1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "xattr.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 27 28 static struct kmem_cache *nat_entry_slab; 29 static struct kmem_cache *free_nid_slab; 30 static struct kmem_cache *nat_entry_set_slab; 31 32 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 33 { 34 struct f2fs_nm_info *nm_i = NM_I(sbi); 35 struct sysinfo val; 36 unsigned long avail_ram; 37 unsigned long mem_size = 0; 38 bool res = false; 39 40 si_meminfo(&val); 41 42 /* only uses low memory */ 43 avail_ram = val.totalram - val.totalhigh; 44 45 /* 46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 47 */ 48 if (type == FREE_NIDS) { 49 mem_size = (nm_i->nid_cnt[FREE_NID] * 50 sizeof(struct free_nid)) >> PAGE_SHIFT; 51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 52 } else if (type == NAT_ENTRIES) { 53 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 54 PAGE_SHIFT; 55 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 56 if (excess_cached_nats(sbi)) 57 res = false; 58 } else if (type == DIRTY_DENTS) { 59 if (sbi->sb->s_bdi->wb.dirty_exceeded) 60 return false; 61 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 63 } else if (type == INO_ENTRIES) { 64 int i; 65 66 for (i = 0; i < MAX_INO_ENTRY; i++) 67 mem_size += sbi->im[i].ino_num * 68 sizeof(struct ino_entry); 69 mem_size >>= PAGE_SHIFT; 70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 71 } else if (type == EXTENT_CACHE) { 72 mem_size = (atomic_read(&sbi->total_ext_tree) * 73 sizeof(struct extent_tree) + 74 atomic_read(&sbi->total_ext_node) * 75 sizeof(struct extent_node)) >> PAGE_SHIFT; 76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 77 } else if (type == INMEM_PAGES) { 78 /* it allows 20% / total_ram for inmemory pages */ 79 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 80 res = mem_size < (val.totalram / 5); 81 } else { 82 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 83 return true; 84 } 85 return res; 86 } 87 88 static void clear_node_page_dirty(struct page *page) 89 { 90 struct address_space *mapping = page->mapping; 91 unsigned int long flags; 92 93 if (PageDirty(page)) { 94 xa_lock_irqsave(&mapping->i_pages, flags); 95 radix_tree_tag_clear(&mapping->i_pages, 96 page_index(page), 97 PAGECACHE_TAG_DIRTY); 98 xa_unlock_irqrestore(&mapping->i_pages, flags); 99 100 clear_page_dirty_for_io(page); 101 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 102 } 103 ClearPageUptodate(page); 104 } 105 106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 107 { 108 pgoff_t index = current_nat_addr(sbi, nid); 109 return get_meta_page(sbi, index); 110 } 111 112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 113 { 114 struct page *src_page; 115 struct page *dst_page; 116 pgoff_t src_off; 117 pgoff_t dst_off; 118 void *src_addr; 119 void *dst_addr; 120 struct f2fs_nm_info *nm_i = NM_I(sbi); 121 122 src_off = current_nat_addr(sbi, nid); 123 dst_off = next_nat_addr(sbi, src_off); 124 125 /* get current nat block page with lock */ 126 src_page = get_meta_page(sbi, src_off); 127 dst_page = grab_meta_page(sbi, dst_off); 128 f2fs_bug_on(sbi, PageDirty(src_page)); 129 130 src_addr = page_address(src_page); 131 dst_addr = page_address(dst_page); 132 memcpy(dst_addr, src_addr, PAGE_SIZE); 133 set_page_dirty(dst_page); 134 f2fs_put_page(src_page, 1); 135 136 set_to_next_nat(nm_i, nid); 137 138 return dst_page; 139 } 140 141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 142 { 143 struct nat_entry *new; 144 145 if (no_fail) 146 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 147 else 148 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 149 if (new) { 150 nat_set_nid(new, nid); 151 nat_reset_flag(new); 152 } 153 return new; 154 } 155 156 static void __free_nat_entry(struct nat_entry *e) 157 { 158 kmem_cache_free(nat_entry_slab, e); 159 } 160 161 /* must be locked by nat_tree_lock */ 162 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 163 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 164 { 165 if (no_fail) 166 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 167 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 168 return NULL; 169 170 if (raw_ne) 171 node_info_from_raw_nat(&ne->ni, raw_ne); 172 list_add_tail(&ne->list, &nm_i->nat_entries); 173 nm_i->nat_cnt++; 174 return ne; 175 } 176 177 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 178 { 179 return radix_tree_lookup(&nm_i->nat_root, n); 180 } 181 182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 183 nid_t start, unsigned int nr, struct nat_entry **ep) 184 { 185 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 186 } 187 188 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 189 { 190 list_del(&e->list); 191 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 192 nm_i->nat_cnt--; 193 __free_nat_entry(e); 194 } 195 196 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 197 struct nat_entry *ne) 198 { 199 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 200 struct nat_entry_set *head; 201 202 head = radix_tree_lookup(&nm_i->nat_set_root, set); 203 if (!head) { 204 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 205 206 INIT_LIST_HEAD(&head->entry_list); 207 INIT_LIST_HEAD(&head->set_list); 208 head->set = set; 209 head->entry_cnt = 0; 210 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 211 } 212 return head; 213 } 214 215 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 216 struct nat_entry *ne) 217 { 218 struct nat_entry_set *head; 219 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 220 221 if (!new_ne) 222 head = __grab_nat_entry_set(nm_i, ne); 223 224 /* 225 * update entry_cnt in below condition: 226 * 1. update NEW_ADDR to valid block address; 227 * 2. update old block address to new one; 228 */ 229 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 230 !get_nat_flag(ne, IS_DIRTY))) 231 head->entry_cnt++; 232 233 set_nat_flag(ne, IS_PREALLOC, new_ne); 234 235 if (get_nat_flag(ne, IS_DIRTY)) 236 goto refresh_list; 237 238 nm_i->dirty_nat_cnt++; 239 set_nat_flag(ne, IS_DIRTY, true); 240 refresh_list: 241 if (new_ne) 242 list_del_init(&ne->list); 243 else 244 list_move_tail(&ne->list, &head->entry_list); 245 } 246 247 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 248 struct nat_entry_set *set, struct nat_entry *ne) 249 { 250 list_move_tail(&ne->list, &nm_i->nat_entries); 251 set_nat_flag(ne, IS_DIRTY, false); 252 set->entry_cnt--; 253 nm_i->dirty_nat_cnt--; 254 } 255 256 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 257 nid_t start, unsigned int nr, struct nat_entry_set **ep) 258 { 259 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 260 start, nr); 261 } 262 263 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 264 { 265 struct f2fs_nm_info *nm_i = NM_I(sbi); 266 struct nat_entry *e; 267 bool need = false; 268 269 down_read(&nm_i->nat_tree_lock); 270 e = __lookup_nat_cache(nm_i, nid); 271 if (e) { 272 if (!get_nat_flag(e, IS_CHECKPOINTED) && 273 !get_nat_flag(e, HAS_FSYNCED_INODE)) 274 need = true; 275 } 276 up_read(&nm_i->nat_tree_lock); 277 return need; 278 } 279 280 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 281 { 282 struct f2fs_nm_info *nm_i = NM_I(sbi); 283 struct nat_entry *e; 284 bool is_cp = true; 285 286 down_read(&nm_i->nat_tree_lock); 287 e = __lookup_nat_cache(nm_i, nid); 288 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 289 is_cp = false; 290 up_read(&nm_i->nat_tree_lock); 291 return is_cp; 292 } 293 294 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 295 { 296 struct f2fs_nm_info *nm_i = NM_I(sbi); 297 struct nat_entry *e; 298 bool need_update = true; 299 300 down_read(&nm_i->nat_tree_lock); 301 e = __lookup_nat_cache(nm_i, ino); 302 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 303 (get_nat_flag(e, IS_CHECKPOINTED) || 304 get_nat_flag(e, HAS_FSYNCED_INODE))) 305 need_update = false; 306 up_read(&nm_i->nat_tree_lock); 307 return need_update; 308 } 309 310 /* must be locked by nat_tree_lock */ 311 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 312 struct f2fs_nat_entry *ne) 313 { 314 struct f2fs_nm_info *nm_i = NM_I(sbi); 315 struct nat_entry *new, *e; 316 317 new = __alloc_nat_entry(nid, false); 318 if (!new) 319 return; 320 321 down_write(&nm_i->nat_tree_lock); 322 e = __lookup_nat_cache(nm_i, nid); 323 if (!e) 324 e = __init_nat_entry(nm_i, new, ne, false); 325 else 326 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 327 nat_get_blkaddr(e) != 328 le32_to_cpu(ne->block_addr) || 329 nat_get_version(e) != ne->version); 330 up_write(&nm_i->nat_tree_lock); 331 if (e != new) 332 __free_nat_entry(new); 333 } 334 335 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 336 block_t new_blkaddr, bool fsync_done) 337 { 338 struct f2fs_nm_info *nm_i = NM_I(sbi); 339 struct nat_entry *e; 340 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 341 342 down_write(&nm_i->nat_tree_lock); 343 e = __lookup_nat_cache(nm_i, ni->nid); 344 if (!e) { 345 e = __init_nat_entry(nm_i, new, NULL, true); 346 copy_node_info(&e->ni, ni); 347 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 348 } else if (new_blkaddr == NEW_ADDR) { 349 /* 350 * when nid is reallocated, 351 * previous nat entry can be remained in nat cache. 352 * So, reinitialize it with new information. 353 */ 354 copy_node_info(&e->ni, ni); 355 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 356 } 357 /* let's free early to reduce memory consumption */ 358 if (e != new) 359 __free_nat_entry(new); 360 361 /* sanity check */ 362 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 363 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 364 new_blkaddr == NULL_ADDR); 365 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 366 new_blkaddr == NEW_ADDR); 367 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 368 nat_get_blkaddr(e) != NULL_ADDR && 369 new_blkaddr == NEW_ADDR); 370 371 /* increment version no as node is removed */ 372 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 373 unsigned char version = nat_get_version(e); 374 nat_set_version(e, inc_node_version(version)); 375 } 376 377 /* change address */ 378 nat_set_blkaddr(e, new_blkaddr); 379 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 380 set_nat_flag(e, IS_CHECKPOINTED, false); 381 __set_nat_cache_dirty(nm_i, e); 382 383 /* update fsync_mark if its inode nat entry is still alive */ 384 if (ni->nid != ni->ino) 385 e = __lookup_nat_cache(nm_i, ni->ino); 386 if (e) { 387 if (fsync_done && ni->nid == ni->ino) 388 set_nat_flag(e, HAS_FSYNCED_INODE, true); 389 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 390 } 391 up_write(&nm_i->nat_tree_lock); 392 } 393 394 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 395 { 396 struct f2fs_nm_info *nm_i = NM_I(sbi); 397 int nr = nr_shrink; 398 399 if (!down_write_trylock(&nm_i->nat_tree_lock)) 400 return 0; 401 402 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 403 struct nat_entry *ne; 404 ne = list_first_entry(&nm_i->nat_entries, 405 struct nat_entry, list); 406 __del_from_nat_cache(nm_i, ne); 407 nr_shrink--; 408 } 409 up_write(&nm_i->nat_tree_lock); 410 return nr - nr_shrink; 411 } 412 413 /* 414 * This function always returns success 415 */ 416 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 417 { 418 struct f2fs_nm_info *nm_i = NM_I(sbi); 419 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 420 struct f2fs_journal *journal = curseg->journal; 421 nid_t start_nid = START_NID(nid); 422 struct f2fs_nat_block *nat_blk; 423 struct page *page = NULL; 424 struct f2fs_nat_entry ne; 425 struct nat_entry *e; 426 pgoff_t index; 427 int i; 428 429 ni->nid = nid; 430 431 /* Check nat cache */ 432 down_read(&nm_i->nat_tree_lock); 433 e = __lookup_nat_cache(nm_i, nid); 434 if (e) { 435 ni->ino = nat_get_ino(e); 436 ni->blk_addr = nat_get_blkaddr(e); 437 ni->version = nat_get_version(e); 438 up_read(&nm_i->nat_tree_lock); 439 return; 440 } 441 442 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 443 444 /* Check current segment summary */ 445 down_read(&curseg->journal_rwsem); 446 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 447 if (i >= 0) { 448 ne = nat_in_journal(journal, i); 449 node_info_from_raw_nat(ni, &ne); 450 } 451 up_read(&curseg->journal_rwsem); 452 if (i >= 0) { 453 up_read(&nm_i->nat_tree_lock); 454 goto cache; 455 } 456 457 /* Fill node_info from nat page */ 458 index = current_nat_addr(sbi, nid); 459 up_read(&nm_i->nat_tree_lock); 460 461 page = get_meta_page(sbi, index); 462 nat_blk = (struct f2fs_nat_block *)page_address(page); 463 ne = nat_blk->entries[nid - start_nid]; 464 node_info_from_raw_nat(ni, &ne); 465 f2fs_put_page(page, 1); 466 cache: 467 /* cache nat entry */ 468 cache_nat_entry(sbi, nid, &ne); 469 } 470 471 /* 472 * readahead MAX_RA_NODE number of node pages. 473 */ 474 static void ra_node_pages(struct page *parent, int start, int n) 475 { 476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 477 struct blk_plug plug; 478 int i, end; 479 nid_t nid; 480 481 blk_start_plug(&plug); 482 483 /* Then, try readahead for siblings of the desired node */ 484 end = start + n; 485 end = min(end, NIDS_PER_BLOCK); 486 for (i = start; i < end; i++) { 487 nid = get_nid(parent, i, false); 488 ra_node_page(sbi, nid); 489 } 490 491 blk_finish_plug(&plug); 492 } 493 494 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 495 { 496 const long direct_index = ADDRS_PER_INODE(dn->inode); 497 const long direct_blks = ADDRS_PER_BLOCK; 498 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 499 unsigned int skipped_unit = ADDRS_PER_BLOCK; 500 int cur_level = dn->cur_level; 501 int max_level = dn->max_level; 502 pgoff_t base = 0; 503 504 if (!dn->max_level) 505 return pgofs + 1; 506 507 while (max_level-- > cur_level) 508 skipped_unit *= NIDS_PER_BLOCK; 509 510 switch (dn->max_level) { 511 case 3: 512 base += 2 * indirect_blks; 513 case 2: 514 base += 2 * direct_blks; 515 case 1: 516 base += direct_index; 517 break; 518 default: 519 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 520 } 521 522 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 523 } 524 525 /* 526 * The maximum depth is four. 527 * Offset[0] will have raw inode offset. 528 */ 529 static int get_node_path(struct inode *inode, long block, 530 int offset[4], unsigned int noffset[4]) 531 { 532 const long direct_index = ADDRS_PER_INODE(inode); 533 const long direct_blks = ADDRS_PER_BLOCK; 534 const long dptrs_per_blk = NIDS_PER_BLOCK; 535 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 536 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 537 int n = 0; 538 int level = 0; 539 540 noffset[0] = 0; 541 542 if (block < direct_index) { 543 offset[n] = block; 544 goto got; 545 } 546 block -= direct_index; 547 if (block < direct_blks) { 548 offset[n++] = NODE_DIR1_BLOCK; 549 noffset[n] = 1; 550 offset[n] = block; 551 level = 1; 552 goto got; 553 } 554 block -= direct_blks; 555 if (block < direct_blks) { 556 offset[n++] = NODE_DIR2_BLOCK; 557 noffset[n] = 2; 558 offset[n] = block; 559 level = 1; 560 goto got; 561 } 562 block -= direct_blks; 563 if (block < indirect_blks) { 564 offset[n++] = NODE_IND1_BLOCK; 565 noffset[n] = 3; 566 offset[n++] = block / direct_blks; 567 noffset[n] = 4 + offset[n - 1]; 568 offset[n] = block % direct_blks; 569 level = 2; 570 goto got; 571 } 572 block -= indirect_blks; 573 if (block < indirect_blks) { 574 offset[n++] = NODE_IND2_BLOCK; 575 noffset[n] = 4 + dptrs_per_blk; 576 offset[n++] = block / direct_blks; 577 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 578 offset[n] = block % direct_blks; 579 level = 2; 580 goto got; 581 } 582 block -= indirect_blks; 583 if (block < dindirect_blks) { 584 offset[n++] = NODE_DIND_BLOCK; 585 noffset[n] = 5 + (dptrs_per_blk * 2); 586 offset[n++] = block / indirect_blks; 587 noffset[n] = 6 + (dptrs_per_blk * 2) + 588 offset[n - 1] * (dptrs_per_blk + 1); 589 offset[n++] = (block / direct_blks) % dptrs_per_blk; 590 noffset[n] = 7 + (dptrs_per_blk * 2) + 591 offset[n - 2] * (dptrs_per_blk + 1) + 592 offset[n - 1]; 593 offset[n] = block % direct_blks; 594 level = 3; 595 goto got; 596 } else { 597 return -E2BIG; 598 } 599 got: 600 return level; 601 } 602 603 /* 604 * Caller should call f2fs_put_dnode(dn). 605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 607 * In the case of RDONLY_NODE, we don't need to care about mutex. 608 */ 609 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 610 { 611 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 612 struct page *npage[4]; 613 struct page *parent = NULL; 614 int offset[4]; 615 unsigned int noffset[4]; 616 nid_t nids[4]; 617 int level, i = 0; 618 int err = 0; 619 620 level = get_node_path(dn->inode, index, offset, noffset); 621 if (level < 0) 622 return level; 623 624 nids[0] = dn->inode->i_ino; 625 npage[0] = dn->inode_page; 626 627 if (!npage[0]) { 628 npage[0] = get_node_page(sbi, nids[0]); 629 if (IS_ERR(npage[0])) 630 return PTR_ERR(npage[0]); 631 } 632 633 /* if inline_data is set, should not report any block indices */ 634 if (f2fs_has_inline_data(dn->inode) && index) { 635 err = -ENOENT; 636 f2fs_put_page(npage[0], 1); 637 goto release_out; 638 } 639 640 parent = npage[0]; 641 if (level != 0) 642 nids[1] = get_nid(parent, offset[0], true); 643 dn->inode_page = npage[0]; 644 dn->inode_page_locked = true; 645 646 /* get indirect or direct nodes */ 647 for (i = 1; i <= level; i++) { 648 bool done = false; 649 650 if (!nids[i] && mode == ALLOC_NODE) { 651 /* alloc new node */ 652 if (!alloc_nid(sbi, &(nids[i]))) { 653 err = -ENOSPC; 654 goto release_pages; 655 } 656 657 dn->nid = nids[i]; 658 npage[i] = new_node_page(dn, noffset[i]); 659 if (IS_ERR(npage[i])) { 660 alloc_nid_failed(sbi, nids[i]); 661 err = PTR_ERR(npage[i]); 662 goto release_pages; 663 } 664 665 set_nid(parent, offset[i - 1], nids[i], i == 1); 666 alloc_nid_done(sbi, nids[i]); 667 done = true; 668 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 669 npage[i] = get_node_page_ra(parent, offset[i - 1]); 670 if (IS_ERR(npage[i])) { 671 err = PTR_ERR(npage[i]); 672 goto release_pages; 673 } 674 done = true; 675 } 676 if (i == 1) { 677 dn->inode_page_locked = false; 678 unlock_page(parent); 679 } else { 680 f2fs_put_page(parent, 1); 681 } 682 683 if (!done) { 684 npage[i] = get_node_page(sbi, nids[i]); 685 if (IS_ERR(npage[i])) { 686 err = PTR_ERR(npage[i]); 687 f2fs_put_page(npage[0], 0); 688 goto release_out; 689 } 690 } 691 if (i < level) { 692 parent = npage[i]; 693 nids[i + 1] = get_nid(parent, offset[i], false); 694 } 695 } 696 dn->nid = nids[level]; 697 dn->ofs_in_node = offset[level]; 698 dn->node_page = npage[level]; 699 dn->data_blkaddr = datablock_addr(dn->inode, 700 dn->node_page, dn->ofs_in_node); 701 return 0; 702 703 release_pages: 704 f2fs_put_page(parent, 1); 705 if (i > 1) 706 f2fs_put_page(npage[0], 0); 707 release_out: 708 dn->inode_page = NULL; 709 dn->node_page = NULL; 710 if (err == -ENOENT) { 711 dn->cur_level = i; 712 dn->max_level = level; 713 dn->ofs_in_node = offset[level]; 714 } 715 return err; 716 } 717 718 static void truncate_node(struct dnode_of_data *dn) 719 { 720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 721 struct node_info ni; 722 723 get_node_info(sbi, dn->nid, &ni); 724 725 /* Deallocate node address */ 726 invalidate_blocks(sbi, ni.blk_addr); 727 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 728 set_node_addr(sbi, &ni, NULL_ADDR, false); 729 730 if (dn->nid == dn->inode->i_ino) { 731 remove_orphan_inode(sbi, dn->nid); 732 dec_valid_inode_count(sbi); 733 f2fs_inode_synced(dn->inode); 734 } 735 736 clear_node_page_dirty(dn->node_page); 737 set_sbi_flag(sbi, SBI_IS_DIRTY); 738 739 f2fs_put_page(dn->node_page, 1); 740 741 invalidate_mapping_pages(NODE_MAPPING(sbi), 742 dn->node_page->index, dn->node_page->index); 743 744 dn->node_page = NULL; 745 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 746 } 747 748 static int truncate_dnode(struct dnode_of_data *dn) 749 { 750 struct page *page; 751 752 if (dn->nid == 0) 753 return 1; 754 755 /* get direct node */ 756 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 757 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 758 return 1; 759 else if (IS_ERR(page)) 760 return PTR_ERR(page); 761 762 /* Make dnode_of_data for parameter */ 763 dn->node_page = page; 764 dn->ofs_in_node = 0; 765 truncate_data_blocks(dn); 766 truncate_node(dn); 767 return 1; 768 } 769 770 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 771 int ofs, int depth) 772 { 773 struct dnode_of_data rdn = *dn; 774 struct page *page; 775 struct f2fs_node *rn; 776 nid_t child_nid; 777 unsigned int child_nofs; 778 int freed = 0; 779 int i, ret; 780 781 if (dn->nid == 0) 782 return NIDS_PER_BLOCK + 1; 783 784 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 785 786 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 787 if (IS_ERR(page)) { 788 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 789 return PTR_ERR(page); 790 } 791 792 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 793 794 rn = F2FS_NODE(page); 795 if (depth < 3) { 796 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 797 child_nid = le32_to_cpu(rn->in.nid[i]); 798 if (child_nid == 0) 799 continue; 800 rdn.nid = child_nid; 801 ret = truncate_dnode(&rdn); 802 if (ret < 0) 803 goto out_err; 804 if (set_nid(page, i, 0, false)) 805 dn->node_changed = true; 806 } 807 } else { 808 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 809 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 810 child_nid = le32_to_cpu(rn->in.nid[i]); 811 if (child_nid == 0) { 812 child_nofs += NIDS_PER_BLOCK + 1; 813 continue; 814 } 815 rdn.nid = child_nid; 816 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 817 if (ret == (NIDS_PER_BLOCK + 1)) { 818 if (set_nid(page, i, 0, false)) 819 dn->node_changed = true; 820 child_nofs += ret; 821 } else if (ret < 0 && ret != -ENOENT) { 822 goto out_err; 823 } 824 } 825 freed = child_nofs; 826 } 827 828 if (!ofs) { 829 /* remove current indirect node */ 830 dn->node_page = page; 831 truncate_node(dn); 832 freed++; 833 } else { 834 f2fs_put_page(page, 1); 835 } 836 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 837 return freed; 838 839 out_err: 840 f2fs_put_page(page, 1); 841 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 842 return ret; 843 } 844 845 static int truncate_partial_nodes(struct dnode_of_data *dn, 846 struct f2fs_inode *ri, int *offset, int depth) 847 { 848 struct page *pages[2]; 849 nid_t nid[3]; 850 nid_t child_nid; 851 int err = 0; 852 int i; 853 int idx = depth - 2; 854 855 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 856 if (!nid[0]) 857 return 0; 858 859 /* get indirect nodes in the path */ 860 for (i = 0; i < idx + 1; i++) { 861 /* reference count'll be increased */ 862 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 863 if (IS_ERR(pages[i])) { 864 err = PTR_ERR(pages[i]); 865 idx = i - 1; 866 goto fail; 867 } 868 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 869 } 870 871 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 872 873 /* free direct nodes linked to a partial indirect node */ 874 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 875 child_nid = get_nid(pages[idx], i, false); 876 if (!child_nid) 877 continue; 878 dn->nid = child_nid; 879 err = truncate_dnode(dn); 880 if (err < 0) 881 goto fail; 882 if (set_nid(pages[idx], i, 0, false)) 883 dn->node_changed = true; 884 } 885 886 if (offset[idx + 1] == 0) { 887 dn->node_page = pages[idx]; 888 dn->nid = nid[idx]; 889 truncate_node(dn); 890 } else { 891 f2fs_put_page(pages[idx], 1); 892 } 893 offset[idx]++; 894 offset[idx + 1] = 0; 895 idx--; 896 fail: 897 for (i = idx; i >= 0; i--) 898 f2fs_put_page(pages[i], 1); 899 900 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 901 902 return err; 903 } 904 905 /* 906 * All the block addresses of data and nodes should be nullified. 907 */ 908 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 909 { 910 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 911 int err = 0, cont = 1; 912 int level, offset[4], noffset[4]; 913 unsigned int nofs = 0; 914 struct f2fs_inode *ri; 915 struct dnode_of_data dn; 916 struct page *page; 917 918 trace_f2fs_truncate_inode_blocks_enter(inode, from); 919 920 level = get_node_path(inode, from, offset, noffset); 921 if (level < 0) 922 return level; 923 924 page = get_node_page(sbi, inode->i_ino); 925 if (IS_ERR(page)) { 926 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 927 return PTR_ERR(page); 928 } 929 930 set_new_dnode(&dn, inode, page, NULL, 0); 931 unlock_page(page); 932 933 ri = F2FS_INODE(page); 934 switch (level) { 935 case 0: 936 case 1: 937 nofs = noffset[1]; 938 break; 939 case 2: 940 nofs = noffset[1]; 941 if (!offset[level - 1]) 942 goto skip_partial; 943 err = truncate_partial_nodes(&dn, ri, offset, level); 944 if (err < 0 && err != -ENOENT) 945 goto fail; 946 nofs += 1 + NIDS_PER_BLOCK; 947 break; 948 case 3: 949 nofs = 5 + 2 * NIDS_PER_BLOCK; 950 if (!offset[level - 1]) 951 goto skip_partial; 952 err = truncate_partial_nodes(&dn, ri, offset, level); 953 if (err < 0 && err != -ENOENT) 954 goto fail; 955 break; 956 default: 957 BUG(); 958 } 959 960 skip_partial: 961 while (cont) { 962 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 963 switch (offset[0]) { 964 case NODE_DIR1_BLOCK: 965 case NODE_DIR2_BLOCK: 966 err = truncate_dnode(&dn); 967 break; 968 969 case NODE_IND1_BLOCK: 970 case NODE_IND2_BLOCK: 971 err = truncate_nodes(&dn, nofs, offset[1], 2); 972 break; 973 974 case NODE_DIND_BLOCK: 975 err = truncate_nodes(&dn, nofs, offset[1], 3); 976 cont = 0; 977 break; 978 979 default: 980 BUG(); 981 } 982 if (err < 0 && err != -ENOENT) 983 goto fail; 984 if (offset[1] == 0 && 985 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 986 lock_page(page); 987 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 988 f2fs_wait_on_page_writeback(page, NODE, true); 989 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 990 set_page_dirty(page); 991 unlock_page(page); 992 } 993 offset[1] = 0; 994 offset[0]++; 995 nofs += err; 996 } 997 fail: 998 f2fs_put_page(page, 0); 999 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1000 return err > 0 ? 0 : err; 1001 } 1002 1003 /* caller must lock inode page */ 1004 int truncate_xattr_node(struct inode *inode) 1005 { 1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1007 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1008 struct dnode_of_data dn; 1009 struct page *npage; 1010 1011 if (!nid) 1012 return 0; 1013 1014 npage = get_node_page(sbi, nid); 1015 if (IS_ERR(npage)) 1016 return PTR_ERR(npage); 1017 1018 f2fs_i_xnid_write(inode, 0); 1019 1020 set_new_dnode(&dn, inode, NULL, npage, nid); 1021 truncate_node(&dn); 1022 return 0; 1023 } 1024 1025 /* 1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1027 * f2fs_unlock_op(). 1028 */ 1029 int remove_inode_page(struct inode *inode) 1030 { 1031 struct dnode_of_data dn; 1032 int err; 1033 1034 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1035 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1036 if (err) 1037 return err; 1038 1039 err = truncate_xattr_node(inode); 1040 if (err) { 1041 f2fs_put_dnode(&dn); 1042 return err; 1043 } 1044 1045 /* remove potential inline_data blocks */ 1046 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1047 S_ISLNK(inode->i_mode)) 1048 truncate_data_blocks_range(&dn, 1); 1049 1050 /* 0 is possible, after f2fs_new_inode() has failed */ 1051 f2fs_bug_on(F2FS_I_SB(inode), 1052 inode->i_blocks != 0 && inode->i_blocks != 8); 1053 1054 /* will put inode & node pages */ 1055 truncate_node(&dn); 1056 return 0; 1057 } 1058 1059 struct page *new_inode_page(struct inode *inode) 1060 { 1061 struct dnode_of_data dn; 1062 1063 /* allocate inode page for new inode */ 1064 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1065 1066 /* caller should f2fs_put_page(page, 1); */ 1067 return new_node_page(&dn, 0); 1068 } 1069 1070 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1071 { 1072 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1073 struct node_info new_ni; 1074 struct page *page; 1075 int err; 1076 1077 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1078 return ERR_PTR(-EPERM); 1079 1080 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1081 if (!page) 1082 return ERR_PTR(-ENOMEM); 1083 1084 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1085 goto fail; 1086 1087 #ifdef CONFIG_F2FS_CHECK_FS 1088 get_node_info(sbi, dn->nid, &new_ni); 1089 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1090 #endif 1091 new_ni.nid = dn->nid; 1092 new_ni.ino = dn->inode->i_ino; 1093 new_ni.blk_addr = NULL_ADDR; 1094 new_ni.flag = 0; 1095 new_ni.version = 0; 1096 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1097 1098 f2fs_wait_on_page_writeback(page, NODE, true); 1099 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1100 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1101 if (!PageUptodate(page)) 1102 SetPageUptodate(page); 1103 if (set_page_dirty(page)) 1104 dn->node_changed = true; 1105 1106 if (f2fs_has_xattr_block(ofs)) 1107 f2fs_i_xnid_write(dn->inode, dn->nid); 1108 1109 if (ofs == 0) 1110 inc_valid_inode_count(sbi); 1111 return page; 1112 1113 fail: 1114 clear_node_page_dirty(page); 1115 f2fs_put_page(page, 1); 1116 return ERR_PTR(err); 1117 } 1118 1119 /* 1120 * Caller should do after getting the following values. 1121 * 0: f2fs_put_page(page, 0) 1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1123 */ 1124 static int read_node_page(struct page *page, int op_flags) 1125 { 1126 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1127 struct node_info ni; 1128 struct f2fs_io_info fio = { 1129 .sbi = sbi, 1130 .type = NODE, 1131 .op = REQ_OP_READ, 1132 .op_flags = op_flags, 1133 .page = page, 1134 .encrypted_page = NULL, 1135 }; 1136 1137 if (PageUptodate(page)) 1138 return LOCKED_PAGE; 1139 1140 get_node_info(sbi, page->index, &ni); 1141 1142 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1143 ClearPageUptodate(page); 1144 return -ENOENT; 1145 } 1146 1147 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1148 return f2fs_submit_page_bio(&fio); 1149 } 1150 1151 /* 1152 * Readahead a node page 1153 */ 1154 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1155 { 1156 struct page *apage; 1157 int err; 1158 1159 if (!nid) 1160 return; 1161 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1162 1163 rcu_read_lock(); 1164 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid); 1165 rcu_read_unlock(); 1166 if (apage) 1167 return; 1168 1169 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1170 if (!apage) 1171 return; 1172 1173 err = read_node_page(apage, REQ_RAHEAD); 1174 f2fs_put_page(apage, err ? 1 : 0); 1175 } 1176 1177 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1178 struct page *parent, int start) 1179 { 1180 struct page *page; 1181 int err; 1182 1183 if (!nid) 1184 return ERR_PTR(-ENOENT); 1185 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1186 repeat: 1187 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1188 if (!page) 1189 return ERR_PTR(-ENOMEM); 1190 1191 err = read_node_page(page, 0); 1192 if (err < 0) { 1193 f2fs_put_page(page, 1); 1194 return ERR_PTR(err); 1195 } else if (err == LOCKED_PAGE) { 1196 err = 0; 1197 goto page_hit; 1198 } 1199 1200 if (parent) 1201 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1202 1203 lock_page(page); 1204 1205 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1206 f2fs_put_page(page, 1); 1207 goto repeat; 1208 } 1209 1210 if (unlikely(!PageUptodate(page))) { 1211 err = -EIO; 1212 goto out_err; 1213 } 1214 1215 if (!f2fs_inode_chksum_verify(sbi, page)) { 1216 err = -EBADMSG; 1217 goto out_err; 1218 } 1219 page_hit: 1220 if(unlikely(nid != nid_of_node(page))) { 1221 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1222 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1223 nid, nid_of_node(page), ino_of_node(page), 1224 ofs_of_node(page), cpver_of_node(page), 1225 next_blkaddr_of_node(page)); 1226 err = -EINVAL; 1227 out_err: 1228 ClearPageUptodate(page); 1229 f2fs_put_page(page, 1); 1230 return ERR_PTR(err); 1231 } 1232 return page; 1233 } 1234 1235 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1236 { 1237 return __get_node_page(sbi, nid, NULL, 0); 1238 } 1239 1240 struct page *get_node_page_ra(struct page *parent, int start) 1241 { 1242 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1243 nid_t nid = get_nid(parent, start, false); 1244 1245 return __get_node_page(sbi, nid, parent, start); 1246 } 1247 1248 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1249 { 1250 struct inode *inode; 1251 struct page *page; 1252 int ret; 1253 1254 /* should flush inline_data before evict_inode */ 1255 inode = ilookup(sbi->sb, ino); 1256 if (!inode) 1257 return; 1258 1259 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1260 FGP_LOCK|FGP_NOWAIT, 0); 1261 if (!page) 1262 goto iput_out; 1263 1264 if (!PageUptodate(page)) 1265 goto page_out; 1266 1267 if (!PageDirty(page)) 1268 goto page_out; 1269 1270 if (!clear_page_dirty_for_io(page)) 1271 goto page_out; 1272 1273 ret = f2fs_write_inline_data(inode, page); 1274 inode_dec_dirty_pages(inode); 1275 remove_dirty_inode(inode); 1276 if (ret) 1277 set_page_dirty(page); 1278 page_out: 1279 f2fs_put_page(page, 1); 1280 iput_out: 1281 iput(inode); 1282 } 1283 1284 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1285 { 1286 pgoff_t index; 1287 struct pagevec pvec; 1288 struct page *last_page = NULL; 1289 int nr_pages; 1290 1291 pagevec_init(&pvec); 1292 index = 0; 1293 1294 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1295 PAGECACHE_TAG_DIRTY))) { 1296 int i; 1297 1298 for (i = 0; i < nr_pages; i++) { 1299 struct page *page = pvec.pages[i]; 1300 1301 if (unlikely(f2fs_cp_error(sbi))) { 1302 f2fs_put_page(last_page, 0); 1303 pagevec_release(&pvec); 1304 return ERR_PTR(-EIO); 1305 } 1306 1307 if (!IS_DNODE(page) || !is_cold_node(page)) 1308 continue; 1309 if (ino_of_node(page) != ino) 1310 continue; 1311 1312 lock_page(page); 1313 1314 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1315 continue_unlock: 1316 unlock_page(page); 1317 continue; 1318 } 1319 if (ino_of_node(page) != ino) 1320 goto continue_unlock; 1321 1322 if (!PageDirty(page)) { 1323 /* someone wrote it for us */ 1324 goto continue_unlock; 1325 } 1326 1327 if (last_page) 1328 f2fs_put_page(last_page, 0); 1329 1330 get_page(page); 1331 last_page = page; 1332 unlock_page(page); 1333 } 1334 pagevec_release(&pvec); 1335 cond_resched(); 1336 } 1337 return last_page; 1338 } 1339 1340 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1341 struct writeback_control *wbc, bool do_balance, 1342 enum iostat_type io_type) 1343 { 1344 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1345 nid_t nid; 1346 struct node_info ni; 1347 struct f2fs_io_info fio = { 1348 .sbi = sbi, 1349 .ino = ino_of_node(page), 1350 .type = NODE, 1351 .op = REQ_OP_WRITE, 1352 .op_flags = wbc_to_write_flags(wbc), 1353 .page = page, 1354 .encrypted_page = NULL, 1355 .submitted = false, 1356 .io_type = io_type, 1357 .io_wbc = wbc, 1358 }; 1359 1360 trace_f2fs_writepage(page, NODE); 1361 1362 if (unlikely(f2fs_cp_error(sbi))) { 1363 dec_page_count(sbi, F2FS_DIRTY_NODES); 1364 unlock_page(page); 1365 return 0; 1366 } 1367 1368 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1369 goto redirty_out; 1370 1371 /* get old block addr of this node page */ 1372 nid = nid_of_node(page); 1373 f2fs_bug_on(sbi, page->index != nid); 1374 1375 if (wbc->for_reclaim) { 1376 if (!down_read_trylock(&sbi->node_write)) 1377 goto redirty_out; 1378 } else { 1379 down_read(&sbi->node_write); 1380 } 1381 1382 get_node_info(sbi, nid, &ni); 1383 1384 /* This page is already truncated */ 1385 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1386 ClearPageUptodate(page); 1387 dec_page_count(sbi, F2FS_DIRTY_NODES); 1388 up_read(&sbi->node_write); 1389 unlock_page(page); 1390 return 0; 1391 } 1392 1393 if (atomic && !test_opt(sbi, NOBARRIER)) 1394 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1395 1396 set_page_writeback(page); 1397 fio.old_blkaddr = ni.blk_addr; 1398 write_node_page(nid, &fio); 1399 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1400 dec_page_count(sbi, F2FS_DIRTY_NODES); 1401 up_read(&sbi->node_write); 1402 1403 if (wbc->for_reclaim) { 1404 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0, 1405 page->index, NODE); 1406 submitted = NULL; 1407 } 1408 1409 unlock_page(page); 1410 1411 if (unlikely(f2fs_cp_error(sbi))) { 1412 f2fs_submit_merged_write(sbi, NODE); 1413 submitted = NULL; 1414 } 1415 if (submitted) 1416 *submitted = fio.submitted; 1417 1418 if (do_balance) 1419 f2fs_balance_fs(sbi, false); 1420 return 0; 1421 1422 redirty_out: 1423 redirty_page_for_writepage(wbc, page); 1424 return AOP_WRITEPAGE_ACTIVATE; 1425 } 1426 1427 void move_node_page(struct page *node_page, int gc_type) 1428 { 1429 if (gc_type == FG_GC) { 1430 struct writeback_control wbc = { 1431 .sync_mode = WB_SYNC_ALL, 1432 .nr_to_write = 1, 1433 .for_reclaim = 0, 1434 }; 1435 1436 set_page_dirty(node_page); 1437 f2fs_wait_on_page_writeback(node_page, NODE, true); 1438 1439 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page)); 1440 if (!clear_page_dirty_for_io(node_page)) 1441 goto out_page; 1442 1443 if (__write_node_page(node_page, false, NULL, 1444 &wbc, false, FS_GC_NODE_IO)) 1445 unlock_page(node_page); 1446 goto release_page; 1447 } else { 1448 /* set page dirty and write it */ 1449 if (!PageWriteback(node_page)) 1450 set_page_dirty(node_page); 1451 } 1452 out_page: 1453 unlock_page(node_page); 1454 release_page: 1455 f2fs_put_page(node_page, 0); 1456 } 1457 1458 static int f2fs_write_node_page(struct page *page, 1459 struct writeback_control *wbc) 1460 { 1461 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO); 1462 } 1463 1464 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1465 struct writeback_control *wbc, bool atomic) 1466 { 1467 pgoff_t index; 1468 pgoff_t last_idx = ULONG_MAX; 1469 struct pagevec pvec; 1470 int ret = 0; 1471 struct page *last_page = NULL; 1472 bool marked = false; 1473 nid_t ino = inode->i_ino; 1474 int nr_pages; 1475 1476 if (atomic) { 1477 last_page = last_fsync_dnode(sbi, ino); 1478 if (IS_ERR_OR_NULL(last_page)) 1479 return PTR_ERR_OR_ZERO(last_page); 1480 } 1481 retry: 1482 pagevec_init(&pvec); 1483 index = 0; 1484 1485 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1486 PAGECACHE_TAG_DIRTY))) { 1487 int i; 1488 1489 for (i = 0; i < nr_pages; i++) { 1490 struct page *page = pvec.pages[i]; 1491 bool submitted = false; 1492 1493 if (unlikely(f2fs_cp_error(sbi))) { 1494 f2fs_put_page(last_page, 0); 1495 pagevec_release(&pvec); 1496 ret = -EIO; 1497 goto out; 1498 } 1499 1500 if (!IS_DNODE(page) || !is_cold_node(page)) 1501 continue; 1502 if (ino_of_node(page) != ino) 1503 continue; 1504 1505 lock_page(page); 1506 1507 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1508 continue_unlock: 1509 unlock_page(page); 1510 continue; 1511 } 1512 if (ino_of_node(page) != ino) 1513 goto continue_unlock; 1514 1515 if (!PageDirty(page) && page != last_page) { 1516 /* someone wrote it for us */ 1517 goto continue_unlock; 1518 } 1519 1520 f2fs_wait_on_page_writeback(page, NODE, true); 1521 BUG_ON(PageWriteback(page)); 1522 1523 set_fsync_mark(page, 0); 1524 set_dentry_mark(page, 0); 1525 1526 if (!atomic || page == last_page) { 1527 set_fsync_mark(page, 1); 1528 if (IS_INODE(page)) { 1529 if (is_inode_flag_set(inode, 1530 FI_DIRTY_INODE)) 1531 update_inode(inode, page); 1532 set_dentry_mark(page, 1533 need_dentry_mark(sbi, ino)); 1534 } 1535 /* may be written by other thread */ 1536 if (!PageDirty(page)) 1537 set_page_dirty(page); 1538 } 1539 1540 if (!clear_page_dirty_for_io(page)) 1541 goto continue_unlock; 1542 1543 ret = __write_node_page(page, atomic && 1544 page == last_page, 1545 &submitted, wbc, true, 1546 FS_NODE_IO); 1547 if (ret) { 1548 unlock_page(page); 1549 f2fs_put_page(last_page, 0); 1550 break; 1551 } else if (submitted) { 1552 last_idx = page->index; 1553 } 1554 1555 if (page == last_page) { 1556 f2fs_put_page(page, 0); 1557 marked = true; 1558 break; 1559 } 1560 } 1561 pagevec_release(&pvec); 1562 cond_resched(); 1563 1564 if (ret || marked) 1565 break; 1566 } 1567 if (!ret && atomic && !marked) { 1568 f2fs_msg(sbi->sb, KERN_DEBUG, 1569 "Retry to write fsync mark: ino=%u, idx=%lx", 1570 ino, last_page->index); 1571 lock_page(last_page); 1572 f2fs_wait_on_page_writeback(last_page, NODE, true); 1573 set_page_dirty(last_page); 1574 unlock_page(last_page); 1575 goto retry; 1576 } 1577 out: 1578 if (last_idx != ULONG_MAX) 1579 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE); 1580 return ret ? -EIO: 0; 1581 } 1582 1583 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 1584 bool do_balance, enum iostat_type io_type) 1585 { 1586 pgoff_t index; 1587 struct pagevec pvec; 1588 int step = 0; 1589 int nwritten = 0; 1590 int ret = 0; 1591 int nr_pages; 1592 1593 pagevec_init(&pvec); 1594 1595 next_step: 1596 index = 0; 1597 1598 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1599 PAGECACHE_TAG_DIRTY))) { 1600 int i; 1601 1602 for (i = 0; i < nr_pages; i++) { 1603 struct page *page = pvec.pages[i]; 1604 bool submitted = false; 1605 1606 /* 1607 * flushing sequence with step: 1608 * 0. indirect nodes 1609 * 1. dentry dnodes 1610 * 2. file dnodes 1611 */ 1612 if (step == 0 && IS_DNODE(page)) 1613 continue; 1614 if (step == 1 && (!IS_DNODE(page) || 1615 is_cold_node(page))) 1616 continue; 1617 if (step == 2 && (!IS_DNODE(page) || 1618 !is_cold_node(page))) 1619 continue; 1620 lock_node: 1621 if (!trylock_page(page)) 1622 continue; 1623 1624 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1625 continue_unlock: 1626 unlock_page(page); 1627 continue; 1628 } 1629 1630 if (!PageDirty(page)) { 1631 /* someone wrote it for us */ 1632 goto continue_unlock; 1633 } 1634 1635 /* flush inline_data */ 1636 if (is_inline_node(page)) { 1637 clear_inline_node(page); 1638 unlock_page(page); 1639 flush_inline_data(sbi, ino_of_node(page)); 1640 goto lock_node; 1641 } 1642 1643 f2fs_wait_on_page_writeback(page, NODE, true); 1644 1645 BUG_ON(PageWriteback(page)); 1646 if (!clear_page_dirty_for_io(page)) 1647 goto continue_unlock; 1648 1649 set_fsync_mark(page, 0); 1650 set_dentry_mark(page, 0); 1651 1652 ret = __write_node_page(page, false, &submitted, 1653 wbc, do_balance, io_type); 1654 if (ret) 1655 unlock_page(page); 1656 else if (submitted) 1657 nwritten++; 1658 1659 if (--wbc->nr_to_write == 0) 1660 break; 1661 } 1662 pagevec_release(&pvec); 1663 cond_resched(); 1664 1665 if (wbc->nr_to_write == 0) { 1666 step = 2; 1667 break; 1668 } 1669 } 1670 1671 if (step < 2) { 1672 step++; 1673 goto next_step; 1674 } 1675 1676 if (nwritten) 1677 f2fs_submit_merged_write(sbi, NODE); 1678 1679 if (unlikely(f2fs_cp_error(sbi))) 1680 return -EIO; 1681 return ret; 1682 } 1683 1684 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1685 { 1686 pgoff_t index = 0; 1687 struct pagevec pvec; 1688 int ret2, ret = 0; 1689 int nr_pages; 1690 1691 pagevec_init(&pvec); 1692 1693 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1694 PAGECACHE_TAG_WRITEBACK))) { 1695 int i; 1696 1697 for (i = 0; i < nr_pages; i++) { 1698 struct page *page = pvec.pages[i]; 1699 1700 if (ino && ino_of_node(page) == ino) { 1701 f2fs_wait_on_page_writeback(page, NODE, true); 1702 if (TestClearPageError(page)) 1703 ret = -EIO; 1704 } 1705 } 1706 pagevec_release(&pvec); 1707 cond_resched(); 1708 } 1709 1710 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1711 if (!ret) 1712 ret = ret2; 1713 return ret; 1714 } 1715 1716 static int f2fs_write_node_pages(struct address_space *mapping, 1717 struct writeback_control *wbc) 1718 { 1719 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1720 struct blk_plug plug; 1721 long diff; 1722 1723 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1724 goto skip_write; 1725 1726 /* balancing f2fs's metadata in background */ 1727 f2fs_balance_fs_bg(sbi); 1728 1729 /* collect a number of dirty node pages and write together */ 1730 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1731 goto skip_write; 1732 1733 trace_f2fs_writepages(mapping->host, wbc, NODE); 1734 1735 diff = nr_pages_to_write(sbi, NODE, wbc); 1736 wbc->sync_mode = WB_SYNC_NONE; 1737 blk_start_plug(&plug); 1738 sync_node_pages(sbi, wbc, true, FS_NODE_IO); 1739 blk_finish_plug(&plug); 1740 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1741 return 0; 1742 1743 skip_write: 1744 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1745 trace_f2fs_writepages(mapping->host, wbc, NODE); 1746 return 0; 1747 } 1748 1749 static int f2fs_set_node_page_dirty(struct page *page) 1750 { 1751 trace_f2fs_set_page_dirty(page, NODE); 1752 1753 if (!PageUptodate(page)) 1754 SetPageUptodate(page); 1755 if (!PageDirty(page)) { 1756 f2fs_set_page_dirty_nobuffers(page); 1757 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1758 SetPagePrivate(page); 1759 f2fs_trace_pid(page); 1760 return 1; 1761 } 1762 return 0; 1763 } 1764 1765 /* 1766 * Structure of the f2fs node operations 1767 */ 1768 const struct address_space_operations f2fs_node_aops = { 1769 .writepage = f2fs_write_node_page, 1770 .writepages = f2fs_write_node_pages, 1771 .set_page_dirty = f2fs_set_node_page_dirty, 1772 .invalidatepage = f2fs_invalidate_page, 1773 .releasepage = f2fs_release_page, 1774 #ifdef CONFIG_MIGRATION 1775 .migratepage = f2fs_migrate_page, 1776 #endif 1777 }; 1778 1779 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1780 nid_t n) 1781 { 1782 return radix_tree_lookup(&nm_i->free_nid_root, n); 1783 } 1784 1785 static int __insert_free_nid(struct f2fs_sb_info *sbi, 1786 struct free_nid *i, enum nid_state state) 1787 { 1788 struct f2fs_nm_info *nm_i = NM_I(sbi); 1789 1790 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1791 if (err) 1792 return err; 1793 1794 f2fs_bug_on(sbi, state != i->state); 1795 nm_i->nid_cnt[state]++; 1796 if (state == FREE_NID) 1797 list_add_tail(&i->list, &nm_i->free_nid_list); 1798 return 0; 1799 } 1800 1801 static void __remove_free_nid(struct f2fs_sb_info *sbi, 1802 struct free_nid *i, enum nid_state state) 1803 { 1804 struct f2fs_nm_info *nm_i = NM_I(sbi); 1805 1806 f2fs_bug_on(sbi, state != i->state); 1807 nm_i->nid_cnt[state]--; 1808 if (state == FREE_NID) 1809 list_del(&i->list); 1810 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1811 } 1812 1813 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 1814 enum nid_state org_state, enum nid_state dst_state) 1815 { 1816 struct f2fs_nm_info *nm_i = NM_I(sbi); 1817 1818 f2fs_bug_on(sbi, org_state != i->state); 1819 i->state = dst_state; 1820 nm_i->nid_cnt[org_state]--; 1821 nm_i->nid_cnt[dst_state]++; 1822 1823 switch (dst_state) { 1824 case PREALLOC_NID: 1825 list_del(&i->list); 1826 break; 1827 case FREE_NID: 1828 list_add_tail(&i->list, &nm_i->free_nid_list); 1829 break; 1830 default: 1831 BUG_ON(1); 1832 } 1833 } 1834 1835 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 1836 bool set, bool build) 1837 { 1838 struct f2fs_nm_info *nm_i = NM_I(sbi); 1839 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1840 unsigned int nid_ofs = nid - START_NID(nid); 1841 1842 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1843 return; 1844 1845 if (set) { 1846 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 1847 return; 1848 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1849 nm_i->free_nid_count[nat_ofs]++; 1850 } else { 1851 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 1852 return; 1853 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1854 if (!build) 1855 nm_i->free_nid_count[nat_ofs]--; 1856 } 1857 } 1858 1859 /* return if the nid is recognized as free */ 1860 static bool add_free_nid(struct f2fs_sb_info *sbi, 1861 nid_t nid, bool build, bool update) 1862 { 1863 struct f2fs_nm_info *nm_i = NM_I(sbi); 1864 struct free_nid *i, *e; 1865 struct nat_entry *ne; 1866 int err = -EINVAL; 1867 bool ret = false; 1868 1869 /* 0 nid should not be used */ 1870 if (unlikely(nid == 0)) 1871 return false; 1872 1873 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1874 i->nid = nid; 1875 i->state = FREE_NID; 1876 1877 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 1878 1879 spin_lock(&nm_i->nid_list_lock); 1880 1881 if (build) { 1882 /* 1883 * Thread A Thread B 1884 * - f2fs_create 1885 * - f2fs_new_inode 1886 * - alloc_nid 1887 * - __insert_nid_to_list(PREALLOC_NID) 1888 * - f2fs_balance_fs_bg 1889 * - build_free_nids 1890 * - __build_free_nids 1891 * - scan_nat_page 1892 * - add_free_nid 1893 * - __lookup_nat_cache 1894 * - f2fs_add_link 1895 * - init_inode_metadata 1896 * - new_inode_page 1897 * - new_node_page 1898 * - set_node_addr 1899 * - alloc_nid_done 1900 * - __remove_nid_from_list(PREALLOC_NID) 1901 * - __insert_nid_to_list(FREE_NID) 1902 */ 1903 ne = __lookup_nat_cache(nm_i, nid); 1904 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1905 nat_get_blkaddr(ne) != NULL_ADDR)) 1906 goto err_out; 1907 1908 e = __lookup_free_nid_list(nm_i, nid); 1909 if (e) { 1910 if (e->state == FREE_NID) 1911 ret = true; 1912 goto err_out; 1913 } 1914 } 1915 ret = true; 1916 err = __insert_free_nid(sbi, i, FREE_NID); 1917 err_out: 1918 if (update) { 1919 update_free_nid_bitmap(sbi, nid, ret, build); 1920 if (!build) 1921 nm_i->available_nids++; 1922 } 1923 spin_unlock(&nm_i->nid_list_lock); 1924 radix_tree_preload_end(); 1925 1926 if (err) 1927 kmem_cache_free(free_nid_slab, i); 1928 return ret; 1929 } 1930 1931 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1932 { 1933 struct f2fs_nm_info *nm_i = NM_I(sbi); 1934 struct free_nid *i; 1935 bool need_free = false; 1936 1937 spin_lock(&nm_i->nid_list_lock); 1938 i = __lookup_free_nid_list(nm_i, nid); 1939 if (i && i->state == FREE_NID) { 1940 __remove_free_nid(sbi, i, FREE_NID); 1941 need_free = true; 1942 } 1943 spin_unlock(&nm_i->nid_list_lock); 1944 1945 if (need_free) 1946 kmem_cache_free(free_nid_slab, i); 1947 } 1948 1949 static void scan_nat_page(struct f2fs_sb_info *sbi, 1950 struct page *nat_page, nid_t start_nid) 1951 { 1952 struct f2fs_nm_info *nm_i = NM_I(sbi); 1953 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1954 block_t blk_addr; 1955 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1956 int i; 1957 1958 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1959 1960 i = start_nid % NAT_ENTRY_PER_BLOCK; 1961 1962 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1963 if (unlikely(start_nid >= nm_i->max_nid)) 1964 break; 1965 1966 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1967 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1968 if (blk_addr == NULL_ADDR) { 1969 add_free_nid(sbi, start_nid, true, true); 1970 } else { 1971 spin_lock(&NM_I(sbi)->nid_list_lock); 1972 update_free_nid_bitmap(sbi, start_nid, false, true); 1973 spin_unlock(&NM_I(sbi)->nid_list_lock); 1974 } 1975 } 1976 } 1977 1978 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 1979 { 1980 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1981 struct f2fs_journal *journal = curseg->journal; 1982 int i; 1983 1984 down_read(&curseg->journal_rwsem); 1985 for (i = 0; i < nats_in_cursum(journal); i++) { 1986 block_t addr; 1987 nid_t nid; 1988 1989 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1990 nid = le32_to_cpu(nid_in_journal(journal, i)); 1991 if (addr == NULL_ADDR) 1992 add_free_nid(sbi, nid, true, false); 1993 else 1994 remove_free_nid(sbi, nid); 1995 } 1996 up_read(&curseg->journal_rwsem); 1997 } 1998 1999 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2000 { 2001 struct f2fs_nm_info *nm_i = NM_I(sbi); 2002 unsigned int i, idx; 2003 nid_t nid; 2004 2005 down_read(&nm_i->nat_tree_lock); 2006 2007 for (i = 0; i < nm_i->nat_blocks; i++) { 2008 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2009 continue; 2010 if (!nm_i->free_nid_count[i]) 2011 continue; 2012 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2013 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2014 NAT_ENTRY_PER_BLOCK, idx); 2015 if (idx >= NAT_ENTRY_PER_BLOCK) 2016 break; 2017 2018 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2019 add_free_nid(sbi, nid, true, false); 2020 2021 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2022 goto out; 2023 } 2024 } 2025 out: 2026 scan_curseg_cache(sbi); 2027 2028 up_read(&nm_i->nat_tree_lock); 2029 } 2030 2031 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2032 { 2033 struct f2fs_nm_info *nm_i = NM_I(sbi); 2034 int i = 0; 2035 nid_t nid = nm_i->next_scan_nid; 2036 2037 if (unlikely(nid >= nm_i->max_nid)) 2038 nid = 0; 2039 2040 /* Enough entries */ 2041 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2042 return; 2043 2044 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 2045 return; 2046 2047 if (!mount) { 2048 /* try to find free nids in free_nid_bitmap */ 2049 scan_free_nid_bits(sbi); 2050 2051 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2052 return; 2053 } 2054 2055 /* readahead nat pages to be scanned */ 2056 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2057 META_NAT, true); 2058 2059 down_read(&nm_i->nat_tree_lock); 2060 2061 while (1) { 2062 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2063 nm_i->nat_block_bitmap)) { 2064 struct page *page = get_current_nat_page(sbi, nid); 2065 2066 scan_nat_page(sbi, page, nid); 2067 f2fs_put_page(page, 1); 2068 } 2069 2070 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2071 if (unlikely(nid >= nm_i->max_nid)) 2072 nid = 0; 2073 2074 if (++i >= FREE_NID_PAGES) 2075 break; 2076 } 2077 2078 /* go to the next free nat pages to find free nids abundantly */ 2079 nm_i->next_scan_nid = nid; 2080 2081 /* find free nids from current sum_pages */ 2082 scan_curseg_cache(sbi); 2083 2084 up_read(&nm_i->nat_tree_lock); 2085 2086 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2087 nm_i->ra_nid_pages, META_NAT, false); 2088 } 2089 2090 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2091 { 2092 mutex_lock(&NM_I(sbi)->build_lock); 2093 __build_free_nids(sbi, sync, mount); 2094 mutex_unlock(&NM_I(sbi)->build_lock); 2095 } 2096 2097 /* 2098 * If this function returns success, caller can obtain a new nid 2099 * from second parameter of this function. 2100 * The returned nid could be used ino as well as nid when inode is created. 2101 */ 2102 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2103 { 2104 struct f2fs_nm_info *nm_i = NM_I(sbi); 2105 struct free_nid *i = NULL; 2106 retry: 2107 #ifdef CONFIG_F2FS_FAULT_INJECTION 2108 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2109 f2fs_show_injection_info(FAULT_ALLOC_NID); 2110 return false; 2111 } 2112 #endif 2113 spin_lock(&nm_i->nid_list_lock); 2114 2115 if (unlikely(nm_i->available_nids == 0)) { 2116 spin_unlock(&nm_i->nid_list_lock); 2117 return false; 2118 } 2119 2120 /* We should not use stale free nids created by build_free_nids */ 2121 if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) { 2122 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2123 i = list_first_entry(&nm_i->free_nid_list, 2124 struct free_nid, list); 2125 *nid = i->nid; 2126 2127 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2128 nm_i->available_nids--; 2129 2130 update_free_nid_bitmap(sbi, *nid, false, false); 2131 2132 spin_unlock(&nm_i->nid_list_lock); 2133 return true; 2134 } 2135 spin_unlock(&nm_i->nid_list_lock); 2136 2137 /* Let's scan nat pages and its caches to get free nids */ 2138 build_free_nids(sbi, true, false); 2139 goto retry; 2140 } 2141 2142 /* 2143 * alloc_nid() should be called prior to this function. 2144 */ 2145 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2146 { 2147 struct f2fs_nm_info *nm_i = NM_I(sbi); 2148 struct free_nid *i; 2149 2150 spin_lock(&nm_i->nid_list_lock); 2151 i = __lookup_free_nid_list(nm_i, nid); 2152 f2fs_bug_on(sbi, !i); 2153 __remove_free_nid(sbi, i, PREALLOC_NID); 2154 spin_unlock(&nm_i->nid_list_lock); 2155 2156 kmem_cache_free(free_nid_slab, i); 2157 } 2158 2159 /* 2160 * alloc_nid() should be called prior to this function. 2161 */ 2162 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2163 { 2164 struct f2fs_nm_info *nm_i = NM_I(sbi); 2165 struct free_nid *i; 2166 bool need_free = false; 2167 2168 if (!nid) 2169 return; 2170 2171 spin_lock(&nm_i->nid_list_lock); 2172 i = __lookup_free_nid_list(nm_i, nid); 2173 f2fs_bug_on(sbi, !i); 2174 2175 if (!available_free_memory(sbi, FREE_NIDS)) { 2176 __remove_free_nid(sbi, i, PREALLOC_NID); 2177 need_free = true; 2178 } else { 2179 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2180 } 2181 2182 nm_i->available_nids++; 2183 2184 update_free_nid_bitmap(sbi, nid, true, false); 2185 2186 spin_unlock(&nm_i->nid_list_lock); 2187 2188 if (need_free) 2189 kmem_cache_free(free_nid_slab, i); 2190 } 2191 2192 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2193 { 2194 struct f2fs_nm_info *nm_i = NM_I(sbi); 2195 struct free_nid *i, *next; 2196 int nr = nr_shrink; 2197 2198 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2199 return 0; 2200 2201 if (!mutex_trylock(&nm_i->build_lock)) 2202 return 0; 2203 2204 spin_lock(&nm_i->nid_list_lock); 2205 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2206 if (nr_shrink <= 0 || 2207 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2208 break; 2209 2210 __remove_free_nid(sbi, i, FREE_NID); 2211 kmem_cache_free(free_nid_slab, i); 2212 nr_shrink--; 2213 } 2214 spin_unlock(&nm_i->nid_list_lock); 2215 mutex_unlock(&nm_i->build_lock); 2216 2217 return nr - nr_shrink; 2218 } 2219 2220 void recover_inline_xattr(struct inode *inode, struct page *page) 2221 { 2222 void *src_addr, *dst_addr; 2223 size_t inline_size; 2224 struct page *ipage; 2225 struct f2fs_inode *ri; 2226 2227 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2228 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2229 2230 ri = F2FS_INODE(page); 2231 if (ri->i_inline & F2FS_INLINE_XATTR) { 2232 set_inode_flag(inode, FI_INLINE_XATTR); 2233 } else { 2234 clear_inode_flag(inode, FI_INLINE_XATTR); 2235 goto update_inode; 2236 } 2237 2238 dst_addr = inline_xattr_addr(inode, ipage); 2239 src_addr = inline_xattr_addr(inode, page); 2240 inline_size = inline_xattr_size(inode); 2241 2242 f2fs_wait_on_page_writeback(ipage, NODE, true); 2243 memcpy(dst_addr, src_addr, inline_size); 2244 update_inode: 2245 update_inode(inode, ipage); 2246 f2fs_put_page(ipage, 1); 2247 } 2248 2249 int recover_xattr_data(struct inode *inode, struct page *page) 2250 { 2251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2252 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2253 nid_t new_xnid; 2254 struct dnode_of_data dn; 2255 struct node_info ni; 2256 struct page *xpage; 2257 2258 if (!prev_xnid) 2259 goto recover_xnid; 2260 2261 /* 1: invalidate the previous xattr nid */ 2262 get_node_info(sbi, prev_xnid, &ni); 2263 invalidate_blocks(sbi, ni.blk_addr); 2264 dec_valid_node_count(sbi, inode, false); 2265 set_node_addr(sbi, &ni, NULL_ADDR, false); 2266 2267 recover_xnid: 2268 /* 2: update xattr nid in inode */ 2269 if (!alloc_nid(sbi, &new_xnid)) 2270 return -ENOSPC; 2271 2272 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2273 xpage = new_node_page(&dn, XATTR_NODE_OFFSET); 2274 if (IS_ERR(xpage)) { 2275 alloc_nid_failed(sbi, new_xnid); 2276 return PTR_ERR(xpage); 2277 } 2278 2279 alloc_nid_done(sbi, new_xnid); 2280 update_inode_page(inode); 2281 2282 /* 3: update and set xattr node page dirty */ 2283 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2284 2285 set_page_dirty(xpage); 2286 f2fs_put_page(xpage, 1); 2287 2288 return 0; 2289 } 2290 2291 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2292 { 2293 struct f2fs_inode *src, *dst; 2294 nid_t ino = ino_of_node(page); 2295 struct node_info old_ni, new_ni; 2296 struct page *ipage; 2297 2298 get_node_info(sbi, ino, &old_ni); 2299 2300 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2301 return -EINVAL; 2302 retry: 2303 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2304 if (!ipage) { 2305 congestion_wait(BLK_RW_ASYNC, HZ/50); 2306 goto retry; 2307 } 2308 2309 /* Should not use this inode from free nid list */ 2310 remove_free_nid(sbi, ino); 2311 2312 if (!PageUptodate(ipage)) 2313 SetPageUptodate(ipage); 2314 fill_node_footer(ipage, ino, ino, 0, true); 2315 set_cold_node(page, false); 2316 2317 src = F2FS_INODE(page); 2318 dst = F2FS_INODE(ipage); 2319 2320 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2321 dst->i_size = 0; 2322 dst->i_blocks = cpu_to_le64(1); 2323 dst->i_links = cpu_to_le32(1); 2324 dst->i_xattr_nid = 0; 2325 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2326 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2327 dst->i_extra_isize = src->i_extra_isize; 2328 2329 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) && 2330 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2331 i_inline_xattr_size)) 2332 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2333 2334 if (f2fs_sb_has_project_quota(sbi->sb) && 2335 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2336 i_projid)) 2337 dst->i_projid = src->i_projid; 2338 } 2339 2340 new_ni = old_ni; 2341 new_ni.ino = ino; 2342 2343 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2344 WARN_ON(1); 2345 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2346 inc_valid_inode_count(sbi); 2347 set_page_dirty(ipage); 2348 f2fs_put_page(ipage, 1); 2349 return 0; 2350 } 2351 2352 void restore_node_summary(struct f2fs_sb_info *sbi, 2353 unsigned int segno, struct f2fs_summary_block *sum) 2354 { 2355 struct f2fs_node *rn; 2356 struct f2fs_summary *sum_entry; 2357 block_t addr; 2358 int i, idx, last_offset, nrpages; 2359 2360 /* scan the node segment */ 2361 last_offset = sbi->blocks_per_seg; 2362 addr = START_BLOCK(sbi, segno); 2363 sum_entry = &sum->entries[0]; 2364 2365 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2366 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2367 2368 /* readahead node pages */ 2369 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2370 2371 for (idx = addr; idx < addr + nrpages; idx++) { 2372 struct page *page = get_tmp_page(sbi, idx); 2373 2374 rn = F2FS_NODE(page); 2375 sum_entry->nid = rn->footer.nid; 2376 sum_entry->version = 0; 2377 sum_entry->ofs_in_node = 0; 2378 sum_entry++; 2379 f2fs_put_page(page, 1); 2380 } 2381 2382 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2383 addr + nrpages); 2384 } 2385 } 2386 2387 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2388 { 2389 struct f2fs_nm_info *nm_i = NM_I(sbi); 2390 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2391 struct f2fs_journal *journal = curseg->journal; 2392 int i; 2393 2394 down_write(&curseg->journal_rwsem); 2395 for (i = 0; i < nats_in_cursum(journal); i++) { 2396 struct nat_entry *ne; 2397 struct f2fs_nat_entry raw_ne; 2398 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2399 2400 raw_ne = nat_in_journal(journal, i); 2401 2402 ne = __lookup_nat_cache(nm_i, nid); 2403 if (!ne) { 2404 ne = __alloc_nat_entry(nid, true); 2405 __init_nat_entry(nm_i, ne, &raw_ne, true); 2406 } 2407 2408 /* 2409 * if a free nat in journal has not been used after last 2410 * checkpoint, we should remove it from available nids, 2411 * since later we will add it again. 2412 */ 2413 if (!get_nat_flag(ne, IS_DIRTY) && 2414 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2415 spin_lock(&nm_i->nid_list_lock); 2416 nm_i->available_nids--; 2417 spin_unlock(&nm_i->nid_list_lock); 2418 } 2419 2420 __set_nat_cache_dirty(nm_i, ne); 2421 } 2422 update_nats_in_cursum(journal, -i); 2423 up_write(&curseg->journal_rwsem); 2424 } 2425 2426 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2427 struct list_head *head, int max) 2428 { 2429 struct nat_entry_set *cur; 2430 2431 if (nes->entry_cnt >= max) 2432 goto add_out; 2433 2434 list_for_each_entry(cur, head, set_list) { 2435 if (cur->entry_cnt >= nes->entry_cnt) { 2436 list_add(&nes->set_list, cur->set_list.prev); 2437 return; 2438 } 2439 } 2440 add_out: 2441 list_add_tail(&nes->set_list, head); 2442 } 2443 2444 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2445 struct page *page) 2446 { 2447 struct f2fs_nm_info *nm_i = NM_I(sbi); 2448 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2449 struct f2fs_nat_block *nat_blk = page_address(page); 2450 int valid = 0; 2451 int i = 0; 2452 2453 if (!enabled_nat_bits(sbi, NULL)) 2454 return; 2455 2456 if (nat_index == 0) { 2457 valid = 1; 2458 i = 1; 2459 } 2460 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2461 if (nat_blk->entries[i].block_addr != NULL_ADDR) 2462 valid++; 2463 } 2464 if (valid == 0) { 2465 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2466 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2467 return; 2468 } 2469 2470 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2471 if (valid == NAT_ENTRY_PER_BLOCK) 2472 __set_bit_le(nat_index, nm_i->full_nat_bits); 2473 else 2474 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2475 } 2476 2477 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2478 struct nat_entry_set *set, struct cp_control *cpc) 2479 { 2480 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2481 struct f2fs_journal *journal = curseg->journal; 2482 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2483 bool to_journal = true; 2484 struct f2fs_nat_block *nat_blk; 2485 struct nat_entry *ne, *cur; 2486 struct page *page = NULL; 2487 2488 /* 2489 * there are two steps to flush nat entries: 2490 * #1, flush nat entries to journal in current hot data summary block. 2491 * #2, flush nat entries to nat page. 2492 */ 2493 if (enabled_nat_bits(sbi, cpc) || 2494 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2495 to_journal = false; 2496 2497 if (to_journal) { 2498 down_write(&curseg->journal_rwsem); 2499 } else { 2500 page = get_next_nat_page(sbi, start_nid); 2501 nat_blk = page_address(page); 2502 f2fs_bug_on(sbi, !nat_blk); 2503 } 2504 2505 /* flush dirty nats in nat entry set */ 2506 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2507 struct f2fs_nat_entry *raw_ne; 2508 nid_t nid = nat_get_nid(ne); 2509 int offset; 2510 2511 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2512 2513 if (to_journal) { 2514 offset = lookup_journal_in_cursum(journal, 2515 NAT_JOURNAL, nid, 1); 2516 f2fs_bug_on(sbi, offset < 0); 2517 raw_ne = &nat_in_journal(journal, offset); 2518 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2519 } else { 2520 raw_ne = &nat_blk->entries[nid - start_nid]; 2521 } 2522 raw_nat_from_node_info(raw_ne, &ne->ni); 2523 nat_reset_flag(ne); 2524 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2525 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2526 add_free_nid(sbi, nid, false, true); 2527 } else { 2528 spin_lock(&NM_I(sbi)->nid_list_lock); 2529 update_free_nid_bitmap(sbi, nid, false, false); 2530 spin_unlock(&NM_I(sbi)->nid_list_lock); 2531 } 2532 } 2533 2534 if (to_journal) { 2535 up_write(&curseg->journal_rwsem); 2536 } else { 2537 __update_nat_bits(sbi, start_nid, page); 2538 f2fs_put_page(page, 1); 2539 } 2540 2541 /* Allow dirty nats by node block allocation in write_begin */ 2542 if (!set->entry_cnt) { 2543 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2544 kmem_cache_free(nat_entry_set_slab, set); 2545 } 2546 } 2547 2548 /* 2549 * This function is called during the checkpointing process. 2550 */ 2551 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2552 { 2553 struct f2fs_nm_info *nm_i = NM_I(sbi); 2554 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2555 struct f2fs_journal *journal = curseg->journal; 2556 struct nat_entry_set *setvec[SETVEC_SIZE]; 2557 struct nat_entry_set *set, *tmp; 2558 unsigned int found; 2559 nid_t set_idx = 0; 2560 LIST_HEAD(sets); 2561 2562 if (!nm_i->dirty_nat_cnt) 2563 return; 2564 2565 down_write(&nm_i->nat_tree_lock); 2566 2567 /* 2568 * if there are no enough space in journal to store dirty nat 2569 * entries, remove all entries from journal and merge them 2570 * into nat entry set. 2571 */ 2572 if (enabled_nat_bits(sbi, cpc) || 2573 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2574 remove_nats_in_journal(sbi); 2575 2576 while ((found = __gang_lookup_nat_set(nm_i, 2577 set_idx, SETVEC_SIZE, setvec))) { 2578 unsigned idx; 2579 set_idx = setvec[found - 1]->set + 1; 2580 for (idx = 0; idx < found; idx++) 2581 __adjust_nat_entry_set(setvec[idx], &sets, 2582 MAX_NAT_JENTRIES(journal)); 2583 } 2584 2585 /* flush dirty nats in nat entry set */ 2586 list_for_each_entry_safe(set, tmp, &sets, set_list) 2587 __flush_nat_entry_set(sbi, set, cpc); 2588 2589 up_write(&nm_i->nat_tree_lock); 2590 /* Allow dirty nats by node block allocation in write_begin */ 2591 } 2592 2593 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2594 { 2595 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2596 struct f2fs_nm_info *nm_i = NM_I(sbi); 2597 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2598 unsigned int i; 2599 __u64 cp_ver = cur_cp_version(ckpt); 2600 block_t nat_bits_addr; 2601 2602 if (!enabled_nat_bits(sbi, NULL)) 2603 return 0; 2604 2605 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 2606 nm_i->nat_bits = f2fs_kzalloc(sbi, 2607 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 2608 if (!nm_i->nat_bits) 2609 return -ENOMEM; 2610 2611 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2612 nm_i->nat_bits_blocks; 2613 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2614 struct page *page = get_meta_page(sbi, nat_bits_addr++); 2615 2616 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2617 page_address(page), F2FS_BLKSIZE); 2618 f2fs_put_page(page, 1); 2619 } 2620 2621 cp_ver |= (cur_cp_crc(ckpt) << 32); 2622 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2623 disable_nat_bits(sbi, true); 2624 return 0; 2625 } 2626 2627 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2628 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2629 2630 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2631 return 0; 2632 } 2633 2634 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2635 { 2636 struct f2fs_nm_info *nm_i = NM_I(sbi); 2637 unsigned int i = 0; 2638 nid_t nid, last_nid; 2639 2640 if (!enabled_nat_bits(sbi, NULL)) 2641 return; 2642 2643 for (i = 0; i < nm_i->nat_blocks; i++) { 2644 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2645 if (i >= nm_i->nat_blocks) 2646 break; 2647 2648 __set_bit_le(i, nm_i->nat_block_bitmap); 2649 2650 nid = i * NAT_ENTRY_PER_BLOCK; 2651 last_nid = nid + NAT_ENTRY_PER_BLOCK; 2652 2653 spin_lock(&NM_I(sbi)->nid_list_lock); 2654 for (; nid < last_nid; nid++) 2655 update_free_nid_bitmap(sbi, nid, true, true); 2656 spin_unlock(&NM_I(sbi)->nid_list_lock); 2657 } 2658 2659 for (i = 0; i < nm_i->nat_blocks; i++) { 2660 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2661 if (i >= nm_i->nat_blocks) 2662 break; 2663 2664 __set_bit_le(i, nm_i->nat_block_bitmap); 2665 } 2666 } 2667 2668 static int init_node_manager(struct f2fs_sb_info *sbi) 2669 { 2670 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2671 struct f2fs_nm_info *nm_i = NM_I(sbi); 2672 unsigned char *version_bitmap; 2673 unsigned int nat_segs; 2674 int err; 2675 2676 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2677 2678 /* segment_count_nat includes pair segment so divide to 2. */ 2679 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2680 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2681 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2682 2683 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2684 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2685 sbi->nquota_files - F2FS_RESERVED_NODE_NUM; 2686 nm_i->nid_cnt[FREE_NID] = 0; 2687 nm_i->nid_cnt[PREALLOC_NID] = 0; 2688 nm_i->nat_cnt = 0; 2689 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2690 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2691 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2692 2693 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2694 INIT_LIST_HEAD(&nm_i->free_nid_list); 2695 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2696 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2697 INIT_LIST_HEAD(&nm_i->nat_entries); 2698 2699 mutex_init(&nm_i->build_lock); 2700 spin_lock_init(&nm_i->nid_list_lock); 2701 init_rwsem(&nm_i->nat_tree_lock); 2702 2703 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2704 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2705 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2706 if (!version_bitmap) 2707 return -EFAULT; 2708 2709 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2710 GFP_KERNEL); 2711 if (!nm_i->nat_bitmap) 2712 return -ENOMEM; 2713 2714 err = __get_nat_bitmaps(sbi); 2715 if (err) 2716 return err; 2717 2718 #ifdef CONFIG_F2FS_CHECK_FS 2719 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2720 GFP_KERNEL); 2721 if (!nm_i->nat_bitmap_mir) 2722 return -ENOMEM; 2723 #endif 2724 2725 return 0; 2726 } 2727 2728 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2729 { 2730 struct f2fs_nm_info *nm_i = NM_I(sbi); 2731 int i; 2732 2733 nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks * 2734 sizeof(unsigned char *), GFP_KERNEL); 2735 if (!nm_i->free_nid_bitmap) 2736 return -ENOMEM; 2737 2738 for (i = 0; i < nm_i->nat_blocks; i++) { 2739 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 2740 NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL); 2741 if (!nm_i->free_nid_bitmap) 2742 return -ENOMEM; 2743 } 2744 2745 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 2746 GFP_KERNEL); 2747 if (!nm_i->nat_block_bitmap) 2748 return -ENOMEM; 2749 2750 nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks * 2751 sizeof(unsigned short), GFP_KERNEL); 2752 if (!nm_i->free_nid_count) 2753 return -ENOMEM; 2754 return 0; 2755 } 2756 2757 int build_node_manager(struct f2fs_sb_info *sbi) 2758 { 2759 int err; 2760 2761 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 2762 GFP_KERNEL); 2763 if (!sbi->nm_info) 2764 return -ENOMEM; 2765 2766 err = init_node_manager(sbi); 2767 if (err) 2768 return err; 2769 2770 err = init_free_nid_cache(sbi); 2771 if (err) 2772 return err; 2773 2774 /* load free nid status from nat_bits table */ 2775 load_free_nid_bitmap(sbi); 2776 2777 build_free_nids(sbi, true, true); 2778 return 0; 2779 } 2780 2781 void destroy_node_manager(struct f2fs_sb_info *sbi) 2782 { 2783 struct f2fs_nm_info *nm_i = NM_I(sbi); 2784 struct free_nid *i, *next_i; 2785 struct nat_entry *natvec[NATVEC_SIZE]; 2786 struct nat_entry_set *setvec[SETVEC_SIZE]; 2787 nid_t nid = 0; 2788 unsigned int found; 2789 2790 if (!nm_i) 2791 return; 2792 2793 /* destroy free nid list */ 2794 spin_lock(&nm_i->nid_list_lock); 2795 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2796 __remove_free_nid(sbi, i, FREE_NID); 2797 spin_unlock(&nm_i->nid_list_lock); 2798 kmem_cache_free(free_nid_slab, i); 2799 spin_lock(&nm_i->nid_list_lock); 2800 } 2801 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 2802 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 2803 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 2804 spin_unlock(&nm_i->nid_list_lock); 2805 2806 /* destroy nat cache */ 2807 down_write(&nm_i->nat_tree_lock); 2808 while ((found = __gang_lookup_nat_cache(nm_i, 2809 nid, NATVEC_SIZE, natvec))) { 2810 unsigned idx; 2811 2812 nid = nat_get_nid(natvec[found - 1]) + 1; 2813 for (idx = 0; idx < found; idx++) 2814 __del_from_nat_cache(nm_i, natvec[idx]); 2815 } 2816 f2fs_bug_on(sbi, nm_i->nat_cnt); 2817 2818 /* destroy nat set cache */ 2819 nid = 0; 2820 while ((found = __gang_lookup_nat_set(nm_i, 2821 nid, SETVEC_SIZE, setvec))) { 2822 unsigned idx; 2823 2824 nid = setvec[found - 1]->set + 1; 2825 for (idx = 0; idx < found; idx++) { 2826 /* entry_cnt is not zero, when cp_error was occurred */ 2827 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2828 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2829 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2830 } 2831 } 2832 up_write(&nm_i->nat_tree_lock); 2833 2834 kvfree(nm_i->nat_block_bitmap); 2835 if (nm_i->free_nid_bitmap) { 2836 int i; 2837 2838 for (i = 0; i < nm_i->nat_blocks; i++) 2839 kvfree(nm_i->free_nid_bitmap[i]); 2840 kfree(nm_i->free_nid_bitmap); 2841 } 2842 kvfree(nm_i->free_nid_count); 2843 2844 kfree(nm_i->nat_bitmap); 2845 kfree(nm_i->nat_bits); 2846 #ifdef CONFIG_F2FS_CHECK_FS 2847 kfree(nm_i->nat_bitmap_mir); 2848 #endif 2849 sbi->nm_info = NULL; 2850 kfree(nm_i); 2851 } 2852 2853 int __init create_node_manager_caches(void) 2854 { 2855 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2856 sizeof(struct nat_entry)); 2857 if (!nat_entry_slab) 2858 goto fail; 2859 2860 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2861 sizeof(struct free_nid)); 2862 if (!free_nid_slab) 2863 goto destroy_nat_entry; 2864 2865 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2866 sizeof(struct nat_entry_set)); 2867 if (!nat_entry_set_slab) 2868 goto destroy_free_nid; 2869 return 0; 2870 2871 destroy_free_nid: 2872 kmem_cache_destroy(free_nid_slab); 2873 destroy_nat_entry: 2874 kmem_cache_destroy(nat_entry_slab); 2875 fail: 2876 return -ENOMEM; 2877 } 2878 2879 void destroy_node_manager_caches(void) 2880 { 2881 kmem_cache_destroy(nat_entry_set_slab); 2882 kmem_cache_destroy(free_nid_slab); 2883 kmem_cache_destroy(nat_entry_slab); 2884 } 2885