat_cache(nm_i, nid); 2876 if (!ne) { 2877 ne = __alloc_nat_entry(sbi, nid, true); 2878 __init_nat_entry(nm_i, ne, &raw_ne, true); 2879 } 2880 2881 /* 2882 * if a free nat in journal has not been used after last 2883 * checkpoint, we should remove it from available nids, 2884 * since later we will add it again. 2885 */ 2886 if (!get_nat_flag(ne, IS_DIRTY) && 2887 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2888 spin_lock(&nm_i->nid_list_lock); 2889 nm_i->available_nids--; 2890 spin_unlock(&nm_i->nid_list_lock); 2891 } 2892 2893 __set_nat_cache_dirty(nm_i, ne); 2894 } 2895 update_nats_in_cursum(journal, -i); 2896 up_write(&curseg->journal_rwsem); 2897 } 2898 2899 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2900 struct list_head *head, int max) 2901 { 2902 struct nat_entry_set *cur; 2903 2904 if (nes->entry_cnt >= max) 2905 goto add_out; 2906 2907 list_for_each_entry(cur, head, set_list) { 2908 if (cur->entry_cnt >= nes->entry_cnt) { 2909 list_add(&nes->set_list, cur->set_list.prev); 2910 return; 2911 } 2912 } 2913 add_out: 2914 list_add_tail(&nes->set_list, head); 2915 } 2916 2917 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2918 unsigned int valid) 2919 { 2920 if (valid == 0) { 2921 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2922 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2923 return; 2924 } 2925 2926 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2927 if (valid == NAT_ENTRY_PER_BLOCK) 2928 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2929 else 2930 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2931 } 2932 2933 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2934 struct page *page) 2935 { 2936 struct f2fs_nm_info *nm_i = NM_I(sbi); 2937 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2938 struct f2fs_nat_block *nat_blk = page_address(page); 2939 int valid = 0; 2940 int i = 0; 2941 2942 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2943 return; 2944 2945 if (nat_index == 0) { 2946 valid = 1; 2947 i = 1; 2948 } 2949 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2950 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2951 valid++; 2952 } 2953 2954 __update_nat_bits(nm_i, nat_index, valid); 2955 } 2956 2957 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2958 { 2959 struct f2fs_nm_info *nm_i = NM_I(sbi); 2960 unsigned int nat_ofs; 2961 2962 f2fs_down_read(&nm_i->nat_tree_lock); 2963 2964 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2965 unsigned int valid = 0, nid_ofs = 0; 2966 2967 /* handle nid zero due to it should never be used */ 2968 if (unlikely(nat_ofs == 0)) { 2969 valid = 1; 2970 nid_ofs = 1; 2971 } 2972 2973 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2974 if (!test_bit_le(nid_ofs, 2975 nm_i->free_nid_bitmap[nat_ofs])) 2976 valid++; 2977 } 2978 2979 __update_nat_bits(nm_i, nat_ofs, valid); 2980 } 2981 2982 f2fs_up_read(&nm_i->nat_tree_lock); 2983 } 2984 2985 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2986 struct nat_entry_set *set, struct cp_control *cpc) 2987 { 2988 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2989 struct f2fs_journal *journal = curseg->journal; 2990 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2991 bool to_journal = true; 2992 struct f2fs_nat_block *nat_blk; 2993 struct nat_entry *ne, *cur; 2994 struct page *page = NULL; 2995 2996 /* 2997 * there are two steps to flush nat entries: 2998 * #1, flush nat entries to journal in current hot data summary block. 2999 * #2, flush nat entries to nat page. 3000 */ 3001 if ((cpc->reason & CP_UMOUNT) || 3002 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3003 to_journal = false; 3004 3005 if (to_journal) { 3006 down_write(&curseg->journal_rwsem); 3007 } else { 3008 page = get_next_nat_page(sbi, start_nid); 3009 if (IS_ERR(page)) 3010 return PTR_ERR(page); 3011 3012 nat_blk = page_address(page); 3013 f2fs_bug_on(sbi, !nat_blk); 3014 } 3015 3016 /* flush dirty nats in nat entry set */ 3017 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3018 struct f2fs_nat_entry *raw_ne; 3019 nid_t nid = nat_get_nid(ne); 3020 int offset; 3021 3022 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3023 3024 if (to_journal) { 3025 offset = f2fs_lookup_journal_in_cursum(journal, 3026 NAT_JOURNAL, nid, 1); 3027 f2fs_bug_on(sbi, offset < 0); 3028 raw_ne = &nat_in_journal(journal, offset); 3029 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3030 } else { 3031 raw_ne = &nat_blk->entries[nid - start_nid]; 3032 } 3033 raw_nat_from_node_info(raw_ne, &ne->ni); 3034 nat_reset_flag(ne); 3035 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3036 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3037 add_free_nid(sbi, nid, false, true); 3038 } else { 3039 spin_lock(&NM_I(sbi)->nid_list_lock); 3040 update_free_nid_bitmap(sbi, nid, false, false); 3041 spin_unlock(&NM_I(sbi)->nid_list_lock); 3042 } 3043 } 3044 3045 if (to_journal) { 3046 up_write(&curseg->journal_rwsem); 3047 } else { 3048 update_nat_bits(sbi, start_nid, page); 3049 f2fs_put_page(page, 1); 3050 } 3051 3052 /* Allow dirty nats by node block allocation in write_begin */ 3053 if (!set->entry_cnt) { 3054 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3055 kmem_cache_free(nat_entry_set_slab, set); 3056 } 3057 return 0; 3058 } 3059 3060 /* 3061 * This function is called during the checkpointing process. 3062 */ 3063 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3064 { 3065 struct f2fs_nm_info *nm_i = NM_I(sbi); 3066 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3067 struct f2fs_journal *journal = curseg->journal; 3068 struct nat_entry_set *setvec[SETVEC_SIZE]; 3069 struct nat_entry_set *set, *tmp; 3070 unsigned int found; 3071 nid_t set_idx = 0; 3072 LIST_HEAD(sets); 3073 int err = 0; 3074 3075 /* 3076 * during unmount, let's flush nat_bits before checking 3077 * nat_cnt[DIRTY_NAT]. 3078 */ 3079 if (cpc->reason & CP_UMOUNT) { 3080 f2fs_down_write(&nm_i->nat_tree_lock); 3081 remove_nats_in_journal(sbi); 3082 f2fs_up_write(&nm_i->nat_tree_lock); 3083 } 3084 3085 if (!nm_i->nat_cnt[DIRTY_NAT]) 3086 return 0; 3087 3088 f2fs_down_write(&nm_i->nat_tree_lock); 3089 3090 /* 3091 * if there are no enough space in journal to store dirty nat 3092 * entries, remove all entries from journal and merge them 3093 * into nat entry set. 3094 */ 3095 if (cpc->reason & CP_UMOUNT || 3096 !__has_cursum_space(journal, 3097 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3098 remove_nats_in_journal(sbi); 3099 3100 while ((found = __gang_lookup_nat_set(nm_i, 3101 set_idx, SETVEC_SIZE, setvec))) { 3102 unsigned idx; 3103 3104 set_idx = setvec[found - 1]->set + 1; 3105 for (idx = 0; idx < found; idx++) 3106 __adjust_nat_entry_set(setvec[idx], &sets, 3107 MAX_NAT_JENTRIES(journal)); 3108 } 3109 3110 /* flush dirty nats in nat entry set */ 3111 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3112 err = __flush_nat_entry_set(sbi, set, cpc); 3113 if (err) 3114 break; 3115 } 3116 3117 f2fs_up_write(&nm_i->nat_tree_lock); 3118 /* Allow dirty nats by node block allocation in write_begin */ 3119 3120 return err; 3121 } 3122 3123 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3124 { 3125 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3126 struct f2fs_nm_info *nm_i = NM_I(sbi); 3127 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3128 unsigned int i; 3129 __u64 cp_ver = cur_cp_version(ckpt); 3130 block_t nat_bits_addr; 3131 3132 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3133 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3134 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3135 if (!nm_i->nat_bits) 3136 return -ENOMEM; 3137 3138 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3139 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3140 3141 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3142 return 0; 3143 3144 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3145 nm_i->nat_bits_blocks; 3146 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3147 struct page *page; 3148 3149 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3150 if (IS_ERR(page)) 3151 return PTR_ERR(page); 3152 3153 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3154 page_address(page), F2FS_BLKSIZE); 3155 f2fs_put_page(page, 1); 3156 } 3157 3158 cp_ver |= (cur_cp_crc(ckpt) << 32); 3159 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3160 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3161 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3162 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3163 return 0; 3164 } 3165 3166 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3167 return 0; 3168 } 3169 3170 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3171 { 3172 struct f2fs_nm_info *nm_i = NM_I(sbi); 3173 unsigned int i = 0; 3174 nid_t nid, last_nid; 3175 3176 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3177 return; 3178 3179 for (i = 0; i < nm_i->nat_blocks; i++) { 3180 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3181 if (i >= nm_i->nat_blocks) 3182 break; 3183 3184 __set_bit_le(i, nm_i->nat_block_bitmap); 3185 3186 nid = i * NAT_ENTRY_PER_BLOCK; 3187 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3188 3189 spin_lock(&NM_I(sbi)->nid_list_lock); 3190 for (; nid < last_nid; nid++) 3191 update_free_nid_bitmap(sbi, nid, true, true); 3192 spin_unlock(&NM_I(sbi)->nid_list_lock); 3193 } 3194 3195 for (i = 0; i < nm_i->nat_blocks; i++) { 3196 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3197 if (i >= nm_i->nat_blocks) 3198 break; 3199 3200 __set_bit_le(i, nm_i->nat_block_bitmap); 3201 } 3202 } 3203 3204 static int init_node_manager(struct f2fs_sb_info *sbi) 3205 { 3206 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3207 struct f2fs_nm_info *nm_i = NM_I(sbi); 3208 unsigned char *version_bitmap; 3209 unsigned int nat_segs; 3210 int err; 3211 3212 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3213 3214 /* segment_count_nat includes pair segment so divide to 2. */ 3215 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3216 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3217 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3218 3219 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3220 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3221 F2FS_RESERVED_NODE_NUM; 3222 nm_i->nid_cnt[FREE_NID] = 0; 3223 nm_i->nid_cnt[PREALLOC_NID] = 0; 3224 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3225 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3226 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3227 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3228 3229 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3230 INIT_LIST_HEAD(&nm_i->free_nid_list); 3231 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3232 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3233 INIT_LIST_HEAD(&nm_i->nat_entries); 3234 spin_lock_init(&nm_i->nat_list_lock); 3235 3236 mutex_init(&nm_i->build_lock); 3237 spin_lock_init(&nm_i->nid_list_lock); 3238 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3239 3240 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3241 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3242 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3243 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3244 GFP_KERNEL); 3245 if (!nm_i->nat_bitmap) 3246 return -ENOMEM; 3247 3248 err = __get_nat_bitmaps(sbi); 3249 if (err) 3250 return err; 3251 3252 #ifdef CONFIG_F2FS_CHECK_FS 3253 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3254 GFP_KERNEL); 3255 if (!nm_i->nat_bitmap_mir) 3256 return -ENOMEM; 3257 #endif 3258 3259 return 0; 3260 } 3261 3262 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3263 { 3264 struct f2fs_nm_info *nm_i = NM_I(sbi); 3265 int i; 3266 3267 nm_i->free_nid_bitmap = 3268 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3269 nm_i->nat_blocks), 3270 GFP_KERNEL); 3271 if (!nm_i->free_nid_bitmap) 3272 return -ENOMEM; 3273 3274 for (i = 0; i < nm_i->nat_blocks; i++) { 3275 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3276 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3277 if (!nm_i->free_nid_bitmap[i]) 3278 return -ENOMEM; 3279 } 3280 3281 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3282 GFP_KERNEL); 3283 if (!nm_i->nat_block_bitmap) 3284 return -ENOMEM; 3285 3286 nm_i->free_nid_count = 3287 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3288 nm_i->nat_blocks), 3289 GFP_KERNEL); 3290 if (!nm_i->free_nid_count) 3291 return -ENOMEM; 3292 return 0; 3293 } 3294 3295 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3296 { 3297 int err; 3298 3299 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3300 GFP_KERNEL); 3301 if (!sbi->nm_info) 3302 return -ENOMEM; 3303 3304 err = init_node_manager(sbi); 3305 if (err) 3306 return err; 3307 3308 err = init_free_nid_cache(sbi); 3309 if (err) 3310 return err; 3311 3312 /* load free nid status from nat_bits table */ 3313 load_free_nid_bitmap(sbi); 3314 3315 return f2fs_build_free_nids(sbi, true, true); 3316 } 3317 3318 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3319 { 3320 struct f2fs_nm_info *nm_i = NM_I(sbi); 3321 struct free_nid *i, *next_i; 3322 struct nat_entry *natvec[NATVEC_SIZE]; 3323 struct nat_entry_set *setvec[SETVEC_SIZE]; 3324 nid_t nid = 0; 3325 unsigned int found; 3326 3327 if (!nm_i) 3328 return; 3329 3330 /* destroy free nid list */ 3331 spin_lock(&nm_i->nid_list_lock); 3332 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3333 __remove_free_nid(sbi, i, FREE_NID); 3334 spin_unlock(&nm_i->nid_list_lock); 3335 kmem_cache_free(free_nid_slab, i); 3336 spin_lock(&nm_i->nid_list_lock); 3337 } 3338 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3339 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3340 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3341 spin_unlock(&nm_i->nid_list_lock); 3342 3343 /* destroy nat cache */ 3344 f2fs_down_write(&nm_i->nat_tree_lock); 3345 while ((found = __gang_lookup_nat_cache(nm_i, 3346 nid, NATVEC_SIZE, natvec))) { 3347 unsigned idx; 3348 3349 nid = nat_get_nid(natvec[found - 1]) + 1; 3350 for (idx = 0; idx < found; idx++) { 3351 spin_lock(&nm_i->nat_list_lock); 3352 list_del(&natvec[idx]->list); 3353 spin_unlock(&nm_i->nat_list_lock); 3354 3355 __del_from_nat_cache(nm_i, natvec[idx]); 3356 } 3357 } 3358 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3359 3360 /* destroy nat set cache */ 3361 nid = 0; 3362 while ((found = __gang_lookup_nat_set(nm_i, 3363 nid, SETVEC_SIZE, setvec))) { 3364 unsigned idx; 3365 3366 nid = setvec[found - 1]->set + 1; 3367 for (idx = 0; idx < found; idx++) { 3368 /* entry_cnt is not zero, when cp_error was occurred */ 3369 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3370 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3371 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3372 } 3373 } 3374 f2fs_up_write(&nm_i->nat_tree_lock); 3375 3376 kvfree(nm_i->nat_block_bitmap); 3377 if (nm_i->free_nid_bitmap) { 3378 int i; 3379 3380 for (i = 0; i < nm_i->nat_blocks; i++) 3381 kvfree(nm_i->free_nid_bitmap[i]); 3382 kvfree(nm_i->free_nid_bitmap); 3383 } 3384 kvfree(nm_i->free_nid_count); 3385 3386 kvfree(nm_i->nat_bitmap); 3387 kvfree(nm_i->nat_bits); 3388 #ifdef CONFIG_F2FS_CHECK_FS 3389 kvfree(nm_i->nat_bitmap_mir); 3390 #endif 3391 sbi->nm_info = NULL; 3392 kfree(nm_i); 3393 } 3394 3395 int __init f2fs_create_node_manager_caches(void) 3396 { 3397 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3398 sizeof(struct nat_entry)); 3399 if (!nat_entry_slab) 3400 goto fail; 3401 3402 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3403 sizeof(struct free_nid)); 3404 if (!free_nid_slab) 3405 goto destroy_nat_entry; 3406 3407 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3408 sizeof(struct nat_entry_set)); 3409 if (!nat_entry_set_slab) 3410 goto destroy_free_nid; 3411 3412 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3413 sizeof(struct fsync_node_entry)); 3414 if (!fsync_node_entry_slab) 3415 goto destroy_nat_entry_set; 3416 return 0; 3417 3418 destroy_nat_entry_set: 3419 kmem_cache_destroy(nat_entry_set_slab); 3420 destroy_free_nid: 3421 kmem_cache_destroy(free_nid_slab); 3422 destroy_nat_entry: 3423 kmem_cache_destroy(nat_entry_slab); 3424 fail: 3425 return -ENOMEM; 3426 } 3427 3428 void f2fs_destroy_node_manager_caches(void) 3429 { 3430 kmem_cache_destroy(fsync_node_entry_slab); 3431 kmem_cache_destroy(nat_entry_set_slab); 3432 kmem_cache_destroy(free_nid_slab); 3433 kmem_cache_destroy(nat_entry_slab); 3434 } 3435