1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/backing-dev.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include <trace/events/f2fs.h> 21 22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 static struct kmem_cache *nat_entry_set_slab; 27 static struct kmem_cache *fsync_node_entry_slab; 28 29 /* 30 * Check whether the given nid is within node id range. 31 */ 32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 33 { 34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 35 set_sbi_flag(sbi, SBI_NEED_FSCK); 36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 37 __func__, nid); 38 return -EFSCORRUPTED; 39 } 40 return 0; 41 } 42 43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 44 { 45 struct f2fs_nm_info *nm_i = NM_I(sbi); 46 struct sysinfo val; 47 unsigned long avail_ram; 48 unsigned long mem_size = 0; 49 bool res = false; 50 51 si_meminfo(&val); 52 53 /* only uses low memory */ 54 avail_ram = val.totalram - val.totalhigh; 55 56 /* 57 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 58 */ 59 if (type == FREE_NIDS) { 60 mem_size = (nm_i->nid_cnt[FREE_NID] * 61 sizeof(struct free_nid)) >> PAGE_SHIFT; 62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 63 } else if (type == NAT_ENTRIES) { 64 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 65 sizeof(struct nat_entry)) >> PAGE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 67 if (excess_cached_nats(sbi)) 68 res = false; 69 } else if (type == DIRTY_DENTS) { 70 if (sbi->sb->s_bdi->wb.dirty_exceeded) 71 return false; 72 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 73 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 74 } else if (type == INO_ENTRIES) { 75 int i; 76 77 for (i = 0; i < MAX_INO_ENTRY; i++) 78 mem_size += sbi->im[i].ino_num * 79 sizeof(struct ino_entry); 80 mem_size >>= PAGE_SHIFT; 81 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 82 } else if (type == EXTENT_CACHE) { 83 mem_size = (atomic_read(&sbi->total_ext_tree) * 84 sizeof(struct extent_tree) + 85 atomic_read(&sbi->total_ext_node) * 86 sizeof(struct extent_node)) >> PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == INMEM_PAGES) { 89 /* it allows 20% / total_ram for inmemory pages */ 90 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 91 res = mem_size < (val.totalram / 5); 92 } else { 93 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 94 return true; 95 } 96 return res; 97 } 98 99 static void clear_node_page_dirty(struct page *page) 100 { 101 if (PageDirty(page)) { 102 f2fs_clear_page_cache_dirty_tag(page); 103 clear_page_dirty_for_io(page); 104 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 105 } 106 ClearPageUptodate(page); 107 } 108 109 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 110 { 111 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 112 } 113 114 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 115 { 116 struct page *src_page; 117 struct page *dst_page; 118 pgoff_t dst_off; 119 void *src_addr; 120 void *dst_addr; 121 struct f2fs_nm_info *nm_i = NM_I(sbi); 122 123 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 124 125 /* get current nat block page with lock */ 126 src_page = get_current_nat_page(sbi, nid); 127 if (IS_ERR(src_page)) 128 return src_page; 129 dst_page = f2fs_grab_meta_page(sbi, dst_off); 130 f2fs_bug_on(sbi, PageDirty(src_page)); 131 132 src_addr = page_address(src_page); 133 dst_addr = page_address(dst_page); 134 memcpy(dst_addr, src_addr, PAGE_SIZE); 135 set_page_dirty(dst_page); 136 f2fs_put_page(src_page, 1); 137 138 set_to_next_nat(nm_i, nid); 139 140 return dst_page; 141 } 142 143 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 144 { 145 struct nat_entry *new; 146 147 if (no_fail) 148 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 149 else 150 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 151 if (new) { 152 nat_set_nid(new, nid); 153 nat_reset_flag(new); 154 } 155 return new; 156 } 157 158 static void __free_nat_entry(struct nat_entry *e) 159 { 160 kmem_cache_free(nat_entry_slab, e); 161 } 162 163 /* must be locked by nat_tree_lock */ 164 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 165 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 166 { 167 if (no_fail) 168 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 169 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 170 return NULL; 171 172 if (raw_ne) 173 node_info_from_raw_nat(&ne->ni, raw_ne); 174 175 spin_lock(&nm_i->nat_list_lock); 176 list_add_tail(&ne->list, &nm_i->nat_entries); 177 spin_unlock(&nm_i->nat_list_lock); 178 179 nm_i->nat_cnt[TOTAL_NAT]++; 180 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 181 return ne; 182 } 183 184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 185 { 186 struct nat_entry *ne; 187 188 ne = radix_tree_lookup(&nm_i->nat_root, n); 189 190 /* for recent accessed nat entry, move it to tail of lru list */ 191 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 192 spin_lock(&nm_i->nat_list_lock); 193 if (!list_empty(&ne->list)) 194 list_move_tail(&ne->list, &nm_i->nat_entries); 195 spin_unlock(&nm_i->nat_list_lock); 196 } 197 198 return ne; 199 } 200 201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 202 nid_t start, unsigned int nr, struct nat_entry **ep) 203 { 204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 205 } 206 207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 208 { 209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 210 nm_i->nat_cnt[TOTAL_NAT]--; 211 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 212 __free_nat_entry(e); 213 } 214 215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 216 struct nat_entry *ne) 217 { 218 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 219 struct nat_entry_set *head; 220 221 head = radix_tree_lookup(&nm_i->nat_set_root, set); 222 if (!head) { 223 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 224 225 INIT_LIST_HEAD(&head->entry_list); 226 INIT_LIST_HEAD(&head->set_list); 227 head->set = set; 228 head->entry_cnt = 0; 229 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 230 } 231 return head; 232 } 233 234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 235 struct nat_entry *ne) 236 { 237 struct nat_entry_set *head; 238 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 239 240 if (!new_ne) 241 head = __grab_nat_entry_set(nm_i, ne); 242 243 /* 244 * update entry_cnt in below condition: 245 * 1. update NEW_ADDR to valid block address; 246 * 2. update old block address to new one; 247 */ 248 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 249 !get_nat_flag(ne, IS_DIRTY))) 250 head->entry_cnt++; 251 252 set_nat_flag(ne, IS_PREALLOC, new_ne); 253 254 if (get_nat_flag(ne, IS_DIRTY)) 255 goto refresh_list; 256 257 nm_i->nat_cnt[DIRTY_NAT]++; 258 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 259 set_nat_flag(ne, IS_DIRTY, true); 260 refresh_list: 261 spin_lock(&nm_i->nat_list_lock); 262 if (new_ne) 263 list_del_init(&ne->list); 264 else 265 list_move_tail(&ne->list, &head->entry_list); 266 spin_unlock(&nm_i->nat_list_lock); 267 } 268 269 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 270 struct nat_entry_set *set, struct nat_entry *ne) 271 { 272 spin_lock(&nm_i->nat_list_lock); 273 list_move_tail(&ne->list, &nm_i->nat_entries); 274 spin_unlock(&nm_i->nat_list_lock); 275 276 set_nat_flag(ne, IS_DIRTY, false); 277 set->entry_cnt--; 278 nm_i->nat_cnt[DIRTY_NAT]--; 279 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 280 } 281 282 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 283 nid_t start, unsigned int nr, struct nat_entry_set **ep) 284 { 285 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 286 start, nr); 287 } 288 289 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 290 { 291 return NODE_MAPPING(sbi) == page->mapping && 292 IS_DNODE(page) && is_cold_node(page); 293 } 294 295 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 296 { 297 spin_lock_init(&sbi->fsync_node_lock); 298 INIT_LIST_HEAD(&sbi->fsync_node_list); 299 sbi->fsync_seg_id = 0; 300 sbi->fsync_node_num = 0; 301 } 302 303 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 304 struct page *page) 305 { 306 struct fsync_node_entry *fn; 307 unsigned long flags; 308 unsigned int seq_id; 309 310 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); 311 312 get_page(page); 313 fn->page = page; 314 INIT_LIST_HEAD(&fn->list); 315 316 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 317 list_add_tail(&fn->list, &sbi->fsync_node_list); 318 fn->seq_id = sbi->fsync_seg_id++; 319 seq_id = fn->seq_id; 320 sbi->fsync_node_num++; 321 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 322 323 return seq_id; 324 } 325 326 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 327 { 328 struct fsync_node_entry *fn; 329 unsigned long flags; 330 331 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 332 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 333 if (fn->page == page) { 334 list_del(&fn->list); 335 sbi->fsync_node_num--; 336 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 337 kmem_cache_free(fsync_node_entry_slab, fn); 338 put_page(page); 339 return; 340 } 341 } 342 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 343 f2fs_bug_on(sbi, 1); 344 } 345 346 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 347 { 348 unsigned long flags; 349 350 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 351 sbi->fsync_seg_id = 0; 352 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 353 } 354 355 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 356 { 357 struct f2fs_nm_info *nm_i = NM_I(sbi); 358 struct nat_entry *e; 359 bool need = false; 360 361 down_read(&nm_i->nat_tree_lock); 362 e = __lookup_nat_cache(nm_i, nid); 363 if (e) { 364 if (!get_nat_flag(e, IS_CHECKPOINTED) && 365 !get_nat_flag(e, HAS_FSYNCED_INODE)) 366 need = true; 367 } 368 up_read(&nm_i->nat_tree_lock); 369 return need; 370 } 371 372 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 373 { 374 struct f2fs_nm_info *nm_i = NM_I(sbi); 375 struct nat_entry *e; 376 bool is_cp = true; 377 378 down_read(&nm_i->nat_tree_lock); 379 e = __lookup_nat_cache(nm_i, nid); 380 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 381 is_cp = false; 382 up_read(&nm_i->nat_tree_lock); 383 return is_cp; 384 } 385 386 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 387 { 388 struct f2fs_nm_info *nm_i = NM_I(sbi); 389 struct nat_entry *e; 390 bool need_update = true; 391 392 down_read(&nm_i->nat_tree_lock); 393 e = __lookup_nat_cache(nm_i, ino); 394 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 395 (get_nat_flag(e, IS_CHECKPOINTED) || 396 get_nat_flag(e, HAS_FSYNCED_INODE))) 397 need_update = false; 398 up_read(&nm_i->nat_tree_lock); 399 return need_update; 400 } 401 402 /* must be locked by nat_tree_lock */ 403 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 404 struct f2fs_nat_entry *ne) 405 { 406 struct f2fs_nm_info *nm_i = NM_I(sbi); 407 struct nat_entry *new, *e; 408 409 new = __alloc_nat_entry(nid, false); 410 if (!new) 411 return; 412 413 down_write(&nm_i->nat_tree_lock); 414 e = __lookup_nat_cache(nm_i, nid); 415 if (!e) 416 e = __init_nat_entry(nm_i, new, ne, false); 417 else 418 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 419 nat_get_blkaddr(e) != 420 le32_to_cpu(ne->block_addr) || 421 nat_get_version(e) != ne->version); 422 up_write(&nm_i->nat_tree_lock); 423 if (e != new) 424 __free_nat_entry(new); 425 } 426 427 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 428 block_t new_blkaddr, bool fsync_done) 429 { 430 struct f2fs_nm_info *nm_i = NM_I(sbi); 431 struct nat_entry *e; 432 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 433 434 down_write(&nm_i->nat_tree_lock); 435 e = __lookup_nat_cache(nm_i, ni->nid); 436 if (!e) { 437 e = __init_nat_entry(nm_i, new, NULL, true); 438 copy_node_info(&e->ni, ni); 439 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 440 } else if (new_blkaddr == NEW_ADDR) { 441 /* 442 * when nid is reallocated, 443 * previous nat entry can be remained in nat cache. 444 * So, reinitialize it with new information. 445 */ 446 copy_node_info(&e->ni, ni); 447 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 448 } 449 /* let's free early to reduce memory consumption */ 450 if (e != new) 451 __free_nat_entry(new); 452 453 /* sanity check */ 454 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 455 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 456 new_blkaddr == NULL_ADDR); 457 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 458 new_blkaddr == NEW_ADDR); 459 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 460 new_blkaddr == NEW_ADDR); 461 462 /* increment version no as node is removed */ 463 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 464 unsigned char version = nat_get_version(e); 465 nat_set_version(e, inc_node_version(version)); 466 } 467 468 /* change address */ 469 nat_set_blkaddr(e, new_blkaddr); 470 if (!__is_valid_data_blkaddr(new_blkaddr)) 471 set_nat_flag(e, IS_CHECKPOINTED, false); 472 __set_nat_cache_dirty(nm_i, e); 473 474 /* update fsync_mark if its inode nat entry is still alive */ 475 if (ni->nid != ni->ino) 476 e = __lookup_nat_cache(nm_i, ni->ino); 477 if (e) { 478 if (fsync_done && ni->nid == ni->ino) 479 set_nat_flag(e, HAS_FSYNCED_INODE, true); 480 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 481 } 482 up_write(&nm_i->nat_tree_lock); 483 } 484 485 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 486 { 487 struct f2fs_nm_info *nm_i = NM_I(sbi); 488 int nr = nr_shrink; 489 490 if (!down_write_trylock(&nm_i->nat_tree_lock)) 491 return 0; 492 493 spin_lock(&nm_i->nat_list_lock); 494 while (nr_shrink) { 495 struct nat_entry *ne; 496 497 if (list_empty(&nm_i->nat_entries)) 498 break; 499 500 ne = list_first_entry(&nm_i->nat_entries, 501 struct nat_entry, list); 502 list_del(&ne->list); 503 spin_unlock(&nm_i->nat_list_lock); 504 505 __del_from_nat_cache(nm_i, ne); 506 nr_shrink--; 507 508 spin_lock(&nm_i->nat_list_lock); 509 } 510 spin_unlock(&nm_i->nat_list_lock); 511 512 up_write(&nm_i->nat_tree_lock); 513 return nr - nr_shrink; 514 } 515 516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 517 struct node_info *ni) 518 { 519 struct f2fs_nm_info *nm_i = NM_I(sbi); 520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 521 struct f2fs_journal *journal = curseg->journal; 522 nid_t start_nid = START_NID(nid); 523 struct f2fs_nat_block *nat_blk; 524 struct page *page = NULL; 525 struct f2fs_nat_entry ne; 526 struct nat_entry *e; 527 pgoff_t index; 528 block_t blkaddr; 529 int i; 530 531 ni->nid = nid; 532 533 /* Check nat cache */ 534 down_read(&nm_i->nat_tree_lock); 535 e = __lookup_nat_cache(nm_i, nid); 536 if (e) { 537 ni->ino = nat_get_ino(e); 538 ni->blk_addr = nat_get_blkaddr(e); 539 ni->version = nat_get_version(e); 540 up_read(&nm_i->nat_tree_lock); 541 return 0; 542 } 543 544 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 545 546 /* Check current segment summary */ 547 down_read(&curseg->journal_rwsem); 548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 549 if (i >= 0) { 550 ne = nat_in_journal(journal, i); 551 node_info_from_raw_nat(ni, &ne); 552 } 553 up_read(&curseg->journal_rwsem); 554 if (i >= 0) { 555 up_read(&nm_i->nat_tree_lock); 556 goto cache; 557 } 558 559 /* Fill node_info from nat page */ 560 index = current_nat_addr(sbi, nid); 561 up_read(&nm_i->nat_tree_lock); 562 563 page = f2fs_get_meta_page(sbi, index); 564 if (IS_ERR(page)) 565 return PTR_ERR(page); 566 567 nat_blk = (struct f2fs_nat_block *)page_address(page); 568 ne = nat_blk->entries[nid - start_nid]; 569 node_info_from_raw_nat(ni, &ne); 570 f2fs_put_page(page, 1); 571 cache: 572 blkaddr = le32_to_cpu(ne.block_addr); 573 if (__is_valid_data_blkaddr(blkaddr) && 574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 575 return -EFAULT; 576 577 /* cache nat entry */ 578 cache_nat_entry(sbi, nid, &ne); 579 return 0; 580 } 581 582 /* 583 * readahead MAX_RA_NODE number of node pages. 584 */ 585 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 586 { 587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 588 struct blk_plug plug; 589 int i, end; 590 nid_t nid; 591 592 blk_start_plug(&plug); 593 594 /* Then, try readahead for siblings of the desired node */ 595 end = start + n; 596 end = min(end, NIDS_PER_BLOCK); 597 for (i = start; i < end; i++) { 598 nid = get_nid(parent, i, false); 599 f2fs_ra_node_page(sbi, nid); 600 } 601 602 blk_finish_plug(&plug); 603 } 604 605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 606 { 607 const long direct_index = ADDRS_PER_INODE(dn->inode); 608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 611 int cur_level = dn->cur_level; 612 int max_level = dn->max_level; 613 pgoff_t base = 0; 614 615 if (!dn->max_level) 616 return pgofs + 1; 617 618 while (max_level-- > cur_level) 619 skipped_unit *= NIDS_PER_BLOCK; 620 621 switch (dn->max_level) { 622 case 3: 623 base += 2 * indirect_blks; 624 fallthrough; 625 case 2: 626 base += 2 * direct_blks; 627 fallthrough; 628 case 1: 629 base += direct_index; 630 break; 631 default: 632 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 633 } 634 635 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 636 } 637 638 /* 639 * The maximum depth is four. 640 * Offset[0] will have raw inode offset. 641 */ 642 static int get_node_path(struct inode *inode, long block, 643 int offset[4], unsigned int noffset[4]) 644 { 645 const long direct_index = ADDRS_PER_INODE(inode); 646 const long direct_blks = ADDRS_PER_BLOCK(inode); 647 const long dptrs_per_blk = NIDS_PER_BLOCK; 648 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 649 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 650 int n = 0; 651 int level = 0; 652 653 noffset[0] = 0; 654 655 if (block < direct_index) { 656 offset[n] = block; 657 goto got; 658 } 659 block -= direct_index; 660 if (block < direct_blks) { 661 offset[n++] = NODE_DIR1_BLOCK; 662 noffset[n] = 1; 663 offset[n] = block; 664 level = 1; 665 goto got; 666 } 667 block -= direct_blks; 668 if (block < direct_blks) { 669 offset[n++] = NODE_DIR2_BLOCK; 670 noffset[n] = 2; 671 offset[n] = block; 672 level = 1; 673 goto got; 674 } 675 block -= direct_blks; 676 if (block < indirect_blks) { 677 offset[n++] = NODE_IND1_BLOCK; 678 noffset[n] = 3; 679 offset[n++] = block / direct_blks; 680 noffset[n] = 4 + offset[n - 1]; 681 offset[n] = block % direct_blks; 682 level = 2; 683 goto got; 684 } 685 block -= indirect_blks; 686 if (block < indirect_blks) { 687 offset[n++] = NODE_IND2_BLOCK; 688 noffset[n] = 4 + dptrs_per_blk; 689 offset[n++] = block / direct_blks; 690 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 691 offset[n] = block % direct_blks; 692 level = 2; 693 goto got; 694 } 695 block -= indirect_blks; 696 if (block < dindirect_blks) { 697 offset[n++] = NODE_DIND_BLOCK; 698 noffset[n] = 5 + (dptrs_per_blk * 2); 699 offset[n++] = block / indirect_blks; 700 noffset[n] = 6 + (dptrs_per_blk * 2) + 701 offset[n - 1] * (dptrs_per_blk + 1); 702 offset[n++] = (block / direct_blks) % dptrs_per_blk; 703 noffset[n] = 7 + (dptrs_per_blk * 2) + 704 offset[n - 2] * (dptrs_per_blk + 1) + 705 offset[n - 1]; 706 offset[n] = block % direct_blks; 707 level = 3; 708 goto got; 709 } else { 710 return -E2BIG; 711 } 712 got: 713 return level; 714 } 715 716 /* 717 * Caller should call f2fs_put_dnode(dn). 718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 719 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 720 */ 721 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 722 { 723 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 724 struct page *npage[4]; 725 struct page *parent = NULL; 726 int offset[4]; 727 unsigned int noffset[4]; 728 nid_t nids[4]; 729 int level, i = 0; 730 int err = 0; 731 732 level = get_node_path(dn->inode, index, offset, noffset); 733 if (level < 0) 734 return level; 735 736 nids[0] = dn->inode->i_ino; 737 npage[0] = dn->inode_page; 738 739 if (!npage[0]) { 740 npage[0] = f2fs_get_node_page(sbi, nids[0]); 741 if (IS_ERR(npage[0])) 742 return PTR_ERR(npage[0]); 743 } 744 745 /* if inline_data is set, should not report any block indices */ 746 if (f2fs_has_inline_data(dn->inode) && index) { 747 err = -ENOENT; 748 f2fs_put_page(npage[0], 1); 749 goto release_out; 750 } 751 752 parent = npage[0]; 753 if (level != 0) 754 nids[1] = get_nid(parent, offset[0], true); 755 dn->inode_page = npage[0]; 756 dn->inode_page_locked = true; 757 758 /* get indirect or direct nodes */ 759 for (i = 1; i <= level; i++) { 760 bool done = false; 761 762 if (!nids[i] && mode == ALLOC_NODE) { 763 /* alloc new node */ 764 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 765 err = -ENOSPC; 766 goto release_pages; 767 } 768 769 dn->nid = nids[i]; 770 npage[i] = f2fs_new_node_page(dn, noffset[i]); 771 if (IS_ERR(npage[i])) { 772 f2fs_alloc_nid_failed(sbi, nids[i]); 773 err = PTR_ERR(npage[i]); 774 goto release_pages; 775 } 776 777 set_nid(parent, offset[i - 1], nids[i], i == 1); 778 f2fs_alloc_nid_done(sbi, nids[i]); 779 done = true; 780 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 781 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 782 if (IS_ERR(npage[i])) { 783 err = PTR_ERR(npage[i]); 784 goto release_pages; 785 } 786 done = true; 787 } 788 if (i == 1) { 789 dn->inode_page_locked = false; 790 unlock_page(parent); 791 } else { 792 f2fs_put_page(parent, 1); 793 } 794 795 if (!done) { 796 npage[i] = f2fs_get_node_page(sbi, nids[i]); 797 if (IS_ERR(npage[i])) { 798 err = PTR_ERR(npage[i]); 799 f2fs_put_page(npage[0], 0); 800 goto release_out; 801 } 802 } 803 if (i < level) { 804 parent = npage[i]; 805 nids[i + 1] = get_nid(parent, offset[i], false); 806 } 807 } 808 dn->nid = nids[level]; 809 dn->ofs_in_node = offset[level]; 810 dn->node_page = npage[level]; 811 dn->data_blkaddr = f2fs_data_blkaddr(dn); 812 return 0; 813 814 release_pages: 815 f2fs_put_page(parent, 1); 816 if (i > 1) 817 f2fs_put_page(npage[0], 0); 818 release_out: 819 dn->inode_page = NULL; 820 dn->node_page = NULL; 821 if (err == -ENOENT) { 822 dn->cur_level = i; 823 dn->max_level = level; 824 dn->ofs_in_node = offset[level]; 825 } 826 return err; 827 } 828 829 static int truncate_node(struct dnode_of_data *dn) 830 { 831 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 832 struct node_info ni; 833 int err; 834 pgoff_t index; 835 836 err = f2fs_get_node_info(sbi, dn->nid, &ni); 837 if (err) 838 return err; 839 840 /* Deallocate node address */ 841 f2fs_invalidate_blocks(sbi, ni.blk_addr); 842 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 843 set_node_addr(sbi, &ni, NULL_ADDR, false); 844 845 if (dn->nid == dn->inode->i_ino) { 846 f2fs_remove_orphan_inode(sbi, dn->nid); 847 dec_valid_inode_count(sbi); 848 f2fs_inode_synced(dn->inode); 849 } 850 851 clear_node_page_dirty(dn->node_page); 852 set_sbi_flag(sbi, SBI_IS_DIRTY); 853 854 index = dn->node_page->index; 855 f2fs_put_page(dn->node_page, 1); 856 857 invalidate_mapping_pages(NODE_MAPPING(sbi), 858 index, index); 859 860 dn->node_page = NULL; 861 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 862 863 return 0; 864 } 865 866 static int truncate_dnode(struct dnode_of_data *dn) 867 { 868 struct page *page; 869 int err; 870 871 if (dn->nid == 0) 872 return 1; 873 874 /* get direct node */ 875 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 876 if (PTR_ERR(page) == -ENOENT) 877 return 1; 878 else if (IS_ERR(page)) 879 return PTR_ERR(page); 880 881 /* Make dnode_of_data for parameter */ 882 dn->node_page = page; 883 dn->ofs_in_node = 0; 884 f2fs_truncate_data_blocks(dn); 885 err = truncate_node(dn); 886 if (err) 887 return err; 888 889 return 1; 890 } 891 892 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 893 int ofs, int depth) 894 { 895 struct dnode_of_data rdn = *dn; 896 struct page *page; 897 struct f2fs_node *rn; 898 nid_t child_nid; 899 unsigned int child_nofs; 900 int freed = 0; 901 int i, ret; 902 903 if (dn->nid == 0) 904 return NIDS_PER_BLOCK + 1; 905 906 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 907 908 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 909 if (IS_ERR(page)) { 910 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 911 return PTR_ERR(page); 912 } 913 914 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 915 916 rn = F2FS_NODE(page); 917 if (depth < 3) { 918 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 919 child_nid = le32_to_cpu(rn->in.nid[i]); 920 if (child_nid == 0) 921 continue; 922 rdn.nid = child_nid; 923 ret = truncate_dnode(&rdn); 924 if (ret < 0) 925 goto out_err; 926 if (set_nid(page, i, 0, false)) 927 dn->node_changed = true; 928 } 929 } else { 930 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 931 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 932 child_nid = le32_to_cpu(rn->in.nid[i]); 933 if (child_nid == 0) { 934 child_nofs += NIDS_PER_BLOCK + 1; 935 continue; 936 } 937 rdn.nid = child_nid; 938 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 939 if (ret == (NIDS_PER_BLOCK + 1)) { 940 if (set_nid(page, i, 0, false)) 941 dn->node_changed = true; 942 child_nofs += ret; 943 } else if (ret < 0 && ret != -ENOENT) { 944 goto out_err; 945 } 946 } 947 freed = child_nofs; 948 } 949 950 if (!ofs) { 951 /* remove current indirect node */ 952 dn->node_page = page; 953 ret = truncate_node(dn); 954 if (ret) 955 goto out_err; 956 freed++; 957 } else { 958 f2fs_put_page(page, 1); 959 } 960 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 961 return freed; 962 963 out_err: 964 f2fs_put_page(page, 1); 965 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 966 return ret; 967 } 968 969 static int truncate_partial_nodes(struct dnode_of_data *dn, 970 struct f2fs_inode *ri, int *offset, int depth) 971 { 972 struct page *pages[2]; 973 nid_t nid[3]; 974 nid_t child_nid; 975 int err = 0; 976 int i; 977 int idx = depth - 2; 978 979 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 980 if (!nid[0]) 981 return 0; 982 983 /* get indirect nodes in the path */ 984 for (i = 0; i < idx + 1; i++) { 985 /* reference count'll be increased */ 986 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 987 if (IS_ERR(pages[i])) { 988 err = PTR_ERR(pages[i]); 989 idx = i - 1; 990 goto fail; 991 } 992 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 993 } 994 995 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 996 997 /* free direct nodes linked to a partial indirect node */ 998 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 999 child_nid = get_nid(pages[idx], i, false); 1000 if (!child_nid) 1001 continue; 1002 dn->nid = child_nid; 1003 err = truncate_dnode(dn); 1004 if (err < 0) 1005 goto fail; 1006 if (set_nid(pages[idx], i, 0, false)) 1007 dn->node_changed = true; 1008 } 1009 1010 if (offset[idx + 1] == 0) { 1011 dn->node_page = pages[idx]; 1012 dn->nid = nid[idx]; 1013 err = truncate_node(dn); 1014 if (err) 1015 goto fail; 1016 } else { 1017 f2fs_put_page(pages[idx], 1); 1018 } 1019 offset[idx]++; 1020 offset[idx + 1] = 0; 1021 idx--; 1022 fail: 1023 for (i = idx; i >= 0; i--) 1024 f2fs_put_page(pages[i], 1); 1025 1026 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1027 1028 return err; 1029 } 1030 1031 /* 1032 * All the block addresses of data and nodes should be nullified. 1033 */ 1034 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1035 { 1036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1037 int err = 0, cont = 1; 1038 int level, offset[4], noffset[4]; 1039 unsigned int nofs = 0; 1040 struct f2fs_inode *ri; 1041 struct dnode_of_data dn; 1042 struct page *page; 1043 1044 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1045 1046 level = get_node_path(inode, from, offset, noffset); 1047 if (level < 0) { 1048 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1049 return level; 1050 } 1051 1052 page = f2fs_get_node_page(sbi, inode->i_ino); 1053 if (IS_ERR(page)) { 1054 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1055 return PTR_ERR(page); 1056 } 1057 1058 set_new_dnode(&dn, inode, page, NULL, 0); 1059 unlock_page(page); 1060 1061 ri = F2FS_INODE(page); 1062 switch (level) { 1063 case 0: 1064 case 1: 1065 nofs = noffset[1]; 1066 break; 1067 case 2: 1068 nofs = noffset[1]; 1069 if (!offset[level - 1]) 1070 goto skip_partial; 1071 err = truncate_partial_nodes(&dn, ri, offset, level); 1072 if (err < 0 && err != -ENOENT) 1073 goto fail; 1074 nofs += 1 + NIDS_PER_BLOCK; 1075 break; 1076 case 3: 1077 nofs = 5 + 2 * NIDS_PER_BLOCK; 1078 if (!offset[level - 1]) 1079 goto skip_partial; 1080 err = truncate_partial_nodes(&dn, ri, offset, level); 1081 if (err < 0 && err != -ENOENT) 1082 goto fail; 1083 break; 1084 default: 1085 BUG(); 1086 } 1087 1088 skip_partial: 1089 while (cont) { 1090 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1091 switch (offset[0]) { 1092 case NODE_DIR1_BLOCK: 1093 case NODE_DIR2_BLOCK: 1094 err = truncate_dnode(&dn); 1095 break; 1096 1097 case NODE_IND1_BLOCK: 1098 case NODE_IND2_BLOCK: 1099 err = truncate_nodes(&dn, nofs, offset[1], 2); 1100 break; 1101 1102 case NODE_DIND_BLOCK: 1103 err = truncate_nodes(&dn, nofs, offset[1], 3); 1104 cont = 0; 1105 break; 1106 1107 default: 1108 BUG(); 1109 } 1110 if (err < 0 && err != -ENOENT) 1111 goto fail; 1112 if (offset[1] == 0 && 1113 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1114 lock_page(page); 1115 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1116 f2fs_wait_on_page_writeback(page, NODE, true, true); 1117 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1118 set_page_dirty(page); 1119 unlock_page(page); 1120 } 1121 offset[1] = 0; 1122 offset[0]++; 1123 nofs += err; 1124 } 1125 fail: 1126 f2fs_put_page(page, 0); 1127 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1128 return err > 0 ? 0 : err; 1129 } 1130 1131 /* caller must lock inode page */ 1132 int f2fs_truncate_xattr_node(struct inode *inode) 1133 { 1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1135 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1136 struct dnode_of_data dn; 1137 struct page *npage; 1138 int err; 1139 1140 if (!nid) 1141 return 0; 1142 1143 npage = f2fs_get_node_page(sbi, nid); 1144 if (IS_ERR(npage)) 1145 return PTR_ERR(npage); 1146 1147 set_new_dnode(&dn, inode, NULL, npage, nid); 1148 err = truncate_node(&dn); 1149 if (err) { 1150 f2fs_put_page(npage, 1); 1151 return err; 1152 } 1153 1154 f2fs_i_xnid_write(inode, 0); 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1161 * f2fs_unlock_op(). 1162 */ 1163 int f2fs_remove_inode_page(struct inode *inode) 1164 { 1165 struct dnode_of_data dn; 1166 int err; 1167 1168 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1169 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1170 if (err) 1171 return err; 1172 1173 err = f2fs_truncate_xattr_node(inode); 1174 if (err) { 1175 f2fs_put_dnode(&dn); 1176 return err; 1177 } 1178 1179 /* remove potential inline_data blocks */ 1180 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1181 S_ISLNK(inode->i_mode)) 1182 f2fs_truncate_data_blocks_range(&dn, 1); 1183 1184 /* 0 is possible, after f2fs_new_inode() has failed */ 1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1186 f2fs_put_dnode(&dn); 1187 return -EIO; 1188 } 1189 1190 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1191 f2fs_warn(F2FS_I_SB(inode), 1192 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1193 inode->i_ino, (unsigned long long)inode->i_blocks); 1194 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1195 } 1196 1197 /* will put inode & node pages */ 1198 err = truncate_node(&dn); 1199 if (err) { 1200 f2fs_put_dnode(&dn); 1201 return err; 1202 } 1203 return 0; 1204 } 1205 1206 struct page *f2fs_new_inode_page(struct inode *inode) 1207 { 1208 struct dnode_of_data dn; 1209 1210 /* allocate inode page for new inode */ 1211 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1212 1213 /* caller should f2fs_put_page(page, 1); */ 1214 return f2fs_new_node_page(&dn, 0); 1215 } 1216 1217 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1218 { 1219 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1220 struct node_info new_ni; 1221 struct page *page; 1222 int err; 1223 1224 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1225 return ERR_PTR(-EPERM); 1226 1227 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1228 if (!page) 1229 return ERR_PTR(-ENOMEM); 1230 1231 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1232 goto fail; 1233 1234 #ifdef CONFIG_F2FS_CHECK_FS 1235 err = f2fs_get_node_info(sbi, dn->nid, &new_ni); 1236 if (err) { 1237 dec_valid_node_count(sbi, dn->inode, !ofs); 1238 goto fail; 1239 } 1240 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1241 #endif 1242 new_ni.nid = dn->nid; 1243 new_ni.ino = dn->inode->i_ino; 1244 new_ni.blk_addr = NULL_ADDR; 1245 new_ni.flag = 0; 1246 new_ni.version = 0; 1247 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1248 1249 f2fs_wait_on_page_writeback(page, NODE, true, true); 1250 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1251 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1252 if (!PageUptodate(page)) 1253 SetPageUptodate(page); 1254 if (set_page_dirty(page)) 1255 dn->node_changed = true; 1256 1257 if (f2fs_has_xattr_block(ofs)) 1258 f2fs_i_xnid_write(dn->inode, dn->nid); 1259 1260 if (ofs == 0) 1261 inc_valid_inode_count(sbi); 1262 return page; 1263 1264 fail: 1265 clear_node_page_dirty(page); 1266 f2fs_put_page(page, 1); 1267 return ERR_PTR(err); 1268 } 1269 1270 /* 1271 * Caller should do after getting the following values. 1272 * 0: f2fs_put_page(page, 0) 1273 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1274 */ 1275 static int read_node_page(struct page *page, int op_flags) 1276 { 1277 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1278 struct node_info ni; 1279 struct f2fs_io_info fio = { 1280 .sbi = sbi, 1281 .type = NODE, 1282 .op = REQ_OP_READ, 1283 .op_flags = op_flags, 1284 .page = page, 1285 .encrypted_page = NULL, 1286 }; 1287 int err; 1288 1289 if (PageUptodate(page)) { 1290 if (!f2fs_inode_chksum_verify(sbi, page)) { 1291 ClearPageUptodate(page); 1292 return -EFSBADCRC; 1293 } 1294 return LOCKED_PAGE; 1295 } 1296 1297 err = f2fs_get_node_info(sbi, page->index, &ni); 1298 if (err) 1299 return err; 1300 1301 if (unlikely(ni.blk_addr == NULL_ADDR) || 1302 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1303 ClearPageUptodate(page); 1304 return -ENOENT; 1305 } 1306 1307 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1308 1309 err = f2fs_submit_page_bio(&fio); 1310 1311 if (!err) 1312 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE); 1313 1314 return err; 1315 } 1316 1317 /* 1318 * Readahead a node page 1319 */ 1320 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1321 { 1322 struct page *apage; 1323 int err; 1324 1325 if (!nid) 1326 return; 1327 if (f2fs_check_nid_range(sbi, nid)) 1328 return; 1329 1330 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1331 if (apage) 1332 return; 1333 1334 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1335 if (!apage) 1336 return; 1337 1338 err = read_node_page(apage, REQ_RAHEAD); 1339 f2fs_put_page(apage, err ? 1 : 0); 1340 } 1341 1342 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1343 struct page *parent, int start) 1344 { 1345 struct page *page; 1346 int err; 1347 1348 if (!nid) 1349 return ERR_PTR(-ENOENT); 1350 if (f2fs_check_nid_range(sbi, nid)) 1351 return ERR_PTR(-EINVAL); 1352 repeat: 1353 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1354 if (!page) 1355 return ERR_PTR(-ENOMEM); 1356 1357 err = read_node_page(page, 0); 1358 if (err < 0) { 1359 f2fs_put_page(page, 1); 1360 return ERR_PTR(err); 1361 } else if (err == LOCKED_PAGE) { 1362 err = 0; 1363 goto page_hit; 1364 } 1365 1366 if (parent) 1367 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1368 1369 lock_page(page); 1370 1371 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1372 f2fs_put_page(page, 1); 1373 goto repeat; 1374 } 1375 1376 if (unlikely(!PageUptodate(page))) { 1377 err = -EIO; 1378 goto out_err; 1379 } 1380 1381 if (!f2fs_inode_chksum_verify(sbi, page)) { 1382 err = -EFSBADCRC; 1383 goto out_err; 1384 } 1385 page_hit: 1386 if(unlikely(nid != nid_of_node(page))) { 1387 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1388 nid, nid_of_node(page), ino_of_node(page), 1389 ofs_of_node(page), cpver_of_node(page), 1390 next_blkaddr_of_node(page)); 1391 err = -EINVAL; 1392 out_err: 1393 ClearPageUptodate(page); 1394 f2fs_put_page(page, 1); 1395 return ERR_PTR(err); 1396 } 1397 return page; 1398 } 1399 1400 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1401 { 1402 return __get_node_page(sbi, nid, NULL, 0); 1403 } 1404 1405 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1406 { 1407 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1408 nid_t nid = get_nid(parent, start, false); 1409 1410 return __get_node_page(sbi, nid, parent, start); 1411 } 1412 1413 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1414 { 1415 struct inode *inode; 1416 struct page *page; 1417 int ret; 1418 1419 /* should flush inline_data before evict_inode */ 1420 inode = ilookup(sbi->sb, ino); 1421 if (!inode) 1422 return; 1423 1424 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1425 FGP_LOCK|FGP_NOWAIT, 0); 1426 if (!page) 1427 goto iput_out; 1428 1429 if (!PageUptodate(page)) 1430 goto page_out; 1431 1432 if (!PageDirty(page)) 1433 goto page_out; 1434 1435 if (!clear_page_dirty_for_io(page)) 1436 goto page_out; 1437 1438 ret = f2fs_write_inline_data(inode, page); 1439 inode_dec_dirty_pages(inode); 1440 f2fs_remove_dirty_inode(inode); 1441 if (ret) 1442 set_page_dirty(page); 1443 page_out: 1444 f2fs_put_page(page, 1); 1445 iput_out: 1446 iput(inode); 1447 } 1448 1449 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1450 { 1451 pgoff_t index; 1452 struct pagevec pvec; 1453 struct page *last_page = NULL; 1454 int nr_pages; 1455 1456 pagevec_init(&pvec); 1457 index = 0; 1458 1459 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1460 PAGECACHE_TAG_DIRTY))) { 1461 int i; 1462 1463 for (i = 0; i < nr_pages; i++) { 1464 struct page *page = pvec.pages[i]; 1465 1466 if (unlikely(f2fs_cp_error(sbi))) { 1467 f2fs_put_page(last_page, 0); 1468 pagevec_release(&pvec); 1469 return ERR_PTR(-EIO); 1470 } 1471 1472 if (!IS_DNODE(page) || !is_cold_node(page)) 1473 continue; 1474 if (ino_of_node(page) != ino) 1475 continue; 1476 1477 lock_page(page); 1478 1479 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1480 continue_unlock: 1481 unlock_page(page); 1482 continue; 1483 } 1484 if (ino_of_node(page) != ino) 1485 goto continue_unlock; 1486 1487 if (!PageDirty(page)) { 1488 /* someone wrote it for us */ 1489 goto continue_unlock; 1490 } 1491 1492 if (last_page) 1493 f2fs_put_page(last_page, 0); 1494 1495 get_page(page); 1496 last_page = page; 1497 unlock_page(page); 1498 } 1499 pagevec_release(&pvec); 1500 cond_resched(); 1501 } 1502 return last_page; 1503 } 1504 1505 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1506 struct writeback_control *wbc, bool do_balance, 1507 enum iostat_type io_type, unsigned int *seq_id) 1508 { 1509 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1510 nid_t nid; 1511 struct node_info ni; 1512 struct f2fs_io_info fio = { 1513 .sbi = sbi, 1514 .ino = ino_of_node(page), 1515 .type = NODE, 1516 .op = REQ_OP_WRITE, 1517 .op_flags = wbc_to_write_flags(wbc), 1518 .page = page, 1519 .encrypted_page = NULL, 1520 .submitted = false, 1521 .io_type = io_type, 1522 .io_wbc = wbc, 1523 }; 1524 unsigned int seq; 1525 1526 trace_f2fs_writepage(page, NODE); 1527 1528 if (unlikely(f2fs_cp_error(sbi))) { 1529 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) { 1530 ClearPageUptodate(page); 1531 dec_page_count(sbi, F2FS_DIRTY_NODES); 1532 unlock_page(page); 1533 return 0; 1534 } 1535 goto redirty_out; 1536 } 1537 1538 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1539 goto redirty_out; 1540 1541 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1542 wbc->sync_mode == WB_SYNC_NONE && 1543 IS_DNODE(page) && is_cold_node(page)) 1544 goto redirty_out; 1545 1546 /* get old block addr of this node page */ 1547 nid = nid_of_node(page); 1548 f2fs_bug_on(sbi, page->index != nid); 1549 1550 if (f2fs_get_node_info(sbi, nid, &ni)) 1551 goto redirty_out; 1552 1553 if (wbc->for_reclaim) { 1554 if (!down_read_trylock(&sbi->node_write)) 1555 goto redirty_out; 1556 } else { 1557 down_read(&sbi->node_write); 1558 } 1559 1560 /* This page is already truncated */ 1561 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1562 ClearPageUptodate(page); 1563 dec_page_count(sbi, F2FS_DIRTY_NODES); 1564 up_read(&sbi->node_write); 1565 unlock_page(page); 1566 return 0; 1567 } 1568 1569 if (__is_valid_data_blkaddr(ni.blk_addr) && 1570 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1571 DATA_GENERIC_ENHANCE)) { 1572 up_read(&sbi->node_write); 1573 goto redirty_out; 1574 } 1575 1576 if (atomic && !test_opt(sbi, NOBARRIER)) 1577 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1578 1579 /* should add to global list before clearing PAGECACHE status */ 1580 if (f2fs_in_warm_node_list(sbi, page)) { 1581 seq = f2fs_add_fsync_node_entry(sbi, page); 1582 if (seq_id) 1583 *seq_id = seq; 1584 } 1585 1586 set_page_writeback(page); 1587 ClearPageError(page); 1588 1589 fio.old_blkaddr = ni.blk_addr; 1590 f2fs_do_write_node_page(nid, &fio); 1591 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1592 dec_page_count(sbi, F2FS_DIRTY_NODES); 1593 up_read(&sbi->node_write); 1594 1595 if (wbc->for_reclaim) { 1596 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1597 submitted = NULL; 1598 } 1599 1600 unlock_page(page); 1601 1602 if (unlikely(f2fs_cp_error(sbi))) { 1603 f2fs_submit_merged_write(sbi, NODE); 1604 submitted = NULL; 1605 } 1606 if (submitted) 1607 *submitted = fio.submitted; 1608 1609 if (do_balance) 1610 f2fs_balance_fs(sbi, false); 1611 return 0; 1612 1613 redirty_out: 1614 redirty_page_for_writepage(wbc, page); 1615 return AOP_WRITEPAGE_ACTIVATE; 1616 } 1617 1618 int f2fs_move_node_page(struct page *node_page, int gc_type) 1619 { 1620 int err = 0; 1621 1622 if (gc_type == FG_GC) { 1623 struct writeback_control wbc = { 1624 .sync_mode = WB_SYNC_ALL, 1625 .nr_to_write = 1, 1626 .for_reclaim = 0, 1627 }; 1628 1629 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1630 1631 set_page_dirty(node_page); 1632 1633 if (!clear_page_dirty_for_io(node_page)) { 1634 err = -EAGAIN; 1635 goto out_page; 1636 } 1637 1638 if (__write_node_page(node_page, false, NULL, 1639 &wbc, false, FS_GC_NODE_IO, NULL)) { 1640 err = -EAGAIN; 1641 unlock_page(node_page); 1642 } 1643 goto release_page; 1644 } else { 1645 /* set page dirty and write it */ 1646 if (!PageWriteback(node_page)) 1647 set_page_dirty(node_page); 1648 } 1649 out_page: 1650 unlock_page(node_page); 1651 release_page: 1652 f2fs_put_page(node_page, 0); 1653 return err; 1654 } 1655 1656 static int f2fs_write_node_page(struct page *page, 1657 struct writeback_control *wbc) 1658 { 1659 return __write_node_page(page, false, NULL, wbc, false, 1660 FS_NODE_IO, NULL); 1661 } 1662 1663 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1664 struct writeback_control *wbc, bool atomic, 1665 unsigned int *seq_id) 1666 { 1667 pgoff_t index; 1668 struct pagevec pvec; 1669 int ret = 0; 1670 struct page *last_page = NULL; 1671 bool marked = false; 1672 nid_t ino = inode->i_ino; 1673 int nr_pages; 1674 int nwritten = 0; 1675 1676 if (atomic) { 1677 last_page = last_fsync_dnode(sbi, ino); 1678 if (IS_ERR_OR_NULL(last_page)) 1679 return PTR_ERR_OR_ZERO(last_page); 1680 } 1681 retry: 1682 pagevec_init(&pvec); 1683 index = 0; 1684 1685 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1686 PAGECACHE_TAG_DIRTY))) { 1687 int i; 1688 1689 for (i = 0; i < nr_pages; i++) { 1690 struct page *page = pvec.pages[i]; 1691 bool submitted = false; 1692 1693 if (unlikely(f2fs_cp_error(sbi))) { 1694 f2fs_put_page(last_page, 0); 1695 pagevec_release(&pvec); 1696 ret = -EIO; 1697 goto out; 1698 } 1699 1700 if (!IS_DNODE(page) || !is_cold_node(page)) 1701 continue; 1702 if (ino_of_node(page) != ino) 1703 continue; 1704 1705 lock_page(page); 1706 1707 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1708 continue_unlock: 1709 unlock_page(page); 1710 continue; 1711 } 1712 if (ino_of_node(page) != ino) 1713 goto continue_unlock; 1714 1715 if (!PageDirty(page) && page != last_page) { 1716 /* someone wrote it for us */ 1717 goto continue_unlock; 1718 } 1719 1720 f2fs_wait_on_page_writeback(page, NODE, true, true); 1721 1722 set_fsync_mark(page, 0); 1723 set_dentry_mark(page, 0); 1724 1725 if (!atomic || page == last_page) { 1726 set_fsync_mark(page, 1); 1727 if (IS_INODE(page)) { 1728 if (is_inode_flag_set(inode, 1729 FI_DIRTY_INODE)) 1730 f2fs_update_inode(inode, page); 1731 set_dentry_mark(page, 1732 f2fs_need_dentry_mark(sbi, ino)); 1733 } 1734 /* may be written by other thread */ 1735 if (!PageDirty(page)) 1736 set_page_dirty(page); 1737 } 1738 1739 if (!clear_page_dirty_for_io(page)) 1740 goto continue_unlock; 1741 1742 ret = __write_node_page(page, atomic && 1743 page == last_page, 1744 &submitted, wbc, true, 1745 FS_NODE_IO, seq_id); 1746 if (ret) { 1747 unlock_page(page); 1748 f2fs_put_page(last_page, 0); 1749 break; 1750 } else if (submitted) { 1751 nwritten++; 1752 } 1753 1754 if (page == last_page) { 1755 f2fs_put_page(page, 0); 1756 marked = true; 1757 break; 1758 } 1759 } 1760 pagevec_release(&pvec); 1761 cond_resched(); 1762 1763 if (ret || marked) 1764 break; 1765 } 1766 if (!ret && atomic && !marked) { 1767 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1768 ino, last_page->index); 1769 lock_page(last_page); 1770 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1771 set_page_dirty(last_page); 1772 unlock_page(last_page); 1773 goto retry; 1774 } 1775 out: 1776 if (nwritten) 1777 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1778 return ret ? -EIO: 0; 1779 } 1780 1781 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1782 { 1783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1784 bool clean; 1785 1786 if (inode->i_ino != ino) 1787 return 0; 1788 1789 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1790 return 0; 1791 1792 spin_lock(&sbi->inode_lock[DIRTY_META]); 1793 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1794 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1795 1796 if (clean) 1797 return 0; 1798 1799 inode = igrab(inode); 1800 if (!inode) 1801 return 0; 1802 return 1; 1803 } 1804 1805 static bool flush_dirty_inode(struct page *page) 1806 { 1807 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1808 struct inode *inode; 1809 nid_t ino = ino_of_node(page); 1810 1811 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1812 if (!inode) 1813 return false; 1814 1815 f2fs_update_inode(inode, page); 1816 unlock_page(page); 1817 1818 iput(inode); 1819 return true; 1820 } 1821 1822 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1823 { 1824 pgoff_t index = 0; 1825 struct pagevec pvec; 1826 int nr_pages; 1827 1828 pagevec_init(&pvec); 1829 1830 while ((nr_pages = pagevec_lookup_tag(&pvec, 1831 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1832 int i; 1833 1834 for (i = 0; i < nr_pages; i++) { 1835 struct page *page = pvec.pages[i]; 1836 1837 if (!IS_DNODE(page)) 1838 continue; 1839 1840 lock_page(page); 1841 1842 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1843 continue_unlock: 1844 unlock_page(page); 1845 continue; 1846 } 1847 1848 if (!PageDirty(page)) { 1849 /* someone wrote it for us */ 1850 goto continue_unlock; 1851 } 1852 1853 /* flush inline_data, if it's async context. */ 1854 if (is_inline_node(page)) { 1855 clear_inline_node(page); 1856 unlock_page(page); 1857 flush_inline_data(sbi, ino_of_node(page)); 1858 continue; 1859 } 1860 unlock_page(page); 1861 } 1862 pagevec_release(&pvec); 1863 cond_resched(); 1864 } 1865 } 1866 1867 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1868 struct writeback_control *wbc, 1869 bool do_balance, enum iostat_type io_type) 1870 { 1871 pgoff_t index; 1872 struct pagevec pvec; 1873 int step = 0; 1874 int nwritten = 0; 1875 int ret = 0; 1876 int nr_pages, done = 0; 1877 1878 pagevec_init(&pvec); 1879 1880 next_step: 1881 index = 0; 1882 1883 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1884 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1885 int i; 1886 1887 for (i = 0; i < nr_pages; i++) { 1888 struct page *page = pvec.pages[i]; 1889 bool submitted = false; 1890 bool may_dirty = true; 1891 1892 /* give a priority to WB_SYNC threads */ 1893 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1894 wbc->sync_mode == WB_SYNC_NONE) { 1895 done = 1; 1896 break; 1897 } 1898 1899 /* 1900 * flushing sequence with step: 1901 * 0. indirect nodes 1902 * 1. dentry dnodes 1903 * 2. file dnodes 1904 */ 1905 if (step == 0 && IS_DNODE(page)) 1906 continue; 1907 if (step == 1 && (!IS_DNODE(page) || 1908 is_cold_node(page))) 1909 continue; 1910 if (step == 2 && (!IS_DNODE(page) || 1911 !is_cold_node(page))) 1912 continue; 1913 lock_node: 1914 if (wbc->sync_mode == WB_SYNC_ALL) 1915 lock_page(page); 1916 else if (!trylock_page(page)) 1917 continue; 1918 1919 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1920 continue_unlock: 1921 unlock_page(page); 1922 continue; 1923 } 1924 1925 if (!PageDirty(page)) { 1926 /* someone wrote it for us */ 1927 goto continue_unlock; 1928 } 1929 1930 /* flush inline_data/inode, if it's async context. */ 1931 if (!do_balance) 1932 goto write_node; 1933 1934 /* flush inline_data */ 1935 if (is_inline_node(page)) { 1936 clear_inline_node(page); 1937 unlock_page(page); 1938 flush_inline_data(sbi, ino_of_node(page)); 1939 goto lock_node; 1940 } 1941 1942 /* flush dirty inode */ 1943 if (IS_INODE(page) && may_dirty) { 1944 may_dirty = false; 1945 if (flush_dirty_inode(page)) 1946 goto lock_node; 1947 } 1948 write_node: 1949 f2fs_wait_on_page_writeback(page, NODE, true, true); 1950 1951 if (!clear_page_dirty_for_io(page)) 1952 goto continue_unlock; 1953 1954 set_fsync_mark(page, 0); 1955 set_dentry_mark(page, 0); 1956 1957 ret = __write_node_page(page, false, &submitted, 1958 wbc, do_balance, io_type, NULL); 1959 if (ret) 1960 unlock_page(page); 1961 else if (submitted) 1962 nwritten++; 1963 1964 if (--wbc->nr_to_write == 0) 1965 break; 1966 } 1967 pagevec_release(&pvec); 1968 cond_resched(); 1969 1970 if (wbc->nr_to_write == 0) { 1971 step = 2; 1972 break; 1973 } 1974 } 1975 1976 if (step < 2) { 1977 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1978 wbc->sync_mode == WB_SYNC_NONE && step == 1) 1979 goto out; 1980 step++; 1981 goto next_step; 1982 } 1983 out: 1984 if (nwritten) 1985 f2fs_submit_merged_write(sbi, NODE); 1986 1987 if (unlikely(f2fs_cp_error(sbi))) 1988 return -EIO; 1989 return ret; 1990 } 1991 1992 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 1993 unsigned int seq_id) 1994 { 1995 struct fsync_node_entry *fn; 1996 struct page *page; 1997 struct list_head *head = &sbi->fsync_node_list; 1998 unsigned long flags; 1999 unsigned int cur_seq_id = 0; 2000 int ret2, ret = 0; 2001 2002 while (seq_id && cur_seq_id < seq_id) { 2003 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2004 if (list_empty(head)) { 2005 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2006 break; 2007 } 2008 fn = list_first_entry(head, struct fsync_node_entry, list); 2009 if (fn->seq_id > seq_id) { 2010 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2011 break; 2012 } 2013 cur_seq_id = fn->seq_id; 2014 page = fn->page; 2015 get_page(page); 2016 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2017 2018 f2fs_wait_on_page_writeback(page, NODE, true, false); 2019 if (TestClearPageError(page)) 2020 ret = -EIO; 2021 2022 put_page(page); 2023 2024 if (ret) 2025 break; 2026 } 2027 2028 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2029 if (!ret) 2030 ret = ret2; 2031 2032 return ret; 2033 } 2034 2035 static int f2fs_write_node_pages(struct address_space *mapping, 2036 struct writeback_control *wbc) 2037 { 2038 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2039 struct blk_plug plug; 2040 long diff; 2041 2042 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2043 goto skip_write; 2044 2045 /* balancing f2fs's metadata in background */ 2046 f2fs_balance_fs_bg(sbi, true); 2047 2048 /* collect a number of dirty node pages and write together */ 2049 if (wbc->sync_mode != WB_SYNC_ALL && 2050 get_pages(sbi, F2FS_DIRTY_NODES) < 2051 nr_pages_to_skip(sbi, NODE)) 2052 goto skip_write; 2053 2054 if (wbc->sync_mode == WB_SYNC_ALL) 2055 atomic_inc(&sbi->wb_sync_req[NODE]); 2056 else if (atomic_read(&sbi->wb_sync_req[NODE])) 2057 goto skip_write; 2058 2059 trace_f2fs_writepages(mapping->host, wbc, NODE); 2060 2061 diff = nr_pages_to_write(sbi, NODE, wbc); 2062 blk_start_plug(&plug); 2063 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2064 blk_finish_plug(&plug); 2065 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2066 2067 if (wbc->sync_mode == WB_SYNC_ALL) 2068 atomic_dec(&sbi->wb_sync_req[NODE]); 2069 return 0; 2070 2071 skip_write: 2072 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2073 trace_f2fs_writepages(mapping->host, wbc, NODE); 2074 return 0; 2075 } 2076 2077 static int f2fs_set_node_page_dirty(struct page *page) 2078 { 2079 trace_f2fs_set_page_dirty(page, NODE); 2080 2081 if (!PageUptodate(page)) 2082 SetPageUptodate(page); 2083 #ifdef CONFIG_F2FS_CHECK_FS 2084 if (IS_INODE(page)) 2085 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 2086 #endif 2087 if (!PageDirty(page)) { 2088 __set_page_dirty_nobuffers(page); 2089 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 2090 f2fs_set_page_private(page, 0); 2091 return 1; 2092 } 2093 return 0; 2094 } 2095 2096 /* 2097 * Structure of the f2fs node operations 2098 */ 2099 const struct address_space_operations f2fs_node_aops = { 2100 .writepage = f2fs_write_node_page, 2101 .writepages = f2fs_write_node_pages, 2102 .set_page_dirty = f2fs_set_node_page_dirty, 2103 .invalidatepage = f2fs_invalidate_page, 2104 .releasepage = f2fs_release_page, 2105 #ifdef CONFIG_MIGRATION 2106 .migratepage = f2fs_migrate_page, 2107 #endif 2108 }; 2109 2110 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2111 nid_t n) 2112 { 2113 return radix_tree_lookup(&nm_i->free_nid_root, n); 2114 } 2115 2116 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2117 struct free_nid *i) 2118 { 2119 struct f2fs_nm_info *nm_i = NM_I(sbi); 2120 2121 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2122 if (err) 2123 return err; 2124 2125 nm_i->nid_cnt[FREE_NID]++; 2126 list_add_tail(&i->list, &nm_i->free_nid_list); 2127 return 0; 2128 } 2129 2130 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2131 struct free_nid *i, enum nid_state state) 2132 { 2133 struct f2fs_nm_info *nm_i = NM_I(sbi); 2134 2135 f2fs_bug_on(sbi, state != i->state); 2136 nm_i->nid_cnt[state]--; 2137 if (state == FREE_NID) 2138 list_del(&i->list); 2139 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2140 } 2141 2142 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2143 enum nid_state org_state, enum nid_state dst_state) 2144 { 2145 struct f2fs_nm_info *nm_i = NM_I(sbi); 2146 2147 f2fs_bug_on(sbi, org_state != i->state); 2148 i->state = dst_state; 2149 nm_i->nid_cnt[org_state]--; 2150 nm_i->nid_cnt[dst_state]++; 2151 2152 switch (dst_state) { 2153 case PREALLOC_NID: 2154 list_del(&i->list); 2155 break; 2156 case FREE_NID: 2157 list_add_tail(&i->list, &nm_i->free_nid_list); 2158 break; 2159 default: 2160 BUG_ON(1); 2161 } 2162 } 2163 2164 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2165 bool set, bool build) 2166 { 2167 struct f2fs_nm_info *nm_i = NM_I(sbi); 2168 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2169 unsigned int nid_ofs = nid - START_NID(nid); 2170 2171 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2172 return; 2173 2174 if (set) { 2175 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2176 return; 2177 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2178 nm_i->free_nid_count[nat_ofs]++; 2179 } else { 2180 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2181 return; 2182 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2183 if (!build) 2184 nm_i->free_nid_count[nat_ofs]--; 2185 } 2186 } 2187 2188 /* return if the nid is recognized as free */ 2189 static bool add_free_nid(struct f2fs_sb_info *sbi, 2190 nid_t nid, bool build, bool update) 2191 { 2192 struct f2fs_nm_info *nm_i = NM_I(sbi); 2193 struct free_nid *i, *e; 2194 struct nat_entry *ne; 2195 int err = -EINVAL; 2196 bool ret = false; 2197 2198 /* 0 nid should not be used */ 2199 if (unlikely(nid == 0)) 2200 return false; 2201 2202 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2203 return false; 2204 2205 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 2206 i->nid = nid; 2207 i->state = FREE_NID; 2208 2209 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2210 2211 spin_lock(&nm_i->nid_list_lock); 2212 2213 if (build) { 2214 /* 2215 * Thread A Thread B 2216 * - f2fs_create 2217 * - f2fs_new_inode 2218 * - f2fs_alloc_nid 2219 * - __insert_nid_to_list(PREALLOC_NID) 2220 * - f2fs_balance_fs_bg 2221 * - f2fs_build_free_nids 2222 * - __f2fs_build_free_nids 2223 * - scan_nat_page 2224 * - add_free_nid 2225 * - __lookup_nat_cache 2226 * - f2fs_add_link 2227 * - f2fs_init_inode_metadata 2228 * - f2fs_new_inode_page 2229 * - f2fs_new_node_page 2230 * - set_node_addr 2231 * - f2fs_alloc_nid_done 2232 * - __remove_nid_from_list(PREALLOC_NID) 2233 * - __insert_nid_to_list(FREE_NID) 2234 */ 2235 ne = __lookup_nat_cache(nm_i, nid); 2236 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2237 nat_get_blkaddr(ne) != NULL_ADDR)) 2238 goto err_out; 2239 2240 e = __lookup_free_nid_list(nm_i, nid); 2241 if (e) { 2242 if (e->state == FREE_NID) 2243 ret = true; 2244 goto err_out; 2245 } 2246 } 2247 ret = true; 2248 err = __insert_free_nid(sbi, i); 2249 err_out: 2250 if (update) { 2251 update_free_nid_bitmap(sbi, nid, ret, build); 2252 if (!build) 2253 nm_i->available_nids++; 2254 } 2255 spin_unlock(&nm_i->nid_list_lock); 2256 radix_tree_preload_end(); 2257 2258 if (err) 2259 kmem_cache_free(free_nid_slab, i); 2260 return ret; 2261 } 2262 2263 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2264 { 2265 struct f2fs_nm_info *nm_i = NM_I(sbi); 2266 struct free_nid *i; 2267 bool need_free = false; 2268 2269 spin_lock(&nm_i->nid_list_lock); 2270 i = __lookup_free_nid_list(nm_i, nid); 2271 if (i && i->state == FREE_NID) { 2272 __remove_free_nid(sbi, i, FREE_NID); 2273 need_free = true; 2274 } 2275 spin_unlock(&nm_i->nid_list_lock); 2276 2277 if (need_free) 2278 kmem_cache_free(free_nid_slab, i); 2279 } 2280 2281 static int scan_nat_page(struct f2fs_sb_info *sbi, 2282 struct page *nat_page, nid_t start_nid) 2283 { 2284 struct f2fs_nm_info *nm_i = NM_I(sbi); 2285 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2286 block_t blk_addr; 2287 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2288 int i; 2289 2290 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2291 2292 i = start_nid % NAT_ENTRY_PER_BLOCK; 2293 2294 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2295 if (unlikely(start_nid >= nm_i->max_nid)) 2296 break; 2297 2298 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2299 2300 if (blk_addr == NEW_ADDR) 2301 return -EINVAL; 2302 2303 if (blk_addr == NULL_ADDR) { 2304 add_free_nid(sbi, start_nid, true, true); 2305 } else { 2306 spin_lock(&NM_I(sbi)->nid_list_lock); 2307 update_free_nid_bitmap(sbi, start_nid, false, true); 2308 spin_unlock(&NM_I(sbi)->nid_list_lock); 2309 } 2310 } 2311 2312 return 0; 2313 } 2314 2315 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2316 { 2317 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2318 struct f2fs_journal *journal = curseg->journal; 2319 int i; 2320 2321 down_read(&curseg->journal_rwsem); 2322 for (i = 0; i < nats_in_cursum(journal); i++) { 2323 block_t addr; 2324 nid_t nid; 2325 2326 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2327 nid = le32_to_cpu(nid_in_journal(journal, i)); 2328 if (addr == NULL_ADDR) 2329 add_free_nid(sbi, nid, true, false); 2330 else 2331 remove_free_nid(sbi, nid); 2332 } 2333 up_read(&curseg->journal_rwsem); 2334 } 2335 2336 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2337 { 2338 struct f2fs_nm_info *nm_i = NM_I(sbi); 2339 unsigned int i, idx; 2340 nid_t nid; 2341 2342 down_read(&nm_i->nat_tree_lock); 2343 2344 for (i = 0; i < nm_i->nat_blocks; i++) { 2345 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2346 continue; 2347 if (!nm_i->free_nid_count[i]) 2348 continue; 2349 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2350 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2351 NAT_ENTRY_PER_BLOCK, idx); 2352 if (idx >= NAT_ENTRY_PER_BLOCK) 2353 break; 2354 2355 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2356 add_free_nid(sbi, nid, true, false); 2357 2358 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2359 goto out; 2360 } 2361 } 2362 out: 2363 scan_curseg_cache(sbi); 2364 2365 up_read(&nm_i->nat_tree_lock); 2366 } 2367 2368 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2369 bool sync, bool mount) 2370 { 2371 struct f2fs_nm_info *nm_i = NM_I(sbi); 2372 int i = 0, ret; 2373 nid_t nid = nm_i->next_scan_nid; 2374 2375 if (unlikely(nid >= nm_i->max_nid)) 2376 nid = 0; 2377 2378 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2379 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2380 2381 /* Enough entries */ 2382 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2383 return 0; 2384 2385 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2386 return 0; 2387 2388 if (!mount) { 2389 /* try to find free nids in free_nid_bitmap */ 2390 scan_free_nid_bits(sbi); 2391 2392 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2393 return 0; 2394 } 2395 2396 /* readahead nat pages to be scanned */ 2397 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2398 META_NAT, true); 2399 2400 down_read(&nm_i->nat_tree_lock); 2401 2402 while (1) { 2403 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2404 nm_i->nat_block_bitmap)) { 2405 struct page *page = get_current_nat_page(sbi, nid); 2406 2407 if (IS_ERR(page)) { 2408 ret = PTR_ERR(page); 2409 } else { 2410 ret = scan_nat_page(sbi, page, nid); 2411 f2fs_put_page(page, 1); 2412 } 2413 2414 if (ret) { 2415 up_read(&nm_i->nat_tree_lock); 2416 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2417 return ret; 2418 } 2419 } 2420 2421 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2422 if (unlikely(nid >= nm_i->max_nid)) 2423 nid = 0; 2424 2425 if (++i >= FREE_NID_PAGES) 2426 break; 2427 } 2428 2429 /* go to the next free nat pages to find free nids abundantly */ 2430 nm_i->next_scan_nid = nid; 2431 2432 /* find free nids from current sum_pages */ 2433 scan_curseg_cache(sbi); 2434 2435 up_read(&nm_i->nat_tree_lock); 2436 2437 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2438 nm_i->ra_nid_pages, META_NAT, false); 2439 2440 return 0; 2441 } 2442 2443 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2444 { 2445 int ret; 2446 2447 mutex_lock(&NM_I(sbi)->build_lock); 2448 ret = __f2fs_build_free_nids(sbi, sync, mount); 2449 mutex_unlock(&NM_I(sbi)->build_lock); 2450 2451 return ret; 2452 } 2453 2454 /* 2455 * If this function returns success, caller can obtain a new nid 2456 * from second parameter of this function. 2457 * The returned nid could be used ino as well as nid when inode is created. 2458 */ 2459 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2460 { 2461 struct f2fs_nm_info *nm_i = NM_I(sbi); 2462 struct free_nid *i = NULL; 2463 retry: 2464 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2465 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2466 return false; 2467 } 2468 2469 spin_lock(&nm_i->nid_list_lock); 2470 2471 if (unlikely(nm_i->available_nids == 0)) { 2472 spin_unlock(&nm_i->nid_list_lock); 2473 return false; 2474 } 2475 2476 /* We should not use stale free nids created by f2fs_build_free_nids */ 2477 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2478 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2479 i = list_first_entry(&nm_i->free_nid_list, 2480 struct free_nid, list); 2481 *nid = i->nid; 2482 2483 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2484 nm_i->available_nids--; 2485 2486 update_free_nid_bitmap(sbi, *nid, false, false); 2487 2488 spin_unlock(&nm_i->nid_list_lock); 2489 return true; 2490 } 2491 spin_unlock(&nm_i->nid_list_lock); 2492 2493 /* Let's scan nat pages and its caches to get free nids */ 2494 if (!f2fs_build_free_nids(sbi, true, false)) 2495 goto retry; 2496 return false; 2497 } 2498 2499 /* 2500 * f2fs_alloc_nid() should be called prior to this function. 2501 */ 2502 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2503 { 2504 struct f2fs_nm_info *nm_i = NM_I(sbi); 2505 struct free_nid *i; 2506 2507 spin_lock(&nm_i->nid_list_lock); 2508 i = __lookup_free_nid_list(nm_i, nid); 2509 f2fs_bug_on(sbi, !i); 2510 __remove_free_nid(sbi, i, PREALLOC_NID); 2511 spin_unlock(&nm_i->nid_list_lock); 2512 2513 kmem_cache_free(free_nid_slab, i); 2514 } 2515 2516 /* 2517 * f2fs_alloc_nid() should be called prior to this function. 2518 */ 2519 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2520 { 2521 struct f2fs_nm_info *nm_i = NM_I(sbi); 2522 struct free_nid *i; 2523 bool need_free = false; 2524 2525 if (!nid) 2526 return; 2527 2528 spin_lock(&nm_i->nid_list_lock); 2529 i = __lookup_free_nid_list(nm_i, nid); 2530 f2fs_bug_on(sbi, !i); 2531 2532 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2533 __remove_free_nid(sbi, i, PREALLOC_NID); 2534 need_free = true; 2535 } else { 2536 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2537 } 2538 2539 nm_i->available_nids++; 2540 2541 update_free_nid_bitmap(sbi, nid, true, false); 2542 2543 spin_unlock(&nm_i->nid_list_lock); 2544 2545 if (need_free) 2546 kmem_cache_free(free_nid_slab, i); 2547 } 2548 2549 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2550 { 2551 struct f2fs_nm_info *nm_i = NM_I(sbi); 2552 int nr = nr_shrink; 2553 2554 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2555 return 0; 2556 2557 if (!mutex_trylock(&nm_i->build_lock)) 2558 return 0; 2559 2560 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2561 struct free_nid *i, *next; 2562 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2563 2564 spin_lock(&nm_i->nid_list_lock); 2565 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2566 if (!nr_shrink || !batch || 2567 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2568 break; 2569 __remove_free_nid(sbi, i, FREE_NID); 2570 kmem_cache_free(free_nid_slab, i); 2571 nr_shrink--; 2572 batch--; 2573 } 2574 spin_unlock(&nm_i->nid_list_lock); 2575 } 2576 2577 mutex_unlock(&nm_i->build_lock); 2578 2579 return nr - nr_shrink; 2580 } 2581 2582 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2583 { 2584 void *src_addr, *dst_addr; 2585 size_t inline_size; 2586 struct page *ipage; 2587 struct f2fs_inode *ri; 2588 2589 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2590 if (IS_ERR(ipage)) 2591 return PTR_ERR(ipage); 2592 2593 ri = F2FS_INODE(page); 2594 if (ri->i_inline & F2FS_INLINE_XATTR) { 2595 if (!f2fs_has_inline_xattr(inode)) { 2596 set_inode_flag(inode, FI_INLINE_XATTR); 2597 stat_inc_inline_xattr(inode); 2598 } 2599 } else { 2600 if (f2fs_has_inline_xattr(inode)) { 2601 stat_dec_inline_xattr(inode); 2602 clear_inode_flag(inode, FI_INLINE_XATTR); 2603 } 2604 goto update_inode; 2605 } 2606 2607 dst_addr = inline_xattr_addr(inode, ipage); 2608 src_addr = inline_xattr_addr(inode, page); 2609 inline_size = inline_xattr_size(inode); 2610 2611 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2612 memcpy(dst_addr, src_addr, inline_size); 2613 update_inode: 2614 f2fs_update_inode(inode, ipage); 2615 f2fs_put_page(ipage, 1); 2616 return 0; 2617 } 2618 2619 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2620 { 2621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2622 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2623 nid_t new_xnid; 2624 struct dnode_of_data dn; 2625 struct node_info ni; 2626 struct page *xpage; 2627 int err; 2628 2629 if (!prev_xnid) 2630 goto recover_xnid; 2631 2632 /* 1: invalidate the previous xattr nid */ 2633 err = f2fs_get_node_info(sbi, prev_xnid, &ni); 2634 if (err) 2635 return err; 2636 2637 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2638 dec_valid_node_count(sbi, inode, false); 2639 set_node_addr(sbi, &ni, NULL_ADDR, false); 2640 2641 recover_xnid: 2642 /* 2: update xattr nid in inode */ 2643 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2644 return -ENOSPC; 2645 2646 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2647 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2648 if (IS_ERR(xpage)) { 2649 f2fs_alloc_nid_failed(sbi, new_xnid); 2650 return PTR_ERR(xpage); 2651 } 2652 2653 f2fs_alloc_nid_done(sbi, new_xnid); 2654 f2fs_update_inode_page(inode); 2655 2656 /* 3: update and set xattr node page dirty */ 2657 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2658 2659 set_page_dirty(xpage); 2660 f2fs_put_page(xpage, 1); 2661 2662 return 0; 2663 } 2664 2665 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2666 { 2667 struct f2fs_inode *src, *dst; 2668 nid_t ino = ino_of_node(page); 2669 struct node_info old_ni, new_ni; 2670 struct page *ipage; 2671 int err; 2672 2673 err = f2fs_get_node_info(sbi, ino, &old_ni); 2674 if (err) 2675 return err; 2676 2677 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2678 return -EINVAL; 2679 retry: 2680 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2681 if (!ipage) { 2682 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2683 goto retry; 2684 } 2685 2686 /* Should not use this inode from free nid list */ 2687 remove_free_nid(sbi, ino); 2688 2689 if (!PageUptodate(ipage)) 2690 SetPageUptodate(ipage); 2691 fill_node_footer(ipage, ino, ino, 0, true); 2692 set_cold_node(ipage, false); 2693 2694 src = F2FS_INODE(page); 2695 dst = F2FS_INODE(ipage); 2696 2697 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2698 dst->i_size = 0; 2699 dst->i_blocks = cpu_to_le64(1); 2700 dst->i_links = cpu_to_le32(1); 2701 dst->i_xattr_nid = 0; 2702 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2703 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2704 dst->i_extra_isize = src->i_extra_isize; 2705 2706 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2707 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2708 i_inline_xattr_size)) 2709 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2710 2711 if (f2fs_sb_has_project_quota(sbi) && 2712 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2713 i_projid)) 2714 dst->i_projid = src->i_projid; 2715 2716 if (f2fs_sb_has_inode_crtime(sbi) && 2717 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2718 i_crtime_nsec)) { 2719 dst->i_crtime = src->i_crtime; 2720 dst->i_crtime_nsec = src->i_crtime_nsec; 2721 } 2722 } 2723 2724 new_ni = old_ni; 2725 new_ni.ino = ino; 2726 2727 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2728 WARN_ON(1); 2729 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2730 inc_valid_inode_count(sbi); 2731 set_page_dirty(ipage); 2732 f2fs_put_page(ipage, 1); 2733 return 0; 2734 } 2735 2736 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2737 unsigned int segno, struct f2fs_summary_block *sum) 2738 { 2739 struct f2fs_node *rn; 2740 struct f2fs_summary *sum_entry; 2741 block_t addr; 2742 int i, idx, last_offset, nrpages; 2743 2744 /* scan the node segment */ 2745 last_offset = sbi->blocks_per_seg; 2746 addr = START_BLOCK(sbi, segno); 2747 sum_entry = &sum->entries[0]; 2748 2749 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2750 nrpages = bio_max_segs(last_offset - i); 2751 2752 /* readahead node pages */ 2753 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2754 2755 for (idx = addr; idx < addr + nrpages; idx++) { 2756 struct page *page = f2fs_get_tmp_page(sbi, idx); 2757 2758 if (IS_ERR(page)) 2759 return PTR_ERR(page); 2760 2761 rn = F2FS_NODE(page); 2762 sum_entry->nid = rn->footer.nid; 2763 sum_entry->version = 0; 2764 sum_entry->ofs_in_node = 0; 2765 sum_entry++; 2766 f2fs_put_page(page, 1); 2767 } 2768 2769 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2770 addr + nrpages); 2771 } 2772 return 0; 2773 } 2774 2775 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2776 { 2777 struct f2fs_nm_info *nm_i = NM_I(sbi); 2778 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2779 struct f2fs_journal *journal = curseg->journal; 2780 int i; 2781 2782 down_write(&curseg->journal_rwsem); 2783 for (i = 0; i < nats_in_cursum(journal); i++) { 2784 struct nat_entry *ne; 2785 struct f2fs_nat_entry raw_ne; 2786 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2787 2788 raw_ne = nat_in_journal(journal, i); 2789 2790 ne = __lookup_nat_cache(nm_i, nid); 2791 if (!ne) { 2792 ne = __alloc_nat_entry(nid, true); 2793 __init_nat_entry(nm_i, ne, &raw_ne, true); 2794 } 2795 2796 /* 2797 * if a free nat in journal has not been used after last 2798 * checkpoint, we should remove it from available nids, 2799 * since later we will add it again. 2800 */ 2801 if (!get_nat_flag(ne, IS_DIRTY) && 2802 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2803 spin_lock(&nm_i->nid_list_lock); 2804 nm_i->available_nids--; 2805 spin_unlock(&nm_i->nid_list_lock); 2806 } 2807 2808 __set_nat_cache_dirty(nm_i, ne); 2809 } 2810 update_nats_in_cursum(journal, -i); 2811 up_write(&curseg->journal_rwsem); 2812 } 2813 2814 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2815 struct list_head *head, int max) 2816 { 2817 struct nat_entry_set *cur; 2818 2819 if (nes->entry_cnt >= max) 2820 goto add_out; 2821 2822 list_for_each_entry(cur, head, set_list) { 2823 if (cur->entry_cnt >= nes->entry_cnt) { 2824 list_add(&nes->set_list, cur->set_list.prev); 2825 return; 2826 } 2827 } 2828 add_out: 2829 list_add_tail(&nes->set_list, head); 2830 } 2831 2832 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2833 struct page *page) 2834 { 2835 struct f2fs_nm_info *nm_i = NM_I(sbi); 2836 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2837 struct f2fs_nat_block *nat_blk = page_address(page); 2838 int valid = 0; 2839 int i = 0; 2840 2841 if (!enabled_nat_bits(sbi, NULL)) 2842 return; 2843 2844 if (nat_index == 0) { 2845 valid = 1; 2846 i = 1; 2847 } 2848 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2849 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2850 valid++; 2851 } 2852 if (valid == 0) { 2853 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2854 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2855 return; 2856 } 2857 2858 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2859 if (valid == NAT_ENTRY_PER_BLOCK) 2860 __set_bit_le(nat_index, nm_i->full_nat_bits); 2861 else 2862 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2863 } 2864 2865 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2866 struct nat_entry_set *set, struct cp_control *cpc) 2867 { 2868 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2869 struct f2fs_journal *journal = curseg->journal; 2870 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2871 bool to_journal = true; 2872 struct f2fs_nat_block *nat_blk; 2873 struct nat_entry *ne, *cur; 2874 struct page *page = NULL; 2875 2876 /* 2877 * there are two steps to flush nat entries: 2878 * #1, flush nat entries to journal in current hot data summary block. 2879 * #2, flush nat entries to nat page. 2880 */ 2881 if (enabled_nat_bits(sbi, cpc) || 2882 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2883 to_journal = false; 2884 2885 if (to_journal) { 2886 down_write(&curseg->journal_rwsem); 2887 } else { 2888 page = get_next_nat_page(sbi, start_nid); 2889 if (IS_ERR(page)) 2890 return PTR_ERR(page); 2891 2892 nat_blk = page_address(page); 2893 f2fs_bug_on(sbi, !nat_blk); 2894 } 2895 2896 /* flush dirty nats in nat entry set */ 2897 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2898 struct f2fs_nat_entry *raw_ne; 2899 nid_t nid = nat_get_nid(ne); 2900 int offset; 2901 2902 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2903 2904 if (to_journal) { 2905 offset = f2fs_lookup_journal_in_cursum(journal, 2906 NAT_JOURNAL, nid, 1); 2907 f2fs_bug_on(sbi, offset < 0); 2908 raw_ne = &nat_in_journal(journal, offset); 2909 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2910 } else { 2911 raw_ne = &nat_blk->entries[nid - start_nid]; 2912 } 2913 raw_nat_from_node_info(raw_ne, &ne->ni); 2914 nat_reset_flag(ne); 2915 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2916 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2917 add_free_nid(sbi, nid, false, true); 2918 } else { 2919 spin_lock(&NM_I(sbi)->nid_list_lock); 2920 update_free_nid_bitmap(sbi, nid, false, false); 2921 spin_unlock(&NM_I(sbi)->nid_list_lock); 2922 } 2923 } 2924 2925 if (to_journal) { 2926 up_write(&curseg->journal_rwsem); 2927 } else { 2928 __update_nat_bits(sbi, start_nid, page); 2929 f2fs_put_page(page, 1); 2930 } 2931 2932 /* Allow dirty nats by node block allocation in write_begin */ 2933 if (!set->entry_cnt) { 2934 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2935 kmem_cache_free(nat_entry_set_slab, set); 2936 } 2937 return 0; 2938 } 2939 2940 /* 2941 * This function is called during the checkpointing process. 2942 */ 2943 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2944 { 2945 struct f2fs_nm_info *nm_i = NM_I(sbi); 2946 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2947 struct f2fs_journal *journal = curseg->journal; 2948 struct nat_entry_set *setvec[SETVEC_SIZE]; 2949 struct nat_entry_set *set, *tmp; 2950 unsigned int found; 2951 nid_t set_idx = 0; 2952 LIST_HEAD(sets); 2953 int err = 0; 2954 2955 /* 2956 * during unmount, let's flush nat_bits before checking 2957 * nat_cnt[DIRTY_NAT]. 2958 */ 2959 if (enabled_nat_bits(sbi, cpc)) { 2960 down_write(&nm_i->nat_tree_lock); 2961 remove_nats_in_journal(sbi); 2962 up_write(&nm_i->nat_tree_lock); 2963 } 2964 2965 if (!nm_i->nat_cnt[DIRTY_NAT]) 2966 return 0; 2967 2968 down_write(&nm_i->nat_tree_lock); 2969 2970 /* 2971 * if there are no enough space in journal to store dirty nat 2972 * entries, remove all entries from journal and merge them 2973 * into nat entry set. 2974 */ 2975 if (enabled_nat_bits(sbi, cpc) || 2976 !__has_cursum_space(journal, 2977 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 2978 remove_nats_in_journal(sbi); 2979 2980 while ((found = __gang_lookup_nat_set(nm_i, 2981 set_idx, SETVEC_SIZE, setvec))) { 2982 unsigned idx; 2983 set_idx = setvec[found - 1]->set + 1; 2984 for (idx = 0; idx < found; idx++) 2985 __adjust_nat_entry_set(setvec[idx], &sets, 2986 MAX_NAT_JENTRIES(journal)); 2987 } 2988 2989 /* flush dirty nats in nat entry set */ 2990 list_for_each_entry_safe(set, tmp, &sets, set_list) { 2991 err = __flush_nat_entry_set(sbi, set, cpc); 2992 if (err) 2993 break; 2994 } 2995 2996 up_write(&nm_i->nat_tree_lock); 2997 /* Allow dirty nats by node block allocation in write_begin */ 2998 2999 return err; 3000 } 3001 3002 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3003 { 3004 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3005 struct f2fs_nm_info *nm_i = NM_I(sbi); 3006 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3007 unsigned int i; 3008 __u64 cp_ver = cur_cp_version(ckpt); 3009 block_t nat_bits_addr; 3010 3011 if (!enabled_nat_bits(sbi, NULL)) 3012 return 0; 3013 3014 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3015 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3016 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3017 if (!nm_i->nat_bits) 3018 return -ENOMEM; 3019 3020 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3021 nm_i->nat_bits_blocks; 3022 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3023 struct page *page; 3024 3025 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3026 if (IS_ERR(page)) 3027 return PTR_ERR(page); 3028 3029 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3030 page_address(page), F2FS_BLKSIZE); 3031 f2fs_put_page(page, 1); 3032 } 3033 3034 cp_ver |= (cur_cp_crc(ckpt) << 32); 3035 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3036 disable_nat_bits(sbi, true); 3037 return 0; 3038 } 3039 3040 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3041 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3042 3043 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3044 return 0; 3045 } 3046 3047 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3048 { 3049 struct f2fs_nm_info *nm_i = NM_I(sbi); 3050 unsigned int i = 0; 3051 nid_t nid, last_nid; 3052 3053 if (!enabled_nat_bits(sbi, NULL)) 3054 return; 3055 3056 for (i = 0; i < nm_i->nat_blocks; i++) { 3057 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3058 if (i >= nm_i->nat_blocks) 3059 break; 3060 3061 __set_bit_le(i, nm_i->nat_block_bitmap); 3062 3063 nid = i * NAT_ENTRY_PER_BLOCK; 3064 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3065 3066 spin_lock(&NM_I(sbi)->nid_list_lock); 3067 for (; nid < last_nid; nid++) 3068 update_free_nid_bitmap(sbi, nid, true, true); 3069 spin_unlock(&NM_I(sbi)->nid_list_lock); 3070 } 3071 3072 for (i = 0; i < nm_i->nat_blocks; i++) { 3073 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3074 if (i >= nm_i->nat_blocks) 3075 break; 3076 3077 __set_bit_le(i, nm_i->nat_block_bitmap); 3078 } 3079 } 3080 3081 static int init_node_manager(struct f2fs_sb_info *sbi) 3082 { 3083 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3084 struct f2fs_nm_info *nm_i = NM_I(sbi); 3085 unsigned char *version_bitmap; 3086 unsigned int nat_segs; 3087 int err; 3088 3089 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3090 3091 /* segment_count_nat includes pair segment so divide to 2. */ 3092 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3093 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3094 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3095 3096 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3097 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3098 F2FS_RESERVED_NODE_NUM; 3099 nm_i->nid_cnt[FREE_NID] = 0; 3100 nm_i->nid_cnt[PREALLOC_NID] = 0; 3101 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3102 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3103 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3104 3105 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3106 INIT_LIST_HEAD(&nm_i->free_nid_list); 3107 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3108 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3109 INIT_LIST_HEAD(&nm_i->nat_entries); 3110 spin_lock_init(&nm_i->nat_list_lock); 3111 3112 mutex_init(&nm_i->build_lock); 3113 spin_lock_init(&nm_i->nid_list_lock); 3114 init_rwsem(&nm_i->nat_tree_lock); 3115 3116 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3117 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3118 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3119 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3120 GFP_KERNEL); 3121 if (!nm_i->nat_bitmap) 3122 return -ENOMEM; 3123 3124 err = __get_nat_bitmaps(sbi); 3125 if (err) 3126 return err; 3127 3128 #ifdef CONFIG_F2FS_CHECK_FS 3129 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3130 GFP_KERNEL); 3131 if (!nm_i->nat_bitmap_mir) 3132 return -ENOMEM; 3133 #endif 3134 3135 return 0; 3136 } 3137 3138 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3139 { 3140 struct f2fs_nm_info *nm_i = NM_I(sbi); 3141 int i; 3142 3143 nm_i->free_nid_bitmap = 3144 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3145 nm_i->nat_blocks), 3146 GFP_KERNEL); 3147 if (!nm_i->free_nid_bitmap) 3148 return -ENOMEM; 3149 3150 for (i = 0; i < nm_i->nat_blocks; i++) { 3151 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3152 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3153 if (!nm_i->free_nid_bitmap[i]) 3154 return -ENOMEM; 3155 } 3156 3157 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3158 GFP_KERNEL); 3159 if (!nm_i->nat_block_bitmap) 3160 return -ENOMEM; 3161 3162 nm_i->free_nid_count = 3163 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3164 nm_i->nat_blocks), 3165 GFP_KERNEL); 3166 if (!nm_i->free_nid_count) 3167 return -ENOMEM; 3168 return 0; 3169 } 3170 3171 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3172 { 3173 int err; 3174 3175 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3176 GFP_KERNEL); 3177 if (!sbi->nm_info) 3178 return -ENOMEM; 3179 3180 err = init_node_manager(sbi); 3181 if (err) 3182 return err; 3183 3184 err = init_free_nid_cache(sbi); 3185 if (err) 3186 return err; 3187 3188 /* load free nid status from nat_bits table */ 3189 load_free_nid_bitmap(sbi); 3190 3191 return f2fs_build_free_nids(sbi, true, true); 3192 } 3193 3194 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3195 { 3196 struct f2fs_nm_info *nm_i = NM_I(sbi); 3197 struct free_nid *i, *next_i; 3198 struct nat_entry *natvec[NATVEC_SIZE]; 3199 struct nat_entry_set *setvec[SETVEC_SIZE]; 3200 nid_t nid = 0; 3201 unsigned int found; 3202 3203 if (!nm_i) 3204 return; 3205 3206 /* destroy free nid list */ 3207 spin_lock(&nm_i->nid_list_lock); 3208 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3209 __remove_free_nid(sbi, i, FREE_NID); 3210 spin_unlock(&nm_i->nid_list_lock); 3211 kmem_cache_free(free_nid_slab, i); 3212 spin_lock(&nm_i->nid_list_lock); 3213 } 3214 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3215 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3216 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3217 spin_unlock(&nm_i->nid_list_lock); 3218 3219 /* destroy nat cache */ 3220 down_write(&nm_i->nat_tree_lock); 3221 while ((found = __gang_lookup_nat_cache(nm_i, 3222 nid, NATVEC_SIZE, natvec))) { 3223 unsigned idx; 3224 3225 nid = nat_get_nid(natvec[found - 1]) + 1; 3226 for (idx = 0; idx < found; idx++) { 3227 spin_lock(&nm_i->nat_list_lock); 3228 list_del(&natvec[idx]->list); 3229 spin_unlock(&nm_i->nat_list_lock); 3230 3231 __del_from_nat_cache(nm_i, natvec[idx]); 3232 } 3233 } 3234 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3235 3236 /* destroy nat set cache */ 3237 nid = 0; 3238 while ((found = __gang_lookup_nat_set(nm_i, 3239 nid, SETVEC_SIZE, setvec))) { 3240 unsigned idx; 3241 3242 nid = setvec[found - 1]->set + 1; 3243 for (idx = 0; idx < found; idx++) { 3244 /* entry_cnt is not zero, when cp_error was occurred */ 3245 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3246 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3247 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3248 } 3249 } 3250 up_write(&nm_i->nat_tree_lock); 3251 3252 kvfree(nm_i->nat_block_bitmap); 3253 if (nm_i->free_nid_bitmap) { 3254 int i; 3255 3256 for (i = 0; i < nm_i->nat_blocks; i++) 3257 kvfree(nm_i->free_nid_bitmap[i]); 3258 kvfree(nm_i->free_nid_bitmap); 3259 } 3260 kvfree(nm_i->free_nid_count); 3261 3262 kvfree(nm_i->nat_bitmap); 3263 kvfree(nm_i->nat_bits); 3264 #ifdef CONFIG_F2FS_CHECK_FS 3265 kvfree(nm_i->nat_bitmap_mir); 3266 #endif 3267 sbi->nm_info = NULL; 3268 kfree(nm_i); 3269 } 3270 3271 int __init f2fs_create_node_manager_caches(void) 3272 { 3273 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3274 sizeof(struct nat_entry)); 3275 if (!nat_entry_slab) 3276 goto fail; 3277 3278 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3279 sizeof(struct free_nid)); 3280 if (!free_nid_slab) 3281 goto destroy_nat_entry; 3282 3283 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3284 sizeof(struct nat_entry_set)); 3285 if (!nat_entry_set_slab) 3286 goto destroy_free_nid; 3287 3288 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3289 sizeof(struct fsync_node_entry)); 3290 if (!fsync_node_entry_slab) 3291 goto destroy_nat_entry_set; 3292 return 0; 3293 3294 destroy_nat_entry_set: 3295 kmem_cache_destroy(nat_entry_set_slab); 3296 destroy_free_nid: 3297 kmem_cache_destroy(free_nid_slab); 3298 destroy_nat_entry: 3299 kmem_cache_destroy(nat_entry_slab); 3300 fail: 3301 return -ENOMEM; 3302 } 3303 3304 void f2fs_destroy_node_manager_caches(void) 3305 { 3306 kmem_cache_destroy(fsync_node_entry_slab); 3307 kmem_cache_destroy(nat_entry_set_slab); 3308 kmem_cache_destroy(free_nid_slab); 3309 kmem_cache_destroy(nat_entry_slab); 3310 } 3311