xref: /openbmc/linux/fs/f2fs/node.c (revision 4161b450)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23 
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25 
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29 
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32 	struct f2fs_nm_info *nm_i = NM_I(sbi);
33 	struct sysinfo val;
34 	unsigned long avail_ram;
35 	unsigned long mem_size = 0;
36 	bool res = false;
37 
38 	si_meminfo(&val);
39 
40 	/* only uses low memory */
41 	avail_ram = val.totalram - val.totalhigh;
42 
43 	/* give 25%, 25%, 50%, 50% memory for each components respectively */
44 	if (type == FREE_NIDS) {
45 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
46 							PAGE_CACHE_SHIFT;
47 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
48 	} else if (type == NAT_ENTRIES) {
49 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
50 							PAGE_CACHE_SHIFT;
51 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 	} else if (type == DIRTY_DENTS) {
53 		if (sbi->sb->s_bdi->dirty_exceeded)
54 			return false;
55 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
56 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
57 	} else if (type == INO_ENTRIES) {
58 		int i;
59 
60 		if (sbi->sb->s_bdi->dirty_exceeded)
61 			return false;
62 		for (i = 0; i <= UPDATE_INO; i++)
63 			mem_size += (sbi->im[i].ino_num *
64 				sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
65 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
66 	}
67 	return res;
68 }
69 
70 static void clear_node_page_dirty(struct page *page)
71 {
72 	struct address_space *mapping = page->mapping;
73 	unsigned int long flags;
74 
75 	if (PageDirty(page)) {
76 		spin_lock_irqsave(&mapping->tree_lock, flags);
77 		radix_tree_tag_clear(&mapping->page_tree,
78 				page_index(page),
79 				PAGECACHE_TAG_DIRTY);
80 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
81 
82 		clear_page_dirty_for_io(page);
83 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
84 	}
85 	ClearPageUptodate(page);
86 }
87 
88 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
89 {
90 	pgoff_t index = current_nat_addr(sbi, nid);
91 	return get_meta_page(sbi, index);
92 }
93 
94 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
95 {
96 	struct page *src_page;
97 	struct page *dst_page;
98 	pgoff_t src_off;
99 	pgoff_t dst_off;
100 	void *src_addr;
101 	void *dst_addr;
102 	struct f2fs_nm_info *nm_i = NM_I(sbi);
103 
104 	src_off = current_nat_addr(sbi, nid);
105 	dst_off = next_nat_addr(sbi, src_off);
106 
107 	/* get current nat block page with lock */
108 	src_page = get_meta_page(sbi, src_off);
109 	dst_page = grab_meta_page(sbi, dst_off);
110 	f2fs_bug_on(sbi, PageDirty(src_page));
111 
112 	src_addr = page_address(src_page);
113 	dst_addr = page_address(dst_page);
114 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
115 	set_page_dirty(dst_page);
116 	f2fs_put_page(src_page, 1);
117 
118 	set_to_next_nat(nm_i, nid);
119 
120 	return dst_page;
121 }
122 
123 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
124 {
125 	return radix_tree_lookup(&nm_i->nat_root, n);
126 }
127 
128 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
129 		nid_t start, unsigned int nr, struct nat_entry **ep)
130 {
131 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
132 }
133 
134 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
135 {
136 	list_del(&e->list);
137 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
138 	nm_i->nat_cnt--;
139 	kmem_cache_free(nat_entry_slab, e);
140 }
141 
142 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
143 						struct nat_entry *ne)
144 {
145 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
146 	struct nat_entry_set *head;
147 
148 	if (get_nat_flag(ne, IS_DIRTY))
149 		return;
150 
151 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
152 	if (!head) {
153 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
154 
155 		INIT_LIST_HEAD(&head->entry_list);
156 		INIT_LIST_HEAD(&head->set_list);
157 		head->set = set;
158 		head->entry_cnt = 0;
159 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
160 	}
161 	list_move_tail(&ne->list, &head->entry_list);
162 	nm_i->dirty_nat_cnt++;
163 	head->entry_cnt++;
164 	set_nat_flag(ne, IS_DIRTY, true);
165 }
166 
167 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
168 						struct nat_entry *ne)
169 {
170 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
171 	struct nat_entry_set *head;
172 
173 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
174 	if (head) {
175 		list_move_tail(&ne->list, &nm_i->nat_entries);
176 		set_nat_flag(ne, IS_DIRTY, false);
177 		head->entry_cnt--;
178 		nm_i->dirty_nat_cnt--;
179 	}
180 }
181 
182 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
183 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
184 {
185 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
186 							start, nr);
187 }
188 
189 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
190 {
191 	struct f2fs_nm_info *nm_i = NM_I(sbi);
192 	struct nat_entry *e;
193 	bool is_cp = true;
194 
195 	down_read(&nm_i->nat_tree_lock);
196 	e = __lookup_nat_cache(nm_i, nid);
197 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
198 		is_cp = false;
199 	up_read(&nm_i->nat_tree_lock);
200 	return is_cp;
201 }
202 
203 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
204 {
205 	struct f2fs_nm_info *nm_i = NM_I(sbi);
206 	struct nat_entry *e;
207 	bool fsynced = false;
208 
209 	down_read(&nm_i->nat_tree_lock);
210 	e = __lookup_nat_cache(nm_i, ino);
211 	if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
212 		fsynced = true;
213 	up_read(&nm_i->nat_tree_lock);
214 	return fsynced;
215 }
216 
217 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
218 {
219 	struct f2fs_nm_info *nm_i = NM_I(sbi);
220 	struct nat_entry *e;
221 	bool need_update = true;
222 
223 	down_read(&nm_i->nat_tree_lock);
224 	e = __lookup_nat_cache(nm_i, ino);
225 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
226 			(get_nat_flag(e, IS_CHECKPOINTED) ||
227 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
228 		need_update = false;
229 	up_read(&nm_i->nat_tree_lock);
230 	return need_update;
231 }
232 
233 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
234 {
235 	struct nat_entry *new;
236 
237 	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
238 	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
239 	memset(new, 0, sizeof(struct nat_entry));
240 	nat_set_nid(new, nid);
241 	nat_reset_flag(new);
242 	list_add_tail(&new->list, &nm_i->nat_entries);
243 	nm_i->nat_cnt++;
244 	return new;
245 }
246 
247 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
248 						struct f2fs_nat_entry *ne)
249 {
250 	struct nat_entry *e;
251 
252 	down_write(&nm_i->nat_tree_lock);
253 	e = __lookup_nat_cache(nm_i, nid);
254 	if (!e) {
255 		e = grab_nat_entry(nm_i, nid);
256 		node_info_from_raw_nat(&e->ni, ne);
257 	}
258 	up_write(&nm_i->nat_tree_lock);
259 }
260 
261 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
262 			block_t new_blkaddr, bool fsync_done)
263 {
264 	struct f2fs_nm_info *nm_i = NM_I(sbi);
265 	struct nat_entry *e;
266 
267 	down_write(&nm_i->nat_tree_lock);
268 	e = __lookup_nat_cache(nm_i, ni->nid);
269 	if (!e) {
270 		e = grab_nat_entry(nm_i, ni->nid);
271 		e->ni = *ni;
272 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
273 	} else if (new_blkaddr == NEW_ADDR) {
274 		/*
275 		 * when nid is reallocated,
276 		 * previous nat entry can be remained in nat cache.
277 		 * So, reinitialize it with new information.
278 		 */
279 		e->ni = *ni;
280 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
281 	}
282 
283 	/* sanity check */
284 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
285 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
286 			new_blkaddr == NULL_ADDR);
287 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
288 			new_blkaddr == NEW_ADDR);
289 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
290 			nat_get_blkaddr(e) != NULL_ADDR &&
291 			new_blkaddr == NEW_ADDR);
292 
293 	/* increment version no as node is removed */
294 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
295 		unsigned char version = nat_get_version(e);
296 		nat_set_version(e, inc_node_version(version));
297 	}
298 
299 	/* change address */
300 	nat_set_blkaddr(e, new_blkaddr);
301 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
302 		set_nat_flag(e, IS_CHECKPOINTED, false);
303 	__set_nat_cache_dirty(nm_i, e);
304 
305 	/* update fsync_mark if its inode nat entry is still alive */
306 	e = __lookup_nat_cache(nm_i, ni->ino);
307 	if (e) {
308 		if (fsync_done && ni->nid == ni->ino)
309 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
310 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
311 	}
312 	up_write(&nm_i->nat_tree_lock);
313 }
314 
315 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
316 {
317 	struct f2fs_nm_info *nm_i = NM_I(sbi);
318 
319 	if (available_free_memory(sbi, NAT_ENTRIES))
320 		return 0;
321 
322 	down_write(&nm_i->nat_tree_lock);
323 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
324 		struct nat_entry *ne;
325 		ne = list_first_entry(&nm_i->nat_entries,
326 					struct nat_entry, list);
327 		__del_from_nat_cache(nm_i, ne);
328 		nr_shrink--;
329 	}
330 	up_write(&nm_i->nat_tree_lock);
331 	return nr_shrink;
332 }
333 
334 /*
335  * This function always returns success
336  */
337 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
338 {
339 	struct f2fs_nm_info *nm_i = NM_I(sbi);
340 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
341 	struct f2fs_summary_block *sum = curseg->sum_blk;
342 	nid_t start_nid = START_NID(nid);
343 	struct f2fs_nat_block *nat_blk;
344 	struct page *page = NULL;
345 	struct f2fs_nat_entry ne;
346 	struct nat_entry *e;
347 	int i;
348 
349 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
350 	ni->nid = nid;
351 
352 	/* Check nat cache */
353 	down_read(&nm_i->nat_tree_lock);
354 	e = __lookup_nat_cache(nm_i, nid);
355 	if (e) {
356 		ni->ino = nat_get_ino(e);
357 		ni->blk_addr = nat_get_blkaddr(e);
358 		ni->version = nat_get_version(e);
359 	}
360 	up_read(&nm_i->nat_tree_lock);
361 	if (e)
362 		return;
363 
364 	/* Check current segment summary */
365 	mutex_lock(&curseg->curseg_mutex);
366 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
367 	if (i >= 0) {
368 		ne = nat_in_journal(sum, i);
369 		node_info_from_raw_nat(ni, &ne);
370 	}
371 	mutex_unlock(&curseg->curseg_mutex);
372 	if (i >= 0)
373 		goto cache;
374 
375 	/* Fill node_info from nat page */
376 	page = get_current_nat_page(sbi, start_nid);
377 	nat_blk = (struct f2fs_nat_block *)page_address(page);
378 	ne = nat_blk->entries[nid - start_nid];
379 	node_info_from_raw_nat(ni, &ne);
380 	f2fs_put_page(page, 1);
381 cache:
382 	/* cache nat entry */
383 	cache_nat_entry(NM_I(sbi), nid, &ne);
384 }
385 
386 /*
387  * The maximum depth is four.
388  * Offset[0] will have raw inode offset.
389  */
390 static int get_node_path(struct f2fs_inode_info *fi, long block,
391 				int offset[4], unsigned int noffset[4])
392 {
393 	const long direct_index = ADDRS_PER_INODE(fi);
394 	const long direct_blks = ADDRS_PER_BLOCK;
395 	const long dptrs_per_blk = NIDS_PER_BLOCK;
396 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
397 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
398 	int n = 0;
399 	int level = 0;
400 
401 	noffset[0] = 0;
402 
403 	if (block < direct_index) {
404 		offset[n] = block;
405 		goto got;
406 	}
407 	block -= direct_index;
408 	if (block < direct_blks) {
409 		offset[n++] = NODE_DIR1_BLOCK;
410 		noffset[n] = 1;
411 		offset[n] = block;
412 		level = 1;
413 		goto got;
414 	}
415 	block -= direct_blks;
416 	if (block < direct_blks) {
417 		offset[n++] = NODE_DIR2_BLOCK;
418 		noffset[n] = 2;
419 		offset[n] = block;
420 		level = 1;
421 		goto got;
422 	}
423 	block -= direct_blks;
424 	if (block < indirect_blks) {
425 		offset[n++] = NODE_IND1_BLOCK;
426 		noffset[n] = 3;
427 		offset[n++] = block / direct_blks;
428 		noffset[n] = 4 + offset[n - 1];
429 		offset[n] = block % direct_blks;
430 		level = 2;
431 		goto got;
432 	}
433 	block -= indirect_blks;
434 	if (block < indirect_blks) {
435 		offset[n++] = NODE_IND2_BLOCK;
436 		noffset[n] = 4 + dptrs_per_blk;
437 		offset[n++] = block / direct_blks;
438 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
439 		offset[n] = block % direct_blks;
440 		level = 2;
441 		goto got;
442 	}
443 	block -= indirect_blks;
444 	if (block < dindirect_blks) {
445 		offset[n++] = NODE_DIND_BLOCK;
446 		noffset[n] = 5 + (dptrs_per_blk * 2);
447 		offset[n++] = block / indirect_blks;
448 		noffset[n] = 6 + (dptrs_per_blk * 2) +
449 			      offset[n - 1] * (dptrs_per_blk + 1);
450 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
451 		noffset[n] = 7 + (dptrs_per_blk * 2) +
452 			      offset[n - 2] * (dptrs_per_blk + 1) +
453 			      offset[n - 1];
454 		offset[n] = block % direct_blks;
455 		level = 3;
456 		goto got;
457 	} else {
458 		BUG();
459 	}
460 got:
461 	return level;
462 }
463 
464 /*
465  * Caller should call f2fs_put_dnode(dn).
466  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
467  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
468  * In the case of RDONLY_NODE, we don't need to care about mutex.
469  */
470 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
471 {
472 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
473 	struct page *npage[4];
474 	struct page *parent;
475 	int offset[4];
476 	unsigned int noffset[4];
477 	nid_t nids[4];
478 	int level, i;
479 	int err = 0;
480 
481 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
482 
483 	nids[0] = dn->inode->i_ino;
484 	npage[0] = dn->inode_page;
485 
486 	if (!npage[0]) {
487 		npage[0] = get_node_page(sbi, nids[0]);
488 		if (IS_ERR(npage[0]))
489 			return PTR_ERR(npage[0]);
490 	}
491 	parent = npage[0];
492 	if (level != 0)
493 		nids[1] = get_nid(parent, offset[0], true);
494 	dn->inode_page = npage[0];
495 	dn->inode_page_locked = true;
496 
497 	/* get indirect or direct nodes */
498 	for (i = 1; i <= level; i++) {
499 		bool done = false;
500 
501 		if (!nids[i] && mode == ALLOC_NODE) {
502 			/* alloc new node */
503 			if (!alloc_nid(sbi, &(nids[i]))) {
504 				err = -ENOSPC;
505 				goto release_pages;
506 			}
507 
508 			dn->nid = nids[i];
509 			npage[i] = new_node_page(dn, noffset[i], NULL);
510 			if (IS_ERR(npage[i])) {
511 				alloc_nid_failed(sbi, nids[i]);
512 				err = PTR_ERR(npage[i]);
513 				goto release_pages;
514 			}
515 
516 			set_nid(parent, offset[i - 1], nids[i], i == 1);
517 			alloc_nid_done(sbi, nids[i]);
518 			done = true;
519 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
520 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
521 			if (IS_ERR(npage[i])) {
522 				err = PTR_ERR(npage[i]);
523 				goto release_pages;
524 			}
525 			done = true;
526 		}
527 		if (i == 1) {
528 			dn->inode_page_locked = false;
529 			unlock_page(parent);
530 		} else {
531 			f2fs_put_page(parent, 1);
532 		}
533 
534 		if (!done) {
535 			npage[i] = get_node_page(sbi, nids[i]);
536 			if (IS_ERR(npage[i])) {
537 				err = PTR_ERR(npage[i]);
538 				f2fs_put_page(npage[0], 0);
539 				goto release_out;
540 			}
541 		}
542 		if (i < level) {
543 			parent = npage[i];
544 			nids[i + 1] = get_nid(parent, offset[i], false);
545 		}
546 	}
547 	dn->nid = nids[level];
548 	dn->ofs_in_node = offset[level];
549 	dn->node_page = npage[level];
550 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
551 	return 0;
552 
553 release_pages:
554 	f2fs_put_page(parent, 1);
555 	if (i > 1)
556 		f2fs_put_page(npage[0], 0);
557 release_out:
558 	dn->inode_page = NULL;
559 	dn->node_page = NULL;
560 	return err;
561 }
562 
563 static void truncate_node(struct dnode_of_data *dn)
564 {
565 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
566 	struct node_info ni;
567 
568 	get_node_info(sbi, dn->nid, &ni);
569 	if (dn->inode->i_blocks == 0) {
570 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
571 		goto invalidate;
572 	}
573 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
574 
575 	/* Deallocate node address */
576 	invalidate_blocks(sbi, ni.blk_addr);
577 	dec_valid_node_count(sbi, dn->inode);
578 	set_node_addr(sbi, &ni, NULL_ADDR, false);
579 
580 	if (dn->nid == dn->inode->i_ino) {
581 		remove_orphan_inode(sbi, dn->nid);
582 		dec_valid_inode_count(sbi);
583 	} else {
584 		sync_inode_page(dn);
585 	}
586 invalidate:
587 	clear_node_page_dirty(dn->node_page);
588 	F2FS_SET_SB_DIRT(sbi);
589 
590 	f2fs_put_page(dn->node_page, 1);
591 
592 	invalidate_mapping_pages(NODE_MAPPING(sbi),
593 			dn->node_page->index, dn->node_page->index);
594 
595 	dn->node_page = NULL;
596 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
597 }
598 
599 static int truncate_dnode(struct dnode_of_data *dn)
600 {
601 	struct page *page;
602 
603 	if (dn->nid == 0)
604 		return 1;
605 
606 	/* get direct node */
607 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
608 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
609 		return 1;
610 	else if (IS_ERR(page))
611 		return PTR_ERR(page);
612 
613 	/* Make dnode_of_data for parameter */
614 	dn->node_page = page;
615 	dn->ofs_in_node = 0;
616 	truncate_data_blocks(dn);
617 	truncate_node(dn);
618 	return 1;
619 }
620 
621 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
622 						int ofs, int depth)
623 {
624 	struct dnode_of_data rdn = *dn;
625 	struct page *page;
626 	struct f2fs_node *rn;
627 	nid_t child_nid;
628 	unsigned int child_nofs;
629 	int freed = 0;
630 	int i, ret;
631 
632 	if (dn->nid == 0)
633 		return NIDS_PER_BLOCK + 1;
634 
635 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
636 
637 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
638 	if (IS_ERR(page)) {
639 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
640 		return PTR_ERR(page);
641 	}
642 
643 	rn = F2FS_NODE(page);
644 	if (depth < 3) {
645 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
646 			child_nid = le32_to_cpu(rn->in.nid[i]);
647 			if (child_nid == 0)
648 				continue;
649 			rdn.nid = child_nid;
650 			ret = truncate_dnode(&rdn);
651 			if (ret < 0)
652 				goto out_err;
653 			set_nid(page, i, 0, false);
654 		}
655 	} else {
656 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
657 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
658 			child_nid = le32_to_cpu(rn->in.nid[i]);
659 			if (child_nid == 0) {
660 				child_nofs += NIDS_PER_BLOCK + 1;
661 				continue;
662 			}
663 			rdn.nid = child_nid;
664 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
665 			if (ret == (NIDS_PER_BLOCK + 1)) {
666 				set_nid(page, i, 0, false);
667 				child_nofs += ret;
668 			} else if (ret < 0 && ret != -ENOENT) {
669 				goto out_err;
670 			}
671 		}
672 		freed = child_nofs;
673 	}
674 
675 	if (!ofs) {
676 		/* remove current indirect node */
677 		dn->node_page = page;
678 		truncate_node(dn);
679 		freed++;
680 	} else {
681 		f2fs_put_page(page, 1);
682 	}
683 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
684 	return freed;
685 
686 out_err:
687 	f2fs_put_page(page, 1);
688 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
689 	return ret;
690 }
691 
692 static int truncate_partial_nodes(struct dnode_of_data *dn,
693 			struct f2fs_inode *ri, int *offset, int depth)
694 {
695 	struct page *pages[2];
696 	nid_t nid[3];
697 	nid_t child_nid;
698 	int err = 0;
699 	int i;
700 	int idx = depth - 2;
701 
702 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
703 	if (!nid[0])
704 		return 0;
705 
706 	/* get indirect nodes in the path */
707 	for (i = 0; i < idx + 1; i++) {
708 		/* reference count'll be increased */
709 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
710 		if (IS_ERR(pages[i])) {
711 			err = PTR_ERR(pages[i]);
712 			idx = i - 1;
713 			goto fail;
714 		}
715 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
716 	}
717 
718 	/* free direct nodes linked to a partial indirect node */
719 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
720 		child_nid = get_nid(pages[idx], i, false);
721 		if (!child_nid)
722 			continue;
723 		dn->nid = child_nid;
724 		err = truncate_dnode(dn);
725 		if (err < 0)
726 			goto fail;
727 		set_nid(pages[idx], i, 0, false);
728 	}
729 
730 	if (offset[idx + 1] == 0) {
731 		dn->node_page = pages[idx];
732 		dn->nid = nid[idx];
733 		truncate_node(dn);
734 	} else {
735 		f2fs_put_page(pages[idx], 1);
736 	}
737 	offset[idx]++;
738 	offset[idx + 1] = 0;
739 	idx--;
740 fail:
741 	for (i = idx; i >= 0; i--)
742 		f2fs_put_page(pages[i], 1);
743 
744 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
745 
746 	return err;
747 }
748 
749 /*
750  * All the block addresses of data and nodes should be nullified.
751  */
752 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
753 {
754 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
755 	int err = 0, cont = 1;
756 	int level, offset[4], noffset[4];
757 	unsigned int nofs = 0;
758 	struct f2fs_inode *ri;
759 	struct dnode_of_data dn;
760 	struct page *page;
761 
762 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
763 
764 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
765 restart:
766 	page = get_node_page(sbi, inode->i_ino);
767 	if (IS_ERR(page)) {
768 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
769 		return PTR_ERR(page);
770 	}
771 
772 	set_new_dnode(&dn, inode, page, NULL, 0);
773 	unlock_page(page);
774 
775 	ri = F2FS_INODE(page);
776 	switch (level) {
777 	case 0:
778 	case 1:
779 		nofs = noffset[1];
780 		break;
781 	case 2:
782 		nofs = noffset[1];
783 		if (!offset[level - 1])
784 			goto skip_partial;
785 		err = truncate_partial_nodes(&dn, ri, offset, level);
786 		if (err < 0 && err != -ENOENT)
787 			goto fail;
788 		nofs += 1 + NIDS_PER_BLOCK;
789 		break;
790 	case 3:
791 		nofs = 5 + 2 * NIDS_PER_BLOCK;
792 		if (!offset[level - 1])
793 			goto skip_partial;
794 		err = truncate_partial_nodes(&dn, ri, offset, level);
795 		if (err < 0 && err != -ENOENT)
796 			goto fail;
797 		break;
798 	default:
799 		BUG();
800 	}
801 
802 skip_partial:
803 	while (cont) {
804 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
805 		switch (offset[0]) {
806 		case NODE_DIR1_BLOCK:
807 		case NODE_DIR2_BLOCK:
808 			err = truncate_dnode(&dn);
809 			break;
810 
811 		case NODE_IND1_BLOCK:
812 		case NODE_IND2_BLOCK:
813 			err = truncate_nodes(&dn, nofs, offset[1], 2);
814 			break;
815 
816 		case NODE_DIND_BLOCK:
817 			err = truncate_nodes(&dn, nofs, offset[1], 3);
818 			cont = 0;
819 			break;
820 
821 		default:
822 			BUG();
823 		}
824 		if (err < 0 && err != -ENOENT)
825 			goto fail;
826 		if (offset[1] == 0 &&
827 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
828 			lock_page(page);
829 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
830 				f2fs_put_page(page, 1);
831 				goto restart;
832 			}
833 			f2fs_wait_on_page_writeback(page, NODE);
834 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
835 			set_page_dirty(page);
836 			unlock_page(page);
837 		}
838 		offset[1] = 0;
839 		offset[0]++;
840 		nofs += err;
841 	}
842 fail:
843 	f2fs_put_page(page, 0);
844 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
845 	return err > 0 ? 0 : err;
846 }
847 
848 int truncate_xattr_node(struct inode *inode, struct page *page)
849 {
850 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
851 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
852 	struct dnode_of_data dn;
853 	struct page *npage;
854 
855 	if (!nid)
856 		return 0;
857 
858 	npage = get_node_page(sbi, nid);
859 	if (IS_ERR(npage))
860 		return PTR_ERR(npage);
861 
862 	F2FS_I(inode)->i_xattr_nid = 0;
863 
864 	/* need to do checkpoint during fsync */
865 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
866 
867 	set_new_dnode(&dn, inode, page, npage, nid);
868 
869 	if (page)
870 		dn.inode_page_locked = true;
871 	truncate_node(&dn);
872 	return 0;
873 }
874 
875 /*
876  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
877  * f2fs_unlock_op().
878  */
879 void remove_inode_page(struct inode *inode)
880 {
881 	struct dnode_of_data dn;
882 
883 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
884 	if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
885 		return;
886 
887 	if (truncate_xattr_node(inode, dn.inode_page)) {
888 		f2fs_put_dnode(&dn);
889 		return;
890 	}
891 
892 	/* remove potential inline_data blocks */
893 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
894 				S_ISLNK(inode->i_mode))
895 		truncate_data_blocks_range(&dn, 1);
896 
897 	/* 0 is possible, after f2fs_new_inode() has failed */
898 	f2fs_bug_on(F2FS_I_SB(inode),
899 			inode->i_blocks != 0 && inode->i_blocks != 1);
900 
901 	/* will put inode & node pages */
902 	truncate_node(&dn);
903 }
904 
905 struct page *new_inode_page(struct inode *inode)
906 {
907 	struct dnode_of_data dn;
908 
909 	/* allocate inode page for new inode */
910 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
911 
912 	/* caller should f2fs_put_page(page, 1); */
913 	return new_node_page(&dn, 0, NULL);
914 }
915 
916 struct page *new_node_page(struct dnode_of_data *dn,
917 				unsigned int ofs, struct page *ipage)
918 {
919 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
920 	struct node_info old_ni, new_ni;
921 	struct page *page;
922 	int err;
923 
924 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
925 		return ERR_PTR(-EPERM);
926 
927 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
928 	if (!page)
929 		return ERR_PTR(-ENOMEM);
930 
931 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
932 		err = -ENOSPC;
933 		goto fail;
934 	}
935 
936 	get_node_info(sbi, dn->nid, &old_ni);
937 
938 	/* Reinitialize old_ni with new node page */
939 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
940 	new_ni = old_ni;
941 	new_ni.ino = dn->inode->i_ino;
942 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
943 
944 	f2fs_wait_on_page_writeback(page, NODE);
945 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
946 	set_cold_node(dn->inode, page);
947 	SetPageUptodate(page);
948 	set_page_dirty(page);
949 
950 	if (f2fs_has_xattr_block(ofs))
951 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
952 
953 	dn->node_page = page;
954 	if (ipage)
955 		update_inode(dn->inode, ipage);
956 	else
957 		sync_inode_page(dn);
958 	if (ofs == 0)
959 		inc_valid_inode_count(sbi);
960 
961 	return page;
962 
963 fail:
964 	clear_node_page_dirty(page);
965 	f2fs_put_page(page, 1);
966 	return ERR_PTR(err);
967 }
968 
969 /*
970  * Caller should do after getting the following values.
971  * 0: f2fs_put_page(page, 0)
972  * LOCKED_PAGE: f2fs_put_page(page, 1)
973  * error: nothing
974  */
975 static int read_node_page(struct page *page, int rw)
976 {
977 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
978 	struct node_info ni;
979 
980 	get_node_info(sbi, page->index, &ni);
981 
982 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
983 		f2fs_put_page(page, 1);
984 		return -ENOENT;
985 	}
986 
987 	if (PageUptodate(page))
988 		return LOCKED_PAGE;
989 
990 	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
991 }
992 
993 /*
994  * Readahead a node page
995  */
996 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
997 {
998 	struct page *apage;
999 	int err;
1000 
1001 	apage = find_get_page(NODE_MAPPING(sbi), nid);
1002 	if (apage && PageUptodate(apage)) {
1003 		f2fs_put_page(apage, 0);
1004 		return;
1005 	}
1006 	f2fs_put_page(apage, 0);
1007 
1008 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1009 	if (!apage)
1010 		return;
1011 
1012 	err = read_node_page(apage, READA);
1013 	if (err == 0)
1014 		f2fs_put_page(apage, 0);
1015 	else if (err == LOCKED_PAGE)
1016 		f2fs_put_page(apage, 1);
1017 }
1018 
1019 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1020 {
1021 	struct page *page;
1022 	int err;
1023 repeat:
1024 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1025 	if (!page)
1026 		return ERR_PTR(-ENOMEM);
1027 
1028 	err = read_node_page(page, READ_SYNC);
1029 	if (err < 0)
1030 		return ERR_PTR(err);
1031 	else if (err == LOCKED_PAGE)
1032 		goto got_it;
1033 
1034 	lock_page(page);
1035 	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1036 		f2fs_put_page(page, 1);
1037 		return ERR_PTR(-EIO);
1038 	}
1039 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1040 		f2fs_put_page(page, 1);
1041 		goto repeat;
1042 	}
1043 got_it:
1044 	return page;
1045 }
1046 
1047 /*
1048  * Return a locked page for the desired node page.
1049  * And, readahead MAX_RA_NODE number of node pages.
1050  */
1051 struct page *get_node_page_ra(struct page *parent, int start)
1052 {
1053 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1054 	struct blk_plug plug;
1055 	struct page *page;
1056 	int err, i, end;
1057 	nid_t nid;
1058 
1059 	/* First, try getting the desired direct node. */
1060 	nid = get_nid(parent, start, false);
1061 	if (!nid)
1062 		return ERR_PTR(-ENOENT);
1063 repeat:
1064 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1065 	if (!page)
1066 		return ERR_PTR(-ENOMEM);
1067 
1068 	err = read_node_page(page, READ_SYNC);
1069 	if (err < 0)
1070 		return ERR_PTR(err);
1071 	else if (err == LOCKED_PAGE)
1072 		goto page_hit;
1073 
1074 	blk_start_plug(&plug);
1075 
1076 	/* Then, try readahead for siblings of the desired node */
1077 	end = start + MAX_RA_NODE;
1078 	end = min(end, NIDS_PER_BLOCK);
1079 	for (i = start + 1; i < end; i++) {
1080 		nid = get_nid(parent, i, false);
1081 		if (!nid)
1082 			continue;
1083 		ra_node_page(sbi, nid);
1084 	}
1085 
1086 	blk_finish_plug(&plug);
1087 
1088 	lock_page(page);
1089 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1090 		f2fs_put_page(page, 1);
1091 		goto repeat;
1092 	}
1093 page_hit:
1094 	if (unlikely(!PageUptodate(page))) {
1095 		f2fs_put_page(page, 1);
1096 		return ERR_PTR(-EIO);
1097 	}
1098 	return page;
1099 }
1100 
1101 void sync_inode_page(struct dnode_of_data *dn)
1102 {
1103 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1104 		update_inode(dn->inode, dn->node_page);
1105 	} else if (dn->inode_page) {
1106 		if (!dn->inode_page_locked)
1107 			lock_page(dn->inode_page);
1108 		update_inode(dn->inode, dn->inode_page);
1109 		if (!dn->inode_page_locked)
1110 			unlock_page(dn->inode_page);
1111 	} else {
1112 		update_inode_page(dn->inode);
1113 	}
1114 }
1115 
1116 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1117 					struct writeback_control *wbc)
1118 {
1119 	pgoff_t index, end;
1120 	struct pagevec pvec;
1121 	int step = ino ? 2 : 0;
1122 	int nwritten = 0, wrote = 0;
1123 
1124 	pagevec_init(&pvec, 0);
1125 
1126 next_step:
1127 	index = 0;
1128 	end = LONG_MAX;
1129 
1130 	while (index <= end) {
1131 		int i, nr_pages;
1132 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1133 				PAGECACHE_TAG_DIRTY,
1134 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1135 		if (nr_pages == 0)
1136 			break;
1137 
1138 		for (i = 0; i < nr_pages; i++) {
1139 			struct page *page = pvec.pages[i];
1140 
1141 			/*
1142 			 * flushing sequence with step:
1143 			 * 0. indirect nodes
1144 			 * 1. dentry dnodes
1145 			 * 2. file dnodes
1146 			 */
1147 			if (step == 0 && IS_DNODE(page))
1148 				continue;
1149 			if (step == 1 && (!IS_DNODE(page) ||
1150 						is_cold_node(page)))
1151 				continue;
1152 			if (step == 2 && (!IS_DNODE(page) ||
1153 						!is_cold_node(page)))
1154 				continue;
1155 
1156 			/*
1157 			 * If an fsync mode,
1158 			 * we should not skip writing node pages.
1159 			 */
1160 			if (ino && ino_of_node(page) == ino)
1161 				lock_page(page);
1162 			else if (!trylock_page(page))
1163 				continue;
1164 
1165 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1166 continue_unlock:
1167 				unlock_page(page);
1168 				continue;
1169 			}
1170 			if (ino && ino_of_node(page) != ino)
1171 				goto continue_unlock;
1172 
1173 			if (!PageDirty(page)) {
1174 				/* someone wrote it for us */
1175 				goto continue_unlock;
1176 			}
1177 
1178 			if (!clear_page_dirty_for_io(page))
1179 				goto continue_unlock;
1180 
1181 			/* called by fsync() */
1182 			if (ino && IS_DNODE(page)) {
1183 				set_fsync_mark(page, 1);
1184 				if (IS_INODE(page)) {
1185 					if (!is_checkpointed_node(sbi, ino) &&
1186 						!has_fsynced_inode(sbi, ino))
1187 						set_dentry_mark(page, 1);
1188 					else
1189 						set_dentry_mark(page, 0);
1190 				}
1191 				nwritten++;
1192 			} else {
1193 				set_fsync_mark(page, 0);
1194 				set_dentry_mark(page, 0);
1195 			}
1196 
1197 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1198 				unlock_page(page);
1199 			else
1200 				wrote++;
1201 
1202 			if (--wbc->nr_to_write == 0)
1203 				break;
1204 		}
1205 		pagevec_release(&pvec);
1206 		cond_resched();
1207 
1208 		if (wbc->nr_to_write == 0) {
1209 			step = 2;
1210 			break;
1211 		}
1212 	}
1213 
1214 	if (step < 2) {
1215 		step++;
1216 		goto next_step;
1217 	}
1218 
1219 	if (wrote)
1220 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1221 	return nwritten;
1222 }
1223 
1224 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1225 {
1226 	pgoff_t index = 0, end = LONG_MAX;
1227 	struct pagevec pvec;
1228 	int ret2 = 0, ret = 0;
1229 
1230 	pagevec_init(&pvec, 0);
1231 
1232 	while (index <= end) {
1233 		int i, nr_pages;
1234 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1235 				PAGECACHE_TAG_WRITEBACK,
1236 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1237 		if (nr_pages == 0)
1238 			break;
1239 
1240 		for (i = 0; i < nr_pages; i++) {
1241 			struct page *page = pvec.pages[i];
1242 
1243 			/* until radix tree lookup accepts end_index */
1244 			if (unlikely(page->index > end))
1245 				continue;
1246 
1247 			if (ino && ino_of_node(page) == ino) {
1248 				f2fs_wait_on_page_writeback(page, NODE);
1249 				if (TestClearPageError(page))
1250 					ret = -EIO;
1251 			}
1252 		}
1253 		pagevec_release(&pvec);
1254 		cond_resched();
1255 	}
1256 
1257 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1258 		ret2 = -ENOSPC;
1259 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1260 		ret2 = -EIO;
1261 	if (!ret)
1262 		ret = ret2;
1263 	return ret;
1264 }
1265 
1266 static int f2fs_write_node_page(struct page *page,
1267 				struct writeback_control *wbc)
1268 {
1269 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1270 	nid_t nid;
1271 	block_t new_addr;
1272 	struct node_info ni;
1273 	struct f2fs_io_info fio = {
1274 		.type = NODE,
1275 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1276 	};
1277 
1278 	trace_f2fs_writepage(page, NODE);
1279 
1280 	if (unlikely(sbi->por_doing))
1281 		goto redirty_out;
1282 	if (unlikely(f2fs_cp_error(sbi)))
1283 		goto redirty_out;
1284 
1285 	f2fs_wait_on_page_writeback(page, NODE);
1286 
1287 	/* get old block addr of this node page */
1288 	nid = nid_of_node(page);
1289 	f2fs_bug_on(sbi, page->index != nid);
1290 
1291 	get_node_info(sbi, nid, &ni);
1292 
1293 	/* This page is already truncated */
1294 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1295 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1296 		unlock_page(page);
1297 		return 0;
1298 	}
1299 
1300 	if (wbc->for_reclaim) {
1301 		if (!down_read_trylock(&sbi->node_write))
1302 			goto redirty_out;
1303 	} else {
1304 		down_read(&sbi->node_write);
1305 	}
1306 	set_page_writeback(page);
1307 	write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1308 	set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1309 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1310 	up_read(&sbi->node_write);
1311 	unlock_page(page);
1312 
1313 	if (wbc->for_reclaim)
1314 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1315 
1316 	return 0;
1317 
1318 redirty_out:
1319 	redirty_page_for_writepage(wbc, page);
1320 	return AOP_WRITEPAGE_ACTIVATE;
1321 }
1322 
1323 static int f2fs_write_node_pages(struct address_space *mapping,
1324 			    struct writeback_control *wbc)
1325 {
1326 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1327 	long diff;
1328 
1329 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1330 
1331 	/* balancing f2fs's metadata in background */
1332 	f2fs_balance_fs_bg(sbi);
1333 
1334 	/* collect a number of dirty node pages and write together */
1335 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1336 		goto skip_write;
1337 
1338 	diff = nr_pages_to_write(sbi, NODE, wbc);
1339 	wbc->sync_mode = WB_SYNC_NONE;
1340 	sync_node_pages(sbi, 0, wbc);
1341 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1342 	return 0;
1343 
1344 skip_write:
1345 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1346 	return 0;
1347 }
1348 
1349 static int f2fs_set_node_page_dirty(struct page *page)
1350 {
1351 	trace_f2fs_set_page_dirty(page, NODE);
1352 
1353 	SetPageUptodate(page);
1354 	if (!PageDirty(page)) {
1355 		__set_page_dirty_nobuffers(page);
1356 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1357 		SetPagePrivate(page);
1358 		return 1;
1359 	}
1360 	return 0;
1361 }
1362 
1363 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1364 				      unsigned int length)
1365 {
1366 	struct inode *inode = page->mapping->host;
1367 	if (PageDirty(page))
1368 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1369 	ClearPagePrivate(page);
1370 }
1371 
1372 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1373 {
1374 	ClearPagePrivate(page);
1375 	return 1;
1376 }
1377 
1378 /*
1379  * Structure of the f2fs node operations
1380  */
1381 const struct address_space_operations f2fs_node_aops = {
1382 	.writepage	= f2fs_write_node_page,
1383 	.writepages	= f2fs_write_node_pages,
1384 	.set_page_dirty	= f2fs_set_node_page_dirty,
1385 	.invalidatepage	= f2fs_invalidate_node_page,
1386 	.releasepage	= f2fs_release_node_page,
1387 };
1388 
1389 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1390 						nid_t n)
1391 {
1392 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1393 }
1394 
1395 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1396 						struct free_nid *i)
1397 {
1398 	list_del(&i->list);
1399 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1400 }
1401 
1402 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1403 {
1404 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1405 	struct free_nid *i;
1406 	struct nat_entry *ne;
1407 	bool allocated = false;
1408 
1409 	if (!available_free_memory(sbi, FREE_NIDS))
1410 		return -1;
1411 
1412 	/* 0 nid should not be used */
1413 	if (unlikely(nid == 0))
1414 		return 0;
1415 
1416 	if (build) {
1417 		/* do not add allocated nids */
1418 		down_read(&nm_i->nat_tree_lock);
1419 		ne = __lookup_nat_cache(nm_i, nid);
1420 		if (ne &&
1421 			(!get_nat_flag(ne, IS_CHECKPOINTED) ||
1422 				nat_get_blkaddr(ne) != NULL_ADDR))
1423 			allocated = true;
1424 		up_read(&nm_i->nat_tree_lock);
1425 		if (allocated)
1426 			return 0;
1427 	}
1428 
1429 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1430 	i->nid = nid;
1431 	i->state = NID_NEW;
1432 
1433 	if (radix_tree_preload(GFP_NOFS)) {
1434 		kmem_cache_free(free_nid_slab, i);
1435 		return 0;
1436 	}
1437 
1438 	spin_lock(&nm_i->free_nid_list_lock);
1439 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1440 		spin_unlock(&nm_i->free_nid_list_lock);
1441 		radix_tree_preload_end();
1442 		kmem_cache_free(free_nid_slab, i);
1443 		return 0;
1444 	}
1445 	list_add_tail(&i->list, &nm_i->free_nid_list);
1446 	nm_i->fcnt++;
1447 	spin_unlock(&nm_i->free_nid_list_lock);
1448 	radix_tree_preload_end();
1449 	return 1;
1450 }
1451 
1452 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1453 {
1454 	struct free_nid *i;
1455 	bool need_free = false;
1456 
1457 	spin_lock(&nm_i->free_nid_list_lock);
1458 	i = __lookup_free_nid_list(nm_i, nid);
1459 	if (i && i->state == NID_NEW) {
1460 		__del_from_free_nid_list(nm_i, i);
1461 		nm_i->fcnt--;
1462 		need_free = true;
1463 	}
1464 	spin_unlock(&nm_i->free_nid_list_lock);
1465 
1466 	if (need_free)
1467 		kmem_cache_free(free_nid_slab, i);
1468 }
1469 
1470 static void scan_nat_page(struct f2fs_sb_info *sbi,
1471 			struct page *nat_page, nid_t start_nid)
1472 {
1473 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1474 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1475 	block_t blk_addr;
1476 	int i;
1477 
1478 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1479 
1480 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1481 
1482 		if (unlikely(start_nid >= nm_i->max_nid))
1483 			break;
1484 
1485 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1486 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1487 		if (blk_addr == NULL_ADDR) {
1488 			if (add_free_nid(sbi, start_nid, true) < 0)
1489 				break;
1490 		}
1491 	}
1492 }
1493 
1494 static void build_free_nids(struct f2fs_sb_info *sbi)
1495 {
1496 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1497 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1498 	struct f2fs_summary_block *sum = curseg->sum_blk;
1499 	int i = 0;
1500 	nid_t nid = nm_i->next_scan_nid;
1501 
1502 	/* Enough entries */
1503 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1504 		return;
1505 
1506 	/* readahead nat pages to be scanned */
1507 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1508 
1509 	while (1) {
1510 		struct page *page = get_current_nat_page(sbi, nid);
1511 
1512 		scan_nat_page(sbi, page, nid);
1513 		f2fs_put_page(page, 1);
1514 
1515 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1516 		if (unlikely(nid >= nm_i->max_nid))
1517 			nid = 0;
1518 
1519 		if (i++ == FREE_NID_PAGES)
1520 			break;
1521 	}
1522 
1523 	/* go to the next free nat pages to find free nids abundantly */
1524 	nm_i->next_scan_nid = nid;
1525 
1526 	/* find free nids from current sum_pages */
1527 	mutex_lock(&curseg->curseg_mutex);
1528 	for (i = 0; i < nats_in_cursum(sum); i++) {
1529 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1530 		nid = le32_to_cpu(nid_in_journal(sum, i));
1531 		if (addr == NULL_ADDR)
1532 			add_free_nid(sbi, nid, true);
1533 		else
1534 			remove_free_nid(nm_i, nid);
1535 	}
1536 	mutex_unlock(&curseg->curseg_mutex);
1537 }
1538 
1539 /*
1540  * If this function returns success, caller can obtain a new nid
1541  * from second parameter of this function.
1542  * The returned nid could be used ino as well as nid when inode is created.
1543  */
1544 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1545 {
1546 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1547 	struct free_nid *i = NULL;
1548 retry:
1549 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1550 		return false;
1551 
1552 	spin_lock(&nm_i->free_nid_list_lock);
1553 
1554 	/* We should not use stale free nids created by build_free_nids */
1555 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1556 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1557 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1558 			if (i->state == NID_NEW)
1559 				break;
1560 
1561 		f2fs_bug_on(sbi, i->state != NID_NEW);
1562 		*nid = i->nid;
1563 		i->state = NID_ALLOC;
1564 		nm_i->fcnt--;
1565 		spin_unlock(&nm_i->free_nid_list_lock);
1566 		return true;
1567 	}
1568 	spin_unlock(&nm_i->free_nid_list_lock);
1569 
1570 	/* Let's scan nat pages and its caches to get free nids */
1571 	mutex_lock(&nm_i->build_lock);
1572 	build_free_nids(sbi);
1573 	mutex_unlock(&nm_i->build_lock);
1574 	goto retry;
1575 }
1576 
1577 /*
1578  * alloc_nid() should be called prior to this function.
1579  */
1580 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1581 {
1582 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1583 	struct free_nid *i;
1584 
1585 	spin_lock(&nm_i->free_nid_list_lock);
1586 	i = __lookup_free_nid_list(nm_i, nid);
1587 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1588 	__del_from_free_nid_list(nm_i, i);
1589 	spin_unlock(&nm_i->free_nid_list_lock);
1590 
1591 	kmem_cache_free(free_nid_slab, i);
1592 }
1593 
1594 /*
1595  * alloc_nid() should be called prior to this function.
1596  */
1597 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1598 {
1599 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1600 	struct free_nid *i;
1601 	bool need_free = false;
1602 
1603 	if (!nid)
1604 		return;
1605 
1606 	spin_lock(&nm_i->free_nid_list_lock);
1607 	i = __lookup_free_nid_list(nm_i, nid);
1608 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1609 	if (!available_free_memory(sbi, FREE_NIDS)) {
1610 		__del_from_free_nid_list(nm_i, i);
1611 		need_free = true;
1612 	} else {
1613 		i->state = NID_NEW;
1614 		nm_i->fcnt++;
1615 	}
1616 	spin_unlock(&nm_i->free_nid_list_lock);
1617 
1618 	if (need_free)
1619 		kmem_cache_free(free_nid_slab, i);
1620 }
1621 
1622 void recover_inline_xattr(struct inode *inode, struct page *page)
1623 {
1624 	void *src_addr, *dst_addr;
1625 	size_t inline_size;
1626 	struct page *ipage;
1627 	struct f2fs_inode *ri;
1628 
1629 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1630 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1631 
1632 	ri = F2FS_INODE(page);
1633 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1634 		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1635 		goto update_inode;
1636 	}
1637 
1638 	dst_addr = inline_xattr_addr(ipage);
1639 	src_addr = inline_xattr_addr(page);
1640 	inline_size = inline_xattr_size(inode);
1641 
1642 	f2fs_wait_on_page_writeback(ipage, NODE);
1643 	memcpy(dst_addr, src_addr, inline_size);
1644 update_inode:
1645 	update_inode(inode, ipage);
1646 	f2fs_put_page(ipage, 1);
1647 }
1648 
1649 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1650 {
1651 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1652 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1653 	nid_t new_xnid = nid_of_node(page);
1654 	struct node_info ni;
1655 
1656 	/* 1: invalidate the previous xattr nid */
1657 	if (!prev_xnid)
1658 		goto recover_xnid;
1659 
1660 	/* Deallocate node address */
1661 	get_node_info(sbi, prev_xnid, &ni);
1662 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1663 	invalidate_blocks(sbi, ni.blk_addr);
1664 	dec_valid_node_count(sbi, inode);
1665 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1666 
1667 recover_xnid:
1668 	/* 2: allocate new xattr nid */
1669 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1670 		f2fs_bug_on(sbi, 1);
1671 
1672 	remove_free_nid(NM_I(sbi), new_xnid);
1673 	get_node_info(sbi, new_xnid, &ni);
1674 	ni.ino = inode->i_ino;
1675 	set_node_addr(sbi, &ni, NEW_ADDR, false);
1676 	F2FS_I(inode)->i_xattr_nid = new_xnid;
1677 
1678 	/* 3: update xattr blkaddr */
1679 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1680 	set_node_addr(sbi, &ni, blkaddr, false);
1681 
1682 	update_inode_page(inode);
1683 }
1684 
1685 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1686 {
1687 	struct f2fs_inode *src, *dst;
1688 	nid_t ino = ino_of_node(page);
1689 	struct node_info old_ni, new_ni;
1690 	struct page *ipage;
1691 
1692 	get_node_info(sbi, ino, &old_ni);
1693 
1694 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1695 		return -EINVAL;
1696 
1697 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1698 	if (!ipage)
1699 		return -ENOMEM;
1700 
1701 	/* Should not use this inode from free nid list */
1702 	remove_free_nid(NM_I(sbi), ino);
1703 
1704 	SetPageUptodate(ipage);
1705 	fill_node_footer(ipage, ino, ino, 0, true);
1706 
1707 	src = F2FS_INODE(page);
1708 	dst = F2FS_INODE(ipage);
1709 
1710 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1711 	dst->i_size = 0;
1712 	dst->i_blocks = cpu_to_le64(1);
1713 	dst->i_links = cpu_to_le32(1);
1714 	dst->i_xattr_nid = 0;
1715 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1716 
1717 	new_ni = old_ni;
1718 	new_ni.ino = ino;
1719 
1720 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1721 		WARN_ON(1);
1722 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1723 	inc_valid_inode_count(sbi);
1724 	set_page_dirty(ipage);
1725 	f2fs_put_page(ipage, 1);
1726 	return 0;
1727 }
1728 
1729 /*
1730  * ra_sum_pages() merge contiguous pages into one bio and submit.
1731  * these pre-read pages are allocated in bd_inode's mapping tree.
1732  */
1733 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1734 				int start, int nrpages)
1735 {
1736 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
1737 	struct address_space *mapping = inode->i_mapping;
1738 	int i, page_idx = start;
1739 	struct f2fs_io_info fio = {
1740 		.type = META,
1741 		.rw = READ_SYNC | REQ_META | REQ_PRIO
1742 	};
1743 
1744 	for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1745 		/* alloc page in bd_inode for reading node summary info */
1746 		pages[i] = grab_cache_page(mapping, page_idx);
1747 		if (!pages[i])
1748 			break;
1749 		f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1750 	}
1751 
1752 	f2fs_submit_merged_bio(sbi, META, READ);
1753 	return i;
1754 }
1755 
1756 int restore_node_summary(struct f2fs_sb_info *sbi,
1757 			unsigned int segno, struct f2fs_summary_block *sum)
1758 {
1759 	struct f2fs_node *rn;
1760 	struct f2fs_summary *sum_entry;
1761 	struct inode *inode = sbi->sb->s_bdev->bd_inode;
1762 	block_t addr;
1763 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1764 	struct page *pages[bio_blocks];
1765 	int i, idx, last_offset, nrpages, err = 0;
1766 
1767 	/* scan the node segment */
1768 	last_offset = sbi->blocks_per_seg;
1769 	addr = START_BLOCK(sbi, segno);
1770 	sum_entry = &sum->entries[0];
1771 
1772 	for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1773 		nrpages = min(last_offset - i, bio_blocks);
1774 
1775 		/* readahead node pages */
1776 		nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1777 		if (!nrpages)
1778 			return -ENOMEM;
1779 
1780 		for (idx = 0; idx < nrpages; idx++) {
1781 			if (err)
1782 				goto skip;
1783 
1784 			lock_page(pages[idx]);
1785 			if (unlikely(!PageUptodate(pages[idx]))) {
1786 				err = -EIO;
1787 			} else {
1788 				rn = F2FS_NODE(pages[idx]);
1789 				sum_entry->nid = rn->footer.nid;
1790 				sum_entry->version = 0;
1791 				sum_entry->ofs_in_node = 0;
1792 				sum_entry++;
1793 			}
1794 			unlock_page(pages[idx]);
1795 skip:
1796 			page_cache_release(pages[idx]);
1797 		}
1798 
1799 		invalidate_mapping_pages(inode->i_mapping, addr,
1800 							addr + nrpages);
1801 	}
1802 	return err;
1803 }
1804 
1805 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1806 {
1807 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1808 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1809 	struct f2fs_summary_block *sum = curseg->sum_blk;
1810 	int i;
1811 
1812 	mutex_lock(&curseg->curseg_mutex);
1813 	for (i = 0; i < nats_in_cursum(sum); i++) {
1814 		struct nat_entry *ne;
1815 		struct f2fs_nat_entry raw_ne;
1816 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1817 
1818 		raw_ne = nat_in_journal(sum, i);
1819 
1820 		down_write(&nm_i->nat_tree_lock);
1821 		ne = __lookup_nat_cache(nm_i, nid);
1822 		if (!ne) {
1823 			ne = grab_nat_entry(nm_i, nid);
1824 			node_info_from_raw_nat(&ne->ni, &raw_ne);
1825 		}
1826 		__set_nat_cache_dirty(nm_i, ne);
1827 		up_write(&nm_i->nat_tree_lock);
1828 	}
1829 	update_nats_in_cursum(sum, -i);
1830 	mutex_unlock(&curseg->curseg_mutex);
1831 }
1832 
1833 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1834 						struct list_head *head, int max)
1835 {
1836 	struct nat_entry_set *cur;
1837 
1838 	if (nes->entry_cnt >= max)
1839 		goto add_out;
1840 
1841 	list_for_each_entry(cur, head, set_list) {
1842 		if (cur->entry_cnt >= nes->entry_cnt) {
1843 			list_add(&nes->set_list, cur->set_list.prev);
1844 			return;
1845 		}
1846 	}
1847 add_out:
1848 	list_add_tail(&nes->set_list, head);
1849 }
1850 
1851 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1852 					struct nat_entry_set *set)
1853 {
1854 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1855 	struct f2fs_summary_block *sum = curseg->sum_blk;
1856 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1857 	bool to_journal = true;
1858 	struct f2fs_nat_block *nat_blk;
1859 	struct nat_entry *ne, *cur;
1860 	struct page *page = NULL;
1861 
1862 	/*
1863 	 * there are two steps to flush nat entries:
1864 	 * #1, flush nat entries to journal in current hot data summary block.
1865 	 * #2, flush nat entries to nat page.
1866 	 */
1867 	if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1868 		to_journal = false;
1869 
1870 	if (to_journal) {
1871 		mutex_lock(&curseg->curseg_mutex);
1872 	} else {
1873 		page = get_next_nat_page(sbi, start_nid);
1874 		nat_blk = page_address(page);
1875 		f2fs_bug_on(sbi, !nat_blk);
1876 	}
1877 
1878 	/* flush dirty nats in nat entry set */
1879 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1880 		struct f2fs_nat_entry *raw_ne;
1881 		nid_t nid = nat_get_nid(ne);
1882 		int offset;
1883 
1884 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1885 			continue;
1886 
1887 		if (to_journal) {
1888 			offset = lookup_journal_in_cursum(sum,
1889 							NAT_JOURNAL, nid, 1);
1890 			f2fs_bug_on(sbi, offset < 0);
1891 			raw_ne = &nat_in_journal(sum, offset);
1892 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1893 		} else {
1894 			raw_ne = &nat_blk->entries[nid - start_nid];
1895 		}
1896 		raw_nat_from_node_info(raw_ne, &ne->ni);
1897 
1898 		down_write(&NM_I(sbi)->nat_tree_lock);
1899 		nat_reset_flag(ne);
1900 		__clear_nat_cache_dirty(NM_I(sbi), ne);
1901 		up_write(&NM_I(sbi)->nat_tree_lock);
1902 
1903 		if (nat_get_blkaddr(ne) == NULL_ADDR)
1904 			add_free_nid(sbi, nid, false);
1905 	}
1906 
1907 	if (to_journal)
1908 		mutex_unlock(&curseg->curseg_mutex);
1909 	else
1910 		f2fs_put_page(page, 1);
1911 
1912 	f2fs_bug_on(sbi, set->entry_cnt);
1913 
1914 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1915 	kmem_cache_free(nat_entry_set_slab, set);
1916 }
1917 
1918 /*
1919  * This function is called during the checkpointing process.
1920  */
1921 void flush_nat_entries(struct f2fs_sb_info *sbi)
1922 {
1923 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1924 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1925 	struct f2fs_summary_block *sum = curseg->sum_blk;
1926 	struct nat_entry_set *setvec[NATVEC_SIZE];
1927 	struct nat_entry_set *set, *tmp;
1928 	unsigned int found;
1929 	nid_t set_idx = 0;
1930 	LIST_HEAD(sets);
1931 
1932 	if (!nm_i->dirty_nat_cnt)
1933 		return;
1934 	/*
1935 	 * if there are no enough space in journal to store dirty nat
1936 	 * entries, remove all entries from journal and merge them
1937 	 * into nat entry set.
1938 	 */
1939 	if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1940 		remove_nats_in_journal(sbi);
1941 
1942 	while ((found = __gang_lookup_nat_set(nm_i,
1943 					set_idx, NATVEC_SIZE, setvec))) {
1944 		unsigned idx;
1945 		set_idx = setvec[found - 1]->set + 1;
1946 		for (idx = 0; idx < found; idx++)
1947 			__adjust_nat_entry_set(setvec[idx], &sets,
1948 							MAX_NAT_JENTRIES(sum));
1949 	}
1950 
1951 	/* flush dirty nats in nat entry set */
1952 	list_for_each_entry_safe(set, tmp, &sets, set_list)
1953 		__flush_nat_entry_set(sbi, set);
1954 
1955 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1956 }
1957 
1958 static int init_node_manager(struct f2fs_sb_info *sbi)
1959 {
1960 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1961 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1962 	unsigned char *version_bitmap;
1963 	unsigned int nat_segs, nat_blocks;
1964 
1965 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1966 
1967 	/* segment_count_nat includes pair segment so divide to 2. */
1968 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1969 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1970 
1971 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1972 
1973 	/* not used nids: 0, node, meta, (and root counted as valid node) */
1974 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1975 	nm_i->fcnt = 0;
1976 	nm_i->nat_cnt = 0;
1977 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1978 
1979 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1980 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1981 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1982 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1983 	INIT_LIST_HEAD(&nm_i->nat_entries);
1984 
1985 	mutex_init(&nm_i->build_lock);
1986 	spin_lock_init(&nm_i->free_nid_list_lock);
1987 	init_rwsem(&nm_i->nat_tree_lock);
1988 
1989 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1990 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1991 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1992 	if (!version_bitmap)
1993 		return -EFAULT;
1994 
1995 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1996 					GFP_KERNEL);
1997 	if (!nm_i->nat_bitmap)
1998 		return -ENOMEM;
1999 	return 0;
2000 }
2001 
2002 int build_node_manager(struct f2fs_sb_info *sbi)
2003 {
2004 	int err;
2005 
2006 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2007 	if (!sbi->nm_info)
2008 		return -ENOMEM;
2009 
2010 	err = init_node_manager(sbi);
2011 	if (err)
2012 		return err;
2013 
2014 	build_free_nids(sbi);
2015 	return 0;
2016 }
2017 
2018 void destroy_node_manager(struct f2fs_sb_info *sbi)
2019 {
2020 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2021 	struct free_nid *i, *next_i;
2022 	struct nat_entry *natvec[NATVEC_SIZE];
2023 	nid_t nid = 0;
2024 	unsigned int found;
2025 
2026 	if (!nm_i)
2027 		return;
2028 
2029 	/* destroy free nid list */
2030 	spin_lock(&nm_i->free_nid_list_lock);
2031 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2032 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2033 		__del_from_free_nid_list(nm_i, i);
2034 		nm_i->fcnt--;
2035 		spin_unlock(&nm_i->free_nid_list_lock);
2036 		kmem_cache_free(free_nid_slab, i);
2037 		spin_lock(&nm_i->free_nid_list_lock);
2038 	}
2039 	f2fs_bug_on(sbi, nm_i->fcnt);
2040 	spin_unlock(&nm_i->free_nid_list_lock);
2041 
2042 	/* destroy nat cache */
2043 	down_write(&nm_i->nat_tree_lock);
2044 	while ((found = __gang_lookup_nat_cache(nm_i,
2045 					nid, NATVEC_SIZE, natvec))) {
2046 		unsigned idx;
2047 		nid = nat_get_nid(natvec[found - 1]) + 1;
2048 		for (idx = 0; idx < found; idx++)
2049 			__del_from_nat_cache(nm_i, natvec[idx]);
2050 	}
2051 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2052 	up_write(&nm_i->nat_tree_lock);
2053 
2054 	kfree(nm_i->nat_bitmap);
2055 	sbi->nm_info = NULL;
2056 	kfree(nm_i);
2057 }
2058 
2059 int __init create_node_manager_caches(void)
2060 {
2061 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2062 			sizeof(struct nat_entry));
2063 	if (!nat_entry_slab)
2064 		goto fail;
2065 
2066 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2067 			sizeof(struct free_nid));
2068 	if (!free_nid_slab)
2069 		goto destroy_nat_entry;
2070 
2071 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2072 			sizeof(struct nat_entry_set));
2073 	if (!nat_entry_set_slab)
2074 		goto destroy_free_nid;
2075 	return 0;
2076 
2077 destroy_free_nid:
2078 	kmem_cache_destroy(free_nid_slab);
2079 destroy_nat_entry:
2080 	kmem_cache_destroy(nat_entry_slab);
2081 fail:
2082 	return -ENOMEM;
2083 }
2084 
2085 void destroy_node_manager_caches(void)
2086 {
2087 	kmem_cache_destroy(nat_entry_set_slab);
2088 	kmem_cache_destroy(free_nid_slab);
2089 	kmem_cache_destroy(nat_entry_slab);
2090 }
2091