xref: /openbmc/linux/fs/f2fs/node.c (revision 3e26a691)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 							PAGE_CACHE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_CACHE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 	} else if (type == DIRTY_DENTS) {
56 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 			return false;
58 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 	} else if (type == INO_ENTRIES) {
61 		int i;
62 
63 		for (i = 0; i <= UPDATE_INO; i++)
64 			mem_size += (sbi->im[i].ino_num *
65 				sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 	} else if (type == EXTENT_CACHE) {
68 		mem_size = (atomic_read(&sbi->total_ext_tree) *
69 				sizeof(struct extent_tree) +
70 				atomic_read(&sbi->total_ext_node) *
71 				sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73 	} else {
74 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75 			return true;
76 	}
77 	return res;
78 }
79 
80 static void clear_node_page_dirty(struct page *page)
81 {
82 	struct address_space *mapping = page->mapping;
83 	unsigned int long flags;
84 
85 	if (PageDirty(page)) {
86 		spin_lock_irqsave(&mapping->tree_lock, flags);
87 		radix_tree_tag_clear(&mapping->page_tree,
88 				page_index(page),
89 				PAGECACHE_TAG_DIRTY);
90 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
91 
92 		clear_page_dirty_for_io(page);
93 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94 	}
95 	ClearPageUptodate(page);
96 }
97 
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100 	pgoff_t index = current_nat_addr(sbi, nid);
101 	return get_meta_page(sbi, index);
102 }
103 
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106 	struct page *src_page;
107 	struct page *dst_page;
108 	pgoff_t src_off;
109 	pgoff_t dst_off;
110 	void *src_addr;
111 	void *dst_addr;
112 	struct f2fs_nm_info *nm_i = NM_I(sbi);
113 
114 	src_off = current_nat_addr(sbi, nid);
115 	dst_off = next_nat_addr(sbi, src_off);
116 
117 	/* get current nat block page with lock */
118 	src_page = get_meta_page(sbi, src_off);
119 	dst_page = grab_meta_page(sbi, dst_off);
120 	f2fs_bug_on(sbi, PageDirty(src_page));
121 
122 	src_addr = page_address(src_page);
123 	dst_addr = page_address(dst_page);
124 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
125 	set_page_dirty(dst_page);
126 	f2fs_put_page(src_page, 1);
127 
128 	set_to_next_nat(nm_i, nid);
129 
130 	return dst_page;
131 }
132 
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135 	return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137 
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139 		nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143 
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146 	list_del(&e->list);
147 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148 	nm_i->nat_cnt--;
149 	kmem_cache_free(nat_entry_slab, e);
150 }
151 
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153 						struct nat_entry *ne)
154 {
155 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156 	struct nat_entry_set *head;
157 
158 	if (get_nat_flag(ne, IS_DIRTY))
159 		return;
160 
161 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 	if (!head) {
163 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164 
165 		INIT_LIST_HEAD(&head->entry_list);
166 		INIT_LIST_HEAD(&head->set_list);
167 		head->set = set;
168 		head->entry_cnt = 0;
169 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 	}
171 	list_move_tail(&ne->list, &head->entry_list);
172 	nm_i->dirty_nat_cnt++;
173 	head->entry_cnt++;
174 	set_nat_flag(ne, IS_DIRTY, true);
175 }
176 
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178 						struct nat_entry *ne)
179 {
180 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181 	struct nat_entry_set *head;
182 
183 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
184 	if (head) {
185 		list_move_tail(&ne->list, &nm_i->nat_entries);
186 		set_nat_flag(ne, IS_DIRTY, false);
187 		head->entry_cnt--;
188 		nm_i->dirty_nat_cnt--;
189 	}
190 }
191 
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196 							start, nr);
197 }
198 
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201 	struct f2fs_nm_info *nm_i = NM_I(sbi);
202 	struct nat_entry *e;
203 	bool need = false;
204 
205 	down_read(&nm_i->nat_tree_lock);
206 	e = __lookup_nat_cache(nm_i, nid);
207 	if (e) {
208 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209 				!get_nat_flag(e, HAS_FSYNCED_INODE))
210 			need = true;
211 	}
212 	up_read(&nm_i->nat_tree_lock);
213 	return need;
214 }
215 
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218 	struct f2fs_nm_info *nm_i = NM_I(sbi);
219 	struct nat_entry *e;
220 	bool is_cp = true;
221 
222 	down_read(&nm_i->nat_tree_lock);
223 	e = __lookup_nat_cache(nm_i, nid);
224 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225 		is_cp = false;
226 	up_read(&nm_i->nat_tree_lock);
227 	return is_cp;
228 }
229 
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232 	struct f2fs_nm_info *nm_i = NM_I(sbi);
233 	struct nat_entry *e;
234 	bool need_update = true;
235 
236 	down_read(&nm_i->nat_tree_lock);
237 	e = __lookup_nat_cache(nm_i, ino);
238 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239 			(get_nat_flag(e, IS_CHECKPOINTED) ||
240 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
241 		need_update = false;
242 	up_read(&nm_i->nat_tree_lock);
243 	return need_update;
244 }
245 
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248 	struct nat_entry *new;
249 
250 	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251 	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252 	memset(new, 0, sizeof(struct nat_entry));
253 	nat_set_nid(new, nid);
254 	nat_reset_flag(new);
255 	list_add_tail(&new->list, &nm_i->nat_entries);
256 	nm_i->nat_cnt++;
257 	return new;
258 }
259 
260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261 						struct f2fs_nat_entry *ne)
262 {
263 	struct f2fs_nm_info *nm_i = NM_I(sbi);
264 	struct nat_entry *e;
265 
266 	e = __lookup_nat_cache(nm_i, nid);
267 	if (!e) {
268 		e = grab_nat_entry(nm_i, nid);
269 		node_info_from_raw_nat(&e->ni, ne);
270 	} else {
271 		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272 				nat_get_blkaddr(e) != ne->block_addr ||
273 				nat_get_version(e) != ne->version);
274 	}
275 }
276 
277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278 			block_t new_blkaddr, bool fsync_done)
279 {
280 	struct f2fs_nm_info *nm_i = NM_I(sbi);
281 	struct nat_entry *e;
282 
283 	down_write(&nm_i->nat_tree_lock);
284 	e = __lookup_nat_cache(nm_i, ni->nid);
285 	if (!e) {
286 		e = grab_nat_entry(nm_i, ni->nid);
287 		copy_node_info(&e->ni, ni);
288 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289 	} else if (new_blkaddr == NEW_ADDR) {
290 		/*
291 		 * when nid is reallocated,
292 		 * previous nat entry can be remained in nat cache.
293 		 * So, reinitialize it with new information.
294 		 */
295 		copy_node_info(&e->ni, ni);
296 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297 	}
298 
299 	/* sanity check */
300 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302 			new_blkaddr == NULL_ADDR);
303 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304 			new_blkaddr == NEW_ADDR);
305 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306 			nat_get_blkaddr(e) != NULL_ADDR &&
307 			new_blkaddr == NEW_ADDR);
308 
309 	/* increment version no as node is removed */
310 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311 		unsigned char version = nat_get_version(e);
312 		nat_set_version(e, inc_node_version(version));
313 
314 		/* in order to reuse the nid */
315 		if (nm_i->next_scan_nid > ni->nid)
316 			nm_i->next_scan_nid = ni->nid;
317 	}
318 
319 	/* change address */
320 	nat_set_blkaddr(e, new_blkaddr);
321 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322 		set_nat_flag(e, IS_CHECKPOINTED, false);
323 	__set_nat_cache_dirty(nm_i, e);
324 
325 	/* update fsync_mark if its inode nat entry is still alive */
326 	if (ni->nid != ni->ino)
327 		e = __lookup_nat_cache(nm_i, ni->ino);
328 	if (e) {
329 		if (fsync_done && ni->nid == ni->ino)
330 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
331 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332 	}
333 	up_write(&nm_i->nat_tree_lock);
334 }
335 
336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337 {
338 	struct f2fs_nm_info *nm_i = NM_I(sbi);
339 	int nr = nr_shrink;
340 
341 	if (!down_write_trylock(&nm_i->nat_tree_lock))
342 		return 0;
343 
344 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345 		struct nat_entry *ne;
346 		ne = list_first_entry(&nm_i->nat_entries,
347 					struct nat_entry, list);
348 		__del_from_nat_cache(nm_i, ne);
349 		nr_shrink--;
350 	}
351 	up_write(&nm_i->nat_tree_lock);
352 	return nr - nr_shrink;
353 }
354 
355 /*
356  * This function always returns success
357  */
358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359 {
360 	struct f2fs_nm_info *nm_i = NM_I(sbi);
361 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362 	struct f2fs_journal *journal = curseg->journal;
363 	nid_t start_nid = START_NID(nid);
364 	struct f2fs_nat_block *nat_blk;
365 	struct page *page = NULL;
366 	struct f2fs_nat_entry ne;
367 	struct nat_entry *e;
368 	int i;
369 
370 	ni->nid = nid;
371 
372 	/* Check nat cache */
373 	down_read(&nm_i->nat_tree_lock);
374 	e = __lookup_nat_cache(nm_i, nid);
375 	if (e) {
376 		ni->ino = nat_get_ino(e);
377 		ni->blk_addr = nat_get_blkaddr(e);
378 		ni->version = nat_get_version(e);
379 		up_read(&nm_i->nat_tree_lock);
380 		return;
381 	}
382 
383 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384 
385 	/* Check current segment summary */
386 	down_read(&curseg->journal_rwsem);
387 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388 	if (i >= 0) {
389 		ne = nat_in_journal(journal, i);
390 		node_info_from_raw_nat(ni, &ne);
391 	}
392 	up_read(&curseg->journal_rwsem);
393 	if (i >= 0)
394 		goto cache;
395 
396 	/* Fill node_info from nat page */
397 	page = get_current_nat_page(sbi, start_nid);
398 	nat_blk = (struct f2fs_nat_block *)page_address(page);
399 	ne = nat_blk->entries[nid - start_nid];
400 	node_info_from_raw_nat(ni, &ne);
401 	f2fs_put_page(page, 1);
402 cache:
403 	up_read(&nm_i->nat_tree_lock);
404 	/* cache nat entry */
405 	down_write(&nm_i->nat_tree_lock);
406 	cache_nat_entry(sbi, nid, &ne);
407 	up_write(&nm_i->nat_tree_lock);
408 }
409 
410 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
411 {
412 	const long direct_index = ADDRS_PER_INODE(dn->inode);
413 	const long direct_blks = ADDRS_PER_BLOCK;
414 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
415 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
416 	int cur_level = dn->cur_level;
417 	int max_level = dn->max_level;
418 	pgoff_t base = 0;
419 
420 	if (!dn->max_level)
421 		return pgofs + 1;
422 
423 	while (max_level-- > cur_level)
424 		skipped_unit *= NIDS_PER_BLOCK;
425 
426 	switch (dn->max_level) {
427 	case 3:
428 		base += 2 * indirect_blks;
429 	case 2:
430 		base += 2 * direct_blks;
431 	case 1:
432 		base += direct_index;
433 		break;
434 	default:
435 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
436 	}
437 
438 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
439 }
440 
441 /*
442  * The maximum depth is four.
443  * Offset[0] will have raw inode offset.
444  */
445 static int get_node_path(struct inode *inode, long block,
446 				int offset[4], unsigned int noffset[4])
447 {
448 	const long direct_index = ADDRS_PER_INODE(inode);
449 	const long direct_blks = ADDRS_PER_BLOCK;
450 	const long dptrs_per_blk = NIDS_PER_BLOCK;
451 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
452 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
453 	int n = 0;
454 	int level = 0;
455 
456 	noffset[0] = 0;
457 
458 	if (block < direct_index) {
459 		offset[n] = block;
460 		goto got;
461 	}
462 	block -= direct_index;
463 	if (block < direct_blks) {
464 		offset[n++] = NODE_DIR1_BLOCK;
465 		noffset[n] = 1;
466 		offset[n] = block;
467 		level = 1;
468 		goto got;
469 	}
470 	block -= direct_blks;
471 	if (block < direct_blks) {
472 		offset[n++] = NODE_DIR2_BLOCK;
473 		noffset[n] = 2;
474 		offset[n] = block;
475 		level = 1;
476 		goto got;
477 	}
478 	block -= direct_blks;
479 	if (block < indirect_blks) {
480 		offset[n++] = NODE_IND1_BLOCK;
481 		noffset[n] = 3;
482 		offset[n++] = block / direct_blks;
483 		noffset[n] = 4 + offset[n - 1];
484 		offset[n] = block % direct_blks;
485 		level = 2;
486 		goto got;
487 	}
488 	block -= indirect_blks;
489 	if (block < indirect_blks) {
490 		offset[n++] = NODE_IND2_BLOCK;
491 		noffset[n] = 4 + dptrs_per_blk;
492 		offset[n++] = block / direct_blks;
493 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
494 		offset[n] = block % direct_blks;
495 		level = 2;
496 		goto got;
497 	}
498 	block -= indirect_blks;
499 	if (block < dindirect_blks) {
500 		offset[n++] = NODE_DIND_BLOCK;
501 		noffset[n] = 5 + (dptrs_per_blk * 2);
502 		offset[n++] = block / indirect_blks;
503 		noffset[n] = 6 + (dptrs_per_blk * 2) +
504 			      offset[n - 1] * (dptrs_per_blk + 1);
505 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
506 		noffset[n] = 7 + (dptrs_per_blk * 2) +
507 			      offset[n - 2] * (dptrs_per_blk + 1) +
508 			      offset[n - 1];
509 		offset[n] = block % direct_blks;
510 		level = 3;
511 		goto got;
512 	} else {
513 		BUG();
514 	}
515 got:
516 	return level;
517 }
518 
519 /*
520  * Caller should call f2fs_put_dnode(dn).
521  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
522  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
523  * In the case of RDONLY_NODE, we don't need to care about mutex.
524  */
525 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
526 {
527 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
528 	struct page *npage[4];
529 	struct page *parent = NULL;
530 	int offset[4];
531 	unsigned int noffset[4];
532 	nid_t nids[4];
533 	int level, i = 0;
534 	int err = 0;
535 
536 	level = get_node_path(dn->inode, index, offset, noffset);
537 
538 	nids[0] = dn->inode->i_ino;
539 	npage[0] = dn->inode_page;
540 
541 	if (!npage[0]) {
542 		npage[0] = get_node_page(sbi, nids[0]);
543 		if (IS_ERR(npage[0]))
544 			return PTR_ERR(npage[0]);
545 	}
546 
547 	/* if inline_data is set, should not report any block indices */
548 	if (f2fs_has_inline_data(dn->inode) && index) {
549 		err = -ENOENT;
550 		f2fs_put_page(npage[0], 1);
551 		goto release_out;
552 	}
553 
554 	parent = npage[0];
555 	if (level != 0)
556 		nids[1] = get_nid(parent, offset[0], true);
557 	dn->inode_page = npage[0];
558 	dn->inode_page_locked = true;
559 
560 	/* get indirect or direct nodes */
561 	for (i = 1; i <= level; i++) {
562 		bool done = false;
563 
564 		if (!nids[i] && mode == ALLOC_NODE) {
565 			/* alloc new node */
566 			if (!alloc_nid(sbi, &(nids[i]))) {
567 				err = -ENOSPC;
568 				goto release_pages;
569 			}
570 
571 			dn->nid = nids[i];
572 			npage[i] = new_node_page(dn, noffset[i], NULL);
573 			if (IS_ERR(npage[i])) {
574 				alloc_nid_failed(sbi, nids[i]);
575 				err = PTR_ERR(npage[i]);
576 				goto release_pages;
577 			}
578 
579 			set_nid(parent, offset[i - 1], nids[i], i == 1);
580 			alloc_nid_done(sbi, nids[i]);
581 			done = true;
582 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
583 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
584 			if (IS_ERR(npage[i])) {
585 				err = PTR_ERR(npage[i]);
586 				goto release_pages;
587 			}
588 			done = true;
589 		}
590 		if (i == 1) {
591 			dn->inode_page_locked = false;
592 			unlock_page(parent);
593 		} else {
594 			f2fs_put_page(parent, 1);
595 		}
596 
597 		if (!done) {
598 			npage[i] = get_node_page(sbi, nids[i]);
599 			if (IS_ERR(npage[i])) {
600 				err = PTR_ERR(npage[i]);
601 				f2fs_put_page(npage[0], 0);
602 				goto release_out;
603 			}
604 		}
605 		if (i < level) {
606 			parent = npage[i];
607 			nids[i + 1] = get_nid(parent, offset[i], false);
608 		}
609 	}
610 	dn->nid = nids[level];
611 	dn->ofs_in_node = offset[level];
612 	dn->node_page = npage[level];
613 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
614 	return 0;
615 
616 release_pages:
617 	f2fs_put_page(parent, 1);
618 	if (i > 1)
619 		f2fs_put_page(npage[0], 0);
620 release_out:
621 	dn->inode_page = NULL;
622 	dn->node_page = NULL;
623 	if (err == -ENOENT) {
624 		dn->cur_level = i;
625 		dn->max_level = level;
626 	}
627 	return err;
628 }
629 
630 static void truncate_node(struct dnode_of_data *dn)
631 {
632 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
633 	struct node_info ni;
634 
635 	get_node_info(sbi, dn->nid, &ni);
636 	if (dn->inode->i_blocks == 0) {
637 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
638 		goto invalidate;
639 	}
640 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
641 
642 	/* Deallocate node address */
643 	invalidate_blocks(sbi, ni.blk_addr);
644 	dec_valid_node_count(sbi, dn->inode);
645 	set_node_addr(sbi, &ni, NULL_ADDR, false);
646 
647 	if (dn->nid == dn->inode->i_ino) {
648 		remove_orphan_inode(sbi, dn->nid);
649 		dec_valid_inode_count(sbi);
650 	} else {
651 		sync_inode_page(dn);
652 	}
653 invalidate:
654 	clear_node_page_dirty(dn->node_page);
655 	set_sbi_flag(sbi, SBI_IS_DIRTY);
656 
657 	f2fs_put_page(dn->node_page, 1);
658 
659 	invalidate_mapping_pages(NODE_MAPPING(sbi),
660 			dn->node_page->index, dn->node_page->index);
661 
662 	dn->node_page = NULL;
663 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
664 }
665 
666 static int truncate_dnode(struct dnode_of_data *dn)
667 {
668 	struct page *page;
669 
670 	if (dn->nid == 0)
671 		return 1;
672 
673 	/* get direct node */
674 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
675 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
676 		return 1;
677 	else if (IS_ERR(page))
678 		return PTR_ERR(page);
679 
680 	/* Make dnode_of_data for parameter */
681 	dn->node_page = page;
682 	dn->ofs_in_node = 0;
683 	truncate_data_blocks(dn);
684 	truncate_node(dn);
685 	return 1;
686 }
687 
688 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
689 						int ofs, int depth)
690 {
691 	struct dnode_of_data rdn = *dn;
692 	struct page *page;
693 	struct f2fs_node *rn;
694 	nid_t child_nid;
695 	unsigned int child_nofs;
696 	int freed = 0;
697 	int i, ret;
698 
699 	if (dn->nid == 0)
700 		return NIDS_PER_BLOCK + 1;
701 
702 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
703 
704 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
705 	if (IS_ERR(page)) {
706 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
707 		return PTR_ERR(page);
708 	}
709 
710 	rn = F2FS_NODE(page);
711 	if (depth < 3) {
712 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
713 			child_nid = le32_to_cpu(rn->in.nid[i]);
714 			if (child_nid == 0)
715 				continue;
716 			rdn.nid = child_nid;
717 			ret = truncate_dnode(&rdn);
718 			if (ret < 0)
719 				goto out_err;
720 			if (set_nid(page, i, 0, false))
721 				dn->node_changed = true;
722 		}
723 	} else {
724 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
725 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
726 			child_nid = le32_to_cpu(rn->in.nid[i]);
727 			if (child_nid == 0) {
728 				child_nofs += NIDS_PER_BLOCK + 1;
729 				continue;
730 			}
731 			rdn.nid = child_nid;
732 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
733 			if (ret == (NIDS_PER_BLOCK + 1)) {
734 				if (set_nid(page, i, 0, false))
735 					dn->node_changed = true;
736 				child_nofs += ret;
737 			} else if (ret < 0 && ret != -ENOENT) {
738 				goto out_err;
739 			}
740 		}
741 		freed = child_nofs;
742 	}
743 
744 	if (!ofs) {
745 		/* remove current indirect node */
746 		dn->node_page = page;
747 		truncate_node(dn);
748 		freed++;
749 	} else {
750 		f2fs_put_page(page, 1);
751 	}
752 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
753 	return freed;
754 
755 out_err:
756 	f2fs_put_page(page, 1);
757 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
758 	return ret;
759 }
760 
761 static int truncate_partial_nodes(struct dnode_of_data *dn,
762 			struct f2fs_inode *ri, int *offset, int depth)
763 {
764 	struct page *pages[2];
765 	nid_t nid[3];
766 	nid_t child_nid;
767 	int err = 0;
768 	int i;
769 	int idx = depth - 2;
770 
771 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
772 	if (!nid[0])
773 		return 0;
774 
775 	/* get indirect nodes in the path */
776 	for (i = 0; i < idx + 1; i++) {
777 		/* reference count'll be increased */
778 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
779 		if (IS_ERR(pages[i])) {
780 			err = PTR_ERR(pages[i]);
781 			idx = i - 1;
782 			goto fail;
783 		}
784 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
785 	}
786 
787 	/* free direct nodes linked to a partial indirect node */
788 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
789 		child_nid = get_nid(pages[idx], i, false);
790 		if (!child_nid)
791 			continue;
792 		dn->nid = child_nid;
793 		err = truncate_dnode(dn);
794 		if (err < 0)
795 			goto fail;
796 		if (set_nid(pages[idx], i, 0, false))
797 			dn->node_changed = true;
798 	}
799 
800 	if (offset[idx + 1] == 0) {
801 		dn->node_page = pages[idx];
802 		dn->nid = nid[idx];
803 		truncate_node(dn);
804 	} else {
805 		f2fs_put_page(pages[idx], 1);
806 	}
807 	offset[idx]++;
808 	offset[idx + 1] = 0;
809 	idx--;
810 fail:
811 	for (i = idx; i >= 0; i--)
812 		f2fs_put_page(pages[i], 1);
813 
814 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
815 
816 	return err;
817 }
818 
819 /*
820  * All the block addresses of data and nodes should be nullified.
821  */
822 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
823 {
824 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
825 	int err = 0, cont = 1;
826 	int level, offset[4], noffset[4];
827 	unsigned int nofs = 0;
828 	struct f2fs_inode *ri;
829 	struct dnode_of_data dn;
830 	struct page *page;
831 
832 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
833 
834 	level = get_node_path(inode, from, offset, noffset);
835 restart:
836 	page = get_node_page(sbi, inode->i_ino);
837 	if (IS_ERR(page)) {
838 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
839 		return PTR_ERR(page);
840 	}
841 
842 	set_new_dnode(&dn, inode, page, NULL, 0);
843 	unlock_page(page);
844 
845 	ri = F2FS_INODE(page);
846 	switch (level) {
847 	case 0:
848 	case 1:
849 		nofs = noffset[1];
850 		break;
851 	case 2:
852 		nofs = noffset[1];
853 		if (!offset[level - 1])
854 			goto skip_partial;
855 		err = truncate_partial_nodes(&dn, ri, offset, level);
856 		if (err < 0 && err != -ENOENT)
857 			goto fail;
858 		nofs += 1 + NIDS_PER_BLOCK;
859 		break;
860 	case 3:
861 		nofs = 5 + 2 * NIDS_PER_BLOCK;
862 		if (!offset[level - 1])
863 			goto skip_partial;
864 		err = truncate_partial_nodes(&dn, ri, offset, level);
865 		if (err < 0 && err != -ENOENT)
866 			goto fail;
867 		break;
868 	default:
869 		BUG();
870 	}
871 
872 skip_partial:
873 	while (cont) {
874 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
875 		switch (offset[0]) {
876 		case NODE_DIR1_BLOCK:
877 		case NODE_DIR2_BLOCK:
878 			err = truncate_dnode(&dn);
879 			break;
880 
881 		case NODE_IND1_BLOCK:
882 		case NODE_IND2_BLOCK:
883 			err = truncate_nodes(&dn, nofs, offset[1], 2);
884 			break;
885 
886 		case NODE_DIND_BLOCK:
887 			err = truncate_nodes(&dn, nofs, offset[1], 3);
888 			cont = 0;
889 			break;
890 
891 		default:
892 			BUG();
893 		}
894 		if (err < 0 && err != -ENOENT)
895 			goto fail;
896 		if (offset[1] == 0 &&
897 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
898 			lock_page(page);
899 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
900 				f2fs_put_page(page, 1);
901 				goto restart;
902 			}
903 			f2fs_wait_on_page_writeback(page, NODE, true);
904 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
905 			set_page_dirty(page);
906 			unlock_page(page);
907 		}
908 		offset[1] = 0;
909 		offset[0]++;
910 		nofs += err;
911 	}
912 fail:
913 	f2fs_put_page(page, 0);
914 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
915 	return err > 0 ? 0 : err;
916 }
917 
918 int truncate_xattr_node(struct inode *inode, struct page *page)
919 {
920 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
922 	struct dnode_of_data dn;
923 	struct page *npage;
924 
925 	if (!nid)
926 		return 0;
927 
928 	npage = get_node_page(sbi, nid);
929 	if (IS_ERR(npage))
930 		return PTR_ERR(npage);
931 
932 	F2FS_I(inode)->i_xattr_nid = 0;
933 
934 	/* need to do checkpoint during fsync */
935 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
936 
937 	set_new_dnode(&dn, inode, page, npage, nid);
938 
939 	if (page)
940 		dn.inode_page_locked = true;
941 	truncate_node(&dn);
942 	return 0;
943 }
944 
945 /*
946  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
947  * f2fs_unlock_op().
948  */
949 int remove_inode_page(struct inode *inode)
950 {
951 	struct dnode_of_data dn;
952 	int err;
953 
954 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
955 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
956 	if (err)
957 		return err;
958 
959 	err = truncate_xattr_node(inode, dn.inode_page);
960 	if (err) {
961 		f2fs_put_dnode(&dn);
962 		return err;
963 	}
964 
965 	/* remove potential inline_data blocks */
966 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
967 				S_ISLNK(inode->i_mode))
968 		truncate_data_blocks_range(&dn, 1);
969 
970 	/* 0 is possible, after f2fs_new_inode() has failed */
971 	f2fs_bug_on(F2FS_I_SB(inode),
972 			inode->i_blocks != 0 && inode->i_blocks != 1);
973 
974 	/* will put inode & node pages */
975 	truncate_node(&dn);
976 	return 0;
977 }
978 
979 struct page *new_inode_page(struct inode *inode)
980 {
981 	struct dnode_of_data dn;
982 
983 	/* allocate inode page for new inode */
984 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
985 
986 	/* caller should f2fs_put_page(page, 1); */
987 	return new_node_page(&dn, 0, NULL);
988 }
989 
990 struct page *new_node_page(struct dnode_of_data *dn,
991 				unsigned int ofs, struct page *ipage)
992 {
993 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
994 	struct node_info old_ni, new_ni;
995 	struct page *page;
996 	int err;
997 
998 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
999 		return ERR_PTR(-EPERM);
1000 
1001 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002 	if (!page)
1003 		return ERR_PTR(-ENOMEM);
1004 
1005 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006 		err = -ENOSPC;
1007 		goto fail;
1008 	}
1009 
1010 	get_node_info(sbi, dn->nid, &old_ni);
1011 
1012 	/* Reinitialize old_ni with new node page */
1013 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014 	new_ni = old_ni;
1015 	new_ni.ino = dn->inode->i_ino;
1016 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017 
1018 	f2fs_wait_on_page_writeback(page, NODE, true);
1019 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020 	set_cold_node(dn->inode, page);
1021 	SetPageUptodate(page);
1022 	if (set_page_dirty(page))
1023 		dn->node_changed = true;
1024 
1025 	if (f2fs_has_xattr_block(ofs))
1026 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027 
1028 	dn->node_page = page;
1029 	if (ipage)
1030 		update_inode(dn->inode, ipage);
1031 	else
1032 		sync_inode_page(dn);
1033 	if (ofs == 0)
1034 		inc_valid_inode_count(sbi);
1035 
1036 	return page;
1037 
1038 fail:
1039 	clear_node_page_dirty(page);
1040 	f2fs_put_page(page, 1);
1041 	return ERR_PTR(err);
1042 }
1043 
1044 /*
1045  * Caller should do after getting the following values.
1046  * 0: f2fs_put_page(page, 0)
1047  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048  */
1049 static int read_node_page(struct page *page, int rw)
1050 {
1051 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052 	struct node_info ni;
1053 	struct f2fs_io_info fio = {
1054 		.sbi = sbi,
1055 		.type = NODE,
1056 		.rw = rw,
1057 		.page = page,
1058 		.encrypted_page = NULL,
1059 	};
1060 
1061 	get_node_info(sbi, page->index, &ni);
1062 
1063 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1064 		ClearPageUptodate(page);
1065 		return -ENOENT;
1066 	}
1067 
1068 	if (PageUptodate(page))
1069 		return LOCKED_PAGE;
1070 
1071 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072 	return f2fs_submit_page_bio(&fio);
1073 }
1074 
1075 /*
1076  * Readahead a node page
1077  */
1078 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079 {
1080 	struct page *apage;
1081 	int err;
1082 
1083 	if (!nid)
1084 		return;
1085 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1086 
1087 	rcu_read_lock();
1088 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089 	rcu_read_unlock();
1090 	if (apage)
1091 		return;
1092 
1093 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094 	if (!apage)
1095 		return;
1096 
1097 	err = read_node_page(apage, READA);
1098 	f2fs_put_page(apage, err ? 1 : 0);
1099 }
1100 
1101 /*
1102  * readahead MAX_RA_NODE number of node pages.
1103  */
1104 static void ra_node_pages(struct page *parent, int start)
1105 {
1106 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107 	struct blk_plug plug;
1108 	int i, end;
1109 	nid_t nid;
1110 
1111 	blk_start_plug(&plug);
1112 
1113 	/* Then, try readahead for siblings of the desired node */
1114 	end = start + MAX_RA_NODE;
1115 	end = min(end, NIDS_PER_BLOCK);
1116 	for (i = start; i < end; i++) {
1117 		nid = get_nid(parent, i, false);
1118 		ra_node_page(sbi, nid);
1119 	}
1120 
1121 	blk_finish_plug(&plug);
1122 }
1123 
1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 					struct page *parent, int start)
1126 {
1127 	struct page *page;
1128 	int err;
1129 
1130 	if (!nid)
1131 		return ERR_PTR(-ENOENT);
1132 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133 repeat:
1134 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135 	if (!page)
1136 		return ERR_PTR(-ENOMEM);
1137 
1138 	err = read_node_page(page, READ_SYNC);
1139 	if (err < 0) {
1140 		f2fs_put_page(page, 1);
1141 		return ERR_PTR(err);
1142 	} else if (err == LOCKED_PAGE) {
1143 		goto page_hit;
1144 	}
1145 
1146 	if (parent)
1147 		ra_node_pages(parent, start + 1);
1148 
1149 	lock_page(page);
1150 
1151 	if (unlikely(!PageUptodate(page))) {
1152 		f2fs_put_page(page, 1);
1153 		return ERR_PTR(-EIO);
1154 	}
1155 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156 		f2fs_put_page(page, 1);
1157 		goto repeat;
1158 	}
1159 page_hit:
1160 	f2fs_bug_on(sbi, nid != nid_of_node(page));
1161 	return page;
1162 }
1163 
1164 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165 {
1166 	return __get_node_page(sbi, nid, NULL, 0);
1167 }
1168 
1169 struct page *get_node_page_ra(struct page *parent, int start)
1170 {
1171 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172 	nid_t nid = get_nid(parent, start, false);
1173 
1174 	return __get_node_page(sbi, nid, parent, start);
1175 }
1176 
1177 void sync_inode_page(struct dnode_of_data *dn)
1178 {
1179 	int ret = 0;
1180 
1181 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182 		ret = update_inode(dn->inode, dn->node_page);
1183 	} else if (dn->inode_page) {
1184 		if (!dn->inode_page_locked)
1185 			lock_page(dn->inode_page);
1186 		ret = update_inode(dn->inode, dn->inode_page);
1187 		if (!dn->inode_page_locked)
1188 			unlock_page(dn->inode_page);
1189 	} else {
1190 		ret = update_inode_page(dn->inode);
1191 	}
1192 	dn->node_changed = ret ? true: false;
1193 }
1194 
1195 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196 {
1197 	struct inode *inode;
1198 	struct page *page;
1199 
1200 	/* should flush inline_data before evict_inode */
1201 	inode = ilookup(sbi->sb, ino);
1202 	if (!inode)
1203 		return;
1204 
1205 	page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
1206 	if (!page)
1207 		goto iput_out;
1208 
1209 	if (!trylock_page(page))
1210 		goto release_out;
1211 
1212 	if (!PageUptodate(page))
1213 		goto page_out;
1214 
1215 	if (!PageDirty(page))
1216 		goto page_out;
1217 
1218 	if (!clear_page_dirty_for_io(page))
1219 		goto page_out;
1220 
1221 	if (!f2fs_write_inline_data(inode, page))
1222 		inode_dec_dirty_pages(inode);
1223 	else
1224 		set_page_dirty(page);
1225 page_out:
1226 	unlock_page(page);
1227 release_out:
1228 	f2fs_put_page(page, 0);
1229 iput_out:
1230 	iput(inode);
1231 }
1232 
1233 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234 					struct writeback_control *wbc)
1235 {
1236 	pgoff_t index, end;
1237 	struct pagevec pvec;
1238 	int step = ino ? 2 : 0;
1239 	int nwritten = 0;
1240 
1241 	pagevec_init(&pvec, 0);
1242 
1243 next_step:
1244 	index = 0;
1245 	end = ULONG_MAX;
1246 
1247 	while (index <= end) {
1248 		int i, nr_pages;
1249 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250 				PAGECACHE_TAG_DIRTY,
1251 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252 		if (nr_pages == 0)
1253 			break;
1254 
1255 		for (i = 0; i < nr_pages; i++) {
1256 			struct page *page = pvec.pages[i];
1257 
1258 			if (unlikely(f2fs_cp_error(sbi))) {
1259 				pagevec_release(&pvec);
1260 				return -EIO;
1261 			}
1262 
1263 			/*
1264 			 * flushing sequence with step:
1265 			 * 0. indirect nodes
1266 			 * 1. dentry dnodes
1267 			 * 2. file dnodes
1268 			 */
1269 			if (step == 0 && IS_DNODE(page))
1270 				continue;
1271 			if (step == 1 && (!IS_DNODE(page) ||
1272 						is_cold_node(page)))
1273 				continue;
1274 			if (step == 2 && (!IS_DNODE(page) ||
1275 						!is_cold_node(page)))
1276 				continue;
1277 
1278 			/*
1279 			 * If an fsync mode,
1280 			 * we should not skip writing node pages.
1281 			 */
1282 lock_node:
1283 			if (ino && ino_of_node(page) == ino)
1284 				lock_page(page);
1285 			else if (!trylock_page(page))
1286 				continue;
1287 
1288 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289 continue_unlock:
1290 				unlock_page(page);
1291 				continue;
1292 			}
1293 			if (ino && ino_of_node(page) != ino)
1294 				goto continue_unlock;
1295 
1296 			if (!PageDirty(page)) {
1297 				/* someone wrote it for us */
1298 				goto continue_unlock;
1299 			}
1300 
1301 			/* flush inline_data */
1302 			if (!ino && is_inline_node(page)) {
1303 				clear_inline_node(page);
1304 				unlock_page(page);
1305 				flush_inline_data(sbi, ino_of_node(page));
1306 				goto lock_node;
1307 			}
1308 
1309 			f2fs_wait_on_page_writeback(page, NODE, true);
1310 
1311 			BUG_ON(PageWriteback(page));
1312 			if (!clear_page_dirty_for_io(page))
1313 				goto continue_unlock;
1314 
1315 			/* called by fsync() */
1316 			if (ino && IS_DNODE(page)) {
1317 				set_fsync_mark(page, 1);
1318 				if (IS_INODE(page))
1319 					set_dentry_mark(page,
1320 						need_dentry_mark(sbi, ino));
1321 				nwritten++;
1322 			} else {
1323 				set_fsync_mark(page, 0);
1324 				set_dentry_mark(page, 0);
1325 			}
1326 
1327 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1328 				unlock_page(page);
1329 
1330 			if (--wbc->nr_to_write == 0)
1331 				break;
1332 		}
1333 		pagevec_release(&pvec);
1334 		cond_resched();
1335 
1336 		if (wbc->nr_to_write == 0) {
1337 			step = 2;
1338 			break;
1339 		}
1340 	}
1341 
1342 	if (step < 2) {
1343 		step++;
1344 		goto next_step;
1345 	}
1346 	return nwritten;
1347 }
1348 
1349 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1350 {
1351 	pgoff_t index = 0, end = ULONG_MAX;
1352 	struct pagevec pvec;
1353 	int ret2 = 0, ret = 0;
1354 
1355 	pagevec_init(&pvec, 0);
1356 
1357 	while (index <= end) {
1358 		int i, nr_pages;
1359 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360 				PAGECACHE_TAG_WRITEBACK,
1361 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362 		if (nr_pages == 0)
1363 			break;
1364 
1365 		for (i = 0; i < nr_pages; i++) {
1366 			struct page *page = pvec.pages[i];
1367 
1368 			/* until radix tree lookup accepts end_index */
1369 			if (unlikely(page->index > end))
1370 				continue;
1371 
1372 			if (ino && ino_of_node(page) == ino) {
1373 				f2fs_wait_on_page_writeback(page, NODE, true);
1374 				if (TestClearPageError(page))
1375 					ret = -EIO;
1376 			}
1377 		}
1378 		pagevec_release(&pvec);
1379 		cond_resched();
1380 	}
1381 
1382 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383 		ret2 = -ENOSPC;
1384 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385 		ret2 = -EIO;
1386 	if (!ret)
1387 		ret = ret2;
1388 	return ret;
1389 }
1390 
1391 static int f2fs_write_node_page(struct page *page,
1392 				struct writeback_control *wbc)
1393 {
1394 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395 	nid_t nid;
1396 	struct node_info ni;
1397 	struct f2fs_io_info fio = {
1398 		.sbi = sbi,
1399 		.type = NODE,
1400 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1401 		.page = page,
1402 		.encrypted_page = NULL,
1403 	};
1404 
1405 	trace_f2fs_writepage(page, NODE);
1406 
1407 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408 		goto redirty_out;
1409 	if (unlikely(f2fs_cp_error(sbi)))
1410 		goto redirty_out;
1411 
1412 	/* get old block addr of this node page */
1413 	nid = nid_of_node(page);
1414 	f2fs_bug_on(sbi, page->index != nid);
1415 
1416 	if (wbc->for_reclaim) {
1417 		if (!down_read_trylock(&sbi->node_write))
1418 			goto redirty_out;
1419 	} else {
1420 		down_read(&sbi->node_write);
1421 	}
1422 
1423 	get_node_info(sbi, nid, &ni);
1424 
1425 	/* This page is already truncated */
1426 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427 		ClearPageUptodate(page);
1428 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1429 		up_read(&sbi->node_write);
1430 		unlock_page(page);
1431 		return 0;
1432 	}
1433 
1434 	set_page_writeback(page);
1435 	fio.old_blkaddr = ni.blk_addr;
1436 	write_node_page(nid, &fio);
1437 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1439 	up_read(&sbi->node_write);
1440 
1441 	if (wbc->for_reclaim)
1442 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1443 
1444 	unlock_page(page);
1445 
1446 	if (unlikely(f2fs_cp_error(sbi)))
1447 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1448 
1449 	return 0;
1450 
1451 redirty_out:
1452 	redirty_page_for_writepage(wbc, page);
1453 	return AOP_WRITEPAGE_ACTIVATE;
1454 }
1455 
1456 static int f2fs_write_node_pages(struct address_space *mapping,
1457 			    struct writeback_control *wbc)
1458 {
1459 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1460 	long diff;
1461 
1462 	/* balancing f2fs's metadata in background */
1463 	f2fs_balance_fs_bg(sbi);
1464 
1465 	/* collect a number of dirty node pages and write together */
1466 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1467 		goto skip_write;
1468 
1469 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1470 
1471 	diff = nr_pages_to_write(sbi, NODE, wbc);
1472 	wbc->sync_mode = WB_SYNC_NONE;
1473 	sync_node_pages(sbi, 0, wbc);
1474 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1475 	return 0;
1476 
1477 skip_write:
1478 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1480 	return 0;
1481 }
1482 
1483 static int f2fs_set_node_page_dirty(struct page *page)
1484 {
1485 	trace_f2fs_set_page_dirty(page, NODE);
1486 
1487 	SetPageUptodate(page);
1488 	if (!PageDirty(page)) {
1489 		__set_page_dirty_nobuffers(page);
1490 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491 		SetPagePrivate(page);
1492 		f2fs_trace_pid(page);
1493 		return 1;
1494 	}
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Structure of the f2fs node operations
1500  */
1501 const struct address_space_operations f2fs_node_aops = {
1502 	.writepage	= f2fs_write_node_page,
1503 	.writepages	= f2fs_write_node_pages,
1504 	.set_page_dirty	= f2fs_set_node_page_dirty,
1505 	.invalidatepage	= f2fs_invalidate_page,
1506 	.releasepage	= f2fs_release_page,
1507 };
1508 
1509 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510 						nid_t n)
1511 {
1512 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1513 }
1514 
1515 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516 						struct free_nid *i)
1517 {
1518 	list_del(&i->list);
1519 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1520 }
1521 
1522 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1523 {
1524 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1525 	struct free_nid *i;
1526 	struct nat_entry *ne;
1527 	bool allocated = false;
1528 
1529 	if (!available_free_memory(sbi, FREE_NIDS))
1530 		return -1;
1531 
1532 	/* 0 nid should not be used */
1533 	if (unlikely(nid == 0))
1534 		return 0;
1535 
1536 	if (build) {
1537 		/* do not add allocated nids */
1538 		ne = __lookup_nat_cache(nm_i, nid);
1539 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540 				nat_get_blkaddr(ne) != NULL_ADDR))
1541 			allocated = true;
1542 		if (allocated)
1543 			return 0;
1544 	}
1545 
1546 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547 	i->nid = nid;
1548 	i->state = NID_NEW;
1549 
1550 	if (radix_tree_preload(GFP_NOFS)) {
1551 		kmem_cache_free(free_nid_slab, i);
1552 		return 0;
1553 	}
1554 
1555 	spin_lock(&nm_i->free_nid_list_lock);
1556 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557 		spin_unlock(&nm_i->free_nid_list_lock);
1558 		radix_tree_preload_end();
1559 		kmem_cache_free(free_nid_slab, i);
1560 		return 0;
1561 	}
1562 	list_add_tail(&i->list, &nm_i->free_nid_list);
1563 	nm_i->fcnt++;
1564 	spin_unlock(&nm_i->free_nid_list_lock);
1565 	radix_tree_preload_end();
1566 	return 1;
1567 }
1568 
1569 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570 {
1571 	struct free_nid *i;
1572 	bool need_free = false;
1573 
1574 	spin_lock(&nm_i->free_nid_list_lock);
1575 	i = __lookup_free_nid_list(nm_i, nid);
1576 	if (i && i->state == NID_NEW) {
1577 		__del_from_free_nid_list(nm_i, i);
1578 		nm_i->fcnt--;
1579 		need_free = true;
1580 	}
1581 	spin_unlock(&nm_i->free_nid_list_lock);
1582 
1583 	if (need_free)
1584 		kmem_cache_free(free_nid_slab, i);
1585 }
1586 
1587 static void scan_nat_page(struct f2fs_sb_info *sbi,
1588 			struct page *nat_page, nid_t start_nid)
1589 {
1590 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1591 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592 	block_t blk_addr;
1593 	int i;
1594 
1595 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1596 
1597 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598 
1599 		if (unlikely(start_nid >= nm_i->max_nid))
1600 			break;
1601 
1602 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1604 		if (blk_addr == NULL_ADDR) {
1605 			if (add_free_nid(sbi, start_nid, true) < 0)
1606 				break;
1607 		}
1608 	}
1609 }
1610 
1611 static void build_free_nids(struct f2fs_sb_info *sbi)
1612 {
1613 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1614 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615 	struct f2fs_journal *journal = curseg->journal;
1616 	int i = 0;
1617 	nid_t nid = nm_i->next_scan_nid;
1618 
1619 	/* Enough entries */
1620 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1621 		return;
1622 
1623 	/* readahead nat pages to be scanned */
1624 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625 							META_NAT, true);
1626 
1627 	down_read(&nm_i->nat_tree_lock);
1628 
1629 	while (1) {
1630 		struct page *page = get_current_nat_page(sbi, nid);
1631 
1632 		scan_nat_page(sbi, page, nid);
1633 		f2fs_put_page(page, 1);
1634 
1635 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636 		if (unlikely(nid >= nm_i->max_nid))
1637 			nid = 0;
1638 
1639 		if (++i >= FREE_NID_PAGES)
1640 			break;
1641 	}
1642 
1643 	/* go to the next free nat pages to find free nids abundantly */
1644 	nm_i->next_scan_nid = nid;
1645 
1646 	/* find free nids from current sum_pages */
1647 	down_read(&curseg->journal_rwsem);
1648 	for (i = 0; i < nats_in_cursum(journal); i++) {
1649 		block_t addr;
1650 
1651 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652 		nid = le32_to_cpu(nid_in_journal(journal, i));
1653 		if (addr == NULL_ADDR)
1654 			add_free_nid(sbi, nid, true);
1655 		else
1656 			remove_free_nid(nm_i, nid);
1657 	}
1658 	up_read(&curseg->journal_rwsem);
1659 	up_read(&nm_i->nat_tree_lock);
1660 
1661 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662 					nm_i->ra_nid_pages, META_NAT, false);
1663 }
1664 
1665 /*
1666  * If this function returns success, caller can obtain a new nid
1667  * from second parameter of this function.
1668  * The returned nid could be used ino as well as nid when inode is created.
1669  */
1670 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671 {
1672 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1673 	struct free_nid *i = NULL;
1674 retry:
1675 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1676 		return false;
1677 
1678 	spin_lock(&nm_i->free_nid_list_lock);
1679 
1680 	/* We should not use stale free nids created by build_free_nids */
1681 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1682 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1684 			if (i->state == NID_NEW)
1685 				break;
1686 
1687 		f2fs_bug_on(sbi, i->state != NID_NEW);
1688 		*nid = i->nid;
1689 		i->state = NID_ALLOC;
1690 		nm_i->fcnt--;
1691 		spin_unlock(&nm_i->free_nid_list_lock);
1692 		return true;
1693 	}
1694 	spin_unlock(&nm_i->free_nid_list_lock);
1695 
1696 	/* Let's scan nat pages and its caches to get free nids */
1697 	mutex_lock(&nm_i->build_lock);
1698 	build_free_nids(sbi);
1699 	mutex_unlock(&nm_i->build_lock);
1700 	goto retry;
1701 }
1702 
1703 /*
1704  * alloc_nid() should be called prior to this function.
1705  */
1706 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707 {
1708 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1709 	struct free_nid *i;
1710 
1711 	spin_lock(&nm_i->free_nid_list_lock);
1712 	i = __lookup_free_nid_list(nm_i, nid);
1713 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714 	__del_from_free_nid_list(nm_i, i);
1715 	spin_unlock(&nm_i->free_nid_list_lock);
1716 
1717 	kmem_cache_free(free_nid_slab, i);
1718 }
1719 
1720 /*
1721  * alloc_nid() should be called prior to this function.
1722  */
1723 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724 {
1725 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1726 	struct free_nid *i;
1727 	bool need_free = false;
1728 
1729 	if (!nid)
1730 		return;
1731 
1732 	spin_lock(&nm_i->free_nid_list_lock);
1733 	i = __lookup_free_nid_list(nm_i, nid);
1734 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1735 	if (!available_free_memory(sbi, FREE_NIDS)) {
1736 		__del_from_free_nid_list(nm_i, i);
1737 		need_free = true;
1738 	} else {
1739 		i->state = NID_NEW;
1740 		nm_i->fcnt++;
1741 	}
1742 	spin_unlock(&nm_i->free_nid_list_lock);
1743 
1744 	if (need_free)
1745 		kmem_cache_free(free_nid_slab, i);
1746 }
1747 
1748 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749 {
1750 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1751 	struct free_nid *i, *next;
1752 	int nr = nr_shrink;
1753 
1754 	if (!mutex_trylock(&nm_i->build_lock))
1755 		return 0;
1756 
1757 	spin_lock(&nm_i->free_nid_list_lock);
1758 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759 		if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1760 			break;
1761 		if (i->state == NID_ALLOC)
1762 			continue;
1763 		__del_from_free_nid_list(nm_i, i);
1764 		kmem_cache_free(free_nid_slab, i);
1765 		nm_i->fcnt--;
1766 		nr_shrink--;
1767 	}
1768 	spin_unlock(&nm_i->free_nid_list_lock);
1769 	mutex_unlock(&nm_i->build_lock);
1770 
1771 	return nr - nr_shrink;
1772 }
1773 
1774 void recover_inline_xattr(struct inode *inode, struct page *page)
1775 {
1776 	void *src_addr, *dst_addr;
1777 	size_t inline_size;
1778 	struct page *ipage;
1779 	struct f2fs_inode *ri;
1780 
1781 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1783 
1784 	ri = F2FS_INODE(page);
1785 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786 		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1787 		goto update_inode;
1788 	}
1789 
1790 	dst_addr = inline_xattr_addr(ipage);
1791 	src_addr = inline_xattr_addr(page);
1792 	inline_size = inline_xattr_size(inode);
1793 
1794 	f2fs_wait_on_page_writeback(ipage, NODE, true);
1795 	memcpy(dst_addr, src_addr, inline_size);
1796 update_inode:
1797 	update_inode(inode, ipage);
1798 	f2fs_put_page(ipage, 1);
1799 }
1800 
1801 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802 {
1803 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805 	nid_t new_xnid = nid_of_node(page);
1806 	struct node_info ni;
1807 
1808 	/* 1: invalidate the previous xattr nid */
1809 	if (!prev_xnid)
1810 		goto recover_xnid;
1811 
1812 	/* Deallocate node address */
1813 	get_node_info(sbi, prev_xnid, &ni);
1814 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815 	invalidate_blocks(sbi, ni.blk_addr);
1816 	dec_valid_node_count(sbi, inode);
1817 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1818 
1819 recover_xnid:
1820 	/* 2: allocate new xattr nid */
1821 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1822 		f2fs_bug_on(sbi, 1);
1823 
1824 	remove_free_nid(NM_I(sbi), new_xnid);
1825 	get_node_info(sbi, new_xnid, &ni);
1826 	ni.ino = inode->i_ino;
1827 	set_node_addr(sbi, &ni, NEW_ADDR, false);
1828 	F2FS_I(inode)->i_xattr_nid = new_xnid;
1829 
1830 	/* 3: update xattr blkaddr */
1831 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832 	set_node_addr(sbi, &ni, blkaddr, false);
1833 
1834 	update_inode_page(inode);
1835 }
1836 
1837 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838 {
1839 	struct f2fs_inode *src, *dst;
1840 	nid_t ino = ino_of_node(page);
1841 	struct node_info old_ni, new_ni;
1842 	struct page *ipage;
1843 
1844 	get_node_info(sbi, ino, &old_ni);
1845 
1846 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847 		return -EINVAL;
1848 
1849 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850 	if (!ipage)
1851 		return -ENOMEM;
1852 
1853 	/* Should not use this inode from free nid list */
1854 	remove_free_nid(NM_I(sbi), ino);
1855 
1856 	SetPageUptodate(ipage);
1857 	fill_node_footer(ipage, ino, ino, 0, true);
1858 
1859 	src = F2FS_INODE(page);
1860 	dst = F2FS_INODE(ipage);
1861 
1862 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863 	dst->i_size = 0;
1864 	dst->i_blocks = cpu_to_le64(1);
1865 	dst->i_links = cpu_to_le32(1);
1866 	dst->i_xattr_nid = 0;
1867 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1868 
1869 	new_ni = old_ni;
1870 	new_ni.ino = ino;
1871 
1872 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873 		WARN_ON(1);
1874 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875 	inc_valid_inode_count(sbi);
1876 	set_page_dirty(ipage);
1877 	f2fs_put_page(ipage, 1);
1878 	return 0;
1879 }
1880 
1881 int restore_node_summary(struct f2fs_sb_info *sbi,
1882 			unsigned int segno, struct f2fs_summary_block *sum)
1883 {
1884 	struct f2fs_node *rn;
1885 	struct f2fs_summary *sum_entry;
1886 	block_t addr;
1887 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888 	int i, idx, last_offset, nrpages;
1889 
1890 	/* scan the node segment */
1891 	last_offset = sbi->blocks_per_seg;
1892 	addr = START_BLOCK(sbi, segno);
1893 	sum_entry = &sum->entries[0];
1894 
1895 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896 		nrpages = min(last_offset - i, bio_blocks);
1897 
1898 		/* readahead node pages */
1899 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900 
1901 		for (idx = addr; idx < addr + nrpages; idx++) {
1902 			struct page *page = get_tmp_page(sbi, idx);
1903 
1904 			rn = F2FS_NODE(page);
1905 			sum_entry->nid = rn->footer.nid;
1906 			sum_entry->version = 0;
1907 			sum_entry->ofs_in_node = 0;
1908 			sum_entry++;
1909 			f2fs_put_page(page, 1);
1910 		}
1911 
1912 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913 							addr + nrpages);
1914 	}
1915 	return 0;
1916 }
1917 
1918 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919 {
1920 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922 	struct f2fs_journal *journal = curseg->journal;
1923 	int i;
1924 
1925 	down_write(&curseg->journal_rwsem);
1926 	for (i = 0; i < nats_in_cursum(journal); i++) {
1927 		struct nat_entry *ne;
1928 		struct f2fs_nat_entry raw_ne;
1929 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930 
1931 		raw_ne = nat_in_journal(journal, i);
1932 
1933 		ne = __lookup_nat_cache(nm_i, nid);
1934 		if (!ne) {
1935 			ne = grab_nat_entry(nm_i, nid);
1936 			node_info_from_raw_nat(&ne->ni, &raw_ne);
1937 		}
1938 		__set_nat_cache_dirty(nm_i, ne);
1939 	}
1940 	update_nats_in_cursum(journal, -i);
1941 	up_write(&curseg->journal_rwsem);
1942 }
1943 
1944 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945 						struct list_head *head, int max)
1946 {
1947 	struct nat_entry_set *cur;
1948 
1949 	if (nes->entry_cnt >= max)
1950 		goto add_out;
1951 
1952 	list_for_each_entry(cur, head, set_list) {
1953 		if (cur->entry_cnt >= nes->entry_cnt) {
1954 			list_add(&nes->set_list, cur->set_list.prev);
1955 			return;
1956 		}
1957 	}
1958 add_out:
1959 	list_add_tail(&nes->set_list, head);
1960 }
1961 
1962 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963 					struct nat_entry_set *set)
1964 {
1965 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966 	struct f2fs_journal *journal = curseg->journal;
1967 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968 	bool to_journal = true;
1969 	struct f2fs_nat_block *nat_blk;
1970 	struct nat_entry *ne, *cur;
1971 	struct page *page = NULL;
1972 
1973 	/*
1974 	 * there are two steps to flush nat entries:
1975 	 * #1, flush nat entries to journal in current hot data summary block.
1976 	 * #2, flush nat entries to nat page.
1977 	 */
1978 	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
1979 		to_journal = false;
1980 
1981 	if (to_journal) {
1982 		down_write(&curseg->journal_rwsem);
1983 	} else {
1984 		page = get_next_nat_page(sbi, start_nid);
1985 		nat_blk = page_address(page);
1986 		f2fs_bug_on(sbi, !nat_blk);
1987 	}
1988 
1989 	/* flush dirty nats in nat entry set */
1990 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991 		struct f2fs_nat_entry *raw_ne;
1992 		nid_t nid = nat_get_nid(ne);
1993 		int offset;
1994 
1995 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1996 			continue;
1997 
1998 		if (to_journal) {
1999 			offset = lookup_journal_in_cursum(journal,
2000 							NAT_JOURNAL, nid, 1);
2001 			f2fs_bug_on(sbi, offset < 0);
2002 			raw_ne = &nat_in_journal(journal, offset);
2003 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004 		} else {
2005 			raw_ne = &nat_blk->entries[nid - start_nid];
2006 		}
2007 		raw_nat_from_node_info(raw_ne, &ne->ni);
2008 		nat_reset_flag(ne);
2009 		__clear_nat_cache_dirty(NM_I(sbi), ne);
2010 		if (nat_get_blkaddr(ne) == NULL_ADDR)
2011 			add_free_nid(sbi, nid, false);
2012 	}
2013 
2014 	if (to_journal)
2015 		up_write(&curseg->journal_rwsem);
2016 	else
2017 		f2fs_put_page(page, 1);
2018 
2019 	f2fs_bug_on(sbi, set->entry_cnt);
2020 
2021 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022 	kmem_cache_free(nat_entry_set_slab, set);
2023 }
2024 
2025 /*
2026  * This function is called during the checkpointing process.
2027  */
2028 void flush_nat_entries(struct f2fs_sb_info *sbi)
2029 {
2030 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2031 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032 	struct f2fs_journal *journal = curseg->journal;
2033 	struct nat_entry_set *setvec[SETVEC_SIZE];
2034 	struct nat_entry_set *set, *tmp;
2035 	unsigned int found;
2036 	nid_t set_idx = 0;
2037 	LIST_HEAD(sets);
2038 
2039 	if (!nm_i->dirty_nat_cnt)
2040 		return;
2041 
2042 	down_write(&nm_i->nat_tree_lock);
2043 
2044 	/*
2045 	 * if there are no enough space in journal to store dirty nat
2046 	 * entries, remove all entries from journal and merge them
2047 	 * into nat entry set.
2048 	 */
2049 	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2050 		remove_nats_in_journal(sbi);
2051 
2052 	while ((found = __gang_lookup_nat_set(nm_i,
2053 					set_idx, SETVEC_SIZE, setvec))) {
2054 		unsigned idx;
2055 		set_idx = setvec[found - 1]->set + 1;
2056 		for (idx = 0; idx < found; idx++)
2057 			__adjust_nat_entry_set(setvec[idx], &sets,
2058 						MAX_NAT_JENTRIES(journal));
2059 	}
2060 
2061 	/* flush dirty nats in nat entry set */
2062 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2063 		__flush_nat_entry_set(sbi, set);
2064 
2065 	up_write(&nm_i->nat_tree_lock);
2066 
2067 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2068 }
2069 
2070 static int init_node_manager(struct f2fs_sb_info *sbi)
2071 {
2072 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2074 	unsigned char *version_bitmap;
2075 	unsigned int nat_segs, nat_blocks;
2076 
2077 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078 
2079 	/* segment_count_nat includes pair segment so divide to 2. */
2080 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082 
2083 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084 
2085 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2086 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087 	nm_i->fcnt = 0;
2088 	nm_i->nat_cnt = 0;
2089 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2092 
2093 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2095 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097 	INIT_LIST_HEAD(&nm_i->nat_entries);
2098 
2099 	mutex_init(&nm_i->build_lock);
2100 	spin_lock_init(&nm_i->free_nid_list_lock);
2101 	init_rwsem(&nm_i->nat_tree_lock);
2102 
2103 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106 	if (!version_bitmap)
2107 		return -EFAULT;
2108 
2109 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110 					GFP_KERNEL);
2111 	if (!nm_i->nat_bitmap)
2112 		return -ENOMEM;
2113 	return 0;
2114 }
2115 
2116 int build_node_manager(struct f2fs_sb_info *sbi)
2117 {
2118 	int err;
2119 
2120 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2121 	if (!sbi->nm_info)
2122 		return -ENOMEM;
2123 
2124 	err = init_node_manager(sbi);
2125 	if (err)
2126 		return err;
2127 
2128 	build_free_nids(sbi);
2129 	return 0;
2130 }
2131 
2132 void destroy_node_manager(struct f2fs_sb_info *sbi)
2133 {
2134 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2135 	struct free_nid *i, *next_i;
2136 	struct nat_entry *natvec[NATVEC_SIZE];
2137 	struct nat_entry_set *setvec[SETVEC_SIZE];
2138 	nid_t nid = 0;
2139 	unsigned int found;
2140 
2141 	if (!nm_i)
2142 		return;
2143 
2144 	/* destroy free nid list */
2145 	spin_lock(&nm_i->free_nid_list_lock);
2146 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148 		__del_from_free_nid_list(nm_i, i);
2149 		nm_i->fcnt--;
2150 		spin_unlock(&nm_i->free_nid_list_lock);
2151 		kmem_cache_free(free_nid_slab, i);
2152 		spin_lock(&nm_i->free_nid_list_lock);
2153 	}
2154 	f2fs_bug_on(sbi, nm_i->fcnt);
2155 	spin_unlock(&nm_i->free_nid_list_lock);
2156 
2157 	/* destroy nat cache */
2158 	down_write(&nm_i->nat_tree_lock);
2159 	while ((found = __gang_lookup_nat_cache(nm_i,
2160 					nid, NATVEC_SIZE, natvec))) {
2161 		unsigned idx;
2162 
2163 		nid = nat_get_nid(natvec[found - 1]) + 1;
2164 		for (idx = 0; idx < found; idx++)
2165 			__del_from_nat_cache(nm_i, natvec[idx]);
2166 	}
2167 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2168 
2169 	/* destroy nat set cache */
2170 	nid = 0;
2171 	while ((found = __gang_lookup_nat_set(nm_i,
2172 					nid, SETVEC_SIZE, setvec))) {
2173 		unsigned idx;
2174 
2175 		nid = setvec[found - 1]->set + 1;
2176 		for (idx = 0; idx < found; idx++) {
2177 			/* entry_cnt is not zero, when cp_error was occurred */
2178 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181 		}
2182 	}
2183 	up_write(&nm_i->nat_tree_lock);
2184 
2185 	kfree(nm_i->nat_bitmap);
2186 	sbi->nm_info = NULL;
2187 	kfree(nm_i);
2188 }
2189 
2190 int __init create_node_manager_caches(void)
2191 {
2192 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193 			sizeof(struct nat_entry));
2194 	if (!nat_entry_slab)
2195 		goto fail;
2196 
2197 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198 			sizeof(struct free_nid));
2199 	if (!free_nid_slab)
2200 		goto destroy_nat_entry;
2201 
2202 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203 			sizeof(struct nat_entry_set));
2204 	if (!nat_entry_set_slab)
2205 		goto destroy_free_nid;
2206 	return 0;
2207 
2208 destroy_free_nid:
2209 	kmem_cache_destroy(free_nid_slab);
2210 destroy_nat_entry:
2211 	kmem_cache_destroy(nat_entry_slab);
2212 fail:
2213 	return -ENOMEM;
2214 }
2215 
2216 void destroy_node_manager_caches(void)
2217 {
2218 	kmem_cache_destroy(nat_entry_set_slab);
2219 	kmem_cache_destroy(free_nid_slab);
2220 	kmem_cache_destroy(nat_entry_slab);
2221 }
2222