1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *nat_entry_slab; 25 static struct kmem_cache *free_nid_slab; 26 27 static void clear_node_page_dirty(struct page *page) 28 { 29 struct address_space *mapping = page->mapping; 30 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 31 unsigned int long flags; 32 33 if (PageDirty(page)) { 34 spin_lock_irqsave(&mapping->tree_lock, flags); 35 radix_tree_tag_clear(&mapping->page_tree, 36 page_index(page), 37 PAGECACHE_TAG_DIRTY); 38 spin_unlock_irqrestore(&mapping->tree_lock, flags); 39 40 clear_page_dirty_for_io(page); 41 dec_page_count(sbi, F2FS_DIRTY_NODES); 42 } 43 ClearPageUptodate(page); 44 } 45 46 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 47 { 48 pgoff_t index = current_nat_addr(sbi, nid); 49 return get_meta_page(sbi, index); 50 } 51 52 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 53 { 54 struct page *src_page; 55 struct page *dst_page; 56 pgoff_t src_off; 57 pgoff_t dst_off; 58 void *src_addr; 59 void *dst_addr; 60 struct f2fs_nm_info *nm_i = NM_I(sbi); 61 62 src_off = current_nat_addr(sbi, nid); 63 dst_off = next_nat_addr(sbi, src_off); 64 65 /* get current nat block page with lock */ 66 src_page = get_meta_page(sbi, src_off); 67 68 /* Dirty src_page means that it is already the new target NAT page. */ 69 if (PageDirty(src_page)) 70 return src_page; 71 72 dst_page = grab_meta_page(sbi, dst_off); 73 74 src_addr = page_address(src_page); 75 dst_addr = page_address(dst_page); 76 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 77 set_page_dirty(dst_page); 78 f2fs_put_page(src_page, 1); 79 80 set_to_next_nat(nm_i, nid); 81 82 return dst_page; 83 } 84 85 /* 86 * Readahead NAT pages 87 */ 88 static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid) 89 { 90 struct address_space *mapping = META_MAPPING(sbi); 91 struct f2fs_nm_info *nm_i = NM_I(sbi); 92 struct page *page; 93 pgoff_t index; 94 int i; 95 struct f2fs_io_info fio = { 96 .type = META, 97 .rw = READ_SYNC | REQ_META | REQ_PRIO 98 }; 99 100 101 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) { 102 if (unlikely(nid >= nm_i->max_nid)) 103 nid = 0; 104 index = current_nat_addr(sbi, nid); 105 106 page = grab_cache_page(mapping, index); 107 if (!page) 108 continue; 109 if (PageUptodate(page)) { 110 mark_page_accessed(page); 111 f2fs_put_page(page, 1); 112 continue; 113 } 114 f2fs_submit_page_mbio(sbi, page, index, &fio); 115 mark_page_accessed(page); 116 f2fs_put_page(page, 0); 117 } 118 f2fs_submit_merged_bio(sbi, META, READ); 119 } 120 121 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 122 { 123 return radix_tree_lookup(&nm_i->nat_root, n); 124 } 125 126 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 127 nid_t start, unsigned int nr, struct nat_entry **ep) 128 { 129 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 130 } 131 132 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 133 { 134 list_del(&e->list); 135 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 136 nm_i->nat_cnt--; 137 kmem_cache_free(nat_entry_slab, e); 138 } 139 140 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 141 { 142 struct f2fs_nm_info *nm_i = NM_I(sbi); 143 struct nat_entry *e; 144 int is_cp = 1; 145 146 read_lock(&nm_i->nat_tree_lock); 147 e = __lookup_nat_cache(nm_i, nid); 148 if (e && !e->checkpointed) 149 is_cp = 0; 150 read_unlock(&nm_i->nat_tree_lock); 151 return is_cp; 152 } 153 154 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 155 { 156 struct nat_entry *new; 157 158 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 159 if (!new) 160 return NULL; 161 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 162 kmem_cache_free(nat_entry_slab, new); 163 return NULL; 164 } 165 memset(new, 0, sizeof(struct nat_entry)); 166 nat_set_nid(new, nid); 167 list_add_tail(&new->list, &nm_i->nat_entries); 168 nm_i->nat_cnt++; 169 return new; 170 } 171 172 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 173 struct f2fs_nat_entry *ne) 174 { 175 struct nat_entry *e; 176 retry: 177 write_lock(&nm_i->nat_tree_lock); 178 e = __lookup_nat_cache(nm_i, nid); 179 if (!e) { 180 e = grab_nat_entry(nm_i, nid); 181 if (!e) { 182 write_unlock(&nm_i->nat_tree_lock); 183 goto retry; 184 } 185 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr)); 186 nat_set_ino(e, le32_to_cpu(ne->ino)); 187 nat_set_version(e, ne->version); 188 e->checkpointed = true; 189 } 190 write_unlock(&nm_i->nat_tree_lock); 191 } 192 193 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 194 block_t new_blkaddr) 195 { 196 struct f2fs_nm_info *nm_i = NM_I(sbi); 197 struct nat_entry *e; 198 retry: 199 write_lock(&nm_i->nat_tree_lock); 200 e = __lookup_nat_cache(nm_i, ni->nid); 201 if (!e) { 202 e = grab_nat_entry(nm_i, ni->nid); 203 if (!e) { 204 write_unlock(&nm_i->nat_tree_lock); 205 goto retry; 206 } 207 e->ni = *ni; 208 e->checkpointed = true; 209 f2fs_bug_on(ni->blk_addr == NEW_ADDR); 210 } else if (new_blkaddr == NEW_ADDR) { 211 /* 212 * when nid is reallocated, 213 * previous nat entry can be remained in nat cache. 214 * So, reinitialize it with new information. 215 */ 216 e->ni = *ni; 217 f2fs_bug_on(ni->blk_addr != NULL_ADDR); 218 } 219 220 if (new_blkaddr == NEW_ADDR) 221 e->checkpointed = false; 222 223 /* sanity check */ 224 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr); 225 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR && 226 new_blkaddr == NULL_ADDR); 227 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR && 228 new_blkaddr == NEW_ADDR); 229 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR && 230 nat_get_blkaddr(e) != NULL_ADDR && 231 new_blkaddr == NEW_ADDR); 232 233 /* increament version no as node is removed */ 234 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 235 unsigned char version = nat_get_version(e); 236 nat_set_version(e, inc_node_version(version)); 237 } 238 239 /* change address */ 240 nat_set_blkaddr(e, new_blkaddr); 241 __set_nat_cache_dirty(nm_i, e); 242 write_unlock(&nm_i->nat_tree_lock); 243 } 244 245 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 246 { 247 struct f2fs_nm_info *nm_i = NM_I(sbi); 248 249 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD) 250 return 0; 251 252 write_lock(&nm_i->nat_tree_lock); 253 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 254 struct nat_entry *ne; 255 ne = list_first_entry(&nm_i->nat_entries, 256 struct nat_entry, list); 257 __del_from_nat_cache(nm_i, ne); 258 nr_shrink--; 259 } 260 write_unlock(&nm_i->nat_tree_lock); 261 return nr_shrink; 262 } 263 264 /* 265 * This function returns always success 266 */ 267 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 268 { 269 struct f2fs_nm_info *nm_i = NM_I(sbi); 270 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 271 struct f2fs_summary_block *sum = curseg->sum_blk; 272 nid_t start_nid = START_NID(nid); 273 struct f2fs_nat_block *nat_blk; 274 struct page *page = NULL; 275 struct f2fs_nat_entry ne; 276 struct nat_entry *e; 277 int i; 278 279 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 280 ni->nid = nid; 281 282 /* Check nat cache */ 283 read_lock(&nm_i->nat_tree_lock); 284 e = __lookup_nat_cache(nm_i, nid); 285 if (e) { 286 ni->ino = nat_get_ino(e); 287 ni->blk_addr = nat_get_blkaddr(e); 288 ni->version = nat_get_version(e); 289 } 290 read_unlock(&nm_i->nat_tree_lock); 291 if (e) 292 return; 293 294 /* Check current segment summary */ 295 mutex_lock(&curseg->curseg_mutex); 296 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 297 if (i >= 0) { 298 ne = nat_in_journal(sum, i); 299 node_info_from_raw_nat(ni, &ne); 300 } 301 mutex_unlock(&curseg->curseg_mutex); 302 if (i >= 0) 303 goto cache; 304 305 /* Fill node_info from nat page */ 306 page = get_current_nat_page(sbi, start_nid); 307 nat_blk = (struct f2fs_nat_block *)page_address(page); 308 ne = nat_blk->entries[nid - start_nid]; 309 node_info_from_raw_nat(ni, &ne); 310 f2fs_put_page(page, 1); 311 cache: 312 /* cache nat entry */ 313 cache_nat_entry(NM_I(sbi), nid, &ne); 314 } 315 316 /* 317 * The maximum depth is four. 318 * Offset[0] will have raw inode offset. 319 */ 320 static int get_node_path(struct f2fs_inode_info *fi, long block, 321 int offset[4], unsigned int noffset[4]) 322 { 323 const long direct_index = ADDRS_PER_INODE(fi); 324 const long direct_blks = ADDRS_PER_BLOCK; 325 const long dptrs_per_blk = NIDS_PER_BLOCK; 326 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 327 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 328 int n = 0; 329 int level = 0; 330 331 noffset[0] = 0; 332 333 if (block < direct_index) { 334 offset[n] = block; 335 goto got; 336 } 337 block -= direct_index; 338 if (block < direct_blks) { 339 offset[n++] = NODE_DIR1_BLOCK; 340 noffset[n] = 1; 341 offset[n] = block; 342 level = 1; 343 goto got; 344 } 345 block -= direct_blks; 346 if (block < direct_blks) { 347 offset[n++] = NODE_DIR2_BLOCK; 348 noffset[n] = 2; 349 offset[n] = block; 350 level = 1; 351 goto got; 352 } 353 block -= direct_blks; 354 if (block < indirect_blks) { 355 offset[n++] = NODE_IND1_BLOCK; 356 noffset[n] = 3; 357 offset[n++] = block / direct_blks; 358 noffset[n] = 4 + offset[n - 1]; 359 offset[n] = block % direct_blks; 360 level = 2; 361 goto got; 362 } 363 block -= indirect_blks; 364 if (block < indirect_blks) { 365 offset[n++] = NODE_IND2_BLOCK; 366 noffset[n] = 4 + dptrs_per_blk; 367 offset[n++] = block / direct_blks; 368 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 369 offset[n] = block % direct_blks; 370 level = 2; 371 goto got; 372 } 373 block -= indirect_blks; 374 if (block < dindirect_blks) { 375 offset[n++] = NODE_DIND_BLOCK; 376 noffset[n] = 5 + (dptrs_per_blk * 2); 377 offset[n++] = block / indirect_blks; 378 noffset[n] = 6 + (dptrs_per_blk * 2) + 379 offset[n - 1] * (dptrs_per_blk + 1); 380 offset[n++] = (block / direct_blks) % dptrs_per_blk; 381 noffset[n] = 7 + (dptrs_per_blk * 2) + 382 offset[n - 2] * (dptrs_per_blk + 1) + 383 offset[n - 1]; 384 offset[n] = block % direct_blks; 385 level = 3; 386 goto got; 387 } else { 388 BUG(); 389 } 390 got: 391 return level; 392 } 393 394 /* 395 * Caller should call f2fs_put_dnode(dn). 396 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 397 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 398 * In the case of RDONLY_NODE, we don't need to care about mutex. 399 */ 400 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 401 { 402 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 403 struct page *npage[4]; 404 struct page *parent; 405 int offset[4]; 406 unsigned int noffset[4]; 407 nid_t nids[4]; 408 int level, i; 409 int err = 0; 410 411 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); 412 413 nids[0] = dn->inode->i_ino; 414 npage[0] = dn->inode_page; 415 416 if (!npage[0]) { 417 npage[0] = get_node_page(sbi, nids[0]); 418 if (IS_ERR(npage[0])) 419 return PTR_ERR(npage[0]); 420 } 421 parent = npage[0]; 422 if (level != 0) 423 nids[1] = get_nid(parent, offset[0], true); 424 dn->inode_page = npage[0]; 425 dn->inode_page_locked = true; 426 427 /* get indirect or direct nodes */ 428 for (i = 1; i <= level; i++) { 429 bool done = false; 430 431 if (!nids[i] && mode == ALLOC_NODE) { 432 /* alloc new node */ 433 if (!alloc_nid(sbi, &(nids[i]))) { 434 err = -ENOSPC; 435 goto release_pages; 436 } 437 438 dn->nid = nids[i]; 439 npage[i] = new_node_page(dn, noffset[i], NULL); 440 if (IS_ERR(npage[i])) { 441 alloc_nid_failed(sbi, nids[i]); 442 err = PTR_ERR(npage[i]); 443 goto release_pages; 444 } 445 446 set_nid(parent, offset[i - 1], nids[i], i == 1); 447 alloc_nid_done(sbi, nids[i]); 448 done = true; 449 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 450 npage[i] = get_node_page_ra(parent, offset[i - 1]); 451 if (IS_ERR(npage[i])) { 452 err = PTR_ERR(npage[i]); 453 goto release_pages; 454 } 455 done = true; 456 } 457 if (i == 1) { 458 dn->inode_page_locked = false; 459 unlock_page(parent); 460 } else { 461 f2fs_put_page(parent, 1); 462 } 463 464 if (!done) { 465 npage[i] = get_node_page(sbi, nids[i]); 466 if (IS_ERR(npage[i])) { 467 err = PTR_ERR(npage[i]); 468 f2fs_put_page(npage[0], 0); 469 goto release_out; 470 } 471 } 472 if (i < level) { 473 parent = npage[i]; 474 nids[i + 1] = get_nid(parent, offset[i], false); 475 } 476 } 477 dn->nid = nids[level]; 478 dn->ofs_in_node = offset[level]; 479 dn->node_page = npage[level]; 480 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 481 return 0; 482 483 release_pages: 484 f2fs_put_page(parent, 1); 485 if (i > 1) 486 f2fs_put_page(npage[0], 0); 487 release_out: 488 dn->inode_page = NULL; 489 dn->node_page = NULL; 490 return err; 491 } 492 493 static void truncate_node(struct dnode_of_data *dn) 494 { 495 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 496 struct node_info ni; 497 498 get_node_info(sbi, dn->nid, &ni); 499 if (dn->inode->i_blocks == 0) { 500 f2fs_bug_on(ni.blk_addr != NULL_ADDR); 501 goto invalidate; 502 } 503 f2fs_bug_on(ni.blk_addr == NULL_ADDR); 504 505 /* Deallocate node address */ 506 invalidate_blocks(sbi, ni.blk_addr); 507 dec_valid_node_count(sbi, dn->inode); 508 set_node_addr(sbi, &ni, NULL_ADDR); 509 510 if (dn->nid == dn->inode->i_ino) { 511 remove_orphan_inode(sbi, dn->nid); 512 dec_valid_inode_count(sbi); 513 } else { 514 sync_inode_page(dn); 515 } 516 invalidate: 517 clear_node_page_dirty(dn->node_page); 518 F2FS_SET_SB_DIRT(sbi); 519 520 f2fs_put_page(dn->node_page, 1); 521 522 invalidate_mapping_pages(NODE_MAPPING(sbi), 523 dn->node_page->index, dn->node_page->index); 524 525 dn->node_page = NULL; 526 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 527 } 528 529 static int truncate_dnode(struct dnode_of_data *dn) 530 { 531 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 532 struct page *page; 533 534 if (dn->nid == 0) 535 return 1; 536 537 /* get direct node */ 538 page = get_node_page(sbi, dn->nid); 539 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 540 return 1; 541 else if (IS_ERR(page)) 542 return PTR_ERR(page); 543 544 /* Make dnode_of_data for parameter */ 545 dn->node_page = page; 546 dn->ofs_in_node = 0; 547 truncate_data_blocks(dn); 548 truncate_node(dn); 549 return 1; 550 } 551 552 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 553 int ofs, int depth) 554 { 555 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 556 struct dnode_of_data rdn = *dn; 557 struct page *page; 558 struct f2fs_node *rn; 559 nid_t child_nid; 560 unsigned int child_nofs; 561 int freed = 0; 562 int i, ret; 563 564 if (dn->nid == 0) 565 return NIDS_PER_BLOCK + 1; 566 567 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 568 569 page = get_node_page(sbi, dn->nid); 570 if (IS_ERR(page)) { 571 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 572 return PTR_ERR(page); 573 } 574 575 rn = F2FS_NODE(page); 576 if (depth < 3) { 577 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 578 child_nid = le32_to_cpu(rn->in.nid[i]); 579 if (child_nid == 0) 580 continue; 581 rdn.nid = child_nid; 582 ret = truncate_dnode(&rdn); 583 if (ret < 0) 584 goto out_err; 585 set_nid(page, i, 0, false); 586 } 587 } else { 588 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 589 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 590 child_nid = le32_to_cpu(rn->in.nid[i]); 591 if (child_nid == 0) { 592 child_nofs += NIDS_PER_BLOCK + 1; 593 continue; 594 } 595 rdn.nid = child_nid; 596 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 597 if (ret == (NIDS_PER_BLOCK + 1)) { 598 set_nid(page, i, 0, false); 599 child_nofs += ret; 600 } else if (ret < 0 && ret != -ENOENT) { 601 goto out_err; 602 } 603 } 604 freed = child_nofs; 605 } 606 607 if (!ofs) { 608 /* remove current indirect node */ 609 dn->node_page = page; 610 truncate_node(dn); 611 freed++; 612 } else { 613 f2fs_put_page(page, 1); 614 } 615 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 616 return freed; 617 618 out_err: 619 f2fs_put_page(page, 1); 620 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 621 return ret; 622 } 623 624 static int truncate_partial_nodes(struct dnode_of_data *dn, 625 struct f2fs_inode *ri, int *offset, int depth) 626 { 627 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 628 struct page *pages[2]; 629 nid_t nid[3]; 630 nid_t child_nid; 631 int err = 0; 632 int i; 633 int idx = depth - 2; 634 635 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 636 if (!nid[0]) 637 return 0; 638 639 /* get indirect nodes in the path */ 640 for (i = 0; i < idx + 1; i++) { 641 /* refernece count'll be increased */ 642 pages[i] = get_node_page(sbi, nid[i]); 643 if (IS_ERR(pages[i])) { 644 err = PTR_ERR(pages[i]); 645 idx = i - 1; 646 goto fail; 647 } 648 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 649 } 650 651 /* free direct nodes linked to a partial indirect node */ 652 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 653 child_nid = get_nid(pages[idx], i, false); 654 if (!child_nid) 655 continue; 656 dn->nid = child_nid; 657 err = truncate_dnode(dn); 658 if (err < 0) 659 goto fail; 660 set_nid(pages[idx], i, 0, false); 661 } 662 663 if (offset[idx + 1] == 0) { 664 dn->node_page = pages[idx]; 665 dn->nid = nid[idx]; 666 truncate_node(dn); 667 } else { 668 f2fs_put_page(pages[idx], 1); 669 } 670 offset[idx]++; 671 offset[idx + 1] = 0; 672 idx--; 673 fail: 674 for (i = idx; i >= 0; i--) 675 f2fs_put_page(pages[i], 1); 676 677 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 678 679 return err; 680 } 681 682 /* 683 * All the block addresses of data and nodes should be nullified. 684 */ 685 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 686 { 687 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 688 int err = 0, cont = 1; 689 int level, offset[4], noffset[4]; 690 unsigned int nofs = 0; 691 struct f2fs_inode *ri; 692 struct dnode_of_data dn; 693 struct page *page; 694 695 trace_f2fs_truncate_inode_blocks_enter(inode, from); 696 697 level = get_node_path(F2FS_I(inode), from, offset, noffset); 698 restart: 699 page = get_node_page(sbi, inode->i_ino); 700 if (IS_ERR(page)) { 701 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 702 return PTR_ERR(page); 703 } 704 705 set_new_dnode(&dn, inode, page, NULL, 0); 706 unlock_page(page); 707 708 ri = F2FS_INODE(page); 709 switch (level) { 710 case 0: 711 case 1: 712 nofs = noffset[1]; 713 break; 714 case 2: 715 nofs = noffset[1]; 716 if (!offset[level - 1]) 717 goto skip_partial; 718 err = truncate_partial_nodes(&dn, ri, offset, level); 719 if (err < 0 && err != -ENOENT) 720 goto fail; 721 nofs += 1 + NIDS_PER_BLOCK; 722 break; 723 case 3: 724 nofs = 5 + 2 * NIDS_PER_BLOCK; 725 if (!offset[level - 1]) 726 goto skip_partial; 727 err = truncate_partial_nodes(&dn, ri, offset, level); 728 if (err < 0 && err != -ENOENT) 729 goto fail; 730 break; 731 default: 732 BUG(); 733 } 734 735 skip_partial: 736 while (cont) { 737 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 738 switch (offset[0]) { 739 case NODE_DIR1_BLOCK: 740 case NODE_DIR2_BLOCK: 741 err = truncate_dnode(&dn); 742 break; 743 744 case NODE_IND1_BLOCK: 745 case NODE_IND2_BLOCK: 746 err = truncate_nodes(&dn, nofs, offset[1], 2); 747 break; 748 749 case NODE_DIND_BLOCK: 750 err = truncate_nodes(&dn, nofs, offset[1], 3); 751 cont = 0; 752 break; 753 754 default: 755 BUG(); 756 } 757 if (err < 0 && err != -ENOENT) 758 goto fail; 759 if (offset[1] == 0 && 760 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 761 lock_page(page); 762 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 763 f2fs_put_page(page, 1); 764 goto restart; 765 } 766 wait_on_page_writeback(page); 767 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 768 set_page_dirty(page); 769 unlock_page(page); 770 } 771 offset[1] = 0; 772 offset[0]++; 773 nofs += err; 774 } 775 fail: 776 f2fs_put_page(page, 0); 777 trace_f2fs_truncate_inode_blocks_exit(inode, err); 778 return err > 0 ? 0 : err; 779 } 780 781 int truncate_xattr_node(struct inode *inode, struct page *page) 782 { 783 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 784 nid_t nid = F2FS_I(inode)->i_xattr_nid; 785 struct dnode_of_data dn; 786 struct page *npage; 787 788 if (!nid) 789 return 0; 790 791 npage = get_node_page(sbi, nid); 792 if (IS_ERR(npage)) 793 return PTR_ERR(npage); 794 795 F2FS_I(inode)->i_xattr_nid = 0; 796 797 /* need to do checkpoint during fsync */ 798 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 799 800 set_new_dnode(&dn, inode, page, npage, nid); 801 802 if (page) 803 dn.inode_page_locked = true; 804 truncate_node(&dn); 805 return 0; 806 } 807 808 /* 809 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 810 * f2fs_unlock_op(). 811 */ 812 void remove_inode_page(struct inode *inode) 813 { 814 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 815 struct page *page; 816 nid_t ino = inode->i_ino; 817 struct dnode_of_data dn; 818 819 page = get_node_page(sbi, ino); 820 if (IS_ERR(page)) 821 return; 822 823 if (truncate_xattr_node(inode, page)) { 824 f2fs_put_page(page, 1); 825 return; 826 } 827 /* 0 is possible, after f2fs_new_inode() is failed */ 828 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1); 829 set_new_dnode(&dn, inode, page, page, ino); 830 truncate_node(&dn); 831 } 832 833 struct page *new_inode_page(struct inode *inode, const struct qstr *name) 834 { 835 struct dnode_of_data dn; 836 837 /* allocate inode page for new inode */ 838 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 839 840 /* caller should f2fs_put_page(page, 1); */ 841 return new_node_page(&dn, 0, NULL); 842 } 843 844 struct page *new_node_page(struct dnode_of_data *dn, 845 unsigned int ofs, struct page *ipage) 846 { 847 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 848 struct node_info old_ni, new_ni; 849 struct page *page; 850 int err; 851 852 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 853 return ERR_PTR(-EPERM); 854 855 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); 856 if (!page) 857 return ERR_PTR(-ENOMEM); 858 859 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 860 err = -ENOSPC; 861 goto fail; 862 } 863 864 get_node_info(sbi, dn->nid, &old_ni); 865 866 /* Reinitialize old_ni with new node page */ 867 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR); 868 new_ni = old_ni; 869 new_ni.ino = dn->inode->i_ino; 870 set_node_addr(sbi, &new_ni, NEW_ADDR); 871 872 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 873 set_cold_node(dn->inode, page); 874 SetPageUptodate(page); 875 set_page_dirty(page); 876 877 if (ofs == XATTR_NODE_OFFSET) 878 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 879 880 dn->node_page = page; 881 if (ipage) 882 update_inode(dn->inode, ipage); 883 else 884 sync_inode_page(dn); 885 if (ofs == 0) 886 inc_valid_inode_count(sbi); 887 888 return page; 889 890 fail: 891 clear_node_page_dirty(page); 892 f2fs_put_page(page, 1); 893 return ERR_PTR(err); 894 } 895 896 /* 897 * Caller should do after getting the following values. 898 * 0: f2fs_put_page(page, 0) 899 * LOCKED_PAGE: f2fs_put_page(page, 1) 900 * error: nothing 901 */ 902 static int read_node_page(struct page *page, int rw) 903 { 904 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 905 struct node_info ni; 906 907 get_node_info(sbi, page->index, &ni); 908 909 if (unlikely(ni.blk_addr == NULL_ADDR)) { 910 f2fs_put_page(page, 1); 911 return -ENOENT; 912 } 913 914 if (PageUptodate(page)) 915 return LOCKED_PAGE; 916 917 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw); 918 } 919 920 /* 921 * Readahead a node page 922 */ 923 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 924 { 925 struct page *apage; 926 int err; 927 928 apage = find_get_page(NODE_MAPPING(sbi), nid); 929 if (apage && PageUptodate(apage)) { 930 f2fs_put_page(apage, 0); 931 return; 932 } 933 f2fs_put_page(apage, 0); 934 935 apage = grab_cache_page(NODE_MAPPING(sbi), nid); 936 if (!apage) 937 return; 938 939 err = read_node_page(apage, READA); 940 if (err == 0) 941 f2fs_put_page(apage, 0); 942 else if (err == LOCKED_PAGE) 943 f2fs_put_page(apage, 1); 944 } 945 946 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 947 { 948 struct page *page; 949 int err; 950 repeat: 951 page = grab_cache_page(NODE_MAPPING(sbi), nid); 952 if (!page) 953 return ERR_PTR(-ENOMEM); 954 955 err = read_node_page(page, READ_SYNC); 956 if (err < 0) 957 return ERR_PTR(err); 958 else if (err == LOCKED_PAGE) 959 goto got_it; 960 961 lock_page(page); 962 if (unlikely(!PageUptodate(page))) { 963 f2fs_put_page(page, 1); 964 return ERR_PTR(-EIO); 965 } 966 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 967 f2fs_put_page(page, 1); 968 goto repeat; 969 } 970 got_it: 971 f2fs_bug_on(nid != nid_of_node(page)); 972 mark_page_accessed(page); 973 return page; 974 } 975 976 /* 977 * Return a locked page for the desired node page. 978 * And, readahead MAX_RA_NODE number of node pages. 979 */ 980 struct page *get_node_page_ra(struct page *parent, int start) 981 { 982 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb); 983 struct blk_plug plug; 984 struct page *page; 985 int err, i, end; 986 nid_t nid; 987 988 /* First, try getting the desired direct node. */ 989 nid = get_nid(parent, start, false); 990 if (!nid) 991 return ERR_PTR(-ENOENT); 992 repeat: 993 page = grab_cache_page(NODE_MAPPING(sbi), nid); 994 if (!page) 995 return ERR_PTR(-ENOMEM); 996 997 err = read_node_page(page, READ_SYNC); 998 if (err < 0) 999 return ERR_PTR(err); 1000 else if (err == LOCKED_PAGE) 1001 goto page_hit; 1002 1003 blk_start_plug(&plug); 1004 1005 /* Then, try readahead for siblings of the desired node */ 1006 end = start + MAX_RA_NODE; 1007 end = min(end, NIDS_PER_BLOCK); 1008 for (i = start + 1; i < end; i++) { 1009 nid = get_nid(parent, i, false); 1010 if (!nid) 1011 continue; 1012 ra_node_page(sbi, nid); 1013 } 1014 1015 blk_finish_plug(&plug); 1016 1017 lock_page(page); 1018 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1019 f2fs_put_page(page, 1); 1020 goto repeat; 1021 } 1022 page_hit: 1023 if (unlikely(!PageUptodate(page))) { 1024 f2fs_put_page(page, 1); 1025 return ERR_PTR(-EIO); 1026 } 1027 mark_page_accessed(page); 1028 return page; 1029 } 1030 1031 void sync_inode_page(struct dnode_of_data *dn) 1032 { 1033 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1034 update_inode(dn->inode, dn->node_page); 1035 } else if (dn->inode_page) { 1036 if (!dn->inode_page_locked) 1037 lock_page(dn->inode_page); 1038 update_inode(dn->inode, dn->inode_page); 1039 if (!dn->inode_page_locked) 1040 unlock_page(dn->inode_page); 1041 } else { 1042 update_inode_page(dn->inode); 1043 } 1044 } 1045 1046 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1047 struct writeback_control *wbc) 1048 { 1049 pgoff_t index, end; 1050 struct pagevec pvec; 1051 int step = ino ? 2 : 0; 1052 int nwritten = 0, wrote = 0; 1053 1054 pagevec_init(&pvec, 0); 1055 1056 next_step: 1057 index = 0; 1058 end = LONG_MAX; 1059 1060 while (index <= end) { 1061 int i, nr_pages; 1062 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1063 PAGECACHE_TAG_DIRTY, 1064 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1065 if (nr_pages == 0) 1066 break; 1067 1068 for (i = 0; i < nr_pages; i++) { 1069 struct page *page = pvec.pages[i]; 1070 1071 /* 1072 * flushing sequence with step: 1073 * 0. indirect nodes 1074 * 1. dentry dnodes 1075 * 2. file dnodes 1076 */ 1077 if (step == 0 && IS_DNODE(page)) 1078 continue; 1079 if (step == 1 && (!IS_DNODE(page) || 1080 is_cold_node(page))) 1081 continue; 1082 if (step == 2 && (!IS_DNODE(page) || 1083 !is_cold_node(page))) 1084 continue; 1085 1086 /* 1087 * If an fsync mode, 1088 * we should not skip writing node pages. 1089 */ 1090 if (ino && ino_of_node(page) == ino) 1091 lock_page(page); 1092 else if (!trylock_page(page)) 1093 continue; 1094 1095 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1096 continue_unlock: 1097 unlock_page(page); 1098 continue; 1099 } 1100 if (ino && ino_of_node(page) != ino) 1101 goto continue_unlock; 1102 1103 if (!PageDirty(page)) { 1104 /* someone wrote it for us */ 1105 goto continue_unlock; 1106 } 1107 1108 if (!clear_page_dirty_for_io(page)) 1109 goto continue_unlock; 1110 1111 /* called by fsync() */ 1112 if (ino && IS_DNODE(page)) { 1113 int mark = !is_checkpointed_node(sbi, ino); 1114 set_fsync_mark(page, 1); 1115 if (IS_INODE(page)) 1116 set_dentry_mark(page, mark); 1117 nwritten++; 1118 } else { 1119 set_fsync_mark(page, 0); 1120 set_dentry_mark(page, 0); 1121 } 1122 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc); 1123 wrote++; 1124 1125 if (--wbc->nr_to_write == 0) 1126 break; 1127 } 1128 pagevec_release(&pvec); 1129 cond_resched(); 1130 1131 if (wbc->nr_to_write == 0) { 1132 step = 2; 1133 break; 1134 } 1135 } 1136 1137 if (step < 2) { 1138 step++; 1139 goto next_step; 1140 } 1141 1142 if (wrote) 1143 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1144 return nwritten; 1145 } 1146 1147 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1148 { 1149 pgoff_t index = 0, end = LONG_MAX; 1150 struct pagevec pvec; 1151 int ret2 = 0, ret = 0; 1152 1153 pagevec_init(&pvec, 0); 1154 1155 while (index <= end) { 1156 int i, nr_pages; 1157 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1158 PAGECACHE_TAG_WRITEBACK, 1159 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1160 if (nr_pages == 0) 1161 break; 1162 1163 for (i = 0; i < nr_pages; i++) { 1164 struct page *page = pvec.pages[i]; 1165 1166 /* until radix tree lookup accepts end_index */ 1167 if (unlikely(page->index > end)) 1168 continue; 1169 1170 if (ino && ino_of_node(page) == ino) { 1171 wait_on_page_writeback(page); 1172 if (TestClearPageError(page)) 1173 ret = -EIO; 1174 } 1175 } 1176 pagevec_release(&pvec); 1177 cond_resched(); 1178 } 1179 1180 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) 1181 ret2 = -ENOSPC; 1182 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) 1183 ret2 = -EIO; 1184 if (!ret) 1185 ret = ret2; 1186 return ret; 1187 } 1188 1189 static int f2fs_write_node_page(struct page *page, 1190 struct writeback_control *wbc) 1191 { 1192 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1193 nid_t nid; 1194 block_t new_addr; 1195 struct node_info ni; 1196 struct f2fs_io_info fio = { 1197 .type = NODE, 1198 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1199 }; 1200 1201 if (unlikely(sbi->por_doing)) 1202 goto redirty_out; 1203 1204 wait_on_page_writeback(page); 1205 1206 /* get old block addr of this node page */ 1207 nid = nid_of_node(page); 1208 f2fs_bug_on(page->index != nid); 1209 1210 get_node_info(sbi, nid, &ni); 1211 1212 /* This page is already truncated */ 1213 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1214 dec_page_count(sbi, F2FS_DIRTY_NODES); 1215 unlock_page(page); 1216 return 0; 1217 } 1218 1219 if (wbc->for_reclaim) 1220 goto redirty_out; 1221 1222 mutex_lock(&sbi->node_write); 1223 set_page_writeback(page); 1224 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr); 1225 set_node_addr(sbi, &ni, new_addr); 1226 dec_page_count(sbi, F2FS_DIRTY_NODES); 1227 mutex_unlock(&sbi->node_write); 1228 unlock_page(page); 1229 return 0; 1230 1231 redirty_out: 1232 dec_page_count(sbi, F2FS_DIRTY_NODES); 1233 wbc->pages_skipped++; 1234 set_page_dirty(page); 1235 return AOP_WRITEPAGE_ACTIVATE; 1236 } 1237 1238 /* 1239 * It is very important to gather dirty pages and write at once, so that we can 1240 * submit a big bio without interfering other data writes. 1241 * Be default, 512 pages (2MB) * 3 node types, is more reasonable. 1242 */ 1243 #define COLLECT_DIRTY_NODES 1536 1244 static int f2fs_write_node_pages(struct address_space *mapping, 1245 struct writeback_control *wbc) 1246 { 1247 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1248 long nr_to_write = wbc->nr_to_write; 1249 1250 /* balancing f2fs's metadata in background */ 1251 f2fs_balance_fs_bg(sbi); 1252 1253 /* collect a number of dirty node pages and write together */ 1254 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES) 1255 return 0; 1256 1257 /* if mounting is failed, skip writing node pages */ 1258 wbc->nr_to_write = 3 * max_hw_blocks(sbi); 1259 wbc->sync_mode = WB_SYNC_NONE; 1260 sync_node_pages(sbi, 0, wbc); 1261 wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) - 1262 wbc->nr_to_write); 1263 return 0; 1264 } 1265 1266 static int f2fs_set_node_page_dirty(struct page *page) 1267 { 1268 struct address_space *mapping = page->mapping; 1269 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); 1270 1271 trace_f2fs_set_page_dirty(page, NODE); 1272 1273 SetPageUptodate(page); 1274 if (!PageDirty(page)) { 1275 __set_page_dirty_nobuffers(page); 1276 inc_page_count(sbi, F2FS_DIRTY_NODES); 1277 SetPagePrivate(page); 1278 return 1; 1279 } 1280 return 0; 1281 } 1282 1283 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset, 1284 unsigned int length) 1285 { 1286 struct inode *inode = page->mapping->host; 1287 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1288 if (PageDirty(page)) 1289 dec_page_count(sbi, F2FS_DIRTY_NODES); 1290 ClearPagePrivate(page); 1291 } 1292 1293 static int f2fs_release_node_page(struct page *page, gfp_t wait) 1294 { 1295 ClearPagePrivate(page); 1296 return 1; 1297 } 1298 1299 /* 1300 * Structure of the f2fs node operations 1301 */ 1302 const struct address_space_operations f2fs_node_aops = { 1303 .writepage = f2fs_write_node_page, 1304 .writepages = f2fs_write_node_pages, 1305 .set_page_dirty = f2fs_set_node_page_dirty, 1306 .invalidatepage = f2fs_invalidate_node_page, 1307 .releasepage = f2fs_release_node_page, 1308 }; 1309 1310 static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head) 1311 { 1312 struct list_head *this; 1313 struct free_nid *i; 1314 list_for_each(this, head) { 1315 i = list_entry(this, struct free_nid, list); 1316 if (i->nid == n) 1317 return i; 1318 } 1319 return NULL; 1320 } 1321 1322 static void __del_from_free_nid_list(struct free_nid *i) 1323 { 1324 list_del(&i->list); 1325 kmem_cache_free(free_nid_slab, i); 1326 } 1327 1328 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build) 1329 { 1330 struct free_nid *i; 1331 struct nat_entry *ne; 1332 bool allocated = false; 1333 1334 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) 1335 return -1; 1336 1337 /* 0 nid should not be used */ 1338 if (unlikely(nid == 0)) 1339 return 0; 1340 1341 if (build) { 1342 /* do not add allocated nids */ 1343 read_lock(&nm_i->nat_tree_lock); 1344 ne = __lookup_nat_cache(nm_i, nid); 1345 if (ne && nat_get_blkaddr(ne) != NULL_ADDR) 1346 allocated = true; 1347 read_unlock(&nm_i->nat_tree_lock); 1348 if (allocated) 1349 return 0; 1350 } 1351 1352 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1353 i->nid = nid; 1354 i->state = NID_NEW; 1355 1356 spin_lock(&nm_i->free_nid_list_lock); 1357 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) { 1358 spin_unlock(&nm_i->free_nid_list_lock); 1359 kmem_cache_free(free_nid_slab, i); 1360 return 0; 1361 } 1362 list_add_tail(&i->list, &nm_i->free_nid_list); 1363 nm_i->fcnt++; 1364 spin_unlock(&nm_i->free_nid_list_lock); 1365 return 1; 1366 } 1367 1368 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1369 { 1370 struct free_nid *i; 1371 spin_lock(&nm_i->free_nid_list_lock); 1372 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1373 if (i && i->state == NID_NEW) { 1374 __del_from_free_nid_list(i); 1375 nm_i->fcnt--; 1376 } 1377 spin_unlock(&nm_i->free_nid_list_lock); 1378 } 1379 1380 static void scan_nat_page(struct f2fs_nm_info *nm_i, 1381 struct page *nat_page, nid_t start_nid) 1382 { 1383 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1384 block_t blk_addr; 1385 int i; 1386 1387 i = start_nid % NAT_ENTRY_PER_BLOCK; 1388 1389 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1390 1391 if (unlikely(start_nid >= nm_i->max_nid)) 1392 break; 1393 1394 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1395 f2fs_bug_on(blk_addr == NEW_ADDR); 1396 if (blk_addr == NULL_ADDR) { 1397 if (add_free_nid(nm_i, start_nid, true) < 0) 1398 break; 1399 } 1400 } 1401 } 1402 1403 static void build_free_nids(struct f2fs_sb_info *sbi) 1404 { 1405 struct f2fs_nm_info *nm_i = NM_I(sbi); 1406 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1407 struct f2fs_summary_block *sum = curseg->sum_blk; 1408 int i = 0; 1409 nid_t nid = nm_i->next_scan_nid; 1410 1411 /* Enough entries */ 1412 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1413 return; 1414 1415 /* readahead nat pages to be scanned */ 1416 ra_nat_pages(sbi, nid); 1417 1418 while (1) { 1419 struct page *page = get_current_nat_page(sbi, nid); 1420 1421 scan_nat_page(nm_i, page, nid); 1422 f2fs_put_page(page, 1); 1423 1424 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1425 if (unlikely(nid >= nm_i->max_nid)) 1426 nid = 0; 1427 1428 if (i++ == FREE_NID_PAGES) 1429 break; 1430 } 1431 1432 /* go to the next free nat pages to find free nids abundantly */ 1433 nm_i->next_scan_nid = nid; 1434 1435 /* find free nids from current sum_pages */ 1436 mutex_lock(&curseg->curseg_mutex); 1437 for (i = 0; i < nats_in_cursum(sum); i++) { 1438 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1439 nid = le32_to_cpu(nid_in_journal(sum, i)); 1440 if (addr == NULL_ADDR) 1441 add_free_nid(nm_i, nid, true); 1442 else 1443 remove_free_nid(nm_i, nid); 1444 } 1445 mutex_unlock(&curseg->curseg_mutex); 1446 } 1447 1448 /* 1449 * If this function returns success, caller can obtain a new nid 1450 * from second parameter of this function. 1451 * The returned nid could be used ino as well as nid when inode is created. 1452 */ 1453 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1454 { 1455 struct f2fs_nm_info *nm_i = NM_I(sbi); 1456 struct free_nid *i = NULL; 1457 struct list_head *this; 1458 retry: 1459 if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid)) 1460 return false; 1461 1462 spin_lock(&nm_i->free_nid_list_lock); 1463 1464 /* We should not use stale free nids created by build_free_nids */ 1465 if (nm_i->fcnt && !sbi->on_build_free_nids) { 1466 f2fs_bug_on(list_empty(&nm_i->free_nid_list)); 1467 list_for_each(this, &nm_i->free_nid_list) { 1468 i = list_entry(this, struct free_nid, list); 1469 if (i->state == NID_NEW) 1470 break; 1471 } 1472 1473 f2fs_bug_on(i->state != NID_NEW); 1474 *nid = i->nid; 1475 i->state = NID_ALLOC; 1476 nm_i->fcnt--; 1477 spin_unlock(&nm_i->free_nid_list_lock); 1478 return true; 1479 } 1480 spin_unlock(&nm_i->free_nid_list_lock); 1481 1482 /* Let's scan nat pages and its caches to get free nids */ 1483 mutex_lock(&nm_i->build_lock); 1484 sbi->on_build_free_nids = true; 1485 build_free_nids(sbi); 1486 sbi->on_build_free_nids = false; 1487 mutex_unlock(&nm_i->build_lock); 1488 goto retry; 1489 } 1490 1491 /* 1492 * alloc_nid() should be called prior to this function. 1493 */ 1494 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1495 { 1496 struct f2fs_nm_info *nm_i = NM_I(sbi); 1497 struct free_nid *i; 1498 1499 spin_lock(&nm_i->free_nid_list_lock); 1500 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1501 f2fs_bug_on(!i || i->state != NID_ALLOC); 1502 __del_from_free_nid_list(i); 1503 spin_unlock(&nm_i->free_nid_list_lock); 1504 } 1505 1506 /* 1507 * alloc_nid() should be called prior to this function. 1508 */ 1509 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1510 { 1511 struct f2fs_nm_info *nm_i = NM_I(sbi); 1512 struct free_nid *i; 1513 1514 if (!nid) 1515 return; 1516 1517 spin_lock(&nm_i->free_nid_list_lock); 1518 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list); 1519 f2fs_bug_on(!i || i->state != NID_ALLOC); 1520 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) { 1521 __del_from_free_nid_list(i); 1522 } else { 1523 i->state = NID_NEW; 1524 nm_i->fcnt++; 1525 } 1526 spin_unlock(&nm_i->free_nid_list_lock); 1527 } 1528 1529 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page, 1530 struct f2fs_summary *sum, struct node_info *ni, 1531 block_t new_blkaddr) 1532 { 1533 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr); 1534 set_node_addr(sbi, ni, new_blkaddr); 1535 clear_node_page_dirty(page); 1536 } 1537 1538 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1539 { 1540 struct f2fs_inode *src, *dst; 1541 nid_t ino = ino_of_node(page); 1542 struct node_info old_ni, new_ni; 1543 struct page *ipage; 1544 1545 ipage = grab_cache_page(NODE_MAPPING(sbi), ino); 1546 if (!ipage) 1547 return -ENOMEM; 1548 1549 /* Should not use this inode from free nid list */ 1550 remove_free_nid(NM_I(sbi), ino); 1551 1552 get_node_info(sbi, ino, &old_ni); 1553 SetPageUptodate(ipage); 1554 fill_node_footer(ipage, ino, ino, 0, true); 1555 1556 src = F2FS_INODE(page); 1557 dst = F2FS_INODE(ipage); 1558 1559 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 1560 dst->i_size = 0; 1561 dst->i_blocks = cpu_to_le64(1); 1562 dst->i_links = cpu_to_le32(1); 1563 dst->i_xattr_nid = 0; 1564 1565 new_ni = old_ni; 1566 new_ni.ino = ino; 1567 1568 if (unlikely(!inc_valid_node_count(sbi, NULL))) 1569 WARN_ON(1); 1570 set_node_addr(sbi, &new_ni, NEW_ADDR); 1571 inc_valid_inode_count(sbi); 1572 f2fs_put_page(ipage, 1); 1573 return 0; 1574 } 1575 1576 /* 1577 * ra_sum_pages() merge contiguous pages into one bio and submit. 1578 * these pre-readed pages are linked in pages list. 1579 */ 1580 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages, 1581 int start, int nrpages) 1582 { 1583 struct page *page; 1584 int page_idx = start; 1585 struct f2fs_io_info fio = { 1586 .type = META, 1587 .rw = READ_SYNC | REQ_META | REQ_PRIO 1588 }; 1589 1590 for (; page_idx < start + nrpages; page_idx++) { 1591 /* alloc temporal page for read node summary info*/ 1592 page = alloc_page(GFP_F2FS_ZERO); 1593 if (!page) { 1594 struct page *tmp; 1595 list_for_each_entry_safe(page, tmp, pages, lru) { 1596 list_del(&page->lru); 1597 unlock_page(page); 1598 __free_pages(page, 0); 1599 } 1600 return -ENOMEM; 1601 } 1602 1603 lock_page(page); 1604 page->index = page_idx; 1605 list_add_tail(&page->lru, pages); 1606 } 1607 1608 list_for_each_entry(page, pages, lru) 1609 f2fs_submit_page_mbio(sbi, page, page->index, &fio); 1610 1611 f2fs_submit_merged_bio(sbi, META, READ); 1612 return 0; 1613 } 1614 1615 int restore_node_summary(struct f2fs_sb_info *sbi, 1616 unsigned int segno, struct f2fs_summary_block *sum) 1617 { 1618 struct f2fs_node *rn; 1619 struct f2fs_summary *sum_entry; 1620 struct page *page, *tmp; 1621 block_t addr; 1622 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 1623 int i, last_offset, nrpages, err = 0; 1624 LIST_HEAD(page_list); 1625 1626 /* scan the node segment */ 1627 last_offset = sbi->blocks_per_seg; 1628 addr = START_BLOCK(sbi, segno); 1629 sum_entry = &sum->entries[0]; 1630 1631 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 1632 nrpages = min(last_offset - i, bio_blocks); 1633 1634 /* read ahead node pages */ 1635 err = ra_sum_pages(sbi, &page_list, addr, nrpages); 1636 if (err) 1637 return err; 1638 1639 list_for_each_entry_safe(page, tmp, &page_list, lru) { 1640 1641 lock_page(page); 1642 if (unlikely(!PageUptodate(page))) { 1643 err = -EIO; 1644 } else { 1645 rn = F2FS_NODE(page); 1646 sum_entry->nid = rn->footer.nid; 1647 sum_entry->version = 0; 1648 sum_entry->ofs_in_node = 0; 1649 sum_entry++; 1650 } 1651 1652 list_del(&page->lru); 1653 unlock_page(page); 1654 __free_pages(page, 0); 1655 } 1656 } 1657 return err; 1658 } 1659 1660 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi) 1661 { 1662 struct f2fs_nm_info *nm_i = NM_I(sbi); 1663 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1664 struct f2fs_summary_block *sum = curseg->sum_blk; 1665 int i; 1666 1667 mutex_lock(&curseg->curseg_mutex); 1668 1669 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) { 1670 mutex_unlock(&curseg->curseg_mutex); 1671 return false; 1672 } 1673 1674 for (i = 0; i < nats_in_cursum(sum); i++) { 1675 struct nat_entry *ne; 1676 struct f2fs_nat_entry raw_ne; 1677 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1678 1679 raw_ne = nat_in_journal(sum, i); 1680 retry: 1681 write_lock(&nm_i->nat_tree_lock); 1682 ne = __lookup_nat_cache(nm_i, nid); 1683 if (ne) { 1684 __set_nat_cache_dirty(nm_i, ne); 1685 write_unlock(&nm_i->nat_tree_lock); 1686 continue; 1687 } 1688 ne = grab_nat_entry(nm_i, nid); 1689 if (!ne) { 1690 write_unlock(&nm_i->nat_tree_lock); 1691 goto retry; 1692 } 1693 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr)); 1694 nat_set_ino(ne, le32_to_cpu(raw_ne.ino)); 1695 nat_set_version(ne, raw_ne.version); 1696 __set_nat_cache_dirty(nm_i, ne); 1697 write_unlock(&nm_i->nat_tree_lock); 1698 } 1699 update_nats_in_cursum(sum, -i); 1700 mutex_unlock(&curseg->curseg_mutex); 1701 return true; 1702 } 1703 1704 /* 1705 * This function is called during the checkpointing process. 1706 */ 1707 void flush_nat_entries(struct f2fs_sb_info *sbi) 1708 { 1709 struct f2fs_nm_info *nm_i = NM_I(sbi); 1710 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1711 struct f2fs_summary_block *sum = curseg->sum_blk; 1712 struct list_head *cur, *n; 1713 struct page *page = NULL; 1714 struct f2fs_nat_block *nat_blk = NULL; 1715 nid_t start_nid = 0, end_nid = 0; 1716 bool flushed; 1717 1718 flushed = flush_nats_in_journal(sbi); 1719 1720 if (!flushed) 1721 mutex_lock(&curseg->curseg_mutex); 1722 1723 /* 1) flush dirty nat caches */ 1724 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) { 1725 struct nat_entry *ne; 1726 nid_t nid; 1727 struct f2fs_nat_entry raw_ne; 1728 int offset = -1; 1729 block_t new_blkaddr; 1730 1731 ne = list_entry(cur, struct nat_entry, list); 1732 nid = nat_get_nid(ne); 1733 1734 if (nat_get_blkaddr(ne) == NEW_ADDR) 1735 continue; 1736 if (flushed) 1737 goto to_nat_page; 1738 1739 /* if there is room for nat enries in curseg->sumpage */ 1740 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1); 1741 if (offset >= 0) { 1742 raw_ne = nat_in_journal(sum, offset); 1743 goto flush_now; 1744 } 1745 to_nat_page: 1746 if (!page || (start_nid > nid || nid > end_nid)) { 1747 if (page) { 1748 f2fs_put_page(page, 1); 1749 page = NULL; 1750 } 1751 start_nid = START_NID(nid); 1752 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1; 1753 1754 /* 1755 * get nat block with dirty flag, increased reference 1756 * count, mapped and lock 1757 */ 1758 page = get_next_nat_page(sbi, start_nid); 1759 nat_blk = page_address(page); 1760 } 1761 1762 f2fs_bug_on(!nat_blk); 1763 raw_ne = nat_blk->entries[nid - start_nid]; 1764 flush_now: 1765 new_blkaddr = nat_get_blkaddr(ne); 1766 1767 raw_ne.ino = cpu_to_le32(nat_get_ino(ne)); 1768 raw_ne.block_addr = cpu_to_le32(new_blkaddr); 1769 raw_ne.version = nat_get_version(ne); 1770 1771 if (offset < 0) { 1772 nat_blk->entries[nid - start_nid] = raw_ne; 1773 } else { 1774 nat_in_journal(sum, offset) = raw_ne; 1775 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1776 } 1777 1778 if (nat_get_blkaddr(ne) == NULL_ADDR && 1779 add_free_nid(NM_I(sbi), nid, false) <= 0) { 1780 write_lock(&nm_i->nat_tree_lock); 1781 __del_from_nat_cache(nm_i, ne); 1782 write_unlock(&nm_i->nat_tree_lock); 1783 } else { 1784 write_lock(&nm_i->nat_tree_lock); 1785 __clear_nat_cache_dirty(nm_i, ne); 1786 ne->checkpointed = true; 1787 write_unlock(&nm_i->nat_tree_lock); 1788 } 1789 } 1790 if (!flushed) 1791 mutex_unlock(&curseg->curseg_mutex); 1792 f2fs_put_page(page, 1); 1793 1794 /* 2) shrink nat caches if necessary */ 1795 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD); 1796 } 1797 1798 static int init_node_manager(struct f2fs_sb_info *sbi) 1799 { 1800 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1801 struct f2fs_nm_info *nm_i = NM_I(sbi); 1802 unsigned char *version_bitmap; 1803 unsigned int nat_segs, nat_blocks; 1804 1805 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1806 1807 /* segment_count_nat includes pair segment so divide to 2. */ 1808 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1809 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1810 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1811 nm_i->fcnt = 0; 1812 nm_i->nat_cnt = 0; 1813 1814 INIT_LIST_HEAD(&nm_i->free_nid_list); 1815 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC); 1816 INIT_LIST_HEAD(&nm_i->nat_entries); 1817 INIT_LIST_HEAD(&nm_i->dirty_nat_entries); 1818 1819 mutex_init(&nm_i->build_lock); 1820 spin_lock_init(&nm_i->free_nid_list_lock); 1821 rwlock_init(&nm_i->nat_tree_lock); 1822 1823 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1824 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1825 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1826 if (!version_bitmap) 1827 return -EFAULT; 1828 1829 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1830 GFP_KERNEL); 1831 if (!nm_i->nat_bitmap) 1832 return -ENOMEM; 1833 return 0; 1834 } 1835 1836 int build_node_manager(struct f2fs_sb_info *sbi) 1837 { 1838 int err; 1839 1840 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1841 if (!sbi->nm_info) 1842 return -ENOMEM; 1843 1844 err = init_node_manager(sbi); 1845 if (err) 1846 return err; 1847 1848 build_free_nids(sbi); 1849 return 0; 1850 } 1851 1852 void destroy_node_manager(struct f2fs_sb_info *sbi) 1853 { 1854 struct f2fs_nm_info *nm_i = NM_I(sbi); 1855 struct free_nid *i, *next_i; 1856 struct nat_entry *natvec[NATVEC_SIZE]; 1857 nid_t nid = 0; 1858 unsigned int found; 1859 1860 if (!nm_i) 1861 return; 1862 1863 /* destroy free nid list */ 1864 spin_lock(&nm_i->free_nid_list_lock); 1865 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 1866 f2fs_bug_on(i->state == NID_ALLOC); 1867 __del_from_free_nid_list(i); 1868 nm_i->fcnt--; 1869 } 1870 f2fs_bug_on(nm_i->fcnt); 1871 spin_unlock(&nm_i->free_nid_list_lock); 1872 1873 /* destroy nat cache */ 1874 write_lock(&nm_i->nat_tree_lock); 1875 while ((found = __gang_lookup_nat_cache(nm_i, 1876 nid, NATVEC_SIZE, natvec))) { 1877 unsigned idx; 1878 for (idx = 0; idx < found; idx++) { 1879 struct nat_entry *e = natvec[idx]; 1880 nid = nat_get_nid(e) + 1; 1881 __del_from_nat_cache(nm_i, e); 1882 } 1883 } 1884 f2fs_bug_on(nm_i->nat_cnt); 1885 write_unlock(&nm_i->nat_tree_lock); 1886 1887 kfree(nm_i->nat_bitmap); 1888 sbi->nm_info = NULL; 1889 kfree(nm_i); 1890 } 1891 1892 int __init create_node_manager_caches(void) 1893 { 1894 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 1895 sizeof(struct nat_entry), NULL); 1896 if (!nat_entry_slab) 1897 return -ENOMEM; 1898 1899 free_nid_slab = f2fs_kmem_cache_create("free_nid", 1900 sizeof(struct free_nid), NULL); 1901 if (!free_nid_slab) { 1902 kmem_cache_destroy(nat_entry_slab); 1903 return -ENOMEM; 1904 } 1905 return 0; 1906 } 1907 1908 void destroy_node_manager_caches(void) 1909 { 1910 kmem_cache_destroy(free_nid_slab); 1911 kmem_cache_destroy(nat_entry_slab); 1912 } 1913