xref: /openbmc/linux/fs/f2fs/node.c (revision 4bce6fce)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 							PAGE_CACHE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_CACHE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 	} else if (type == DIRTY_DENTS) {
56 		if (sbi->sb->s_bdi->dirty_exceeded)
57 			return false;
58 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 	} else if (type == INO_ENTRIES) {
61 		int i;
62 
63 		for (i = 0; i <= UPDATE_INO; i++)
64 			mem_size += (sbi->im[i].ino_num *
65 				sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 	} else if (type == EXTENT_CACHE) {
68 		mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
69 				atomic_read(&sbi->total_ext_node) *
70 				sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
71 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
72 	} else {
73 		if (sbi->sb->s_bdi->dirty_exceeded)
74 			return false;
75 	}
76 	return res;
77 }
78 
79 static void clear_node_page_dirty(struct page *page)
80 {
81 	struct address_space *mapping = page->mapping;
82 	unsigned int long flags;
83 
84 	if (PageDirty(page)) {
85 		spin_lock_irqsave(&mapping->tree_lock, flags);
86 		radix_tree_tag_clear(&mapping->page_tree,
87 				page_index(page),
88 				PAGECACHE_TAG_DIRTY);
89 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
90 
91 		clear_page_dirty_for_io(page);
92 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
93 	}
94 	ClearPageUptodate(page);
95 }
96 
97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
98 {
99 	pgoff_t index = current_nat_addr(sbi, nid);
100 	return get_meta_page(sbi, index);
101 }
102 
103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
104 {
105 	struct page *src_page;
106 	struct page *dst_page;
107 	pgoff_t src_off;
108 	pgoff_t dst_off;
109 	void *src_addr;
110 	void *dst_addr;
111 	struct f2fs_nm_info *nm_i = NM_I(sbi);
112 
113 	src_off = current_nat_addr(sbi, nid);
114 	dst_off = next_nat_addr(sbi, src_off);
115 
116 	/* get current nat block page with lock */
117 	src_page = get_meta_page(sbi, src_off);
118 	dst_page = grab_meta_page(sbi, dst_off);
119 	f2fs_bug_on(sbi, PageDirty(src_page));
120 
121 	src_addr = page_address(src_page);
122 	dst_addr = page_address(dst_page);
123 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
124 	set_page_dirty(dst_page);
125 	f2fs_put_page(src_page, 1);
126 
127 	set_to_next_nat(nm_i, nid);
128 
129 	return dst_page;
130 }
131 
132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
133 {
134 	return radix_tree_lookup(&nm_i->nat_root, n);
135 }
136 
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
138 		nid_t start, unsigned int nr, struct nat_entry **ep)
139 {
140 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
141 }
142 
143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
144 {
145 	list_del(&e->list);
146 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
147 	nm_i->nat_cnt--;
148 	kmem_cache_free(nat_entry_slab, e);
149 }
150 
151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
152 						struct nat_entry *ne)
153 {
154 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
155 	struct nat_entry_set *head;
156 
157 	if (get_nat_flag(ne, IS_DIRTY))
158 		return;
159 
160 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
161 	if (!head) {
162 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
163 
164 		INIT_LIST_HEAD(&head->entry_list);
165 		INIT_LIST_HEAD(&head->set_list);
166 		head->set = set;
167 		head->entry_cnt = 0;
168 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
169 	}
170 	list_move_tail(&ne->list, &head->entry_list);
171 	nm_i->dirty_nat_cnt++;
172 	head->entry_cnt++;
173 	set_nat_flag(ne, IS_DIRTY, true);
174 }
175 
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
177 						struct nat_entry *ne)
178 {
179 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
180 	struct nat_entry_set *head;
181 
182 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
183 	if (head) {
184 		list_move_tail(&ne->list, &nm_i->nat_entries);
185 		set_nat_flag(ne, IS_DIRTY, false);
186 		head->entry_cnt--;
187 		nm_i->dirty_nat_cnt--;
188 	}
189 }
190 
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
192 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
193 {
194 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
195 							start, nr);
196 }
197 
198 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
199 {
200 	struct f2fs_nm_info *nm_i = NM_I(sbi);
201 	struct nat_entry *e;
202 	bool is_cp = true;
203 
204 	down_read(&nm_i->nat_tree_lock);
205 	e = __lookup_nat_cache(nm_i, nid);
206 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
207 		is_cp = false;
208 	up_read(&nm_i->nat_tree_lock);
209 	return is_cp;
210 }
211 
212 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
213 {
214 	struct f2fs_nm_info *nm_i = NM_I(sbi);
215 	struct nat_entry *e;
216 	bool fsynced = false;
217 
218 	down_read(&nm_i->nat_tree_lock);
219 	e = __lookup_nat_cache(nm_i, ino);
220 	if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
221 		fsynced = true;
222 	up_read(&nm_i->nat_tree_lock);
223 	return fsynced;
224 }
225 
226 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
227 {
228 	struct f2fs_nm_info *nm_i = NM_I(sbi);
229 	struct nat_entry *e;
230 	bool need_update = true;
231 
232 	down_read(&nm_i->nat_tree_lock);
233 	e = __lookup_nat_cache(nm_i, ino);
234 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
235 			(get_nat_flag(e, IS_CHECKPOINTED) ||
236 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
237 		need_update = false;
238 	up_read(&nm_i->nat_tree_lock);
239 	return need_update;
240 }
241 
242 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
243 {
244 	struct nat_entry *new;
245 
246 	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
247 	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
248 	memset(new, 0, sizeof(struct nat_entry));
249 	nat_set_nid(new, nid);
250 	nat_reset_flag(new);
251 	list_add_tail(&new->list, &nm_i->nat_entries);
252 	nm_i->nat_cnt++;
253 	return new;
254 }
255 
256 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
257 						struct f2fs_nat_entry *ne)
258 {
259 	struct nat_entry *e;
260 
261 	down_write(&nm_i->nat_tree_lock);
262 	e = __lookup_nat_cache(nm_i, nid);
263 	if (!e) {
264 		e = grab_nat_entry(nm_i, nid);
265 		node_info_from_raw_nat(&e->ni, ne);
266 	}
267 	up_write(&nm_i->nat_tree_lock);
268 }
269 
270 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
271 			block_t new_blkaddr, bool fsync_done)
272 {
273 	struct f2fs_nm_info *nm_i = NM_I(sbi);
274 	struct nat_entry *e;
275 
276 	down_write(&nm_i->nat_tree_lock);
277 	e = __lookup_nat_cache(nm_i, ni->nid);
278 	if (!e) {
279 		e = grab_nat_entry(nm_i, ni->nid);
280 		copy_node_info(&e->ni, ni);
281 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
282 	} else if (new_blkaddr == NEW_ADDR) {
283 		/*
284 		 * when nid is reallocated,
285 		 * previous nat entry can be remained in nat cache.
286 		 * So, reinitialize it with new information.
287 		 */
288 		copy_node_info(&e->ni, ni);
289 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
290 	}
291 
292 	/* sanity check */
293 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
294 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
295 			new_blkaddr == NULL_ADDR);
296 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
297 			new_blkaddr == NEW_ADDR);
298 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
299 			nat_get_blkaddr(e) != NULL_ADDR &&
300 			new_blkaddr == NEW_ADDR);
301 
302 	/* increment version no as node is removed */
303 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
304 		unsigned char version = nat_get_version(e);
305 		nat_set_version(e, inc_node_version(version));
306 	}
307 
308 	/* change address */
309 	nat_set_blkaddr(e, new_blkaddr);
310 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
311 		set_nat_flag(e, IS_CHECKPOINTED, false);
312 	__set_nat_cache_dirty(nm_i, e);
313 
314 	/* update fsync_mark if its inode nat entry is still alive */
315 	e = __lookup_nat_cache(nm_i, ni->ino);
316 	if (e) {
317 		if (fsync_done && ni->nid == ni->ino)
318 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
319 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
320 	}
321 	up_write(&nm_i->nat_tree_lock);
322 }
323 
324 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
325 {
326 	struct f2fs_nm_info *nm_i = NM_I(sbi);
327 
328 	if (available_free_memory(sbi, NAT_ENTRIES))
329 		return 0;
330 
331 	down_write(&nm_i->nat_tree_lock);
332 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
333 		struct nat_entry *ne;
334 		ne = list_first_entry(&nm_i->nat_entries,
335 					struct nat_entry, list);
336 		__del_from_nat_cache(nm_i, ne);
337 		nr_shrink--;
338 	}
339 	up_write(&nm_i->nat_tree_lock);
340 	return nr_shrink;
341 }
342 
343 /*
344  * This function always returns success
345  */
346 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
347 {
348 	struct f2fs_nm_info *nm_i = NM_I(sbi);
349 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
350 	struct f2fs_summary_block *sum = curseg->sum_blk;
351 	nid_t start_nid = START_NID(nid);
352 	struct f2fs_nat_block *nat_blk;
353 	struct page *page = NULL;
354 	struct f2fs_nat_entry ne;
355 	struct nat_entry *e;
356 	int i;
357 
358 	ni->nid = nid;
359 
360 	/* Check nat cache */
361 	down_read(&nm_i->nat_tree_lock);
362 	e = __lookup_nat_cache(nm_i, nid);
363 	if (e) {
364 		ni->ino = nat_get_ino(e);
365 		ni->blk_addr = nat_get_blkaddr(e);
366 		ni->version = nat_get_version(e);
367 	}
368 	up_read(&nm_i->nat_tree_lock);
369 	if (e)
370 		return;
371 
372 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
373 
374 	/* Check current segment summary */
375 	mutex_lock(&curseg->curseg_mutex);
376 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
377 	if (i >= 0) {
378 		ne = nat_in_journal(sum, i);
379 		node_info_from_raw_nat(ni, &ne);
380 	}
381 	mutex_unlock(&curseg->curseg_mutex);
382 	if (i >= 0)
383 		goto cache;
384 
385 	/* Fill node_info from nat page */
386 	page = get_current_nat_page(sbi, start_nid);
387 	nat_blk = (struct f2fs_nat_block *)page_address(page);
388 	ne = nat_blk->entries[nid - start_nid];
389 	node_info_from_raw_nat(ni, &ne);
390 	f2fs_put_page(page, 1);
391 cache:
392 	/* cache nat entry */
393 	cache_nat_entry(NM_I(sbi), nid, &ne);
394 }
395 
396 /*
397  * The maximum depth is four.
398  * Offset[0] will have raw inode offset.
399  */
400 static int get_node_path(struct f2fs_inode_info *fi, long block,
401 				int offset[4], unsigned int noffset[4])
402 {
403 	const long direct_index = ADDRS_PER_INODE(fi);
404 	const long direct_blks = ADDRS_PER_BLOCK;
405 	const long dptrs_per_blk = NIDS_PER_BLOCK;
406 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
407 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
408 	int n = 0;
409 	int level = 0;
410 
411 	noffset[0] = 0;
412 
413 	if (block < direct_index) {
414 		offset[n] = block;
415 		goto got;
416 	}
417 	block -= direct_index;
418 	if (block < direct_blks) {
419 		offset[n++] = NODE_DIR1_BLOCK;
420 		noffset[n] = 1;
421 		offset[n] = block;
422 		level = 1;
423 		goto got;
424 	}
425 	block -= direct_blks;
426 	if (block < direct_blks) {
427 		offset[n++] = NODE_DIR2_BLOCK;
428 		noffset[n] = 2;
429 		offset[n] = block;
430 		level = 1;
431 		goto got;
432 	}
433 	block -= direct_blks;
434 	if (block < indirect_blks) {
435 		offset[n++] = NODE_IND1_BLOCK;
436 		noffset[n] = 3;
437 		offset[n++] = block / direct_blks;
438 		noffset[n] = 4 + offset[n - 1];
439 		offset[n] = block % direct_blks;
440 		level = 2;
441 		goto got;
442 	}
443 	block -= indirect_blks;
444 	if (block < indirect_blks) {
445 		offset[n++] = NODE_IND2_BLOCK;
446 		noffset[n] = 4 + dptrs_per_blk;
447 		offset[n++] = block / direct_blks;
448 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
449 		offset[n] = block % direct_blks;
450 		level = 2;
451 		goto got;
452 	}
453 	block -= indirect_blks;
454 	if (block < dindirect_blks) {
455 		offset[n++] = NODE_DIND_BLOCK;
456 		noffset[n] = 5 + (dptrs_per_blk * 2);
457 		offset[n++] = block / indirect_blks;
458 		noffset[n] = 6 + (dptrs_per_blk * 2) +
459 			      offset[n - 1] * (dptrs_per_blk + 1);
460 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
461 		noffset[n] = 7 + (dptrs_per_blk * 2) +
462 			      offset[n - 2] * (dptrs_per_blk + 1) +
463 			      offset[n - 1];
464 		offset[n] = block % direct_blks;
465 		level = 3;
466 		goto got;
467 	} else {
468 		BUG();
469 	}
470 got:
471 	return level;
472 }
473 
474 /*
475  * Caller should call f2fs_put_dnode(dn).
476  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
477  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
478  * In the case of RDONLY_NODE, we don't need to care about mutex.
479  */
480 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
481 {
482 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
483 	struct page *npage[4];
484 	struct page *parent = NULL;
485 	int offset[4];
486 	unsigned int noffset[4];
487 	nid_t nids[4];
488 	int level, i;
489 	int err = 0;
490 
491 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
492 
493 	nids[0] = dn->inode->i_ino;
494 	npage[0] = dn->inode_page;
495 
496 	if (!npage[0]) {
497 		npage[0] = get_node_page(sbi, nids[0]);
498 		if (IS_ERR(npage[0]))
499 			return PTR_ERR(npage[0]);
500 	}
501 
502 	/* if inline_data is set, should not report any block indices */
503 	if (f2fs_has_inline_data(dn->inode) && index) {
504 		err = -ENOENT;
505 		f2fs_put_page(npage[0], 1);
506 		goto release_out;
507 	}
508 
509 	parent = npage[0];
510 	if (level != 0)
511 		nids[1] = get_nid(parent, offset[0], true);
512 	dn->inode_page = npage[0];
513 	dn->inode_page_locked = true;
514 
515 	/* get indirect or direct nodes */
516 	for (i = 1; i <= level; i++) {
517 		bool done = false;
518 
519 		if (!nids[i] && mode == ALLOC_NODE) {
520 			/* alloc new node */
521 			if (!alloc_nid(sbi, &(nids[i]))) {
522 				err = -ENOSPC;
523 				goto release_pages;
524 			}
525 
526 			dn->nid = nids[i];
527 			npage[i] = new_node_page(dn, noffset[i], NULL);
528 			if (IS_ERR(npage[i])) {
529 				alloc_nid_failed(sbi, nids[i]);
530 				err = PTR_ERR(npage[i]);
531 				goto release_pages;
532 			}
533 
534 			set_nid(parent, offset[i - 1], nids[i], i == 1);
535 			alloc_nid_done(sbi, nids[i]);
536 			done = true;
537 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
538 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
539 			if (IS_ERR(npage[i])) {
540 				err = PTR_ERR(npage[i]);
541 				goto release_pages;
542 			}
543 			done = true;
544 		}
545 		if (i == 1) {
546 			dn->inode_page_locked = false;
547 			unlock_page(parent);
548 		} else {
549 			f2fs_put_page(parent, 1);
550 		}
551 
552 		if (!done) {
553 			npage[i] = get_node_page(sbi, nids[i]);
554 			if (IS_ERR(npage[i])) {
555 				err = PTR_ERR(npage[i]);
556 				f2fs_put_page(npage[0], 0);
557 				goto release_out;
558 			}
559 		}
560 		if (i < level) {
561 			parent = npage[i];
562 			nids[i + 1] = get_nid(parent, offset[i], false);
563 		}
564 	}
565 	dn->nid = nids[level];
566 	dn->ofs_in_node = offset[level];
567 	dn->node_page = npage[level];
568 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
569 	return 0;
570 
571 release_pages:
572 	f2fs_put_page(parent, 1);
573 	if (i > 1)
574 		f2fs_put_page(npage[0], 0);
575 release_out:
576 	dn->inode_page = NULL;
577 	dn->node_page = NULL;
578 	return err;
579 }
580 
581 static void truncate_node(struct dnode_of_data *dn)
582 {
583 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
584 	struct node_info ni;
585 
586 	get_node_info(sbi, dn->nid, &ni);
587 	if (dn->inode->i_blocks == 0) {
588 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
589 		goto invalidate;
590 	}
591 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
592 
593 	/* Deallocate node address */
594 	invalidate_blocks(sbi, ni.blk_addr);
595 	dec_valid_node_count(sbi, dn->inode);
596 	set_node_addr(sbi, &ni, NULL_ADDR, false);
597 
598 	if (dn->nid == dn->inode->i_ino) {
599 		remove_orphan_inode(sbi, dn->nid);
600 		dec_valid_inode_count(sbi);
601 	} else {
602 		sync_inode_page(dn);
603 	}
604 invalidate:
605 	clear_node_page_dirty(dn->node_page);
606 	set_sbi_flag(sbi, SBI_IS_DIRTY);
607 
608 	f2fs_put_page(dn->node_page, 1);
609 
610 	invalidate_mapping_pages(NODE_MAPPING(sbi),
611 			dn->node_page->index, dn->node_page->index);
612 
613 	dn->node_page = NULL;
614 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
615 }
616 
617 static int truncate_dnode(struct dnode_of_data *dn)
618 {
619 	struct page *page;
620 
621 	if (dn->nid == 0)
622 		return 1;
623 
624 	/* get direct node */
625 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
626 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
627 		return 1;
628 	else if (IS_ERR(page))
629 		return PTR_ERR(page);
630 
631 	/* Make dnode_of_data for parameter */
632 	dn->node_page = page;
633 	dn->ofs_in_node = 0;
634 	truncate_data_blocks(dn);
635 	truncate_node(dn);
636 	return 1;
637 }
638 
639 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
640 						int ofs, int depth)
641 {
642 	struct dnode_of_data rdn = *dn;
643 	struct page *page;
644 	struct f2fs_node *rn;
645 	nid_t child_nid;
646 	unsigned int child_nofs;
647 	int freed = 0;
648 	int i, ret;
649 
650 	if (dn->nid == 0)
651 		return NIDS_PER_BLOCK + 1;
652 
653 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
654 
655 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
656 	if (IS_ERR(page)) {
657 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
658 		return PTR_ERR(page);
659 	}
660 
661 	rn = F2FS_NODE(page);
662 	if (depth < 3) {
663 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
664 			child_nid = le32_to_cpu(rn->in.nid[i]);
665 			if (child_nid == 0)
666 				continue;
667 			rdn.nid = child_nid;
668 			ret = truncate_dnode(&rdn);
669 			if (ret < 0)
670 				goto out_err;
671 			set_nid(page, i, 0, false);
672 		}
673 	} else {
674 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
675 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
676 			child_nid = le32_to_cpu(rn->in.nid[i]);
677 			if (child_nid == 0) {
678 				child_nofs += NIDS_PER_BLOCK + 1;
679 				continue;
680 			}
681 			rdn.nid = child_nid;
682 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
683 			if (ret == (NIDS_PER_BLOCK + 1)) {
684 				set_nid(page, i, 0, false);
685 				child_nofs += ret;
686 			} else if (ret < 0 && ret != -ENOENT) {
687 				goto out_err;
688 			}
689 		}
690 		freed = child_nofs;
691 	}
692 
693 	if (!ofs) {
694 		/* remove current indirect node */
695 		dn->node_page = page;
696 		truncate_node(dn);
697 		freed++;
698 	} else {
699 		f2fs_put_page(page, 1);
700 	}
701 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
702 	return freed;
703 
704 out_err:
705 	f2fs_put_page(page, 1);
706 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
707 	return ret;
708 }
709 
710 static int truncate_partial_nodes(struct dnode_of_data *dn,
711 			struct f2fs_inode *ri, int *offset, int depth)
712 {
713 	struct page *pages[2];
714 	nid_t nid[3];
715 	nid_t child_nid;
716 	int err = 0;
717 	int i;
718 	int idx = depth - 2;
719 
720 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
721 	if (!nid[0])
722 		return 0;
723 
724 	/* get indirect nodes in the path */
725 	for (i = 0; i < idx + 1; i++) {
726 		/* reference count'll be increased */
727 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
728 		if (IS_ERR(pages[i])) {
729 			err = PTR_ERR(pages[i]);
730 			idx = i - 1;
731 			goto fail;
732 		}
733 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
734 	}
735 
736 	/* free direct nodes linked to a partial indirect node */
737 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
738 		child_nid = get_nid(pages[idx], i, false);
739 		if (!child_nid)
740 			continue;
741 		dn->nid = child_nid;
742 		err = truncate_dnode(dn);
743 		if (err < 0)
744 			goto fail;
745 		set_nid(pages[idx], i, 0, false);
746 	}
747 
748 	if (offset[idx + 1] == 0) {
749 		dn->node_page = pages[idx];
750 		dn->nid = nid[idx];
751 		truncate_node(dn);
752 	} else {
753 		f2fs_put_page(pages[idx], 1);
754 	}
755 	offset[idx]++;
756 	offset[idx + 1] = 0;
757 	idx--;
758 fail:
759 	for (i = idx; i >= 0; i--)
760 		f2fs_put_page(pages[i], 1);
761 
762 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
763 
764 	return err;
765 }
766 
767 /*
768  * All the block addresses of data and nodes should be nullified.
769  */
770 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
771 {
772 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
773 	int err = 0, cont = 1;
774 	int level, offset[4], noffset[4];
775 	unsigned int nofs = 0;
776 	struct f2fs_inode *ri;
777 	struct dnode_of_data dn;
778 	struct page *page;
779 
780 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
781 
782 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
783 restart:
784 	page = get_node_page(sbi, inode->i_ino);
785 	if (IS_ERR(page)) {
786 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
787 		return PTR_ERR(page);
788 	}
789 
790 	set_new_dnode(&dn, inode, page, NULL, 0);
791 	unlock_page(page);
792 
793 	ri = F2FS_INODE(page);
794 	switch (level) {
795 	case 0:
796 	case 1:
797 		nofs = noffset[1];
798 		break;
799 	case 2:
800 		nofs = noffset[1];
801 		if (!offset[level - 1])
802 			goto skip_partial;
803 		err = truncate_partial_nodes(&dn, ri, offset, level);
804 		if (err < 0 && err != -ENOENT)
805 			goto fail;
806 		nofs += 1 + NIDS_PER_BLOCK;
807 		break;
808 	case 3:
809 		nofs = 5 + 2 * NIDS_PER_BLOCK;
810 		if (!offset[level - 1])
811 			goto skip_partial;
812 		err = truncate_partial_nodes(&dn, ri, offset, level);
813 		if (err < 0 && err != -ENOENT)
814 			goto fail;
815 		break;
816 	default:
817 		BUG();
818 	}
819 
820 skip_partial:
821 	while (cont) {
822 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
823 		switch (offset[0]) {
824 		case NODE_DIR1_BLOCK:
825 		case NODE_DIR2_BLOCK:
826 			err = truncate_dnode(&dn);
827 			break;
828 
829 		case NODE_IND1_BLOCK:
830 		case NODE_IND2_BLOCK:
831 			err = truncate_nodes(&dn, nofs, offset[1], 2);
832 			break;
833 
834 		case NODE_DIND_BLOCK:
835 			err = truncate_nodes(&dn, nofs, offset[1], 3);
836 			cont = 0;
837 			break;
838 
839 		default:
840 			BUG();
841 		}
842 		if (err < 0 && err != -ENOENT)
843 			goto fail;
844 		if (offset[1] == 0 &&
845 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
846 			lock_page(page);
847 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
848 				f2fs_put_page(page, 1);
849 				goto restart;
850 			}
851 			f2fs_wait_on_page_writeback(page, NODE);
852 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
853 			set_page_dirty(page);
854 			unlock_page(page);
855 		}
856 		offset[1] = 0;
857 		offset[0]++;
858 		nofs += err;
859 	}
860 fail:
861 	f2fs_put_page(page, 0);
862 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
863 	return err > 0 ? 0 : err;
864 }
865 
866 int truncate_xattr_node(struct inode *inode, struct page *page)
867 {
868 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
869 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
870 	struct dnode_of_data dn;
871 	struct page *npage;
872 
873 	if (!nid)
874 		return 0;
875 
876 	npage = get_node_page(sbi, nid);
877 	if (IS_ERR(npage))
878 		return PTR_ERR(npage);
879 
880 	F2FS_I(inode)->i_xattr_nid = 0;
881 
882 	/* need to do checkpoint during fsync */
883 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
884 
885 	set_new_dnode(&dn, inode, page, npage, nid);
886 
887 	if (page)
888 		dn.inode_page_locked = true;
889 	truncate_node(&dn);
890 	return 0;
891 }
892 
893 /*
894  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
895  * f2fs_unlock_op().
896  */
897 void remove_inode_page(struct inode *inode)
898 {
899 	struct dnode_of_data dn;
900 
901 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
902 	if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
903 		return;
904 
905 	if (truncate_xattr_node(inode, dn.inode_page)) {
906 		f2fs_put_dnode(&dn);
907 		return;
908 	}
909 
910 	/* remove potential inline_data blocks */
911 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
912 				S_ISLNK(inode->i_mode))
913 		truncate_data_blocks_range(&dn, 1);
914 
915 	/* 0 is possible, after f2fs_new_inode() has failed */
916 	f2fs_bug_on(F2FS_I_SB(inode),
917 			inode->i_blocks != 0 && inode->i_blocks != 1);
918 
919 	/* will put inode & node pages */
920 	truncate_node(&dn);
921 }
922 
923 struct page *new_inode_page(struct inode *inode)
924 {
925 	struct dnode_of_data dn;
926 
927 	/* allocate inode page for new inode */
928 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
929 
930 	/* caller should f2fs_put_page(page, 1); */
931 	return new_node_page(&dn, 0, NULL);
932 }
933 
934 struct page *new_node_page(struct dnode_of_data *dn,
935 				unsigned int ofs, struct page *ipage)
936 {
937 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
938 	struct node_info old_ni, new_ni;
939 	struct page *page;
940 	int err;
941 
942 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
943 		return ERR_PTR(-EPERM);
944 
945 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
946 	if (!page)
947 		return ERR_PTR(-ENOMEM);
948 
949 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
950 		err = -ENOSPC;
951 		goto fail;
952 	}
953 
954 	get_node_info(sbi, dn->nid, &old_ni);
955 
956 	/* Reinitialize old_ni with new node page */
957 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
958 	new_ni = old_ni;
959 	new_ni.ino = dn->inode->i_ino;
960 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
961 
962 	f2fs_wait_on_page_writeback(page, NODE);
963 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
964 	set_cold_node(dn->inode, page);
965 	SetPageUptodate(page);
966 	set_page_dirty(page);
967 
968 	if (f2fs_has_xattr_block(ofs))
969 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
970 
971 	dn->node_page = page;
972 	if (ipage)
973 		update_inode(dn->inode, ipage);
974 	else
975 		sync_inode_page(dn);
976 	if (ofs == 0)
977 		inc_valid_inode_count(sbi);
978 
979 	return page;
980 
981 fail:
982 	clear_node_page_dirty(page);
983 	f2fs_put_page(page, 1);
984 	return ERR_PTR(err);
985 }
986 
987 /*
988  * Caller should do after getting the following values.
989  * 0: f2fs_put_page(page, 0)
990  * LOCKED_PAGE: f2fs_put_page(page, 1)
991  * error: nothing
992  */
993 static int read_node_page(struct page *page, int rw)
994 {
995 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
996 	struct node_info ni;
997 	struct f2fs_io_info fio = {
998 		.type = NODE,
999 		.rw = rw,
1000 	};
1001 
1002 	get_node_info(sbi, page->index, &ni);
1003 
1004 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1005 		ClearPageUptodate(page);
1006 		f2fs_put_page(page, 1);
1007 		return -ENOENT;
1008 	}
1009 
1010 	if (PageUptodate(page))
1011 		return LOCKED_PAGE;
1012 
1013 	fio.blk_addr = ni.blk_addr;
1014 	return f2fs_submit_page_bio(sbi, page, &fio);
1015 }
1016 
1017 /*
1018  * Readahead a node page
1019  */
1020 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1021 {
1022 	struct page *apage;
1023 	int err;
1024 
1025 	apage = find_get_page(NODE_MAPPING(sbi), nid);
1026 	if (apage && PageUptodate(apage)) {
1027 		f2fs_put_page(apage, 0);
1028 		return;
1029 	}
1030 	f2fs_put_page(apage, 0);
1031 
1032 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1033 	if (!apage)
1034 		return;
1035 
1036 	err = read_node_page(apage, READA);
1037 	if (err == 0)
1038 		f2fs_put_page(apage, 0);
1039 	else if (err == LOCKED_PAGE)
1040 		f2fs_put_page(apage, 1);
1041 }
1042 
1043 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1044 {
1045 	struct page *page;
1046 	int err;
1047 repeat:
1048 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1049 	if (!page)
1050 		return ERR_PTR(-ENOMEM);
1051 
1052 	err = read_node_page(page, READ_SYNC);
1053 	if (err < 0)
1054 		return ERR_PTR(err);
1055 	else if (err != LOCKED_PAGE)
1056 		lock_page(page);
1057 
1058 	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1059 		ClearPageUptodate(page);
1060 		f2fs_put_page(page, 1);
1061 		return ERR_PTR(-EIO);
1062 	}
1063 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1064 		f2fs_put_page(page, 1);
1065 		goto repeat;
1066 	}
1067 	return page;
1068 }
1069 
1070 /*
1071  * Return a locked page for the desired node page.
1072  * And, readahead MAX_RA_NODE number of node pages.
1073  */
1074 struct page *get_node_page_ra(struct page *parent, int start)
1075 {
1076 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1077 	struct blk_plug plug;
1078 	struct page *page;
1079 	int err, i, end;
1080 	nid_t nid;
1081 
1082 	/* First, try getting the desired direct node. */
1083 	nid = get_nid(parent, start, false);
1084 	if (!nid)
1085 		return ERR_PTR(-ENOENT);
1086 repeat:
1087 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1088 	if (!page)
1089 		return ERR_PTR(-ENOMEM);
1090 
1091 	err = read_node_page(page, READ_SYNC);
1092 	if (err < 0)
1093 		return ERR_PTR(err);
1094 	else if (err == LOCKED_PAGE)
1095 		goto page_hit;
1096 
1097 	blk_start_plug(&plug);
1098 
1099 	/* Then, try readahead for siblings of the desired node */
1100 	end = start + MAX_RA_NODE;
1101 	end = min(end, NIDS_PER_BLOCK);
1102 	for (i = start + 1; i < end; i++) {
1103 		nid = get_nid(parent, i, false);
1104 		if (!nid)
1105 			continue;
1106 		ra_node_page(sbi, nid);
1107 	}
1108 
1109 	blk_finish_plug(&plug);
1110 
1111 	lock_page(page);
1112 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1113 		f2fs_put_page(page, 1);
1114 		goto repeat;
1115 	}
1116 page_hit:
1117 	if (unlikely(!PageUptodate(page))) {
1118 		f2fs_put_page(page, 1);
1119 		return ERR_PTR(-EIO);
1120 	}
1121 	return page;
1122 }
1123 
1124 void sync_inode_page(struct dnode_of_data *dn)
1125 {
1126 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1127 		update_inode(dn->inode, dn->node_page);
1128 	} else if (dn->inode_page) {
1129 		if (!dn->inode_page_locked)
1130 			lock_page(dn->inode_page);
1131 		update_inode(dn->inode, dn->inode_page);
1132 		if (!dn->inode_page_locked)
1133 			unlock_page(dn->inode_page);
1134 	} else {
1135 		update_inode_page(dn->inode);
1136 	}
1137 }
1138 
1139 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1140 					struct writeback_control *wbc)
1141 {
1142 	pgoff_t index, end;
1143 	struct pagevec pvec;
1144 	int step = ino ? 2 : 0;
1145 	int nwritten = 0, wrote = 0;
1146 
1147 	pagevec_init(&pvec, 0);
1148 
1149 next_step:
1150 	index = 0;
1151 	end = LONG_MAX;
1152 
1153 	while (index <= end) {
1154 		int i, nr_pages;
1155 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156 				PAGECACHE_TAG_DIRTY,
1157 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158 		if (nr_pages == 0)
1159 			break;
1160 
1161 		for (i = 0; i < nr_pages; i++) {
1162 			struct page *page = pvec.pages[i];
1163 
1164 			/*
1165 			 * flushing sequence with step:
1166 			 * 0. indirect nodes
1167 			 * 1. dentry dnodes
1168 			 * 2. file dnodes
1169 			 */
1170 			if (step == 0 && IS_DNODE(page))
1171 				continue;
1172 			if (step == 1 && (!IS_DNODE(page) ||
1173 						is_cold_node(page)))
1174 				continue;
1175 			if (step == 2 && (!IS_DNODE(page) ||
1176 						!is_cold_node(page)))
1177 				continue;
1178 
1179 			/*
1180 			 * If an fsync mode,
1181 			 * we should not skip writing node pages.
1182 			 */
1183 			if (ino && ino_of_node(page) == ino)
1184 				lock_page(page);
1185 			else if (!trylock_page(page))
1186 				continue;
1187 
1188 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1189 continue_unlock:
1190 				unlock_page(page);
1191 				continue;
1192 			}
1193 			if (ino && ino_of_node(page) != ino)
1194 				goto continue_unlock;
1195 
1196 			if (!PageDirty(page)) {
1197 				/* someone wrote it for us */
1198 				goto continue_unlock;
1199 			}
1200 
1201 			if (!clear_page_dirty_for_io(page))
1202 				goto continue_unlock;
1203 
1204 			/* called by fsync() */
1205 			if (ino && IS_DNODE(page)) {
1206 				set_fsync_mark(page, 1);
1207 				if (IS_INODE(page)) {
1208 					if (!is_checkpointed_node(sbi, ino) &&
1209 						!has_fsynced_inode(sbi, ino))
1210 						set_dentry_mark(page, 1);
1211 					else
1212 						set_dentry_mark(page, 0);
1213 				}
1214 				nwritten++;
1215 			} else {
1216 				set_fsync_mark(page, 0);
1217 				set_dentry_mark(page, 0);
1218 			}
1219 
1220 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1221 				unlock_page(page);
1222 			else
1223 				wrote++;
1224 
1225 			if (--wbc->nr_to_write == 0)
1226 				break;
1227 		}
1228 		pagevec_release(&pvec);
1229 		cond_resched();
1230 
1231 		if (wbc->nr_to_write == 0) {
1232 			step = 2;
1233 			break;
1234 		}
1235 	}
1236 
1237 	if (step < 2) {
1238 		step++;
1239 		goto next_step;
1240 	}
1241 
1242 	if (wrote)
1243 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1244 	return nwritten;
1245 }
1246 
1247 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1248 {
1249 	pgoff_t index = 0, end = LONG_MAX;
1250 	struct pagevec pvec;
1251 	int ret2 = 0, ret = 0;
1252 
1253 	pagevec_init(&pvec, 0);
1254 
1255 	while (index <= end) {
1256 		int i, nr_pages;
1257 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1258 				PAGECACHE_TAG_WRITEBACK,
1259 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1260 		if (nr_pages == 0)
1261 			break;
1262 
1263 		for (i = 0; i < nr_pages; i++) {
1264 			struct page *page = pvec.pages[i];
1265 
1266 			/* until radix tree lookup accepts end_index */
1267 			if (unlikely(page->index > end))
1268 				continue;
1269 
1270 			if (ino && ino_of_node(page) == ino) {
1271 				f2fs_wait_on_page_writeback(page, NODE);
1272 				if (TestClearPageError(page))
1273 					ret = -EIO;
1274 			}
1275 		}
1276 		pagevec_release(&pvec);
1277 		cond_resched();
1278 	}
1279 
1280 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1281 		ret2 = -ENOSPC;
1282 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1283 		ret2 = -EIO;
1284 	if (!ret)
1285 		ret = ret2;
1286 	return ret;
1287 }
1288 
1289 static int f2fs_write_node_page(struct page *page,
1290 				struct writeback_control *wbc)
1291 {
1292 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1293 	nid_t nid;
1294 	struct node_info ni;
1295 	struct f2fs_io_info fio = {
1296 		.type = NODE,
1297 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1298 	};
1299 
1300 	trace_f2fs_writepage(page, NODE);
1301 
1302 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1303 		goto redirty_out;
1304 	if (unlikely(f2fs_cp_error(sbi)))
1305 		goto redirty_out;
1306 
1307 	f2fs_wait_on_page_writeback(page, NODE);
1308 
1309 	/* get old block addr of this node page */
1310 	nid = nid_of_node(page);
1311 	f2fs_bug_on(sbi, page->index != nid);
1312 
1313 	get_node_info(sbi, nid, &ni);
1314 
1315 	/* This page is already truncated */
1316 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1317 		ClearPageUptodate(page);
1318 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1319 		unlock_page(page);
1320 		return 0;
1321 	}
1322 
1323 	if (wbc->for_reclaim) {
1324 		if (!down_read_trylock(&sbi->node_write))
1325 			goto redirty_out;
1326 	} else {
1327 		down_read(&sbi->node_write);
1328 	}
1329 
1330 	set_page_writeback(page);
1331 	fio.blk_addr = ni.blk_addr;
1332 	write_node_page(sbi, page, nid, &fio);
1333 	set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1334 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1335 	up_read(&sbi->node_write);
1336 	unlock_page(page);
1337 
1338 	if (wbc->for_reclaim)
1339 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1340 
1341 	return 0;
1342 
1343 redirty_out:
1344 	redirty_page_for_writepage(wbc, page);
1345 	return AOP_WRITEPAGE_ACTIVATE;
1346 }
1347 
1348 static int f2fs_write_node_pages(struct address_space *mapping,
1349 			    struct writeback_control *wbc)
1350 {
1351 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1352 	long diff;
1353 
1354 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1355 
1356 	/* balancing f2fs's metadata in background */
1357 	f2fs_balance_fs_bg(sbi);
1358 
1359 	/* collect a number of dirty node pages and write together */
1360 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1361 		goto skip_write;
1362 
1363 	diff = nr_pages_to_write(sbi, NODE, wbc);
1364 	wbc->sync_mode = WB_SYNC_NONE;
1365 	sync_node_pages(sbi, 0, wbc);
1366 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1367 	return 0;
1368 
1369 skip_write:
1370 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1371 	return 0;
1372 }
1373 
1374 static int f2fs_set_node_page_dirty(struct page *page)
1375 {
1376 	trace_f2fs_set_page_dirty(page, NODE);
1377 
1378 	SetPageUptodate(page);
1379 	if (!PageDirty(page)) {
1380 		__set_page_dirty_nobuffers(page);
1381 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1382 		SetPagePrivate(page);
1383 		f2fs_trace_pid(page);
1384 		return 1;
1385 	}
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Structure of the f2fs node operations
1391  */
1392 const struct address_space_operations f2fs_node_aops = {
1393 	.writepage	= f2fs_write_node_page,
1394 	.writepages	= f2fs_write_node_pages,
1395 	.set_page_dirty	= f2fs_set_node_page_dirty,
1396 	.invalidatepage	= f2fs_invalidate_page,
1397 	.releasepage	= f2fs_release_page,
1398 };
1399 
1400 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1401 						nid_t n)
1402 {
1403 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1404 }
1405 
1406 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1407 						struct free_nid *i)
1408 {
1409 	list_del(&i->list);
1410 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1411 }
1412 
1413 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1414 {
1415 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1416 	struct free_nid *i;
1417 	struct nat_entry *ne;
1418 	bool allocated = false;
1419 
1420 	if (!available_free_memory(sbi, FREE_NIDS))
1421 		return -1;
1422 
1423 	/* 0 nid should not be used */
1424 	if (unlikely(nid == 0))
1425 		return 0;
1426 
1427 	if (build) {
1428 		/* do not add allocated nids */
1429 		down_read(&nm_i->nat_tree_lock);
1430 		ne = __lookup_nat_cache(nm_i, nid);
1431 		if (ne &&
1432 			(!get_nat_flag(ne, IS_CHECKPOINTED) ||
1433 				nat_get_blkaddr(ne) != NULL_ADDR))
1434 			allocated = true;
1435 		up_read(&nm_i->nat_tree_lock);
1436 		if (allocated)
1437 			return 0;
1438 	}
1439 
1440 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1441 	i->nid = nid;
1442 	i->state = NID_NEW;
1443 
1444 	if (radix_tree_preload(GFP_NOFS)) {
1445 		kmem_cache_free(free_nid_slab, i);
1446 		return 0;
1447 	}
1448 
1449 	spin_lock(&nm_i->free_nid_list_lock);
1450 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1451 		spin_unlock(&nm_i->free_nid_list_lock);
1452 		radix_tree_preload_end();
1453 		kmem_cache_free(free_nid_slab, i);
1454 		return 0;
1455 	}
1456 	list_add_tail(&i->list, &nm_i->free_nid_list);
1457 	nm_i->fcnt++;
1458 	spin_unlock(&nm_i->free_nid_list_lock);
1459 	radix_tree_preload_end();
1460 	return 1;
1461 }
1462 
1463 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1464 {
1465 	struct free_nid *i;
1466 	bool need_free = false;
1467 
1468 	spin_lock(&nm_i->free_nid_list_lock);
1469 	i = __lookup_free_nid_list(nm_i, nid);
1470 	if (i && i->state == NID_NEW) {
1471 		__del_from_free_nid_list(nm_i, i);
1472 		nm_i->fcnt--;
1473 		need_free = true;
1474 	}
1475 	spin_unlock(&nm_i->free_nid_list_lock);
1476 
1477 	if (need_free)
1478 		kmem_cache_free(free_nid_slab, i);
1479 }
1480 
1481 static void scan_nat_page(struct f2fs_sb_info *sbi,
1482 			struct page *nat_page, nid_t start_nid)
1483 {
1484 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1485 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1486 	block_t blk_addr;
1487 	int i;
1488 
1489 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1490 
1491 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1492 
1493 		if (unlikely(start_nid >= nm_i->max_nid))
1494 			break;
1495 
1496 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1497 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1498 		if (blk_addr == NULL_ADDR) {
1499 			if (add_free_nid(sbi, start_nid, true) < 0)
1500 				break;
1501 		}
1502 	}
1503 }
1504 
1505 static void build_free_nids(struct f2fs_sb_info *sbi)
1506 {
1507 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1508 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1509 	struct f2fs_summary_block *sum = curseg->sum_blk;
1510 	int i = 0;
1511 	nid_t nid = nm_i->next_scan_nid;
1512 
1513 	/* Enough entries */
1514 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1515 		return;
1516 
1517 	/* readahead nat pages to be scanned */
1518 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1519 
1520 	while (1) {
1521 		struct page *page = get_current_nat_page(sbi, nid);
1522 
1523 		scan_nat_page(sbi, page, nid);
1524 		f2fs_put_page(page, 1);
1525 
1526 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1527 		if (unlikely(nid >= nm_i->max_nid))
1528 			nid = 0;
1529 
1530 		if (i++ == FREE_NID_PAGES)
1531 			break;
1532 	}
1533 
1534 	/* go to the next free nat pages to find free nids abundantly */
1535 	nm_i->next_scan_nid = nid;
1536 
1537 	/* find free nids from current sum_pages */
1538 	mutex_lock(&curseg->curseg_mutex);
1539 	for (i = 0; i < nats_in_cursum(sum); i++) {
1540 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1541 		nid = le32_to_cpu(nid_in_journal(sum, i));
1542 		if (addr == NULL_ADDR)
1543 			add_free_nid(sbi, nid, true);
1544 		else
1545 			remove_free_nid(nm_i, nid);
1546 	}
1547 	mutex_unlock(&curseg->curseg_mutex);
1548 }
1549 
1550 /*
1551  * If this function returns success, caller can obtain a new nid
1552  * from second parameter of this function.
1553  * The returned nid could be used ino as well as nid when inode is created.
1554  */
1555 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1556 {
1557 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1558 	struct free_nid *i = NULL;
1559 retry:
1560 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1561 		return false;
1562 
1563 	spin_lock(&nm_i->free_nid_list_lock);
1564 
1565 	/* We should not use stale free nids created by build_free_nids */
1566 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1567 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1568 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1569 			if (i->state == NID_NEW)
1570 				break;
1571 
1572 		f2fs_bug_on(sbi, i->state != NID_NEW);
1573 		*nid = i->nid;
1574 		i->state = NID_ALLOC;
1575 		nm_i->fcnt--;
1576 		spin_unlock(&nm_i->free_nid_list_lock);
1577 		return true;
1578 	}
1579 	spin_unlock(&nm_i->free_nid_list_lock);
1580 
1581 	/* Let's scan nat pages and its caches to get free nids */
1582 	mutex_lock(&nm_i->build_lock);
1583 	build_free_nids(sbi);
1584 	mutex_unlock(&nm_i->build_lock);
1585 	goto retry;
1586 }
1587 
1588 /*
1589  * alloc_nid() should be called prior to this function.
1590  */
1591 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1592 {
1593 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1594 	struct free_nid *i;
1595 
1596 	spin_lock(&nm_i->free_nid_list_lock);
1597 	i = __lookup_free_nid_list(nm_i, nid);
1598 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1599 	__del_from_free_nid_list(nm_i, i);
1600 	spin_unlock(&nm_i->free_nid_list_lock);
1601 
1602 	kmem_cache_free(free_nid_slab, i);
1603 }
1604 
1605 /*
1606  * alloc_nid() should be called prior to this function.
1607  */
1608 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1609 {
1610 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1611 	struct free_nid *i;
1612 	bool need_free = false;
1613 
1614 	if (!nid)
1615 		return;
1616 
1617 	spin_lock(&nm_i->free_nid_list_lock);
1618 	i = __lookup_free_nid_list(nm_i, nid);
1619 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1620 	if (!available_free_memory(sbi, FREE_NIDS)) {
1621 		__del_from_free_nid_list(nm_i, i);
1622 		need_free = true;
1623 	} else {
1624 		i->state = NID_NEW;
1625 		nm_i->fcnt++;
1626 	}
1627 	spin_unlock(&nm_i->free_nid_list_lock);
1628 
1629 	if (need_free)
1630 		kmem_cache_free(free_nid_slab, i);
1631 }
1632 
1633 void recover_inline_xattr(struct inode *inode, struct page *page)
1634 {
1635 	void *src_addr, *dst_addr;
1636 	size_t inline_size;
1637 	struct page *ipage;
1638 	struct f2fs_inode *ri;
1639 
1640 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1641 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1642 
1643 	ri = F2FS_INODE(page);
1644 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1645 		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1646 		goto update_inode;
1647 	}
1648 
1649 	dst_addr = inline_xattr_addr(ipage);
1650 	src_addr = inline_xattr_addr(page);
1651 	inline_size = inline_xattr_size(inode);
1652 
1653 	f2fs_wait_on_page_writeback(ipage, NODE);
1654 	memcpy(dst_addr, src_addr, inline_size);
1655 update_inode:
1656 	update_inode(inode, ipage);
1657 	f2fs_put_page(ipage, 1);
1658 }
1659 
1660 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1661 {
1662 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1663 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1664 	nid_t new_xnid = nid_of_node(page);
1665 	struct node_info ni;
1666 
1667 	/* 1: invalidate the previous xattr nid */
1668 	if (!prev_xnid)
1669 		goto recover_xnid;
1670 
1671 	/* Deallocate node address */
1672 	get_node_info(sbi, prev_xnid, &ni);
1673 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1674 	invalidate_blocks(sbi, ni.blk_addr);
1675 	dec_valid_node_count(sbi, inode);
1676 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1677 
1678 recover_xnid:
1679 	/* 2: allocate new xattr nid */
1680 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1681 		f2fs_bug_on(sbi, 1);
1682 
1683 	remove_free_nid(NM_I(sbi), new_xnid);
1684 	get_node_info(sbi, new_xnid, &ni);
1685 	ni.ino = inode->i_ino;
1686 	set_node_addr(sbi, &ni, NEW_ADDR, false);
1687 	F2FS_I(inode)->i_xattr_nid = new_xnid;
1688 
1689 	/* 3: update xattr blkaddr */
1690 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1691 	set_node_addr(sbi, &ni, blkaddr, false);
1692 
1693 	update_inode_page(inode);
1694 }
1695 
1696 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1697 {
1698 	struct f2fs_inode *src, *dst;
1699 	nid_t ino = ino_of_node(page);
1700 	struct node_info old_ni, new_ni;
1701 	struct page *ipage;
1702 
1703 	get_node_info(sbi, ino, &old_ni);
1704 
1705 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1706 		return -EINVAL;
1707 
1708 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1709 	if (!ipage)
1710 		return -ENOMEM;
1711 
1712 	/* Should not use this inode from free nid list */
1713 	remove_free_nid(NM_I(sbi), ino);
1714 
1715 	SetPageUptodate(ipage);
1716 	fill_node_footer(ipage, ino, ino, 0, true);
1717 
1718 	src = F2FS_INODE(page);
1719 	dst = F2FS_INODE(ipage);
1720 
1721 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1722 	dst->i_size = 0;
1723 	dst->i_blocks = cpu_to_le64(1);
1724 	dst->i_links = cpu_to_le32(1);
1725 	dst->i_xattr_nid = 0;
1726 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1727 
1728 	new_ni = old_ni;
1729 	new_ni.ino = ino;
1730 
1731 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1732 		WARN_ON(1);
1733 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1734 	inc_valid_inode_count(sbi);
1735 	set_page_dirty(ipage);
1736 	f2fs_put_page(ipage, 1);
1737 	return 0;
1738 }
1739 
1740 int restore_node_summary(struct f2fs_sb_info *sbi,
1741 			unsigned int segno, struct f2fs_summary_block *sum)
1742 {
1743 	struct f2fs_node *rn;
1744 	struct f2fs_summary *sum_entry;
1745 	block_t addr;
1746 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1747 	int i, idx, last_offset, nrpages;
1748 
1749 	/* scan the node segment */
1750 	last_offset = sbi->blocks_per_seg;
1751 	addr = START_BLOCK(sbi, segno);
1752 	sum_entry = &sum->entries[0];
1753 
1754 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1755 		nrpages = min(last_offset - i, bio_blocks);
1756 
1757 		/* readahead node pages */
1758 		ra_meta_pages(sbi, addr, nrpages, META_POR);
1759 
1760 		for (idx = addr; idx < addr + nrpages; idx++) {
1761 			struct page *page = get_meta_page(sbi, idx);
1762 
1763 			rn = F2FS_NODE(page);
1764 			sum_entry->nid = rn->footer.nid;
1765 			sum_entry->version = 0;
1766 			sum_entry->ofs_in_node = 0;
1767 			sum_entry++;
1768 			f2fs_put_page(page, 1);
1769 		}
1770 
1771 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1772 							addr + nrpages);
1773 	}
1774 	return 0;
1775 }
1776 
1777 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1778 {
1779 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1780 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1781 	struct f2fs_summary_block *sum = curseg->sum_blk;
1782 	int i;
1783 
1784 	mutex_lock(&curseg->curseg_mutex);
1785 	for (i = 0; i < nats_in_cursum(sum); i++) {
1786 		struct nat_entry *ne;
1787 		struct f2fs_nat_entry raw_ne;
1788 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1789 
1790 		raw_ne = nat_in_journal(sum, i);
1791 
1792 		down_write(&nm_i->nat_tree_lock);
1793 		ne = __lookup_nat_cache(nm_i, nid);
1794 		if (!ne) {
1795 			ne = grab_nat_entry(nm_i, nid);
1796 			node_info_from_raw_nat(&ne->ni, &raw_ne);
1797 		}
1798 		__set_nat_cache_dirty(nm_i, ne);
1799 		up_write(&nm_i->nat_tree_lock);
1800 	}
1801 	update_nats_in_cursum(sum, -i);
1802 	mutex_unlock(&curseg->curseg_mutex);
1803 }
1804 
1805 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1806 						struct list_head *head, int max)
1807 {
1808 	struct nat_entry_set *cur;
1809 
1810 	if (nes->entry_cnt >= max)
1811 		goto add_out;
1812 
1813 	list_for_each_entry(cur, head, set_list) {
1814 		if (cur->entry_cnt >= nes->entry_cnt) {
1815 			list_add(&nes->set_list, cur->set_list.prev);
1816 			return;
1817 		}
1818 	}
1819 add_out:
1820 	list_add_tail(&nes->set_list, head);
1821 }
1822 
1823 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1824 					struct nat_entry_set *set)
1825 {
1826 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1827 	struct f2fs_summary_block *sum = curseg->sum_blk;
1828 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1829 	bool to_journal = true;
1830 	struct f2fs_nat_block *nat_blk;
1831 	struct nat_entry *ne, *cur;
1832 	struct page *page = NULL;
1833 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1834 
1835 	/*
1836 	 * there are two steps to flush nat entries:
1837 	 * #1, flush nat entries to journal in current hot data summary block.
1838 	 * #2, flush nat entries to nat page.
1839 	 */
1840 	if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1841 		to_journal = false;
1842 
1843 	if (to_journal) {
1844 		mutex_lock(&curseg->curseg_mutex);
1845 	} else {
1846 		page = get_next_nat_page(sbi, start_nid);
1847 		nat_blk = page_address(page);
1848 		f2fs_bug_on(sbi, !nat_blk);
1849 	}
1850 
1851 	/* flush dirty nats in nat entry set */
1852 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1853 		struct f2fs_nat_entry *raw_ne;
1854 		nid_t nid = nat_get_nid(ne);
1855 		int offset;
1856 
1857 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1858 			continue;
1859 
1860 		if (to_journal) {
1861 			offset = lookup_journal_in_cursum(sum,
1862 							NAT_JOURNAL, nid, 1);
1863 			f2fs_bug_on(sbi, offset < 0);
1864 			raw_ne = &nat_in_journal(sum, offset);
1865 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1866 		} else {
1867 			raw_ne = &nat_blk->entries[nid - start_nid];
1868 		}
1869 		raw_nat_from_node_info(raw_ne, &ne->ni);
1870 
1871 		down_write(&NM_I(sbi)->nat_tree_lock);
1872 		nat_reset_flag(ne);
1873 		__clear_nat_cache_dirty(NM_I(sbi), ne);
1874 		up_write(&NM_I(sbi)->nat_tree_lock);
1875 
1876 		if (nat_get_blkaddr(ne) == NULL_ADDR)
1877 			add_free_nid(sbi, nid, false);
1878 	}
1879 
1880 	if (to_journal)
1881 		mutex_unlock(&curseg->curseg_mutex);
1882 	else
1883 		f2fs_put_page(page, 1);
1884 
1885 	f2fs_bug_on(sbi, set->entry_cnt);
1886 
1887 	down_write(&nm_i->nat_tree_lock);
1888 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1889 	up_write(&nm_i->nat_tree_lock);
1890 	kmem_cache_free(nat_entry_set_slab, set);
1891 }
1892 
1893 /*
1894  * This function is called during the checkpointing process.
1895  */
1896 void flush_nat_entries(struct f2fs_sb_info *sbi)
1897 {
1898 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1899 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1900 	struct f2fs_summary_block *sum = curseg->sum_blk;
1901 	struct nat_entry_set *setvec[SETVEC_SIZE];
1902 	struct nat_entry_set *set, *tmp;
1903 	unsigned int found;
1904 	nid_t set_idx = 0;
1905 	LIST_HEAD(sets);
1906 
1907 	if (!nm_i->dirty_nat_cnt)
1908 		return;
1909 	/*
1910 	 * if there are no enough space in journal to store dirty nat
1911 	 * entries, remove all entries from journal and merge them
1912 	 * into nat entry set.
1913 	 */
1914 	if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1915 		remove_nats_in_journal(sbi);
1916 
1917 	down_write(&nm_i->nat_tree_lock);
1918 	while ((found = __gang_lookup_nat_set(nm_i,
1919 					set_idx, SETVEC_SIZE, setvec))) {
1920 		unsigned idx;
1921 		set_idx = setvec[found - 1]->set + 1;
1922 		for (idx = 0; idx < found; idx++)
1923 			__adjust_nat_entry_set(setvec[idx], &sets,
1924 							MAX_NAT_JENTRIES(sum));
1925 	}
1926 	up_write(&nm_i->nat_tree_lock);
1927 
1928 	/* flush dirty nats in nat entry set */
1929 	list_for_each_entry_safe(set, tmp, &sets, set_list)
1930 		__flush_nat_entry_set(sbi, set);
1931 
1932 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1933 }
1934 
1935 static int init_node_manager(struct f2fs_sb_info *sbi)
1936 {
1937 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1938 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1939 	unsigned char *version_bitmap;
1940 	unsigned int nat_segs, nat_blocks;
1941 
1942 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1943 
1944 	/* segment_count_nat includes pair segment so divide to 2. */
1945 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1946 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1947 
1948 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1949 
1950 	/* not used nids: 0, node, meta, (and root counted as valid node) */
1951 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1952 	nm_i->fcnt = 0;
1953 	nm_i->nat_cnt = 0;
1954 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1955 
1956 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1957 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1958 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1959 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1960 	INIT_LIST_HEAD(&nm_i->nat_entries);
1961 
1962 	mutex_init(&nm_i->build_lock);
1963 	spin_lock_init(&nm_i->free_nid_list_lock);
1964 	init_rwsem(&nm_i->nat_tree_lock);
1965 
1966 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1967 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1968 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1969 	if (!version_bitmap)
1970 		return -EFAULT;
1971 
1972 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1973 					GFP_KERNEL);
1974 	if (!nm_i->nat_bitmap)
1975 		return -ENOMEM;
1976 	return 0;
1977 }
1978 
1979 int build_node_manager(struct f2fs_sb_info *sbi)
1980 {
1981 	int err;
1982 
1983 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1984 	if (!sbi->nm_info)
1985 		return -ENOMEM;
1986 
1987 	err = init_node_manager(sbi);
1988 	if (err)
1989 		return err;
1990 
1991 	build_free_nids(sbi);
1992 	return 0;
1993 }
1994 
1995 void destroy_node_manager(struct f2fs_sb_info *sbi)
1996 {
1997 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1998 	struct free_nid *i, *next_i;
1999 	struct nat_entry *natvec[NATVEC_SIZE];
2000 	struct nat_entry_set *setvec[SETVEC_SIZE];
2001 	nid_t nid = 0;
2002 	unsigned int found;
2003 
2004 	if (!nm_i)
2005 		return;
2006 
2007 	/* destroy free nid list */
2008 	spin_lock(&nm_i->free_nid_list_lock);
2009 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2010 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2011 		__del_from_free_nid_list(nm_i, i);
2012 		nm_i->fcnt--;
2013 		spin_unlock(&nm_i->free_nid_list_lock);
2014 		kmem_cache_free(free_nid_slab, i);
2015 		spin_lock(&nm_i->free_nid_list_lock);
2016 	}
2017 	f2fs_bug_on(sbi, nm_i->fcnt);
2018 	spin_unlock(&nm_i->free_nid_list_lock);
2019 
2020 	/* destroy nat cache */
2021 	down_write(&nm_i->nat_tree_lock);
2022 	while ((found = __gang_lookup_nat_cache(nm_i,
2023 					nid, NATVEC_SIZE, natvec))) {
2024 		unsigned idx;
2025 
2026 		nid = nat_get_nid(natvec[found - 1]) + 1;
2027 		for (idx = 0; idx < found; idx++)
2028 			__del_from_nat_cache(nm_i, natvec[idx]);
2029 	}
2030 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2031 
2032 	/* destroy nat set cache */
2033 	nid = 0;
2034 	while ((found = __gang_lookup_nat_set(nm_i,
2035 					nid, SETVEC_SIZE, setvec))) {
2036 		unsigned idx;
2037 
2038 		nid = setvec[found - 1]->set + 1;
2039 		for (idx = 0; idx < found; idx++) {
2040 			/* entry_cnt is not zero, when cp_error was occurred */
2041 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2042 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2043 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2044 		}
2045 	}
2046 	up_write(&nm_i->nat_tree_lock);
2047 
2048 	kfree(nm_i->nat_bitmap);
2049 	sbi->nm_info = NULL;
2050 	kfree(nm_i);
2051 }
2052 
2053 int __init create_node_manager_caches(void)
2054 {
2055 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2056 			sizeof(struct nat_entry));
2057 	if (!nat_entry_slab)
2058 		goto fail;
2059 
2060 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2061 			sizeof(struct free_nid));
2062 	if (!free_nid_slab)
2063 		goto destroy_nat_entry;
2064 
2065 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2066 			sizeof(struct nat_entry_set));
2067 	if (!nat_entry_set_slab)
2068 		goto destroy_free_nid;
2069 	return 0;
2070 
2071 destroy_free_nid:
2072 	kmem_cache_destroy(free_nid_slab);
2073 destroy_nat_entry:
2074 	kmem_cache_destroy(nat_entry_slab);
2075 fail:
2076 	return -ENOMEM;
2077 }
2078 
2079 void destroy_node_manager_caches(void)
2080 {
2081 	kmem_cache_destroy(nat_entry_set_slab);
2082 	kmem_cache_destroy(free_nid_slab);
2083 	kmem_cache_destroy(nat_entry_slab);
2084 }
2085