1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 49 PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 } else if (type == DIRTY_DENTS) { 56 if (sbi->sb->s_bdi->wb.dirty_exceeded) 57 return false; 58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 60 } else if (type == INO_ENTRIES) { 61 int i; 62 63 for (i = 0; i <= UPDATE_INO; i++) 64 mem_size += (sbi->im[i].ino_num * 65 sizeof(struct ino_entry)) >> PAGE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 67 } else if (type == EXTENT_CACHE) { 68 mem_size = (atomic_read(&sbi->total_ext_tree) * 69 sizeof(struct extent_tree) + 70 atomic_read(&sbi->total_ext_node) * 71 sizeof(struct extent_node)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 73 } else { 74 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 75 return true; 76 } 77 return res; 78 } 79 80 static void clear_node_page_dirty(struct page *page) 81 { 82 struct address_space *mapping = page->mapping; 83 unsigned int long flags; 84 85 if (PageDirty(page)) { 86 spin_lock_irqsave(&mapping->tree_lock, flags); 87 radix_tree_tag_clear(&mapping->page_tree, 88 page_index(page), 89 PAGECACHE_TAG_DIRTY); 90 spin_unlock_irqrestore(&mapping->tree_lock, flags); 91 92 clear_page_dirty_for_io(page); 93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 94 } 95 ClearPageUptodate(page); 96 } 97 98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 99 { 100 pgoff_t index = current_nat_addr(sbi, nid); 101 return get_meta_page(sbi, index); 102 } 103 104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 105 { 106 struct page *src_page; 107 struct page *dst_page; 108 pgoff_t src_off; 109 pgoff_t dst_off; 110 void *src_addr; 111 void *dst_addr; 112 struct f2fs_nm_info *nm_i = NM_I(sbi); 113 114 src_off = current_nat_addr(sbi, nid); 115 dst_off = next_nat_addr(sbi, src_off); 116 117 /* get current nat block page with lock */ 118 src_page = get_meta_page(sbi, src_off); 119 dst_page = grab_meta_page(sbi, dst_off); 120 f2fs_bug_on(sbi, PageDirty(src_page)); 121 122 src_addr = page_address(src_page); 123 dst_addr = page_address(dst_page); 124 memcpy(dst_addr, src_addr, PAGE_SIZE); 125 set_page_dirty(dst_page); 126 f2fs_put_page(src_page, 1); 127 128 set_to_next_nat(nm_i, nid); 129 130 return dst_page; 131 } 132 133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 134 { 135 return radix_tree_lookup(&nm_i->nat_root, n); 136 } 137 138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 139 nid_t start, unsigned int nr, struct nat_entry **ep) 140 { 141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 142 } 143 144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 145 { 146 list_del(&e->list); 147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 148 nm_i->nat_cnt--; 149 kmem_cache_free(nat_entry_slab, e); 150 } 151 152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 153 struct nat_entry *ne) 154 { 155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 156 struct nat_entry_set *head; 157 158 if (get_nat_flag(ne, IS_DIRTY)) 159 return; 160 161 head = radix_tree_lookup(&nm_i->nat_set_root, set); 162 if (!head) { 163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 164 165 INIT_LIST_HEAD(&head->entry_list); 166 INIT_LIST_HEAD(&head->set_list); 167 head->set = set; 168 head->entry_cnt = 0; 169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 170 } 171 list_move_tail(&ne->list, &head->entry_list); 172 nm_i->dirty_nat_cnt++; 173 head->entry_cnt++; 174 set_nat_flag(ne, IS_DIRTY, true); 175 } 176 177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 178 struct nat_entry *ne) 179 { 180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 181 struct nat_entry_set *head; 182 183 head = radix_tree_lookup(&nm_i->nat_set_root, set); 184 if (head) { 185 list_move_tail(&ne->list, &nm_i->nat_entries); 186 set_nat_flag(ne, IS_DIRTY, false); 187 head->entry_cnt--; 188 nm_i->dirty_nat_cnt--; 189 } 190 } 191 192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 193 nid_t start, unsigned int nr, struct nat_entry_set **ep) 194 { 195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 196 start, nr); 197 } 198 199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 200 { 201 struct f2fs_nm_info *nm_i = NM_I(sbi); 202 struct nat_entry *e; 203 bool need = false; 204 205 down_read(&nm_i->nat_tree_lock); 206 e = __lookup_nat_cache(nm_i, nid); 207 if (e) { 208 if (!get_nat_flag(e, IS_CHECKPOINTED) && 209 !get_nat_flag(e, HAS_FSYNCED_INODE)) 210 need = true; 211 } 212 up_read(&nm_i->nat_tree_lock); 213 return need; 214 } 215 216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 217 { 218 struct f2fs_nm_info *nm_i = NM_I(sbi); 219 struct nat_entry *e; 220 bool is_cp = true; 221 222 down_read(&nm_i->nat_tree_lock); 223 e = __lookup_nat_cache(nm_i, nid); 224 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 225 is_cp = false; 226 up_read(&nm_i->nat_tree_lock); 227 return is_cp; 228 } 229 230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 231 { 232 struct f2fs_nm_info *nm_i = NM_I(sbi); 233 struct nat_entry *e; 234 bool need_update = true; 235 236 down_read(&nm_i->nat_tree_lock); 237 e = __lookup_nat_cache(nm_i, ino); 238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 239 (get_nat_flag(e, IS_CHECKPOINTED) || 240 get_nat_flag(e, HAS_FSYNCED_INODE))) 241 need_update = false; 242 up_read(&nm_i->nat_tree_lock); 243 return need_update; 244 } 245 246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 247 { 248 struct nat_entry *new; 249 250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 252 memset(new, 0, sizeof(struct nat_entry)); 253 nat_set_nid(new, nid); 254 nat_reset_flag(new); 255 list_add_tail(&new->list, &nm_i->nat_entries); 256 nm_i->nat_cnt++; 257 return new; 258 } 259 260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 261 struct f2fs_nat_entry *ne) 262 { 263 struct f2fs_nm_info *nm_i = NM_I(sbi); 264 struct nat_entry *e; 265 266 e = __lookup_nat_cache(nm_i, nid); 267 if (!e) { 268 e = grab_nat_entry(nm_i, nid); 269 node_info_from_raw_nat(&e->ni, ne); 270 } else { 271 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino || 272 nat_get_blkaddr(e) != ne->block_addr || 273 nat_get_version(e) != ne->version); 274 } 275 } 276 277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 278 block_t new_blkaddr, bool fsync_done) 279 { 280 struct f2fs_nm_info *nm_i = NM_I(sbi); 281 struct nat_entry *e; 282 283 down_write(&nm_i->nat_tree_lock); 284 e = __lookup_nat_cache(nm_i, ni->nid); 285 if (!e) { 286 e = grab_nat_entry(nm_i, ni->nid); 287 copy_node_info(&e->ni, ni); 288 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 289 } else if (new_blkaddr == NEW_ADDR) { 290 /* 291 * when nid is reallocated, 292 * previous nat entry can be remained in nat cache. 293 * So, reinitialize it with new information. 294 */ 295 copy_node_info(&e->ni, ni); 296 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 297 } 298 299 /* sanity check */ 300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 301 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 302 new_blkaddr == NULL_ADDR); 303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 304 new_blkaddr == NEW_ADDR); 305 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 306 nat_get_blkaddr(e) != NULL_ADDR && 307 new_blkaddr == NEW_ADDR); 308 309 /* increment version no as node is removed */ 310 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 311 unsigned char version = nat_get_version(e); 312 nat_set_version(e, inc_node_version(version)); 313 314 /* in order to reuse the nid */ 315 if (nm_i->next_scan_nid > ni->nid) 316 nm_i->next_scan_nid = ni->nid; 317 } 318 319 /* change address */ 320 nat_set_blkaddr(e, new_blkaddr); 321 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 322 set_nat_flag(e, IS_CHECKPOINTED, false); 323 __set_nat_cache_dirty(nm_i, e); 324 325 /* update fsync_mark if its inode nat entry is still alive */ 326 if (ni->nid != ni->ino) 327 e = __lookup_nat_cache(nm_i, ni->ino); 328 if (e) { 329 if (fsync_done && ni->nid == ni->ino) 330 set_nat_flag(e, HAS_FSYNCED_INODE, true); 331 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 332 } 333 up_write(&nm_i->nat_tree_lock); 334 } 335 336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 337 { 338 struct f2fs_nm_info *nm_i = NM_I(sbi); 339 int nr = nr_shrink; 340 341 if (!down_write_trylock(&nm_i->nat_tree_lock)) 342 return 0; 343 344 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 345 struct nat_entry *ne; 346 ne = list_first_entry(&nm_i->nat_entries, 347 struct nat_entry, list); 348 __del_from_nat_cache(nm_i, ne); 349 nr_shrink--; 350 } 351 up_write(&nm_i->nat_tree_lock); 352 return nr - nr_shrink; 353 } 354 355 /* 356 * This function always returns success 357 */ 358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 359 { 360 struct f2fs_nm_info *nm_i = NM_I(sbi); 361 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 362 struct f2fs_journal *journal = curseg->journal; 363 nid_t start_nid = START_NID(nid); 364 struct f2fs_nat_block *nat_blk; 365 struct page *page = NULL; 366 struct f2fs_nat_entry ne; 367 struct nat_entry *e; 368 int i; 369 370 ni->nid = nid; 371 372 /* Check nat cache */ 373 down_read(&nm_i->nat_tree_lock); 374 e = __lookup_nat_cache(nm_i, nid); 375 if (e) { 376 ni->ino = nat_get_ino(e); 377 ni->blk_addr = nat_get_blkaddr(e); 378 ni->version = nat_get_version(e); 379 up_read(&nm_i->nat_tree_lock); 380 return; 381 } 382 383 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 384 385 /* Check current segment summary */ 386 down_read(&curseg->journal_rwsem); 387 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 388 if (i >= 0) { 389 ne = nat_in_journal(journal, i); 390 node_info_from_raw_nat(ni, &ne); 391 } 392 up_read(&curseg->journal_rwsem); 393 if (i >= 0) 394 goto cache; 395 396 /* Fill node_info from nat page */ 397 page = get_current_nat_page(sbi, start_nid); 398 nat_blk = (struct f2fs_nat_block *)page_address(page); 399 ne = nat_blk->entries[nid - start_nid]; 400 node_info_from_raw_nat(ni, &ne); 401 f2fs_put_page(page, 1); 402 cache: 403 up_read(&nm_i->nat_tree_lock); 404 /* cache nat entry */ 405 down_write(&nm_i->nat_tree_lock); 406 cache_nat_entry(sbi, nid, &ne); 407 up_write(&nm_i->nat_tree_lock); 408 } 409 410 /* 411 * readahead MAX_RA_NODE number of node pages. 412 */ 413 static void ra_node_pages(struct page *parent, int start, int n) 414 { 415 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 416 struct blk_plug plug; 417 int i, end; 418 nid_t nid; 419 420 blk_start_plug(&plug); 421 422 /* Then, try readahead for siblings of the desired node */ 423 end = start + n; 424 end = min(end, NIDS_PER_BLOCK); 425 for (i = start; i < end; i++) { 426 nid = get_nid(parent, i, false); 427 ra_node_page(sbi, nid); 428 } 429 430 blk_finish_plug(&plug); 431 } 432 433 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 434 { 435 const long direct_index = ADDRS_PER_INODE(dn->inode); 436 const long direct_blks = ADDRS_PER_BLOCK; 437 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 438 unsigned int skipped_unit = ADDRS_PER_BLOCK; 439 int cur_level = dn->cur_level; 440 int max_level = dn->max_level; 441 pgoff_t base = 0; 442 443 if (!dn->max_level) 444 return pgofs + 1; 445 446 while (max_level-- > cur_level) 447 skipped_unit *= NIDS_PER_BLOCK; 448 449 switch (dn->max_level) { 450 case 3: 451 base += 2 * indirect_blks; 452 case 2: 453 base += 2 * direct_blks; 454 case 1: 455 base += direct_index; 456 break; 457 default: 458 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 459 } 460 461 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 462 } 463 464 /* 465 * The maximum depth is four. 466 * Offset[0] will have raw inode offset. 467 */ 468 static int get_node_path(struct inode *inode, long block, 469 int offset[4], unsigned int noffset[4]) 470 { 471 const long direct_index = ADDRS_PER_INODE(inode); 472 const long direct_blks = ADDRS_PER_BLOCK; 473 const long dptrs_per_blk = NIDS_PER_BLOCK; 474 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 475 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 476 int n = 0; 477 int level = 0; 478 479 noffset[0] = 0; 480 481 if (block < direct_index) { 482 offset[n] = block; 483 goto got; 484 } 485 block -= direct_index; 486 if (block < direct_blks) { 487 offset[n++] = NODE_DIR1_BLOCK; 488 noffset[n] = 1; 489 offset[n] = block; 490 level = 1; 491 goto got; 492 } 493 block -= direct_blks; 494 if (block < direct_blks) { 495 offset[n++] = NODE_DIR2_BLOCK; 496 noffset[n] = 2; 497 offset[n] = block; 498 level = 1; 499 goto got; 500 } 501 block -= direct_blks; 502 if (block < indirect_blks) { 503 offset[n++] = NODE_IND1_BLOCK; 504 noffset[n] = 3; 505 offset[n++] = block / direct_blks; 506 noffset[n] = 4 + offset[n - 1]; 507 offset[n] = block % direct_blks; 508 level = 2; 509 goto got; 510 } 511 block -= indirect_blks; 512 if (block < indirect_blks) { 513 offset[n++] = NODE_IND2_BLOCK; 514 noffset[n] = 4 + dptrs_per_blk; 515 offset[n++] = block / direct_blks; 516 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 517 offset[n] = block % direct_blks; 518 level = 2; 519 goto got; 520 } 521 block -= indirect_blks; 522 if (block < dindirect_blks) { 523 offset[n++] = NODE_DIND_BLOCK; 524 noffset[n] = 5 + (dptrs_per_blk * 2); 525 offset[n++] = block / indirect_blks; 526 noffset[n] = 6 + (dptrs_per_blk * 2) + 527 offset[n - 1] * (dptrs_per_blk + 1); 528 offset[n++] = (block / direct_blks) % dptrs_per_blk; 529 noffset[n] = 7 + (dptrs_per_blk * 2) + 530 offset[n - 2] * (dptrs_per_blk + 1) + 531 offset[n - 1]; 532 offset[n] = block % direct_blks; 533 level = 3; 534 goto got; 535 } else { 536 BUG(); 537 } 538 got: 539 return level; 540 } 541 542 /* 543 * Caller should call f2fs_put_dnode(dn). 544 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 545 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 546 * In the case of RDONLY_NODE, we don't need to care about mutex. 547 */ 548 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 549 { 550 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 551 struct page *npage[4]; 552 struct page *parent = NULL; 553 int offset[4]; 554 unsigned int noffset[4]; 555 nid_t nids[4]; 556 int level, i = 0; 557 int err = 0; 558 559 level = get_node_path(dn->inode, index, offset, noffset); 560 561 nids[0] = dn->inode->i_ino; 562 npage[0] = dn->inode_page; 563 564 if (!npage[0]) { 565 npage[0] = get_node_page(sbi, nids[0]); 566 if (IS_ERR(npage[0])) 567 return PTR_ERR(npage[0]); 568 } 569 570 /* if inline_data is set, should not report any block indices */ 571 if (f2fs_has_inline_data(dn->inode) && index) { 572 err = -ENOENT; 573 f2fs_put_page(npage[0], 1); 574 goto release_out; 575 } 576 577 parent = npage[0]; 578 if (level != 0) 579 nids[1] = get_nid(parent, offset[0], true); 580 dn->inode_page = npage[0]; 581 dn->inode_page_locked = true; 582 583 /* get indirect or direct nodes */ 584 for (i = 1; i <= level; i++) { 585 bool done = false; 586 587 if (!nids[i] && mode == ALLOC_NODE) { 588 /* alloc new node */ 589 if (!alloc_nid(sbi, &(nids[i]))) { 590 err = -ENOSPC; 591 goto release_pages; 592 } 593 594 dn->nid = nids[i]; 595 npage[i] = new_node_page(dn, noffset[i], NULL); 596 if (IS_ERR(npage[i])) { 597 alloc_nid_failed(sbi, nids[i]); 598 err = PTR_ERR(npage[i]); 599 goto release_pages; 600 } 601 602 set_nid(parent, offset[i - 1], nids[i], i == 1); 603 alloc_nid_done(sbi, nids[i]); 604 done = true; 605 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 606 npage[i] = get_node_page_ra(parent, offset[i - 1]); 607 if (IS_ERR(npage[i])) { 608 err = PTR_ERR(npage[i]); 609 goto release_pages; 610 } 611 done = true; 612 } 613 if (i == 1) { 614 dn->inode_page_locked = false; 615 unlock_page(parent); 616 } else { 617 f2fs_put_page(parent, 1); 618 } 619 620 if (!done) { 621 npage[i] = get_node_page(sbi, nids[i]); 622 if (IS_ERR(npage[i])) { 623 err = PTR_ERR(npage[i]); 624 f2fs_put_page(npage[0], 0); 625 goto release_out; 626 } 627 } 628 if (i < level) { 629 parent = npage[i]; 630 nids[i + 1] = get_nid(parent, offset[i], false); 631 } 632 } 633 dn->nid = nids[level]; 634 dn->ofs_in_node = offset[level]; 635 dn->node_page = npage[level]; 636 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 637 return 0; 638 639 release_pages: 640 f2fs_put_page(parent, 1); 641 if (i > 1) 642 f2fs_put_page(npage[0], 0); 643 release_out: 644 dn->inode_page = NULL; 645 dn->node_page = NULL; 646 if (err == -ENOENT) { 647 dn->cur_level = i; 648 dn->max_level = level; 649 } 650 return err; 651 } 652 653 static void truncate_node(struct dnode_of_data *dn) 654 { 655 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 656 struct node_info ni; 657 658 get_node_info(sbi, dn->nid, &ni); 659 if (dn->inode->i_blocks == 0) { 660 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 661 goto invalidate; 662 } 663 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 664 665 /* Deallocate node address */ 666 invalidate_blocks(sbi, ni.blk_addr); 667 dec_valid_node_count(sbi, dn->inode); 668 set_node_addr(sbi, &ni, NULL_ADDR, false); 669 670 if (dn->nid == dn->inode->i_ino) { 671 remove_orphan_inode(sbi, dn->nid); 672 dec_valid_inode_count(sbi); 673 } else { 674 sync_inode_page(dn); 675 } 676 invalidate: 677 clear_node_page_dirty(dn->node_page); 678 set_sbi_flag(sbi, SBI_IS_DIRTY); 679 680 f2fs_put_page(dn->node_page, 1); 681 682 invalidate_mapping_pages(NODE_MAPPING(sbi), 683 dn->node_page->index, dn->node_page->index); 684 685 dn->node_page = NULL; 686 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 687 } 688 689 static int truncate_dnode(struct dnode_of_data *dn) 690 { 691 struct page *page; 692 693 if (dn->nid == 0) 694 return 1; 695 696 /* get direct node */ 697 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 698 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 699 return 1; 700 else if (IS_ERR(page)) 701 return PTR_ERR(page); 702 703 /* Make dnode_of_data for parameter */ 704 dn->node_page = page; 705 dn->ofs_in_node = 0; 706 truncate_data_blocks(dn); 707 truncate_node(dn); 708 return 1; 709 } 710 711 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 712 int ofs, int depth) 713 { 714 struct dnode_of_data rdn = *dn; 715 struct page *page; 716 struct f2fs_node *rn; 717 nid_t child_nid; 718 unsigned int child_nofs; 719 int freed = 0; 720 int i, ret; 721 722 if (dn->nid == 0) 723 return NIDS_PER_BLOCK + 1; 724 725 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 726 727 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 728 if (IS_ERR(page)) { 729 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 730 return PTR_ERR(page); 731 } 732 733 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 734 735 rn = F2FS_NODE(page); 736 if (depth < 3) { 737 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 738 child_nid = le32_to_cpu(rn->in.nid[i]); 739 if (child_nid == 0) 740 continue; 741 rdn.nid = child_nid; 742 ret = truncate_dnode(&rdn); 743 if (ret < 0) 744 goto out_err; 745 if (set_nid(page, i, 0, false)) 746 dn->node_changed = true; 747 } 748 } else { 749 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 750 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 751 child_nid = le32_to_cpu(rn->in.nid[i]); 752 if (child_nid == 0) { 753 child_nofs += NIDS_PER_BLOCK + 1; 754 continue; 755 } 756 rdn.nid = child_nid; 757 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 758 if (ret == (NIDS_PER_BLOCK + 1)) { 759 if (set_nid(page, i, 0, false)) 760 dn->node_changed = true; 761 child_nofs += ret; 762 } else if (ret < 0 && ret != -ENOENT) { 763 goto out_err; 764 } 765 } 766 freed = child_nofs; 767 } 768 769 if (!ofs) { 770 /* remove current indirect node */ 771 dn->node_page = page; 772 truncate_node(dn); 773 freed++; 774 } else { 775 f2fs_put_page(page, 1); 776 } 777 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 778 return freed; 779 780 out_err: 781 f2fs_put_page(page, 1); 782 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 783 return ret; 784 } 785 786 static int truncate_partial_nodes(struct dnode_of_data *dn, 787 struct f2fs_inode *ri, int *offset, int depth) 788 { 789 struct page *pages[2]; 790 nid_t nid[3]; 791 nid_t child_nid; 792 int err = 0; 793 int i; 794 int idx = depth - 2; 795 796 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 797 if (!nid[0]) 798 return 0; 799 800 /* get indirect nodes in the path */ 801 for (i = 0; i < idx + 1; i++) { 802 /* reference count'll be increased */ 803 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 804 if (IS_ERR(pages[i])) { 805 err = PTR_ERR(pages[i]); 806 idx = i - 1; 807 goto fail; 808 } 809 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 810 } 811 812 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 813 814 /* free direct nodes linked to a partial indirect node */ 815 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 816 child_nid = get_nid(pages[idx], i, false); 817 if (!child_nid) 818 continue; 819 dn->nid = child_nid; 820 err = truncate_dnode(dn); 821 if (err < 0) 822 goto fail; 823 if (set_nid(pages[idx], i, 0, false)) 824 dn->node_changed = true; 825 } 826 827 if (offset[idx + 1] == 0) { 828 dn->node_page = pages[idx]; 829 dn->nid = nid[idx]; 830 truncate_node(dn); 831 } else { 832 f2fs_put_page(pages[idx], 1); 833 } 834 offset[idx]++; 835 offset[idx + 1] = 0; 836 idx--; 837 fail: 838 for (i = idx; i >= 0; i--) 839 f2fs_put_page(pages[i], 1); 840 841 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 842 843 return err; 844 } 845 846 /* 847 * All the block addresses of data and nodes should be nullified. 848 */ 849 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 850 { 851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 852 int err = 0, cont = 1; 853 int level, offset[4], noffset[4]; 854 unsigned int nofs = 0; 855 struct f2fs_inode *ri; 856 struct dnode_of_data dn; 857 struct page *page; 858 859 trace_f2fs_truncate_inode_blocks_enter(inode, from); 860 861 level = get_node_path(inode, from, offset, noffset); 862 863 page = get_node_page(sbi, inode->i_ino); 864 if (IS_ERR(page)) { 865 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 866 return PTR_ERR(page); 867 } 868 869 set_new_dnode(&dn, inode, page, NULL, 0); 870 unlock_page(page); 871 872 ri = F2FS_INODE(page); 873 switch (level) { 874 case 0: 875 case 1: 876 nofs = noffset[1]; 877 break; 878 case 2: 879 nofs = noffset[1]; 880 if (!offset[level - 1]) 881 goto skip_partial; 882 err = truncate_partial_nodes(&dn, ri, offset, level); 883 if (err < 0 && err != -ENOENT) 884 goto fail; 885 nofs += 1 + NIDS_PER_BLOCK; 886 break; 887 case 3: 888 nofs = 5 + 2 * NIDS_PER_BLOCK; 889 if (!offset[level - 1]) 890 goto skip_partial; 891 err = truncate_partial_nodes(&dn, ri, offset, level); 892 if (err < 0 && err != -ENOENT) 893 goto fail; 894 break; 895 default: 896 BUG(); 897 } 898 899 skip_partial: 900 while (cont) { 901 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 902 switch (offset[0]) { 903 case NODE_DIR1_BLOCK: 904 case NODE_DIR2_BLOCK: 905 err = truncate_dnode(&dn); 906 break; 907 908 case NODE_IND1_BLOCK: 909 case NODE_IND2_BLOCK: 910 err = truncate_nodes(&dn, nofs, offset[1], 2); 911 break; 912 913 case NODE_DIND_BLOCK: 914 err = truncate_nodes(&dn, nofs, offset[1], 3); 915 cont = 0; 916 break; 917 918 default: 919 BUG(); 920 } 921 if (err < 0 && err != -ENOENT) 922 goto fail; 923 if (offset[1] == 0 && 924 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 925 lock_page(page); 926 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 927 f2fs_wait_on_page_writeback(page, NODE, true); 928 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 929 set_page_dirty(page); 930 unlock_page(page); 931 } 932 offset[1] = 0; 933 offset[0]++; 934 nofs += err; 935 } 936 fail: 937 f2fs_put_page(page, 0); 938 trace_f2fs_truncate_inode_blocks_exit(inode, err); 939 return err > 0 ? 0 : err; 940 } 941 942 int truncate_xattr_node(struct inode *inode, struct page *page) 943 { 944 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 945 nid_t nid = F2FS_I(inode)->i_xattr_nid; 946 struct dnode_of_data dn; 947 struct page *npage; 948 949 if (!nid) 950 return 0; 951 952 npage = get_node_page(sbi, nid); 953 if (IS_ERR(npage)) 954 return PTR_ERR(npage); 955 956 F2FS_I(inode)->i_xattr_nid = 0; 957 958 /* need to do checkpoint during fsync */ 959 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 960 961 set_new_dnode(&dn, inode, page, npage, nid); 962 963 if (page) 964 dn.inode_page_locked = true; 965 truncate_node(&dn); 966 return 0; 967 } 968 969 /* 970 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 971 * f2fs_unlock_op(). 972 */ 973 int remove_inode_page(struct inode *inode) 974 { 975 struct dnode_of_data dn; 976 int err; 977 978 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 979 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 980 if (err) 981 return err; 982 983 err = truncate_xattr_node(inode, dn.inode_page); 984 if (err) { 985 f2fs_put_dnode(&dn); 986 return err; 987 } 988 989 /* remove potential inline_data blocks */ 990 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 991 S_ISLNK(inode->i_mode)) 992 truncate_data_blocks_range(&dn, 1); 993 994 /* 0 is possible, after f2fs_new_inode() has failed */ 995 f2fs_bug_on(F2FS_I_SB(inode), 996 inode->i_blocks != 0 && inode->i_blocks != 1); 997 998 /* will put inode & node pages */ 999 truncate_node(&dn); 1000 return 0; 1001 } 1002 1003 struct page *new_inode_page(struct inode *inode) 1004 { 1005 struct dnode_of_data dn; 1006 1007 /* allocate inode page for new inode */ 1008 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1009 1010 /* caller should f2fs_put_page(page, 1); */ 1011 return new_node_page(&dn, 0, NULL); 1012 } 1013 1014 struct page *new_node_page(struct dnode_of_data *dn, 1015 unsigned int ofs, struct page *ipage) 1016 { 1017 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1018 struct node_info old_ni, new_ni; 1019 struct page *page; 1020 int err; 1021 1022 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 1023 return ERR_PTR(-EPERM); 1024 1025 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1026 if (!page) 1027 return ERR_PTR(-ENOMEM); 1028 1029 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1030 err = -ENOSPC; 1031 goto fail; 1032 } 1033 1034 get_node_info(sbi, dn->nid, &old_ni); 1035 1036 /* Reinitialize old_ni with new node page */ 1037 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); 1038 new_ni = old_ni; 1039 new_ni.ino = dn->inode->i_ino; 1040 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1041 1042 f2fs_wait_on_page_writeback(page, NODE, true); 1043 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1044 set_cold_node(dn->inode, page); 1045 SetPageUptodate(page); 1046 if (set_page_dirty(page)) 1047 dn->node_changed = true; 1048 1049 if (f2fs_has_xattr_block(ofs)) 1050 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 1051 1052 dn->node_page = page; 1053 if (ipage) 1054 update_inode(dn->inode, ipage); 1055 else 1056 sync_inode_page(dn); 1057 if (ofs == 0) 1058 inc_valid_inode_count(sbi); 1059 1060 return page; 1061 1062 fail: 1063 clear_node_page_dirty(page); 1064 f2fs_put_page(page, 1); 1065 return ERR_PTR(err); 1066 } 1067 1068 /* 1069 * Caller should do after getting the following values. 1070 * 0: f2fs_put_page(page, 0) 1071 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1072 */ 1073 static int read_node_page(struct page *page, int rw) 1074 { 1075 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1076 struct node_info ni; 1077 struct f2fs_io_info fio = { 1078 .sbi = sbi, 1079 .type = NODE, 1080 .rw = rw, 1081 .page = page, 1082 .encrypted_page = NULL, 1083 }; 1084 1085 get_node_info(sbi, page->index, &ni); 1086 1087 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1088 ClearPageUptodate(page); 1089 return -ENOENT; 1090 } 1091 1092 if (PageUptodate(page)) 1093 return LOCKED_PAGE; 1094 1095 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1096 return f2fs_submit_page_bio(&fio); 1097 } 1098 1099 /* 1100 * Readahead a node page 1101 */ 1102 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1103 { 1104 struct page *apage; 1105 int err; 1106 1107 if (!nid) 1108 return; 1109 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1110 1111 rcu_read_lock(); 1112 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1113 rcu_read_unlock(); 1114 if (apage) 1115 return; 1116 1117 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1118 if (!apage) 1119 return; 1120 1121 err = read_node_page(apage, READA); 1122 f2fs_put_page(apage, err ? 1 : 0); 1123 } 1124 1125 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1126 struct page *parent, int start) 1127 { 1128 struct page *page; 1129 int err; 1130 1131 if (!nid) 1132 return ERR_PTR(-ENOENT); 1133 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1134 repeat: 1135 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1136 if (!page) 1137 return ERR_PTR(-ENOMEM); 1138 1139 err = read_node_page(page, READ_SYNC); 1140 if (err < 0) { 1141 f2fs_put_page(page, 1); 1142 return ERR_PTR(err); 1143 } else if (err == LOCKED_PAGE) { 1144 goto page_hit; 1145 } 1146 1147 if (parent) 1148 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1149 1150 lock_page(page); 1151 1152 if (unlikely(!PageUptodate(page))) { 1153 f2fs_put_page(page, 1); 1154 return ERR_PTR(-EIO); 1155 } 1156 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1157 f2fs_put_page(page, 1); 1158 goto repeat; 1159 } 1160 page_hit: 1161 f2fs_bug_on(sbi, nid != nid_of_node(page)); 1162 return page; 1163 } 1164 1165 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1166 { 1167 return __get_node_page(sbi, nid, NULL, 0); 1168 } 1169 1170 struct page *get_node_page_ra(struct page *parent, int start) 1171 { 1172 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1173 nid_t nid = get_nid(parent, start, false); 1174 1175 return __get_node_page(sbi, nid, parent, start); 1176 } 1177 1178 void sync_inode_page(struct dnode_of_data *dn) 1179 { 1180 int ret = 0; 1181 1182 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1183 ret = update_inode(dn->inode, dn->node_page); 1184 } else if (dn->inode_page) { 1185 if (!dn->inode_page_locked) 1186 lock_page(dn->inode_page); 1187 ret = update_inode(dn->inode, dn->inode_page); 1188 if (!dn->inode_page_locked) 1189 unlock_page(dn->inode_page); 1190 } else { 1191 ret = update_inode_page(dn->inode); 1192 } 1193 dn->node_changed = ret ? true: false; 1194 } 1195 1196 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1197 { 1198 struct inode *inode; 1199 struct page *page; 1200 int ret; 1201 1202 /* should flush inline_data before evict_inode */ 1203 inode = ilookup(sbi->sb, ino); 1204 if (!inode) 1205 return; 1206 1207 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1208 if (!page) 1209 goto iput_out; 1210 1211 if (!PageUptodate(page)) 1212 goto page_out; 1213 1214 if (!PageDirty(page)) 1215 goto page_out; 1216 1217 if (!clear_page_dirty_for_io(page)) 1218 goto page_out; 1219 1220 ret = f2fs_write_inline_data(inode, page); 1221 inode_dec_dirty_pages(inode); 1222 if (ret) 1223 set_page_dirty(page); 1224 page_out: 1225 f2fs_put_page(page, 1); 1226 iput_out: 1227 iput(inode); 1228 } 1229 1230 void move_node_page(struct page *node_page, int gc_type) 1231 { 1232 if (gc_type == FG_GC) { 1233 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1234 struct writeback_control wbc = { 1235 .sync_mode = WB_SYNC_ALL, 1236 .nr_to_write = 1, 1237 .for_reclaim = 0, 1238 }; 1239 1240 set_page_dirty(node_page); 1241 f2fs_wait_on_page_writeback(node_page, NODE, true); 1242 1243 f2fs_bug_on(sbi, PageWriteback(node_page)); 1244 if (!clear_page_dirty_for_io(node_page)) 1245 goto out_page; 1246 1247 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1248 unlock_page(node_page); 1249 goto release_page; 1250 } else { 1251 /* set page dirty and write it */ 1252 if (!PageWriteback(node_page)) 1253 set_page_dirty(node_page); 1254 } 1255 out_page: 1256 unlock_page(node_page); 1257 release_page: 1258 f2fs_put_page(node_page, 0); 1259 } 1260 1261 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1262 { 1263 pgoff_t index, end; 1264 struct pagevec pvec; 1265 struct page *last_page = NULL; 1266 1267 pagevec_init(&pvec, 0); 1268 index = 0; 1269 end = ULONG_MAX; 1270 1271 while (index <= end) { 1272 int i, nr_pages; 1273 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1274 PAGECACHE_TAG_DIRTY, 1275 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1276 if (nr_pages == 0) 1277 break; 1278 1279 for (i = 0; i < nr_pages; i++) { 1280 struct page *page = pvec.pages[i]; 1281 1282 if (unlikely(f2fs_cp_error(sbi))) { 1283 f2fs_put_page(last_page, 0); 1284 pagevec_release(&pvec); 1285 return ERR_PTR(-EIO); 1286 } 1287 1288 if (!IS_DNODE(page) || !is_cold_node(page)) 1289 continue; 1290 if (ino_of_node(page) != ino) 1291 continue; 1292 1293 lock_page(page); 1294 1295 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1296 continue_unlock: 1297 unlock_page(page); 1298 continue; 1299 } 1300 if (ino_of_node(page) != ino) 1301 goto continue_unlock; 1302 1303 if (!PageDirty(page)) { 1304 /* someone wrote it for us */ 1305 goto continue_unlock; 1306 } 1307 1308 if (last_page) 1309 f2fs_put_page(last_page, 0); 1310 1311 get_page(page); 1312 last_page = page; 1313 unlock_page(page); 1314 } 1315 pagevec_release(&pvec); 1316 cond_resched(); 1317 } 1318 return last_page; 1319 } 1320 1321 int fsync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1322 struct writeback_control *wbc, bool atomic) 1323 { 1324 pgoff_t index, end; 1325 struct pagevec pvec; 1326 int ret = 0; 1327 struct page *last_page = NULL; 1328 bool marked = false; 1329 1330 if (atomic) { 1331 last_page = last_fsync_dnode(sbi, ino); 1332 if (IS_ERR_OR_NULL(last_page)) 1333 return PTR_ERR_OR_ZERO(last_page); 1334 } 1335 retry: 1336 pagevec_init(&pvec, 0); 1337 index = 0; 1338 end = ULONG_MAX; 1339 1340 while (index <= end) { 1341 int i, nr_pages; 1342 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1343 PAGECACHE_TAG_DIRTY, 1344 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1345 if (nr_pages == 0) 1346 break; 1347 1348 for (i = 0; i < nr_pages; i++) { 1349 struct page *page = pvec.pages[i]; 1350 1351 if (unlikely(f2fs_cp_error(sbi))) { 1352 f2fs_put_page(last_page, 0); 1353 pagevec_release(&pvec); 1354 return -EIO; 1355 } 1356 1357 if (!IS_DNODE(page) || !is_cold_node(page)) 1358 continue; 1359 if (ino_of_node(page) != ino) 1360 continue; 1361 1362 lock_page(page); 1363 1364 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1365 continue_unlock: 1366 unlock_page(page); 1367 continue; 1368 } 1369 if (ino_of_node(page) != ino) 1370 goto continue_unlock; 1371 1372 if (!PageDirty(page) && page != last_page) { 1373 /* someone wrote it for us */ 1374 goto continue_unlock; 1375 } 1376 1377 f2fs_wait_on_page_writeback(page, NODE, true); 1378 BUG_ON(PageWriteback(page)); 1379 1380 if (!atomic || page == last_page) { 1381 set_fsync_mark(page, 1); 1382 if (IS_INODE(page)) 1383 set_dentry_mark(page, 1384 need_dentry_mark(sbi, ino)); 1385 /* may be written by other thread */ 1386 if (!PageDirty(page)) 1387 set_page_dirty(page); 1388 } 1389 1390 if (!clear_page_dirty_for_io(page)) 1391 goto continue_unlock; 1392 1393 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc); 1394 if (ret) { 1395 unlock_page(page); 1396 f2fs_put_page(last_page, 0); 1397 break; 1398 } 1399 if (page == last_page) { 1400 f2fs_put_page(page, 0); 1401 marked = true; 1402 break; 1403 } 1404 } 1405 pagevec_release(&pvec); 1406 cond_resched(); 1407 1408 if (ret || marked) 1409 break; 1410 } 1411 if (!ret && atomic && !marked) { 1412 f2fs_msg(sbi->sb, KERN_DEBUG, 1413 "Retry to write fsync mark: ino=%u, idx=%lx", 1414 ino, last_page->index); 1415 lock_page(last_page); 1416 set_page_dirty(last_page); 1417 unlock_page(last_page); 1418 goto retry; 1419 } 1420 return ret ? -EIO: 0; 1421 } 1422 1423 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1424 { 1425 pgoff_t index, end; 1426 struct pagevec pvec; 1427 int step = 0; 1428 int nwritten = 0; 1429 1430 pagevec_init(&pvec, 0); 1431 1432 next_step: 1433 index = 0; 1434 end = ULONG_MAX; 1435 1436 while (index <= end) { 1437 int i, nr_pages; 1438 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1439 PAGECACHE_TAG_DIRTY, 1440 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1441 if (nr_pages == 0) 1442 break; 1443 1444 for (i = 0; i < nr_pages; i++) { 1445 struct page *page = pvec.pages[i]; 1446 1447 if (unlikely(f2fs_cp_error(sbi))) { 1448 pagevec_release(&pvec); 1449 return -EIO; 1450 } 1451 1452 /* 1453 * flushing sequence with step: 1454 * 0. indirect nodes 1455 * 1. dentry dnodes 1456 * 2. file dnodes 1457 */ 1458 if (step == 0 && IS_DNODE(page)) 1459 continue; 1460 if (step == 1 && (!IS_DNODE(page) || 1461 is_cold_node(page))) 1462 continue; 1463 if (step == 2 && (!IS_DNODE(page) || 1464 !is_cold_node(page))) 1465 continue; 1466 lock_node: 1467 if (!trylock_page(page)) 1468 continue; 1469 1470 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1471 continue_unlock: 1472 unlock_page(page); 1473 continue; 1474 } 1475 1476 if (!PageDirty(page)) { 1477 /* someone wrote it for us */ 1478 goto continue_unlock; 1479 } 1480 1481 /* flush inline_data */ 1482 if (is_inline_node(page)) { 1483 clear_inline_node(page); 1484 unlock_page(page); 1485 flush_inline_data(sbi, ino_of_node(page)); 1486 goto lock_node; 1487 } 1488 1489 f2fs_wait_on_page_writeback(page, NODE, true); 1490 1491 BUG_ON(PageWriteback(page)); 1492 if (!clear_page_dirty_for_io(page)) 1493 goto continue_unlock; 1494 1495 set_fsync_mark(page, 0); 1496 set_dentry_mark(page, 0); 1497 1498 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1499 unlock_page(page); 1500 1501 if (--wbc->nr_to_write == 0) 1502 break; 1503 } 1504 pagevec_release(&pvec); 1505 cond_resched(); 1506 1507 if (wbc->nr_to_write == 0) { 1508 step = 2; 1509 break; 1510 } 1511 } 1512 1513 if (step < 2) { 1514 step++; 1515 goto next_step; 1516 } 1517 return nwritten; 1518 } 1519 1520 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1521 { 1522 pgoff_t index = 0, end = ULONG_MAX; 1523 struct pagevec pvec; 1524 int ret2 = 0, ret = 0; 1525 1526 pagevec_init(&pvec, 0); 1527 1528 while (index <= end) { 1529 int i, nr_pages; 1530 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1531 PAGECACHE_TAG_WRITEBACK, 1532 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1533 if (nr_pages == 0) 1534 break; 1535 1536 for (i = 0; i < nr_pages; i++) { 1537 struct page *page = pvec.pages[i]; 1538 1539 /* until radix tree lookup accepts end_index */ 1540 if (unlikely(page->index > end)) 1541 continue; 1542 1543 if (ino && ino_of_node(page) == ino) { 1544 f2fs_wait_on_page_writeback(page, NODE, true); 1545 if (TestClearPageError(page)) 1546 ret = -EIO; 1547 } 1548 } 1549 pagevec_release(&pvec); 1550 cond_resched(); 1551 } 1552 1553 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) 1554 ret2 = -ENOSPC; 1555 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) 1556 ret2 = -EIO; 1557 if (!ret) 1558 ret = ret2; 1559 return ret; 1560 } 1561 1562 static int f2fs_write_node_page(struct page *page, 1563 struct writeback_control *wbc) 1564 { 1565 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1566 nid_t nid; 1567 struct node_info ni; 1568 struct f2fs_io_info fio = { 1569 .sbi = sbi, 1570 .type = NODE, 1571 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1572 .page = page, 1573 .encrypted_page = NULL, 1574 }; 1575 1576 trace_f2fs_writepage(page, NODE); 1577 1578 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1579 goto redirty_out; 1580 if (unlikely(f2fs_cp_error(sbi))) 1581 goto redirty_out; 1582 1583 /* get old block addr of this node page */ 1584 nid = nid_of_node(page); 1585 f2fs_bug_on(sbi, page->index != nid); 1586 1587 if (wbc->for_reclaim) { 1588 if (!down_read_trylock(&sbi->node_write)) 1589 goto redirty_out; 1590 } else { 1591 down_read(&sbi->node_write); 1592 } 1593 1594 get_node_info(sbi, nid, &ni); 1595 1596 /* This page is already truncated */ 1597 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1598 ClearPageUptodate(page); 1599 dec_page_count(sbi, F2FS_DIRTY_NODES); 1600 up_read(&sbi->node_write); 1601 unlock_page(page); 1602 return 0; 1603 } 1604 1605 set_page_writeback(page); 1606 fio.old_blkaddr = ni.blk_addr; 1607 write_node_page(nid, &fio); 1608 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1609 dec_page_count(sbi, F2FS_DIRTY_NODES); 1610 up_read(&sbi->node_write); 1611 1612 if (wbc->for_reclaim) 1613 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE); 1614 1615 unlock_page(page); 1616 1617 if (unlikely(f2fs_cp_error(sbi))) 1618 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1619 1620 return 0; 1621 1622 redirty_out: 1623 redirty_page_for_writepage(wbc, page); 1624 return AOP_WRITEPAGE_ACTIVATE; 1625 } 1626 1627 static int f2fs_write_node_pages(struct address_space *mapping, 1628 struct writeback_control *wbc) 1629 { 1630 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1631 long diff; 1632 1633 /* balancing f2fs's metadata in background */ 1634 f2fs_balance_fs_bg(sbi); 1635 1636 /* collect a number of dirty node pages and write together */ 1637 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1638 goto skip_write; 1639 1640 trace_f2fs_writepages(mapping->host, wbc, NODE); 1641 1642 diff = nr_pages_to_write(sbi, NODE, wbc); 1643 wbc->sync_mode = WB_SYNC_NONE; 1644 sync_node_pages(sbi, wbc); 1645 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1646 return 0; 1647 1648 skip_write: 1649 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1650 trace_f2fs_writepages(mapping->host, wbc, NODE); 1651 return 0; 1652 } 1653 1654 static int f2fs_set_node_page_dirty(struct page *page) 1655 { 1656 trace_f2fs_set_page_dirty(page, NODE); 1657 1658 SetPageUptodate(page); 1659 if (!PageDirty(page)) { 1660 __set_page_dirty_nobuffers(page); 1661 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1662 SetPagePrivate(page); 1663 f2fs_trace_pid(page); 1664 return 1; 1665 } 1666 return 0; 1667 } 1668 1669 /* 1670 * Structure of the f2fs node operations 1671 */ 1672 const struct address_space_operations f2fs_node_aops = { 1673 .writepage = f2fs_write_node_page, 1674 .writepages = f2fs_write_node_pages, 1675 .set_page_dirty = f2fs_set_node_page_dirty, 1676 .invalidatepage = f2fs_invalidate_page, 1677 .releasepage = f2fs_release_page, 1678 }; 1679 1680 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1681 nid_t n) 1682 { 1683 return radix_tree_lookup(&nm_i->free_nid_root, n); 1684 } 1685 1686 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, 1687 struct free_nid *i) 1688 { 1689 list_del(&i->list); 1690 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1691 } 1692 1693 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1694 { 1695 struct f2fs_nm_info *nm_i = NM_I(sbi); 1696 struct free_nid *i; 1697 struct nat_entry *ne; 1698 1699 if (!available_free_memory(sbi, FREE_NIDS)) 1700 return -1; 1701 1702 /* 0 nid should not be used */ 1703 if (unlikely(nid == 0)) 1704 return 0; 1705 1706 if (build) { 1707 /* do not add allocated nids */ 1708 ne = __lookup_nat_cache(nm_i, nid); 1709 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1710 nat_get_blkaddr(ne) != NULL_ADDR)) 1711 return 0; 1712 } 1713 1714 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1715 i->nid = nid; 1716 i->state = NID_NEW; 1717 1718 if (radix_tree_preload(GFP_NOFS)) { 1719 kmem_cache_free(free_nid_slab, i); 1720 return 0; 1721 } 1722 1723 spin_lock(&nm_i->free_nid_list_lock); 1724 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { 1725 spin_unlock(&nm_i->free_nid_list_lock); 1726 radix_tree_preload_end(); 1727 kmem_cache_free(free_nid_slab, i); 1728 return 0; 1729 } 1730 list_add_tail(&i->list, &nm_i->free_nid_list); 1731 nm_i->fcnt++; 1732 spin_unlock(&nm_i->free_nid_list_lock); 1733 radix_tree_preload_end(); 1734 return 1; 1735 } 1736 1737 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1738 { 1739 struct free_nid *i; 1740 bool need_free = false; 1741 1742 spin_lock(&nm_i->free_nid_list_lock); 1743 i = __lookup_free_nid_list(nm_i, nid); 1744 if (i && i->state == NID_NEW) { 1745 __del_from_free_nid_list(nm_i, i); 1746 nm_i->fcnt--; 1747 need_free = true; 1748 } 1749 spin_unlock(&nm_i->free_nid_list_lock); 1750 1751 if (need_free) 1752 kmem_cache_free(free_nid_slab, i); 1753 } 1754 1755 static void scan_nat_page(struct f2fs_sb_info *sbi, 1756 struct page *nat_page, nid_t start_nid) 1757 { 1758 struct f2fs_nm_info *nm_i = NM_I(sbi); 1759 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1760 block_t blk_addr; 1761 int i; 1762 1763 i = start_nid % NAT_ENTRY_PER_BLOCK; 1764 1765 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1766 1767 if (unlikely(start_nid >= nm_i->max_nid)) 1768 break; 1769 1770 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1771 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1772 if (blk_addr == NULL_ADDR) { 1773 if (add_free_nid(sbi, start_nid, true) < 0) 1774 break; 1775 } 1776 } 1777 } 1778 1779 static void build_free_nids(struct f2fs_sb_info *sbi) 1780 { 1781 struct f2fs_nm_info *nm_i = NM_I(sbi); 1782 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1783 struct f2fs_journal *journal = curseg->journal; 1784 int i = 0; 1785 nid_t nid = nm_i->next_scan_nid; 1786 1787 /* Enough entries */ 1788 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1789 return; 1790 1791 /* readahead nat pages to be scanned */ 1792 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1793 META_NAT, true); 1794 1795 down_read(&nm_i->nat_tree_lock); 1796 1797 while (1) { 1798 struct page *page = get_current_nat_page(sbi, nid); 1799 1800 scan_nat_page(sbi, page, nid); 1801 f2fs_put_page(page, 1); 1802 1803 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1804 if (unlikely(nid >= nm_i->max_nid)) 1805 nid = 0; 1806 1807 if (++i >= FREE_NID_PAGES) 1808 break; 1809 } 1810 1811 /* go to the next free nat pages to find free nids abundantly */ 1812 nm_i->next_scan_nid = nid; 1813 1814 /* find free nids from current sum_pages */ 1815 down_read(&curseg->journal_rwsem); 1816 for (i = 0; i < nats_in_cursum(journal); i++) { 1817 block_t addr; 1818 1819 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1820 nid = le32_to_cpu(nid_in_journal(journal, i)); 1821 if (addr == NULL_ADDR) 1822 add_free_nid(sbi, nid, true); 1823 else 1824 remove_free_nid(nm_i, nid); 1825 } 1826 up_read(&curseg->journal_rwsem); 1827 up_read(&nm_i->nat_tree_lock); 1828 1829 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 1830 nm_i->ra_nid_pages, META_NAT, false); 1831 } 1832 1833 /* 1834 * If this function returns success, caller can obtain a new nid 1835 * from second parameter of this function. 1836 * The returned nid could be used ino as well as nid when inode is created. 1837 */ 1838 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1839 { 1840 struct f2fs_nm_info *nm_i = NM_I(sbi); 1841 struct free_nid *i = NULL; 1842 retry: 1843 #ifdef CONFIG_F2FS_FAULT_INJECTION 1844 if (time_to_inject(FAULT_ALLOC_NID)) 1845 return false; 1846 #endif 1847 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1848 return false; 1849 1850 spin_lock(&nm_i->free_nid_list_lock); 1851 1852 /* We should not use stale free nids created by build_free_nids */ 1853 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { 1854 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 1855 list_for_each_entry(i, &nm_i->free_nid_list, list) 1856 if (i->state == NID_NEW) 1857 break; 1858 1859 f2fs_bug_on(sbi, i->state != NID_NEW); 1860 *nid = i->nid; 1861 i->state = NID_ALLOC; 1862 nm_i->fcnt--; 1863 spin_unlock(&nm_i->free_nid_list_lock); 1864 return true; 1865 } 1866 spin_unlock(&nm_i->free_nid_list_lock); 1867 1868 /* Let's scan nat pages and its caches to get free nids */ 1869 mutex_lock(&nm_i->build_lock); 1870 build_free_nids(sbi); 1871 mutex_unlock(&nm_i->build_lock); 1872 goto retry; 1873 } 1874 1875 /* 1876 * alloc_nid() should be called prior to this function. 1877 */ 1878 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1879 { 1880 struct f2fs_nm_info *nm_i = NM_I(sbi); 1881 struct free_nid *i; 1882 1883 spin_lock(&nm_i->free_nid_list_lock); 1884 i = __lookup_free_nid_list(nm_i, nid); 1885 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1886 __del_from_free_nid_list(nm_i, i); 1887 spin_unlock(&nm_i->free_nid_list_lock); 1888 1889 kmem_cache_free(free_nid_slab, i); 1890 } 1891 1892 /* 1893 * alloc_nid() should be called prior to this function. 1894 */ 1895 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1896 { 1897 struct f2fs_nm_info *nm_i = NM_I(sbi); 1898 struct free_nid *i; 1899 bool need_free = false; 1900 1901 if (!nid) 1902 return; 1903 1904 spin_lock(&nm_i->free_nid_list_lock); 1905 i = __lookup_free_nid_list(nm_i, nid); 1906 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1907 if (!available_free_memory(sbi, FREE_NIDS)) { 1908 __del_from_free_nid_list(nm_i, i); 1909 need_free = true; 1910 } else { 1911 i->state = NID_NEW; 1912 nm_i->fcnt++; 1913 } 1914 spin_unlock(&nm_i->free_nid_list_lock); 1915 1916 if (need_free) 1917 kmem_cache_free(free_nid_slab, i); 1918 } 1919 1920 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 1921 { 1922 struct f2fs_nm_info *nm_i = NM_I(sbi); 1923 struct free_nid *i, *next; 1924 int nr = nr_shrink; 1925 1926 if (!mutex_trylock(&nm_i->build_lock)) 1927 return 0; 1928 1929 spin_lock(&nm_i->free_nid_list_lock); 1930 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 1931 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK) 1932 break; 1933 if (i->state == NID_ALLOC) 1934 continue; 1935 __del_from_free_nid_list(nm_i, i); 1936 kmem_cache_free(free_nid_slab, i); 1937 nm_i->fcnt--; 1938 nr_shrink--; 1939 } 1940 spin_unlock(&nm_i->free_nid_list_lock); 1941 mutex_unlock(&nm_i->build_lock); 1942 1943 return nr - nr_shrink; 1944 } 1945 1946 void recover_inline_xattr(struct inode *inode, struct page *page) 1947 { 1948 void *src_addr, *dst_addr; 1949 size_t inline_size; 1950 struct page *ipage; 1951 struct f2fs_inode *ri; 1952 1953 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 1954 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 1955 1956 ri = F2FS_INODE(page); 1957 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1958 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1959 goto update_inode; 1960 } 1961 1962 dst_addr = inline_xattr_addr(ipage); 1963 src_addr = inline_xattr_addr(page); 1964 inline_size = inline_xattr_size(inode); 1965 1966 f2fs_wait_on_page_writeback(ipage, NODE, true); 1967 memcpy(dst_addr, src_addr, inline_size); 1968 update_inode: 1969 update_inode(inode, ipage); 1970 f2fs_put_page(ipage, 1); 1971 } 1972 1973 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1974 { 1975 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1976 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1977 nid_t new_xnid = nid_of_node(page); 1978 struct node_info ni; 1979 1980 /* 1: invalidate the previous xattr nid */ 1981 if (!prev_xnid) 1982 goto recover_xnid; 1983 1984 /* Deallocate node address */ 1985 get_node_info(sbi, prev_xnid, &ni); 1986 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 1987 invalidate_blocks(sbi, ni.blk_addr); 1988 dec_valid_node_count(sbi, inode); 1989 set_node_addr(sbi, &ni, NULL_ADDR, false); 1990 1991 recover_xnid: 1992 /* 2: allocate new xattr nid */ 1993 if (unlikely(!inc_valid_node_count(sbi, inode))) 1994 f2fs_bug_on(sbi, 1); 1995 1996 remove_free_nid(NM_I(sbi), new_xnid); 1997 get_node_info(sbi, new_xnid, &ni); 1998 ni.ino = inode->i_ino; 1999 set_node_addr(sbi, &ni, NEW_ADDR, false); 2000 F2FS_I(inode)->i_xattr_nid = new_xnid; 2001 2002 /* 3: update xattr blkaddr */ 2003 refresh_sit_entry(sbi, NEW_ADDR, blkaddr); 2004 set_node_addr(sbi, &ni, blkaddr, false); 2005 2006 update_inode_page(inode); 2007 } 2008 2009 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2010 { 2011 struct f2fs_inode *src, *dst; 2012 nid_t ino = ino_of_node(page); 2013 struct node_info old_ni, new_ni; 2014 struct page *ipage; 2015 2016 get_node_info(sbi, ino, &old_ni); 2017 2018 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2019 return -EINVAL; 2020 2021 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2022 if (!ipage) 2023 return -ENOMEM; 2024 2025 /* Should not use this inode from free nid list */ 2026 remove_free_nid(NM_I(sbi), ino); 2027 2028 SetPageUptodate(ipage); 2029 fill_node_footer(ipage, ino, ino, 0, true); 2030 2031 src = F2FS_INODE(page); 2032 dst = F2FS_INODE(ipage); 2033 2034 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2035 dst->i_size = 0; 2036 dst->i_blocks = cpu_to_le64(1); 2037 dst->i_links = cpu_to_le32(1); 2038 dst->i_xattr_nid = 0; 2039 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2040 2041 new_ni = old_ni; 2042 new_ni.ino = ino; 2043 2044 if (unlikely(!inc_valid_node_count(sbi, NULL))) 2045 WARN_ON(1); 2046 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2047 inc_valid_inode_count(sbi); 2048 set_page_dirty(ipage); 2049 f2fs_put_page(ipage, 1); 2050 return 0; 2051 } 2052 2053 int restore_node_summary(struct f2fs_sb_info *sbi, 2054 unsigned int segno, struct f2fs_summary_block *sum) 2055 { 2056 struct f2fs_node *rn; 2057 struct f2fs_summary *sum_entry; 2058 block_t addr; 2059 int bio_blocks = MAX_BIO_BLOCKS(sbi); 2060 int i, idx, last_offset, nrpages; 2061 2062 /* scan the node segment */ 2063 last_offset = sbi->blocks_per_seg; 2064 addr = START_BLOCK(sbi, segno); 2065 sum_entry = &sum->entries[0]; 2066 2067 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2068 nrpages = min(last_offset - i, bio_blocks); 2069 2070 /* readahead node pages */ 2071 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2072 2073 for (idx = addr; idx < addr + nrpages; idx++) { 2074 struct page *page = get_tmp_page(sbi, idx); 2075 2076 rn = F2FS_NODE(page); 2077 sum_entry->nid = rn->footer.nid; 2078 sum_entry->version = 0; 2079 sum_entry->ofs_in_node = 0; 2080 sum_entry++; 2081 f2fs_put_page(page, 1); 2082 } 2083 2084 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2085 addr + nrpages); 2086 } 2087 return 0; 2088 } 2089 2090 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2091 { 2092 struct f2fs_nm_info *nm_i = NM_I(sbi); 2093 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2094 struct f2fs_journal *journal = curseg->journal; 2095 int i; 2096 2097 down_write(&curseg->journal_rwsem); 2098 for (i = 0; i < nats_in_cursum(journal); i++) { 2099 struct nat_entry *ne; 2100 struct f2fs_nat_entry raw_ne; 2101 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2102 2103 raw_ne = nat_in_journal(journal, i); 2104 2105 ne = __lookup_nat_cache(nm_i, nid); 2106 if (!ne) { 2107 ne = grab_nat_entry(nm_i, nid); 2108 node_info_from_raw_nat(&ne->ni, &raw_ne); 2109 } 2110 __set_nat_cache_dirty(nm_i, ne); 2111 } 2112 update_nats_in_cursum(journal, -i); 2113 up_write(&curseg->journal_rwsem); 2114 } 2115 2116 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2117 struct list_head *head, int max) 2118 { 2119 struct nat_entry_set *cur; 2120 2121 if (nes->entry_cnt >= max) 2122 goto add_out; 2123 2124 list_for_each_entry(cur, head, set_list) { 2125 if (cur->entry_cnt >= nes->entry_cnt) { 2126 list_add(&nes->set_list, cur->set_list.prev); 2127 return; 2128 } 2129 } 2130 add_out: 2131 list_add_tail(&nes->set_list, head); 2132 } 2133 2134 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2135 struct nat_entry_set *set) 2136 { 2137 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2138 struct f2fs_journal *journal = curseg->journal; 2139 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2140 bool to_journal = true; 2141 struct f2fs_nat_block *nat_blk; 2142 struct nat_entry *ne, *cur; 2143 struct page *page = NULL; 2144 2145 /* 2146 * there are two steps to flush nat entries: 2147 * #1, flush nat entries to journal in current hot data summary block. 2148 * #2, flush nat entries to nat page. 2149 */ 2150 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2151 to_journal = false; 2152 2153 if (to_journal) { 2154 down_write(&curseg->journal_rwsem); 2155 } else { 2156 page = get_next_nat_page(sbi, start_nid); 2157 nat_blk = page_address(page); 2158 f2fs_bug_on(sbi, !nat_blk); 2159 } 2160 2161 /* flush dirty nats in nat entry set */ 2162 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2163 struct f2fs_nat_entry *raw_ne; 2164 nid_t nid = nat_get_nid(ne); 2165 int offset; 2166 2167 if (nat_get_blkaddr(ne) == NEW_ADDR) 2168 continue; 2169 2170 if (to_journal) { 2171 offset = lookup_journal_in_cursum(journal, 2172 NAT_JOURNAL, nid, 1); 2173 f2fs_bug_on(sbi, offset < 0); 2174 raw_ne = &nat_in_journal(journal, offset); 2175 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2176 } else { 2177 raw_ne = &nat_blk->entries[nid - start_nid]; 2178 } 2179 raw_nat_from_node_info(raw_ne, &ne->ni); 2180 nat_reset_flag(ne); 2181 __clear_nat_cache_dirty(NM_I(sbi), ne); 2182 if (nat_get_blkaddr(ne) == NULL_ADDR) 2183 add_free_nid(sbi, nid, false); 2184 } 2185 2186 if (to_journal) 2187 up_write(&curseg->journal_rwsem); 2188 else 2189 f2fs_put_page(page, 1); 2190 2191 f2fs_bug_on(sbi, set->entry_cnt); 2192 2193 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2194 kmem_cache_free(nat_entry_set_slab, set); 2195 } 2196 2197 /* 2198 * This function is called during the checkpointing process. 2199 */ 2200 void flush_nat_entries(struct f2fs_sb_info *sbi) 2201 { 2202 struct f2fs_nm_info *nm_i = NM_I(sbi); 2203 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2204 struct f2fs_journal *journal = curseg->journal; 2205 struct nat_entry_set *setvec[SETVEC_SIZE]; 2206 struct nat_entry_set *set, *tmp; 2207 unsigned int found; 2208 nid_t set_idx = 0; 2209 LIST_HEAD(sets); 2210 2211 if (!nm_i->dirty_nat_cnt) 2212 return; 2213 2214 down_write(&nm_i->nat_tree_lock); 2215 2216 /* 2217 * if there are no enough space in journal to store dirty nat 2218 * entries, remove all entries from journal and merge them 2219 * into nat entry set. 2220 */ 2221 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2222 remove_nats_in_journal(sbi); 2223 2224 while ((found = __gang_lookup_nat_set(nm_i, 2225 set_idx, SETVEC_SIZE, setvec))) { 2226 unsigned idx; 2227 set_idx = setvec[found - 1]->set + 1; 2228 for (idx = 0; idx < found; idx++) 2229 __adjust_nat_entry_set(setvec[idx], &sets, 2230 MAX_NAT_JENTRIES(journal)); 2231 } 2232 2233 /* flush dirty nats in nat entry set */ 2234 list_for_each_entry_safe(set, tmp, &sets, set_list) 2235 __flush_nat_entry_set(sbi, set); 2236 2237 up_write(&nm_i->nat_tree_lock); 2238 2239 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 2240 } 2241 2242 static int init_node_manager(struct f2fs_sb_info *sbi) 2243 { 2244 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2245 struct f2fs_nm_info *nm_i = NM_I(sbi); 2246 unsigned char *version_bitmap; 2247 unsigned int nat_segs, nat_blocks; 2248 2249 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2250 2251 /* segment_count_nat includes pair segment so divide to 2. */ 2252 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2253 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2254 2255 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 2256 2257 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2258 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 2259 nm_i->fcnt = 0; 2260 nm_i->nat_cnt = 0; 2261 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2262 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2263 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2264 2265 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2266 INIT_LIST_HEAD(&nm_i->free_nid_list); 2267 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2268 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2269 INIT_LIST_HEAD(&nm_i->nat_entries); 2270 2271 mutex_init(&nm_i->build_lock); 2272 spin_lock_init(&nm_i->free_nid_list_lock); 2273 init_rwsem(&nm_i->nat_tree_lock); 2274 2275 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2276 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2277 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2278 if (!version_bitmap) 2279 return -EFAULT; 2280 2281 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2282 GFP_KERNEL); 2283 if (!nm_i->nat_bitmap) 2284 return -ENOMEM; 2285 return 0; 2286 } 2287 2288 int build_node_manager(struct f2fs_sb_info *sbi) 2289 { 2290 int err; 2291 2292 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2293 if (!sbi->nm_info) 2294 return -ENOMEM; 2295 2296 err = init_node_manager(sbi); 2297 if (err) 2298 return err; 2299 2300 build_free_nids(sbi); 2301 return 0; 2302 } 2303 2304 void destroy_node_manager(struct f2fs_sb_info *sbi) 2305 { 2306 struct f2fs_nm_info *nm_i = NM_I(sbi); 2307 struct free_nid *i, *next_i; 2308 struct nat_entry *natvec[NATVEC_SIZE]; 2309 struct nat_entry_set *setvec[SETVEC_SIZE]; 2310 nid_t nid = 0; 2311 unsigned int found; 2312 2313 if (!nm_i) 2314 return; 2315 2316 /* destroy free nid list */ 2317 spin_lock(&nm_i->free_nid_list_lock); 2318 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2319 f2fs_bug_on(sbi, i->state == NID_ALLOC); 2320 __del_from_free_nid_list(nm_i, i); 2321 nm_i->fcnt--; 2322 spin_unlock(&nm_i->free_nid_list_lock); 2323 kmem_cache_free(free_nid_slab, i); 2324 spin_lock(&nm_i->free_nid_list_lock); 2325 } 2326 f2fs_bug_on(sbi, nm_i->fcnt); 2327 spin_unlock(&nm_i->free_nid_list_lock); 2328 2329 /* destroy nat cache */ 2330 down_write(&nm_i->nat_tree_lock); 2331 while ((found = __gang_lookup_nat_cache(nm_i, 2332 nid, NATVEC_SIZE, natvec))) { 2333 unsigned idx; 2334 2335 nid = nat_get_nid(natvec[found - 1]) + 1; 2336 for (idx = 0; idx < found; idx++) 2337 __del_from_nat_cache(nm_i, natvec[idx]); 2338 } 2339 f2fs_bug_on(sbi, nm_i->nat_cnt); 2340 2341 /* destroy nat set cache */ 2342 nid = 0; 2343 while ((found = __gang_lookup_nat_set(nm_i, 2344 nid, SETVEC_SIZE, setvec))) { 2345 unsigned idx; 2346 2347 nid = setvec[found - 1]->set + 1; 2348 for (idx = 0; idx < found; idx++) { 2349 /* entry_cnt is not zero, when cp_error was occurred */ 2350 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2351 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2352 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2353 } 2354 } 2355 up_write(&nm_i->nat_tree_lock); 2356 2357 kfree(nm_i->nat_bitmap); 2358 sbi->nm_info = NULL; 2359 kfree(nm_i); 2360 } 2361 2362 int __init create_node_manager_caches(void) 2363 { 2364 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2365 sizeof(struct nat_entry)); 2366 if (!nat_entry_slab) 2367 goto fail; 2368 2369 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2370 sizeof(struct free_nid)); 2371 if (!free_nid_slab) 2372 goto destroy_nat_entry; 2373 2374 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2375 sizeof(struct nat_entry_set)); 2376 if (!nat_entry_set_slab) 2377 goto destroy_free_nid; 2378 return 0; 2379 2380 destroy_free_nid: 2381 kmem_cache_destroy(free_nid_slab); 2382 destroy_nat_entry: 2383 kmem_cache_destroy(nat_entry_slab); 2384 fail: 2385 return -ENOMEM; 2386 } 2387 2388 void destroy_node_manager_caches(void) 2389 { 2390 kmem_cache_destroy(nat_entry_set_slab); 2391 kmem_cache_destroy(free_nid_slab); 2392 kmem_cache_destroy(nat_entry_slab); 2393 } 2394