xref: /openbmc/linux/fs/f2fs/node.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27 
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31 static struct kmem_cache *fsync_node_entry_slab;
32 
33 /*
34  * Check whether the given nid is within node id range.
35  */
36 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
37 {
38 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
39 		set_sbi_flag(sbi, SBI_NEED_FSCK);
40 		f2fs_msg(sbi->sb, KERN_WARNING,
41 				"%s: out-of-range nid=%x, run fsck to fix.",
42 				__func__, nid);
43 		return -EINVAL;
44 	}
45 	return 0;
46 }
47 
48 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
49 {
50 	struct f2fs_nm_info *nm_i = NM_I(sbi);
51 	struct sysinfo val;
52 	unsigned long avail_ram;
53 	unsigned long mem_size = 0;
54 	bool res = false;
55 
56 	si_meminfo(&val);
57 
58 	/* only uses low memory */
59 	avail_ram = val.totalram - val.totalhigh;
60 
61 	/*
62 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 	 */
64 	if (type == FREE_NIDS) {
65 		mem_size = (nm_i->nid_cnt[FREE_NID] *
66 				sizeof(struct free_nid)) >> PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 	} else if (type == NAT_ENTRIES) {
69 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
70 							PAGE_SHIFT;
71 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 		if (excess_cached_nats(sbi))
73 			res = false;
74 	} else if (type == DIRTY_DENTS) {
75 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 			return false;
77 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 	} else if (type == INO_ENTRIES) {
80 		int i;
81 
82 		for (i = 0; i < MAX_INO_ENTRY; i++)
83 			mem_size += sbi->im[i].ino_num *
84 						sizeof(struct ino_entry);
85 		mem_size >>= PAGE_SHIFT;
86 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 	} else if (type == EXTENT_CACHE) {
88 		mem_size = (atomic_read(&sbi->total_ext_tree) *
89 				sizeof(struct extent_tree) +
90 				atomic_read(&sbi->total_ext_node) *
91 				sizeof(struct extent_node)) >> PAGE_SHIFT;
92 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 	} else if (type == INMEM_PAGES) {
94 		/* it allows 20% / total_ram for inmemory pages */
95 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 		res = mem_size < (val.totalram / 5);
97 	} else {
98 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
99 			return true;
100 	}
101 	return res;
102 }
103 
104 static void clear_node_page_dirty(struct page *page)
105 {
106 	if (PageDirty(page)) {
107 		f2fs_clear_radix_tree_dirty_tag(page);
108 		clear_page_dirty_for_io(page);
109 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
110 	}
111 	ClearPageUptodate(page);
112 }
113 
114 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
115 {
116 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
117 }
118 
119 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
120 {
121 	struct page *src_page;
122 	struct page *dst_page;
123 	pgoff_t dst_off;
124 	void *src_addr;
125 	void *dst_addr;
126 	struct f2fs_nm_info *nm_i = NM_I(sbi);
127 
128 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
129 
130 	/* get current nat block page with lock */
131 	src_page = get_current_nat_page(sbi, nid);
132 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
133 	f2fs_bug_on(sbi, PageDirty(src_page));
134 
135 	src_addr = page_address(src_page);
136 	dst_addr = page_address(dst_page);
137 	memcpy(dst_addr, src_addr, PAGE_SIZE);
138 	set_page_dirty(dst_page);
139 	f2fs_put_page(src_page, 1);
140 
141 	set_to_next_nat(nm_i, nid);
142 
143 	return dst_page;
144 }
145 
146 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
147 {
148 	struct nat_entry *new;
149 
150 	if (no_fail)
151 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	else
153 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
154 	if (new) {
155 		nat_set_nid(new, nid);
156 		nat_reset_flag(new);
157 	}
158 	return new;
159 }
160 
161 static void __free_nat_entry(struct nat_entry *e)
162 {
163 	kmem_cache_free(nat_entry_slab, e);
164 }
165 
166 /* must be locked by nat_tree_lock */
167 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
168 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
169 {
170 	if (no_fail)
171 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
172 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
173 		return NULL;
174 
175 	if (raw_ne)
176 		node_info_from_raw_nat(&ne->ni, raw_ne);
177 
178 	spin_lock(&nm_i->nat_list_lock);
179 	list_add_tail(&ne->list, &nm_i->nat_entries);
180 	spin_unlock(&nm_i->nat_list_lock);
181 
182 	nm_i->nat_cnt++;
183 	return ne;
184 }
185 
186 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
187 {
188 	struct nat_entry *ne;
189 
190 	ne = radix_tree_lookup(&nm_i->nat_root, n);
191 
192 	/* for recent accessed nat entry, move it to tail of lru list */
193 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
194 		spin_lock(&nm_i->nat_list_lock);
195 		if (!list_empty(&ne->list))
196 			list_move_tail(&ne->list, &nm_i->nat_entries);
197 		spin_unlock(&nm_i->nat_list_lock);
198 	}
199 
200 	return ne;
201 }
202 
203 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
204 		nid_t start, unsigned int nr, struct nat_entry **ep)
205 {
206 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
207 }
208 
209 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
210 {
211 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
212 	nm_i->nat_cnt--;
213 	__free_nat_entry(e);
214 }
215 
216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 							struct nat_entry *ne)
218 {
219 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 	struct nat_entry_set *head;
221 
222 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 	if (!head) {
224 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225 
226 		INIT_LIST_HEAD(&head->entry_list);
227 		INIT_LIST_HEAD(&head->set_list);
228 		head->set = set;
229 		head->entry_cnt = 0;
230 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 	}
232 	return head;
233 }
234 
235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 						struct nat_entry *ne)
237 {
238 	struct nat_entry_set *head;
239 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 
241 	if (!new_ne)
242 		head = __grab_nat_entry_set(nm_i, ne);
243 
244 	/*
245 	 * update entry_cnt in below condition:
246 	 * 1. update NEW_ADDR to valid block address;
247 	 * 2. update old block address to new one;
248 	 */
249 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 				!get_nat_flag(ne, IS_DIRTY)))
251 		head->entry_cnt++;
252 
253 	set_nat_flag(ne, IS_PREALLOC, new_ne);
254 
255 	if (get_nat_flag(ne, IS_DIRTY))
256 		goto refresh_list;
257 
258 	nm_i->dirty_nat_cnt++;
259 	set_nat_flag(ne, IS_DIRTY, true);
260 refresh_list:
261 	spin_lock(&nm_i->nat_list_lock);
262 	if (new_ne)
263 		list_del_init(&ne->list);
264 	else
265 		list_move_tail(&ne->list, &head->entry_list);
266 	spin_unlock(&nm_i->nat_list_lock);
267 }
268 
269 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
270 		struct nat_entry_set *set, struct nat_entry *ne)
271 {
272 	spin_lock(&nm_i->nat_list_lock);
273 	list_move_tail(&ne->list, &nm_i->nat_entries);
274 	spin_unlock(&nm_i->nat_list_lock);
275 
276 	set_nat_flag(ne, IS_DIRTY, false);
277 	set->entry_cnt--;
278 	nm_i->dirty_nat_cnt--;
279 }
280 
281 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
282 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
283 {
284 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
285 							start, nr);
286 }
287 
288 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
289 {
290 	return NODE_MAPPING(sbi) == page->mapping &&
291 			IS_DNODE(page) && is_cold_node(page);
292 }
293 
294 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
295 {
296 	spin_lock_init(&sbi->fsync_node_lock);
297 	INIT_LIST_HEAD(&sbi->fsync_node_list);
298 	sbi->fsync_seg_id = 0;
299 	sbi->fsync_node_num = 0;
300 }
301 
302 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
303 							struct page *page)
304 {
305 	struct fsync_node_entry *fn;
306 	unsigned long flags;
307 	unsigned int seq_id;
308 
309 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
310 
311 	get_page(page);
312 	fn->page = page;
313 	INIT_LIST_HEAD(&fn->list);
314 
315 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
316 	list_add_tail(&fn->list, &sbi->fsync_node_list);
317 	fn->seq_id = sbi->fsync_seg_id++;
318 	seq_id = fn->seq_id;
319 	sbi->fsync_node_num++;
320 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
321 
322 	return seq_id;
323 }
324 
325 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
326 {
327 	struct fsync_node_entry *fn;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
331 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
332 		if (fn->page == page) {
333 			list_del(&fn->list);
334 			sbi->fsync_node_num--;
335 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
336 			kmem_cache_free(fsync_node_entry_slab, fn);
337 			put_page(page);
338 			return;
339 		}
340 	}
341 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
342 	f2fs_bug_on(sbi, 1);
343 }
344 
345 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
346 {
347 	unsigned long flags;
348 
349 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
350 	sbi->fsync_seg_id = 0;
351 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
352 }
353 
354 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
355 {
356 	struct f2fs_nm_info *nm_i = NM_I(sbi);
357 	struct nat_entry *e;
358 	bool need = false;
359 
360 	down_read(&nm_i->nat_tree_lock);
361 	e = __lookup_nat_cache(nm_i, nid);
362 	if (e) {
363 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
364 				!get_nat_flag(e, HAS_FSYNCED_INODE))
365 			need = true;
366 	}
367 	up_read(&nm_i->nat_tree_lock);
368 	return need;
369 }
370 
371 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
372 {
373 	struct f2fs_nm_info *nm_i = NM_I(sbi);
374 	struct nat_entry *e;
375 	bool is_cp = true;
376 
377 	down_read(&nm_i->nat_tree_lock);
378 	e = __lookup_nat_cache(nm_i, nid);
379 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
380 		is_cp = false;
381 	up_read(&nm_i->nat_tree_lock);
382 	return is_cp;
383 }
384 
385 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
386 {
387 	struct f2fs_nm_info *nm_i = NM_I(sbi);
388 	struct nat_entry *e;
389 	bool need_update = true;
390 
391 	down_read(&nm_i->nat_tree_lock);
392 	e = __lookup_nat_cache(nm_i, ino);
393 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
394 			(get_nat_flag(e, IS_CHECKPOINTED) ||
395 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
396 		need_update = false;
397 	up_read(&nm_i->nat_tree_lock);
398 	return need_update;
399 }
400 
401 /* must be locked by nat_tree_lock */
402 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
403 						struct f2fs_nat_entry *ne)
404 {
405 	struct f2fs_nm_info *nm_i = NM_I(sbi);
406 	struct nat_entry *new, *e;
407 
408 	new = __alloc_nat_entry(nid, false);
409 	if (!new)
410 		return;
411 
412 	down_write(&nm_i->nat_tree_lock);
413 	e = __lookup_nat_cache(nm_i, nid);
414 	if (!e)
415 		e = __init_nat_entry(nm_i, new, ne, false);
416 	else
417 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
418 				nat_get_blkaddr(e) !=
419 					le32_to_cpu(ne->block_addr) ||
420 				nat_get_version(e) != ne->version);
421 	up_write(&nm_i->nat_tree_lock);
422 	if (e != new)
423 		__free_nat_entry(new);
424 }
425 
426 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
427 			block_t new_blkaddr, bool fsync_done)
428 {
429 	struct f2fs_nm_info *nm_i = NM_I(sbi);
430 	struct nat_entry *e;
431 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
432 
433 	down_write(&nm_i->nat_tree_lock);
434 	e = __lookup_nat_cache(nm_i, ni->nid);
435 	if (!e) {
436 		e = __init_nat_entry(nm_i, new, NULL, true);
437 		copy_node_info(&e->ni, ni);
438 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
439 	} else if (new_blkaddr == NEW_ADDR) {
440 		/*
441 		 * when nid is reallocated,
442 		 * previous nat entry can be remained in nat cache.
443 		 * So, reinitialize it with new information.
444 		 */
445 		copy_node_info(&e->ni, ni);
446 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
447 	}
448 	/* let's free early to reduce memory consumption */
449 	if (e != new)
450 		__free_nat_entry(new);
451 
452 	/* sanity check */
453 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
454 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
455 			new_blkaddr == NULL_ADDR);
456 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
457 			new_blkaddr == NEW_ADDR);
458 	f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
459 			new_blkaddr == NEW_ADDR);
460 
461 	/* increment version no as node is removed */
462 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
463 		unsigned char version = nat_get_version(e);
464 		nat_set_version(e, inc_node_version(version));
465 	}
466 
467 	/* change address */
468 	nat_set_blkaddr(e, new_blkaddr);
469 	if (!is_valid_data_blkaddr(sbi, new_blkaddr))
470 		set_nat_flag(e, IS_CHECKPOINTED, false);
471 	__set_nat_cache_dirty(nm_i, e);
472 
473 	/* update fsync_mark if its inode nat entry is still alive */
474 	if (ni->nid != ni->ino)
475 		e = __lookup_nat_cache(nm_i, ni->ino);
476 	if (e) {
477 		if (fsync_done && ni->nid == ni->ino)
478 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
479 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
480 	}
481 	up_write(&nm_i->nat_tree_lock);
482 }
483 
484 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
485 {
486 	struct f2fs_nm_info *nm_i = NM_I(sbi);
487 	int nr = nr_shrink;
488 
489 	if (!down_write_trylock(&nm_i->nat_tree_lock))
490 		return 0;
491 
492 	spin_lock(&nm_i->nat_list_lock);
493 	while (nr_shrink) {
494 		struct nat_entry *ne;
495 
496 		if (list_empty(&nm_i->nat_entries))
497 			break;
498 
499 		ne = list_first_entry(&nm_i->nat_entries,
500 					struct nat_entry, list);
501 		list_del(&ne->list);
502 		spin_unlock(&nm_i->nat_list_lock);
503 
504 		__del_from_nat_cache(nm_i, ne);
505 		nr_shrink--;
506 
507 		spin_lock(&nm_i->nat_list_lock);
508 	}
509 	spin_unlock(&nm_i->nat_list_lock);
510 
511 	up_write(&nm_i->nat_tree_lock);
512 	return nr - nr_shrink;
513 }
514 
515 /*
516  * This function always returns success
517  */
518 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
519 						struct node_info *ni)
520 {
521 	struct f2fs_nm_info *nm_i = NM_I(sbi);
522 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
523 	struct f2fs_journal *journal = curseg->journal;
524 	nid_t start_nid = START_NID(nid);
525 	struct f2fs_nat_block *nat_blk;
526 	struct page *page = NULL;
527 	struct f2fs_nat_entry ne;
528 	struct nat_entry *e;
529 	pgoff_t index;
530 	int i;
531 
532 	ni->nid = nid;
533 
534 	/* Check nat cache */
535 	down_read(&nm_i->nat_tree_lock);
536 	e = __lookup_nat_cache(nm_i, nid);
537 	if (e) {
538 		ni->ino = nat_get_ino(e);
539 		ni->blk_addr = nat_get_blkaddr(e);
540 		ni->version = nat_get_version(e);
541 		up_read(&nm_i->nat_tree_lock);
542 		return 0;
543 	}
544 
545 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 
547 	/* Check current segment summary */
548 	down_read(&curseg->journal_rwsem);
549 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 	if (i >= 0) {
551 		ne = nat_in_journal(journal, i);
552 		node_info_from_raw_nat(ni, &ne);
553 	}
554 	up_read(&curseg->journal_rwsem);
555 	if (i >= 0) {
556 		up_read(&nm_i->nat_tree_lock);
557 		goto cache;
558 	}
559 
560 	/* Fill node_info from nat page */
561 	index = current_nat_addr(sbi, nid);
562 	up_read(&nm_i->nat_tree_lock);
563 
564 	page = f2fs_get_meta_page(sbi, index);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page);
567 
568 	nat_blk = (struct f2fs_nat_block *)page_address(page);
569 	ne = nat_blk->entries[nid - start_nid];
570 	node_info_from_raw_nat(ni, &ne);
571 	f2fs_put_page(page, 1);
572 cache:
573 	/* cache nat entry */
574 	cache_nat_entry(sbi, nid, &ne);
575 	return 0;
576 }
577 
578 /*
579  * readahead MAX_RA_NODE number of node pages.
580  */
581 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
582 {
583 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
584 	struct blk_plug plug;
585 	int i, end;
586 	nid_t nid;
587 
588 	blk_start_plug(&plug);
589 
590 	/* Then, try readahead for siblings of the desired node */
591 	end = start + n;
592 	end = min(end, NIDS_PER_BLOCK);
593 	for (i = start; i < end; i++) {
594 		nid = get_nid(parent, i, false);
595 		f2fs_ra_node_page(sbi, nid);
596 	}
597 
598 	blk_finish_plug(&plug);
599 }
600 
601 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
602 {
603 	const long direct_index = ADDRS_PER_INODE(dn->inode);
604 	const long direct_blks = ADDRS_PER_BLOCK;
605 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
606 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
607 	int cur_level = dn->cur_level;
608 	int max_level = dn->max_level;
609 	pgoff_t base = 0;
610 
611 	if (!dn->max_level)
612 		return pgofs + 1;
613 
614 	while (max_level-- > cur_level)
615 		skipped_unit *= NIDS_PER_BLOCK;
616 
617 	switch (dn->max_level) {
618 	case 3:
619 		base += 2 * indirect_blks;
620 	case 2:
621 		base += 2 * direct_blks;
622 	case 1:
623 		base += direct_index;
624 		break;
625 	default:
626 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
627 	}
628 
629 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
630 }
631 
632 /*
633  * The maximum depth is four.
634  * Offset[0] will have raw inode offset.
635  */
636 static int get_node_path(struct inode *inode, long block,
637 				int offset[4], unsigned int noffset[4])
638 {
639 	const long direct_index = ADDRS_PER_INODE(inode);
640 	const long direct_blks = ADDRS_PER_BLOCK;
641 	const long dptrs_per_blk = NIDS_PER_BLOCK;
642 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
643 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
644 	int n = 0;
645 	int level = 0;
646 
647 	noffset[0] = 0;
648 
649 	if (block < direct_index) {
650 		offset[n] = block;
651 		goto got;
652 	}
653 	block -= direct_index;
654 	if (block < direct_blks) {
655 		offset[n++] = NODE_DIR1_BLOCK;
656 		noffset[n] = 1;
657 		offset[n] = block;
658 		level = 1;
659 		goto got;
660 	}
661 	block -= direct_blks;
662 	if (block < direct_blks) {
663 		offset[n++] = NODE_DIR2_BLOCK;
664 		noffset[n] = 2;
665 		offset[n] = block;
666 		level = 1;
667 		goto got;
668 	}
669 	block -= direct_blks;
670 	if (block < indirect_blks) {
671 		offset[n++] = NODE_IND1_BLOCK;
672 		noffset[n] = 3;
673 		offset[n++] = block / direct_blks;
674 		noffset[n] = 4 + offset[n - 1];
675 		offset[n] = block % direct_blks;
676 		level = 2;
677 		goto got;
678 	}
679 	block -= indirect_blks;
680 	if (block < indirect_blks) {
681 		offset[n++] = NODE_IND2_BLOCK;
682 		noffset[n] = 4 + dptrs_per_blk;
683 		offset[n++] = block / direct_blks;
684 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
685 		offset[n] = block % direct_blks;
686 		level = 2;
687 		goto got;
688 	}
689 	block -= indirect_blks;
690 	if (block < dindirect_blks) {
691 		offset[n++] = NODE_DIND_BLOCK;
692 		noffset[n] = 5 + (dptrs_per_blk * 2);
693 		offset[n++] = block / indirect_blks;
694 		noffset[n] = 6 + (dptrs_per_blk * 2) +
695 			      offset[n - 1] * (dptrs_per_blk + 1);
696 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
697 		noffset[n] = 7 + (dptrs_per_blk * 2) +
698 			      offset[n - 2] * (dptrs_per_blk + 1) +
699 			      offset[n - 1];
700 		offset[n] = block % direct_blks;
701 		level = 3;
702 		goto got;
703 	} else {
704 		return -E2BIG;
705 	}
706 got:
707 	return level;
708 }
709 
710 /*
711  * Caller should call f2fs_put_dnode(dn).
712  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
713  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
714  * In the case of RDONLY_NODE, we don't need to care about mutex.
715  */
716 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
717 {
718 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
719 	struct page *npage[4];
720 	struct page *parent = NULL;
721 	int offset[4];
722 	unsigned int noffset[4];
723 	nid_t nids[4];
724 	int level, i = 0;
725 	int err = 0;
726 
727 	level = get_node_path(dn->inode, index, offset, noffset);
728 	if (level < 0)
729 		return level;
730 
731 	nids[0] = dn->inode->i_ino;
732 	npage[0] = dn->inode_page;
733 
734 	if (!npage[0]) {
735 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
736 		if (IS_ERR(npage[0]))
737 			return PTR_ERR(npage[0]);
738 	}
739 
740 	/* if inline_data is set, should not report any block indices */
741 	if (f2fs_has_inline_data(dn->inode) && index) {
742 		err = -ENOENT;
743 		f2fs_put_page(npage[0], 1);
744 		goto release_out;
745 	}
746 
747 	parent = npage[0];
748 	if (level != 0)
749 		nids[1] = get_nid(parent, offset[0], true);
750 	dn->inode_page = npage[0];
751 	dn->inode_page_locked = true;
752 
753 	/* get indirect or direct nodes */
754 	for (i = 1; i <= level; i++) {
755 		bool done = false;
756 
757 		if (!nids[i] && mode == ALLOC_NODE) {
758 			/* alloc new node */
759 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
760 				err = -ENOSPC;
761 				goto release_pages;
762 			}
763 
764 			dn->nid = nids[i];
765 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
766 			if (IS_ERR(npage[i])) {
767 				f2fs_alloc_nid_failed(sbi, nids[i]);
768 				err = PTR_ERR(npage[i]);
769 				goto release_pages;
770 			}
771 
772 			set_nid(parent, offset[i - 1], nids[i], i == 1);
773 			f2fs_alloc_nid_done(sbi, nids[i]);
774 			done = true;
775 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
776 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
777 			if (IS_ERR(npage[i])) {
778 				err = PTR_ERR(npage[i]);
779 				goto release_pages;
780 			}
781 			done = true;
782 		}
783 		if (i == 1) {
784 			dn->inode_page_locked = false;
785 			unlock_page(parent);
786 		} else {
787 			f2fs_put_page(parent, 1);
788 		}
789 
790 		if (!done) {
791 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
792 			if (IS_ERR(npage[i])) {
793 				err = PTR_ERR(npage[i]);
794 				f2fs_put_page(npage[0], 0);
795 				goto release_out;
796 			}
797 		}
798 		if (i < level) {
799 			parent = npage[i];
800 			nids[i + 1] = get_nid(parent, offset[i], false);
801 		}
802 	}
803 	dn->nid = nids[level];
804 	dn->ofs_in_node = offset[level];
805 	dn->node_page = npage[level];
806 	dn->data_blkaddr = datablock_addr(dn->inode,
807 				dn->node_page, dn->ofs_in_node);
808 	return 0;
809 
810 release_pages:
811 	f2fs_put_page(parent, 1);
812 	if (i > 1)
813 		f2fs_put_page(npage[0], 0);
814 release_out:
815 	dn->inode_page = NULL;
816 	dn->node_page = NULL;
817 	if (err == -ENOENT) {
818 		dn->cur_level = i;
819 		dn->max_level = level;
820 		dn->ofs_in_node = offset[level];
821 	}
822 	return err;
823 }
824 
825 static int truncate_node(struct dnode_of_data *dn)
826 {
827 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
828 	struct node_info ni;
829 	int err;
830 
831 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
832 	if (err)
833 		return err;
834 
835 	/* Deallocate node address */
836 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
837 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
838 	set_node_addr(sbi, &ni, NULL_ADDR, false);
839 
840 	if (dn->nid == dn->inode->i_ino) {
841 		f2fs_remove_orphan_inode(sbi, dn->nid);
842 		dec_valid_inode_count(sbi);
843 		f2fs_inode_synced(dn->inode);
844 	}
845 
846 	clear_node_page_dirty(dn->node_page);
847 	set_sbi_flag(sbi, SBI_IS_DIRTY);
848 
849 	f2fs_put_page(dn->node_page, 1);
850 
851 	invalidate_mapping_pages(NODE_MAPPING(sbi),
852 			dn->node_page->index, dn->node_page->index);
853 
854 	dn->node_page = NULL;
855 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
856 
857 	return 0;
858 }
859 
860 static int truncate_dnode(struct dnode_of_data *dn)
861 {
862 	struct page *page;
863 	int err;
864 
865 	if (dn->nid == 0)
866 		return 1;
867 
868 	/* get direct node */
869 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
870 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
871 		return 1;
872 	else if (IS_ERR(page))
873 		return PTR_ERR(page);
874 
875 	/* Make dnode_of_data for parameter */
876 	dn->node_page = page;
877 	dn->ofs_in_node = 0;
878 	f2fs_truncate_data_blocks(dn);
879 	err = truncate_node(dn);
880 	if (err)
881 		return err;
882 
883 	return 1;
884 }
885 
886 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
887 						int ofs, int depth)
888 {
889 	struct dnode_of_data rdn = *dn;
890 	struct page *page;
891 	struct f2fs_node *rn;
892 	nid_t child_nid;
893 	unsigned int child_nofs;
894 	int freed = 0;
895 	int i, ret;
896 
897 	if (dn->nid == 0)
898 		return NIDS_PER_BLOCK + 1;
899 
900 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
901 
902 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
903 	if (IS_ERR(page)) {
904 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
905 		return PTR_ERR(page);
906 	}
907 
908 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
909 
910 	rn = F2FS_NODE(page);
911 	if (depth < 3) {
912 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
913 			child_nid = le32_to_cpu(rn->in.nid[i]);
914 			if (child_nid == 0)
915 				continue;
916 			rdn.nid = child_nid;
917 			ret = truncate_dnode(&rdn);
918 			if (ret < 0)
919 				goto out_err;
920 			if (set_nid(page, i, 0, false))
921 				dn->node_changed = true;
922 		}
923 	} else {
924 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
925 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
926 			child_nid = le32_to_cpu(rn->in.nid[i]);
927 			if (child_nid == 0) {
928 				child_nofs += NIDS_PER_BLOCK + 1;
929 				continue;
930 			}
931 			rdn.nid = child_nid;
932 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
933 			if (ret == (NIDS_PER_BLOCK + 1)) {
934 				if (set_nid(page, i, 0, false))
935 					dn->node_changed = true;
936 				child_nofs += ret;
937 			} else if (ret < 0 && ret != -ENOENT) {
938 				goto out_err;
939 			}
940 		}
941 		freed = child_nofs;
942 	}
943 
944 	if (!ofs) {
945 		/* remove current indirect node */
946 		dn->node_page = page;
947 		ret = truncate_node(dn);
948 		if (ret)
949 			goto out_err;
950 		freed++;
951 	} else {
952 		f2fs_put_page(page, 1);
953 	}
954 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
955 	return freed;
956 
957 out_err:
958 	f2fs_put_page(page, 1);
959 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
960 	return ret;
961 }
962 
963 static int truncate_partial_nodes(struct dnode_of_data *dn,
964 			struct f2fs_inode *ri, int *offset, int depth)
965 {
966 	struct page *pages[2];
967 	nid_t nid[3];
968 	nid_t child_nid;
969 	int err = 0;
970 	int i;
971 	int idx = depth - 2;
972 
973 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
974 	if (!nid[0])
975 		return 0;
976 
977 	/* get indirect nodes in the path */
978 	for (i = 0; i < idx + 1; i++) {
979 		/* reference count'll be increased */
980 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
981 		if (IS_ERR(pages[i])) {
982 			err = PTR_ERR(pages[i]);
983 			idx = i - 1;
984 			goto fail;
985 		}
986 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
987 	}
988 
989 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
990 
991 	/* free direct nodes linked to a partial indirect node */
992 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
993 		child_nid = get_nid(pages[idx], i, false);
994 		if (!child_nid)
995 			continue;
996 		dn->nid = child_nid;
997 		err = truncate_dnode(dn);
998 		if (err < 0)
999 			goto fail;
1000 		if (set_nid(pages[idx], i, 0, false))
1001 			dn->node_changed = true;
1002 	}
1003 
1004 	if (offset[idx + 1] == 0) {
1005 		dn->node_page = pages[idx];
1006 		dn->nid = nid[idx];
1007 		err = truncate_node(dn);
1008 		if (err)
1009 			goto fail;
1010 	} else {
1011 		f2fs_put_page(pages[idx], 1);
1012 	}
1013 	offset[idx]++;
1014 	offset[idx + 1] = 0;
1015 	idx--;
1016 fail:
1017 	for (i = idx; i >= 0; i--)
1018 		f2fs_put_page(pages[i], 1);
1019 
1020 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1021 
1022 	return err;
1023 }
1024 
1025 /*
1026  * All the block addresses of data and nodes should be nullified.
1027  */
1028 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1029 {
1030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 	int err = 0, cont = 1;
1032 	int level, offset[4], noffset[4];
1033 	unsigned int nofs = 0;
1034 	struct f2fs_inode *ri;
1035 	struct dnode_of_data dn;
1036 	struct page *page;
1037 
1038 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1039 
1040 	level = get_node_path(inode, from, offset, noffset);
1041 	if (level < 0)
1042 		return level;
1043 
1044 	page = f2fs_get_node_page(sbi, inode->i_ino);
1045 	if (IS_ERR(page)) {
1046 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1047 		return PTR_ERR(page);
1048 	}
1049 
1050 	set_new_dnode(&dn, inode, page, NULL, 0);
1051 	unlock_page(page);
1052 
1053 	ri = F2FS_INODE(page);
1054 	switch (level) {
1055 	case 0:
1056 	case 1:
1057 		nofs = noffset[1];
1058 		break;
1059 	case 2:
1060 		nofs = noffset[1];
1061 		if (!offset[level - 1])
1062 			goto skip_partial;
1063 		err = truncate_partial_nodes(&dn, ri, offset, level);
1064 		if (err < 0 && err != -ENOENT)
1065 			goto fail;
1066 		nofs += 1 + NIDS_PER_BLOCK;
1067 		break;
1068 	case 3:
1069 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1070 		if (!offset[level - 1])
1071 			goto skip_partial;
1072 		err = truncate_partial_nodes(&dn, ri, offset, level);
1073 		if (err < 0 && err != -ENOENT)
1074 			goto fail;
1075 		break;
1076 	default:
1077 		BUG();
1078 	}
1079 
1080 skip_partial:
1081 	while (cont) {
1082 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1083 		switch (offset[0]) {
1084 		case NODE_DIR1_BLOCK:
1085 		case NODE_DIR2_BLOCK:
1086 			err = truncate_dnode(&dn);
1087 			break;
1088 
1089 		case NODE_IND1_BLOCK:
1090 		case NODE_IND2_BLOCK:
1091 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1092 			break;
1093 
1094 		case NODE_DIND_BLOCK:
1095 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1096 			cont = 0;
1097 			break;
1098 
1099 		default:
1100 			BUG();
1101 		}
1102 		if (err < 0 && err != -ENOENT)
1103 			goto fail;
1104 		if (offset[1] == 0 &&
1105 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1106 			lock_page(page);
1107 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1108 			f2fs_wait_on_page_writeback(page, NODE, true);
1109 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1110 			set_page_dirty(page);
1111 			unlock_page(page);
1112 		}
1113 		offset[1] = 0;
1114 		offset[0]++;
1115 		nofs += err;
1116 	}
1117 fail:
1118 	f2fs_put_page(page, 0);
1119 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1120 	return err > 0 ? 0 : err;
1121 }
1122 
1123 /* caller must lock inode page */
1124 int f2fs_truncate_xattr_node(struct inode *inode)
1125 {
1126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1128 	struct dnode_of_data dn;
1129 	struct page *npage;
1130 	int err;
1131 
1132 	if (!nid)
1133 		return 0;
1134 
1135 	npage = f2fs_get_node_page(sbi, nid);
1136 	if (IS_ERR(npage))
1137 		return PTR_ERR(npage);
1138 
1139 	set_new_dnode(&dn, inode, NULL, npage, nid);
1140 	err = truncate_node(&dn);
1141 	if (err) {
1142 		f2fs_put_page(npage, 1);
1143 		return err;
1144 	}
1145 
1146 	f2fs_i_xnid_write(inode, 0);
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1153  * f2fs_unlock_op().
1154  */
1155 int f2fs_remove_inode_page(struct inode *inode)
1156 {
1157 	struct dnode_of_data dn;
1158 	int err;
1159 
1160 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1161 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1162 	if (err)
1163 		return err;
1164 
1165 	err = f2fs_truncate_xattr_node(inode);
1166 	if (err) {
1167 		f2fs_put_dnode(&dn);
1168 		return err;
1169 	}
1170 
1171 	/* remove potential inline_data blocks */
1172 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1173 				S_ISLNK(inode->i_mode))
1174 		f2fs_truncate_data_blocks_range(&dn, 1);
1175 
1176 	/* 0 is possible, after f2fs_new_inode() has failed */
1177 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1178 		f2fs_put_dnode(&dn);
1179 		return -EIO;
1180 	}
1181 	f2fs_bug_on(F2FS_I_SB(inode),
1182 			inode->i_blocks != 0 && inode->i_blocks != 8);
1183 
1184 	/* will put inode & node pages */
1185 	err = truncate_node(&dn);
1186 	if (err) {
1187 		f2fs_put_dnode(&dn);
1188 		return err;
1189 	}
1190 	return 0;
1191 }
1192 
1193 struct page *f2fs_new_inode_page(struct inode *inode)
1194 {
1195 	struct dnode_of_data dn;
1196 
1197 	/* allocate inode page for new inode */
1198 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1199 
1200 	/* caller should f2fs_put_page(page, 1); */
1201 	return f2fs_new_node_page(&dn, 0);
1202 }
1203 
1204 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1205 {
1206 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1207 	struct node_info new_ni;
1208 	struct page *page;
1209 	int err;
1210 
1211 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1212 		return ERR_PTR(-EPERM);
1213 
1214 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1215 	if (!page)
1216 		return ERR_PTR(-ENOMEM);
1217 
1218 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1219 		goto fail;
1220 
1221 #ifdef CONFIG_F2FS_CHECK_FS
1222 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1223 	if (err) {
1224 		dec_valid_node_count(sbi, dn->inode, !ofs);
1225 		goto fail;
1226 	}
1227 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1228 #endif
1229 	new_ni.nid = dn->nid;
1230 	new_ni.ino = dn->inode->i_ino;
1231 	new_ni.blk_addr = NULL_ADDR;
1232 	new_ni.flag = 0;
1233 	new_ni.version = 0;
1234 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1235 
1236 	f2fs_wait_on_page_writeback(page, NODE, true);
1237 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1238 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1239 	if (!PageUptodate(page))
1240 		SetPageUptodate(page);
1241 	if (set_page_dirty(page))
1242 		dn->node_changed = true;
1243 
1244 	if (f2fs_has_xattr_block(ofs))
1245 		f2fs_i_xnid_write(dn->inode, dn->nid);
1246 
1247 	if (ofs == 0)
1248 		inc_valid_inode_count(sbi);
1249 	return page;
1250 
1251 fail:
1252 	clear_node_page_dirty(page);
1253 	f2fs_put_page(page, 1);
1254 	return ERR_PTR(err);
1255 }
1256 
1257 /*
1258  * Caller should do after getting the following values.
1259  * 0: f2fs_put_page(page, 0)
1260  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1261  */
1262 static int read_node_page(struct page *page, int op_flags)
1263 {
1264 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1265 	struct node_info ni;
1266 	struct f2fs_io_info fio = {
1267 		.sbi = sbi,
1268 		.type = NODE,
1269 		.op = REQ_OP_READ,
1270 		.op_flags = op_flags,
1271 		.page = page,
1272 		.encrypted_page = NULL,
1273 	};
1274 	int err;
1275 
1276 	if (PageUptodate(page)) {
1277 #ifdef CONFIG_F2FS_CHECK_FS
1278 		f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1279 #endif
1280 		return LOCKED_PAGE;
1281 	}
1282 
1283 	err = f2fs_get_node_info(sbi, page->index, &ni);
1284 	if (err)
1285 		return err;
1286 
1287 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1288 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1289 		ClearPageUptodate(page);
1290 		return -ENOENT;
1291 	}
1292 
1293 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1294 	return f2fs_submit_page_bio(&fio);
1295 }
1296 
1297 /*
1298  * Readahead a node page
1299  */
1300 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1301 {
1302 	struct page *apage;
1303 	int err;
1304 
1305 	if (!nid)
1306 		return;
1307 	if (f2fs_check_nid_range(sbi, nid))
1308 		return;
1309 
1310 	rcu_read_lock();
1311 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1312 	rcu_read_unlock();
1313 	if (apage)
1314 		return;
1315 
1316 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1317 	if (!apage)
1318 		return;
1319 
1320 	err = read_node_page(apage, REQ_RAHEAD);
1321 	f2fs_put_page(apage, err ? 1 : 0);
1322 }
1323 
1324 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1325 					struct page *parent, int start)
1326 {
1327 	struct page *page;
1328 	int err;
1329 
1330 	if (!nid)
1331 		return ERR_PTR(-ENOENT);
1332 	if (f2fs_check_nid_range(sbi, nid))
1333 		return ERR_PTR(-EINVAL);
1334 repeat:
1335 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336 	if (!page)
1337 		return ERR_PTR(-ENOMEM);
1338 
1339 	err = read_node_page(page, 0);
1340 	if (err < 0) {
1341 		f2fs_put_page(page, 1);
1342 		return ERR_PTR(err);
1343 	} else if (err == LOCKED_PAGE) {
1344 		err = 0;
1345 		goto page_hit;
1346 	}
1347 
1348 	if (parent)
1349 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1350 
1351 	lock_page(page);
1352 
1353 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1354 		f2fs_put_page(page, 1);
1355 		goto repeat;
1356 	}
1357 
1358 	if (unlikely(!PageUptodate(page))) {
1359 		err = -EIO;
1360 		goto out_err;
1361 	}
1362 
1363 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1364 		err = -EBADMSG;
1365 		goto out_err;
1366 	}
1367 page_hit:
1368 	if(unlikely(nid != nid_of_node(page))) {
1369 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1370 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1371 			nid, nid_of_node(page), ino_of_node(page),
1372 			ofs_of_node(page), cpver_of_node(page),
1373 			next_blkaddr_of_node(page));
1374 		err = -EINVAL;
1375 out_err:
1376 		ClearPageUptodate(page);
1377 		f2fs_put_page(page, 1);
1378 		return ERR_PTR(err);
1379 	}
1380 	return page;
1381 }
1382 
1383 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1384 {
1385 	return __get_node_page(sbi, nid, NULL, 0);
1386 }
1387 
1388 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1389 {
1390 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1391 	nid_t nid = get_nid(parent, start, false);
1392 
1393 	return __get_node_page(sbi, nid, parent, start);
1394 }
1395 
1396 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1397 {
1398 	struct inode *inode;
1399 	struct page *page;
1400 	int ret;
1401 
1402 	/* should flush inline_data before evict_inode */
1403 	inode = ilookup(sbi->sb, ino);
1404 	if (!inode)
1405 		return;
1406 
1407 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1408 					FGP_LOCK|FGP_NOWAIT, 0);
1409 	if (!page)
1410 		goto iput_out;
1411 
1412 	if (!PageUptodate(page))
1413 		goto page_out;
1414 
1415 	if (!PageDirty(page))
1416 		goto page_out;
1417 
1418 	if (!clear_page_dirty_for_io(page))
1419 		goto page_out;
1420 
1421 	ret = f2fs_write_inline_data(inode, page);
1422 	inode_dec_dirty_pages(inode);
1423 	f2fs_remove_dirty_inode(inode);
1424 	if (ret)
1425 		set_page_dirty(page);
1426 page_out:
1427 	f2fs_put_page(page, 1);
1428 iput_out:
1429 	iput(inode);
1430 }
1431 
1432 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1433 {
1434 	pgoff_t index;
1435 	struct pagevec pvec;
1436 	struct page *last_page = NULL;
1437 	int nr_pages;
1438 
1439 	pagevec_init(&pvec);
1440 	index = 0;
1441 
1442 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1443 				PAGECACHE_TAG_DIRTY))) {
1444 		int i;
1445 
1446 		for (i = 0; i < nr_pages; i++) {
1447 			struct page *page = pvec.pages[i];
1448 
1449 			if (unlikely(f2fs_cp_error(sbi))) {
1450 				f2fs_put_page(last_page, 0);
1451 				pagevec_release(&pvec);
1452 				return ERR_PTR(-EIO);
1453 			}
1454 
1455 			if (!IS_DNODE(page) || !is_cold_node(page))
1456 				continue;
1457 			if (ino_of_node(page) != ino)
1458 				continue;
1459 
1460 			lock_page(page);
1461 
1462 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1463 continue_unlock:
1464 				unlock_page(page);
1465 				continue;
1466 			}
1467 			if (ino_of_node(page) != ino)
1468 				goto continue_unlock;
1469 
1470 			if (!PageDirty(page)) {
1471 				/* someone wrote it for us */
1472 				goto continue_unlock;
1473 			}
1474 
1475 			if (last_page)
1476 				f2fs_put_page(last_page, 0);
1477 
1478 			get_page(page);
1479 			last_page = page;
1480 			unlock_page(page);
1481 		}
1482 		pagevec_release(&pvec);
1483 		cond_resched();
1484 	}
1485 	return last_page;
1486 }
1487 
1488 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1489 				struct writeback_control *wbc, bool do_balance,
1490 				enum iostat_type io_type, unsigned int *seq_id)
1491 {
1492 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1493 	nid_t nid;
1494 	struct node_info ni;
1495 	struct f2fs_io_info fio = {
1496 		.sbi = sbi,
1497 		.ino = ino_of_node(page),
1498 		.type = NODE,
1499 		.op = REQ_OP_WRITE,
1500 		.op_flags = wbc_to_write_flags(wbc),
1501 		.page = page,
1502 		.encrypted_page = NULL,
1503 		.submitted = false,
1504 		.io_type = io_type,
1505 		.io_wbc = wbc,
1506 	};
1507 	unsigned int seq;
1508 
1509 	trace_f2fs_writepage(page, NODE);
1510 
1511 	if (unlikely(f2fs_cp_error(sbi)))
1512 		goto redirty_out;
1513 
1514 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1515 		goto redirty_out;
1516 
1517 	if (wbc->sync_mode == WB_SYNC_NONE &&
1518 			IS_DNODE(page) && is_cold_node(page))
1519 		goto redirty_out;
1520 
1521 	/* get old block addr of this node page */
1522 	nid = nid_of_node(page);
1523 	f2fs_bug_on(sbi, page->index != nid);
1524 
1525 	if (f2fs_get_node_info(sbi, nid, &ni))
1526 		goto redirty_out;
1527 
1528 	if (wbc->for_reclaim) {
1529 		if (!down_read_trylock(&sbi->node_write))
1530 			goto redirty_out;
1531 	} else {
1532 		down_read(&sbi->node_write);
1533 	}
1534 
1535 	/* This page is already truncated */
1536 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1537 		ClearPageUptodate(page);
1538 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1539 		up_read(&sbi->node_write);
1540 		unlock_page(page);
1541 		return 0;
1542 	}
1543 
1544 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1545 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC))
1546 		goto redirty_out;
1547 
1548 	if (atomic && !test_opt(sbi, NOBARRIER))
1549 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1550 
1551 	set_page_writeback(page);
1552 	ClearPageError(page);
1553 
1554 	if (f2fs_in_warm_node_list(sbi, page)) {
1555 		seq = f2fs_add_fsync_node_entry(sbi, page);
1556 		if (seq_id)
1557 			*seq_id = seq;
1558 	}
1559 
1560 	fio.old_blkaddr = ni.blk_addr;
1561 	f2fs_do_write_node_page(nid, &fio);
1562 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1563 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1564 	up_read(&sbi->node_write);
1565 
1566 	if (wbc->for_reclaim) {
1567 		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1568 						page->index, NODE);
1569 		submitted = NULL;
1570 	}
1571 
1572 	unlock_page(page);
1573 
1574 	if (unlikely(f2fs_cp_error(sbi))) {
1575 		f2fs_submit_merged_write(sbi, NODE);
1576 		submitted = NULL;
1577 	}
1578 	if (submitted)
1579 		*submitted = fio.submitted;
1580 
1581 	if (do_balance)
1582 		f2fs_balance_fs(sbi, false);
1583 	return 0;
1584 
1585 redirty_out:
1586 	redirty_page_for_writepage(wbc, page);
1587 	return AOP_WRITEPAGE_ACTIVATE;
1588 }
1589 
1590 void f2fs_move_node_page(struct page *node_page, int gc_type)
1591 {
1592 	if (gc_type == FG_GC) {
1593 		struct writeback_control wbc = {
1594 			.sync_mode = WB_SYNC_ALL,
1595 			.nr_to_write = 1,
1596 			.for_reclaim = 0,
1597 		};
1598 
1599 		set_page_dirty(node_page);
1600 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1601 
1602 		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1603 		if (!clear_page_dirty_for_io(node_page))
1604 			goto out_page;
1605 
1606 		if (__write_node_page(node_page, false, NULL,
1607 					&wbc, false, FS_GC_NODE_IO, NULL))
1608 			unlock_page(node_page);
1609 		goto release_page;
1610 	} else {
1611 		/* set page dirty and write it */
1612 		if (!PageWriteback(node_page))
1613 			set_page_dirty(node_page);
1614 	}
1615 out_page:
1616 	unlock_page(node_page);
1617 release_page:
1618 	f2fs_put_page(node_page, 0);
1619 }
1620 
1621 static int f2fs_write_node_page(struct page *page,
1622 				struct writeback_control *wbc)
1623 {
1624 	return __write_node_page(page, false, NULL, wbc, false,
1625 						FS_NODE_IO, NULL);
1626 }
1627 
1628 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1629 			struct writeback_control *wbc, bool atomic,
1630 			unsigned int *seq_id)
1631 {
1632 	pgoff_t index;
1633 	pgoff_t last_idx = ULONG_MAX;
1634 	struct pagevec pvec;
1635 	int ret = 0;
1636 	struct page *last_page = NULL;
1637 	bool marked = false;
1638 	nid_t ino = inode->i_ino;
1639 	int nr_pages;
1640 
1641 	if (atomic) {
1642 		last_page = last_fsync_dnode(sbi, ino);
1643 		if (IS_ERR_OR_NULL(last_page))
1644 			return PTR_ERR_OR_ZERO(last_page);
1645 	}
1646 retry:
1647 	pagevec_init(&pvec);
1648 	index = 0;
1649 
1650 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1651 				PAGECACHE_TAG_DIRTY))) {
1652 		int i;
1653 
1654 		for (i = 0; i < nr_pages; i++) {
1655 			struct page *page = pvec.pages[i];
1656 			bool submitted = false;
1657 
1658 			if (unlikely(f2fs_cp_error(sbi))) {
1659 				f2fs_put_page(last_page, 0);
1660 				pagevec_release(&pvec);
1661 				ret = -EIO;
1662 				goto out;
1663 			}
1664 
1665 			if (!IS_DNODE(page) || !is_cold_node(page))
1666 				continue;
1667 			if (ino_of_node(page) != ino)
1668 				continue;
1669 
1670 			lock_page(page);
1671 
1672 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1673 continue_unlock:
1674 				unlock_page(page);
1675 				continue;
1676 			}
1677 			if (ino_of_node(page) != ino)
1678 				goto continue_unlock;
1679 
1680 			if (!PageDirty(page) && page != last_page) {
1681 				/* someone wrote it for us */
1682 				goto continue_unlock;
1683 			}
1684 
1685 			f2fs_wait_on_page_writeback(page, NODE, true);
1686 			BUG_ON(PageWriteback(page));
1687 
1688 			set_fsync_mark(page, 0);
1689 			set_dentry_mark(page, 0);
1690 
1691 			if (!atomic || page == last_page) {
1692 				set_fsync_mark(page, 1);
1693 				if (IS_INODE(page)) {
1694 					if (is_inode_flag_set(inode,
1695 								FI_DIRTY_INODE))
1696 						f2fs_update_inode(inode, page);
1697 					set_dentry_mark(page,
1698 						f2fs_need_dentry_mark(sbi, ino));
1699 				}
1700 				/*  may be written by other thread */
1701 				if (!PageDirty(page))
1702 					set_page_dirty(page);
1703 			}
1704 
1705 			if (!clear_page_dirty_for_io(page))
1706 				goto continue_unlock;
1707 
1708 			ret = __write_node_page(page, atomic &&
1709 						page == last_page,
1710 						&submitted, wbc, true,
1711 						FS_NODE_IO, seq_id);
1712 			if (ret) {
1713 				unlock_page(page);
1714 				f2fs_put_page(last_page, 0);
1715 				break;
1716 			} else if (submitted) {
1717 				last_idx = page->index;
1718 			}
1719 
1720 			if (page == last_page) {
1721 				f2fs_put_page(page, 0);
1722 				marked = true;
1723 				break;
1724 			}
1725 		}
1726 		pagevec_release(&pvec);
1727 		cond_resched();
1728 
1729 		if (ret || marked)
1730 			break;
1731 	}
1732 	if (!ret && atomic && !marked) {
1733 		f2fs_msg(sbi->sb, KERN_DEBUG,
1734 			"Retry to write fsync mark: ino=%u, idx=%lx",
1735 					ino, last_page->index);
1736 		lock_page(last_page);
1737 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1738 		set_page_dirty(last_page);
1739 		unlock_page(last_page);
1740 		goto retry;
1741 	}
1742 out:
1743 	if (last_idx != ULONG_MAX)
1744 		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1745 	return ret ? -EIO: 0;
1746 }
1747 
1748 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1749 				struct writeback_control *wbc,
1750 				bool do_balance, enum iostat_type io_type)
1751 {
1752 	pgoff_t index;
1753 	struct pagevec pvec;
1754 	int step = 0;
1755 	int nwritten = 0;
1756 	int ret = 0;
1757 	int nr_pages, done = 0;
1758 
1759 	pagevec_init(&pvec);
1760 
1761 next_step:
1762 	index = 0;
1763 
1764 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1765 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1766 		int i;
1767 
1768 		for (i = 0; i < nr_pages; i++) {
1769 			struct page *page = pvec.pages[i];
1770 			bool submitted = false;
1771 
1772 			/* give a priority to WB_SYNC threads */
1773 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1774 					wbc->sync_mode == WB_SYNC_NONE) {
1775 				done = 1;
1776 				break;
1777 			}
1778 
1779 			/*
1780 			 * flushing sequence with step:
1781 			 * 0. indirect nodes
1782 			 * 1. dentry dnodes
1783 			 * 2. file dnodes
1784 			 */
1785 			if (step == 0 && IS_DNODE(page))
1786 				continue;
1787 			if (step == 1 && (!IS_DNODE(page) ||
1788 						is_cold_node(page)))
1789 				continue;
1790 			if (step == 2 && (!IS_DNODE(page) ||
1791 						!is_cold_node(page)))
1792 				continue;
1793 lock_node:
1794 			if (wbc->sync_mode == WB_SYNC_ALL)
1795 				lock_page(page);
1796 			else if (!trylock_page(page))
1797 				continue;
1798 
1799 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1800 continue_unlock:
1801 				unlock_page(page);
1802 				continue;
1803 			}
1804 
1805 			if (!PageDirty(page)) {
1806 				/* someone wrote it for us */
1807 				goto continue_unlock;
1808 			}
1809 
1810 			/* flush inline_data */
1811 			if (is_inline_node(page)) {
1812 				clear_inline_node(page);
1813 				unlock_page(page);
1814 				flush_inline_data(sbi, ino_of_node(page));
1815 				goto lock_node;
1816 			}
1817 
1818 			f2fs_wait_on_page_writeback(page, NODE, true);
1819 
1820 			BUG_ON(PageWriteback(page));
1821 			if (!clear_page_dirty_for_io(page))
1822 				goto continue_unlock;
1823 
1824 			set_fsync_mark(page, 0);
1825 			set_dentry_mark(page, 0);
1826 
1827 			ret = __write_node_page(page, false, &submitted,
1828 						wbc, do_balance, io_type, NULL);
1829 			if (ret)
1830 				unlock_page(page);
1831 			else if (submitted)
1832 				nwritten++;
1833 
1834 			if (--wbc->nr_to_write == 0)
1835 				break;
1836 		}
1837 		pagevec_release(&pvec);
1838 		cond_resched();
1839 
1840 		if (wbc->nr_to_write == 0) {
1841 			step = 2;
1842 			break;
1843 		}
1844 	}
1845 
1846 	if (step < 2) {
1847 		if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1848 			goto out;
1849 		step++;
1850 		goto next_step;
1851 	}
1852 out:
1853 	if (nwritten)
1854 		f2fs_submit_merged_write(sbi, NODE);
1855 
1856 	if (unlikely(f2fs_cp_error(sbi)))
1857 		return -EIO;
1858 	return ret;
1859 }
1860 
1861 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1862 						unsigned int seq_id)
1863 {
1864 	struct fsync_node_entry *fn;
1865 	struct page *page;
1866 	struct list_head *head = &sbi->fsync_node_list;
1867 	unsigned long flags;
1868 	unsigned int cur_seq_id = 0;
1869 	int ret2, ret = 0;
1870 
1871 	while (seq_id && cur_seq_id < seq_id) {
1872 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1873 		if (list_empty(head)) {
1874 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1875 			break;
1876 		}
1877 		fn = list_first_entry(head, struct fsync_node_entry, list);
1878 		if (fn->seq_id > seq_id) {
1879 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880 			break;
1881 		}
1882 		cur_seq_id = fn->seq_id;
1883 		page = fn->page;
1884 		get_page(page);
1885 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1886 
1887 		f2fs_wait_on_page_writeback(page, NODE, true);
1888 		if (TestClearPageError(page))
1889 			ret = -EIO;
1890 
1891 		put_page(page);
1892 
1893 		if (ret)
1894 			break;
1895 	}
1896 
1897 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1898 	if (!ret)
1899 		ret = ret2;
1900 
1901 	return ret;
1902 }
1903 
1904 static int f2fs_write_node_pages(struct address_space *mapping,
1905 			    struct writeback_control *wbc)
1906 {
1907 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1908 	struct blk_plug plug;
1909 	long diff;
1910 
1911 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1912 		goto skip_write;
1913 
1914 	/* balancing f2fs's metadata in background */
1915 	f2fs_balance_fs_bg(sbi);
1916 
1917 	/* collect a number of dirty node pages and write together */
1918 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1919 		goto skip_write;
1920 
1921 	if (wbc->sync_mode == WB_SYNC_ALL)
1922 		atomic_inc(&sbi->wb_sync_req[NODE]);
1923 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1924 		goto skip_write;
1925 
1926 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1927 
1928 	diff = nr_pages_to_write(sbi, NODE, wbc);
1929 	blk_start_plug(&plug);
1930 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1931 	blk_finish_plug(&plug);
1932 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1933 
1934 	if (wbc->sync_mode == WB_SYNC_ALL)
1935 		atomic_dec(&sbi->wb_sync_req[NODE]);
1936 	return 0;
1937 
1938 skip_write:
1939 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1940 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1941 	return 0;
1942 }
1943 
1944 static int f2fs_set_node_page_dirty(struct page *page)
1945 {
1946 	trace_f2fs_set_page_dirty(page, NODE);
1947 
1948 	if (!PageUptodate(page))
1949 		SetPageUptodate(page);
1950 #ifdef CONFIG_F2FS_CHECK_FS
1951 	if (IS_INODE(page))
1952 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1953 #endif
1954 	if (!PageDirty(page)) {
1955 		__set_page_dirty_nobuffers(page);
1956 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1957 		SetPagePrivate(page);
1958 		f2fs_trace_pid(page);
1959 		return 1;
1960 	}
1961 	return 0;
1962 }
1963 
1964 /*
1965  * Structure of the f2fs node operations
1966  */
1967 const struct address_space_operations f2fs_node_aops = {
1968 	.writepage	= f2fs_write_node_page,
1969 	.writepages	= f2fs_write_node_pages,
1970 	.set_page_dirty	= f2fs_set_node_page_dirty,
1971 	.invalidatepage	= f2fs_invalidate_page,
1972 	.releasepage	= f2fs_release_page,
1973 #ifdef CONFIG_MIGRATION
1974 	.migratepage    = f2fs_migrate_page,
1975 #endif
1976 };
1977 
1978 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1979 						nid_t n)
1980 {
1981 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1982 }
1983 
1984 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1985 			struct free_nid *i, enum nid_state state)
1986 {
1987 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1988 
1989 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1990 	if (err)
1991 		return err;
1992 
1993 	f2fs_bug_on(sbi, state != i->state);
1994 	nm_i->nid_cnt[state]++;
1995 	if (state == FREE_NID)
1996 		list_add_tail(&i->list, &nm_i->free_nid_list);
1997 	return 0;
1998 }
1999 
2000 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2001 			struct free_nid *i, enum nid_state state)
2002 {
2003 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2004 
2005 	f2fs_bug_on(sbi, state != i->state);
2006 	nm_i->nid_cnt[state]--;
2007 	if (state == FREE_NID)
2008 		list_del(&i->list);
2009 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2010 }
2011 
2012 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2013 			enum nid_state org_state, enum nid_state dst_state)
2014 {
2015 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2016 
2017 	f2fs_bug_on(sbi, org_state != i->state);
2018 	i->state = dst_state;
2019 	nm_i->nid_cnt[org_state]--;
2020 	nm_i->nid_cnt[dst_state]++;
2021 
2022 	switch (dst_state) {
2023 	case PREALLOC_NID:
2024 		list_del(&i->list);
2025 		break;
2026 	case FREE_NID:
2027 		list_add_tail(&i->list, &nm_i->free_nid_list);
2028 		break;
2029 	default:
2030 		BUG_ON(1);
2031 	}
2032 }
2033 
2034 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2035 							bool set, bool build)
2036 {
2037 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2038 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2039 	unsigned int nid_ofs = nid - START_NID(nid);
2040 
2041 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2042 		return;
2043 
2044 	if (set) {
2045 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2046 			return;
2047 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2048 		nm_i->free_nid_count[nat_ofs]++;
2049 	} else {
2050 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2051 			return;
2052 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2053 		if (!build)
2054 			nm_i->free_nid_count[nat_ofs]--;
2055 	}
2056 }
2057 
2058 /* return if the nid is recognized as free */
2059 static bool add_free_nid(struct f2fs_sb_info *sbi,
2060 				nid_t nid, bool build, bool update)
2061 {
2062 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2063 	struct free_nid *i, *e;
2064 	struct nat_entry *ne;
2065 	int err = -EINVAL;
2066 	bool ret = false;
2067 
2068 	/* 0 nid should not be used */
2069 	if (unlikely(nid == 0))
2070 		return false;
2071 
2072 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2073 	i->nid = nid;
2074 	i->state = FREE_NID;
2075 
2076 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2077 
2078 	spin_lock(&nm_i->nid_list_lock);
2079 
2080 	if (build) {
2081 		/*
2082 		 *   Thread A             Thread B
2083 		 *  - f2fs_create
2084 		 *   - f2fs_new_inode
2085 		 *    - f2fs_alloc_nid
2086 		 *     - __insert_nid_to_list(PREALLOC_NID)
2087 		 *                     - f2fs_balance_fs_bg
2088 		 *                      - f2fs_build_free_nids
2089 		 *                       - __f2fs_build_free_nids
2090 		 *                        - scan_nat_page
2091 		 *                         - add_free_nid
2092 		 *                          - __lookup_nat_cache
2093 		 *  - f2fs_add_link
2094 		 *   - f2fs_init_inode_metadata
2095 		 *    - f2fs_new_inode_page
2096 		 *     - f2fs_new_node_page
2097 		 *      - set_node_addr
2098 		 *  - f2fs_alloc_nid_done
2099 		 *   - __remove_nid_from_list(PREALLOC_NID)
2100 		 *                         - __insert_nid_to_list(FREE_NID)
2101 		 */
2102 		ne = __lookup_nat_cache(nm_i, nid);
2103 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2104 				nat_get_blkaddr(ne) != NULL_ADDR))
2105 			goto err_out;
2106 
2107 		e = __lookup_free_nid_list(nm_i, nid);
2108 		if (e) {
2109 			if (e->state == FREE_NID)
2110 				ret = true;
2111 			goto err_out;
2112 		}
2113 	}
2114 	ret = true;
2115 	err = __insert_free_nid(sbi, i, FREE_NID);
2116 err_out:
2117 	if (update) {
2118 		update_free_nid_bitmap(sbi, nid, ret, build);
2119 		if (!build)
2120 			nm_i->available_nids++;
2121 	}
2122 	spin_unlock(&nm_i->nid_list_lock);
2123 	radix_tree_preload_end();
2124 
2125 	if (err)
2126 		kmem_cache_free(free_nid_slab, i);
2127 	return ret;
2128 }
2129 
2130 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2131 {
2132 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2133 	struct free_nid *i;
2134 	bool need_free = false;
2135 
2136 	spin_lock(&nm_i->nid_list_lock);
2137 	i = __lookup_free_nid_list(nm_i, nid);
2138 	if (i && i->state == FREE_NID) {
2139 		__remove_free_nid(sbi, i, FREE_NID);
2140 		need_free = true;
2141 	}
2142 	spin_unlock(&nm_i->nid_list_lock);
2143 
2144 	if (need_free)
2145 		kmem_cache_free(free_nid_slab, i);
2146 }
2147 
2148 static int scan_nat_page(struct f2fs_sb_info *sbi,
2149 			struct page *nat_page, nid_t start_nid)
2150 {
2151 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2152 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2153 	block_t blk_addr;
2154 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2155 	int i;
2156 
2157 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2158 
2159 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2160 
2161 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2162 		if (unlikely(start_nid >= nm_i->max_nid))
2163 			break;
2164 
2165 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2166 
2167 		if (blk_addr == NEW_ADDR)
2168 			return -EINVAL;
2169 
2170 		if (blk_addr == NULL_ADDR) {
2171 			add_free_nid(sbi, start_nid, true, true);
2172 		} else {
2173 			spin_lock(&NM_I(sbi)->nid_list_lock);
2174 			update_free_nid_bitmap(sbi, start_nid, false, true);
2175 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2176 		}
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2183 {
2184 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2185 	struct f2fs_journal *journal = curseg->journal;
2186 	int i;
2187 
2188 	down_read(&curseg->journal_rwsem);
2189 	for (i = 0; i < nats_in_cursum(journal); i++) {
2190 		block_t addr;
2191 		nid_t nid;
2192 
2193 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2194 		nid = le32_to_cpu(nid_in_journal(journal, i));
2195 		if (addr == NULL_ADDR)
2196 			add_free_nid(sbi, nid, true, false);
2197 		else
2198 			remove_free_nid(sbi, nid);
2199 	}
2200 	up_read(&curseg->journal_rwsem);
2201 }
2202 
2203 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2204 {
2205 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2206 	unsigned int i, idx;
2207 	nid_t nid;
2208 
2209 	down_read(&nm_i->nat_tree_lock);
2210 
2211 	for (i = 0; i < nm_i->nat_blocks; i++) {
2212 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2213 			continue;
2214 		if (!nm_i->free_nid_count[i])
2215 			continue;
2216 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2217 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2218 						NAT_ENTRY_PER_BLOCK, idx);
2219 			if (idx >= NAT_ENTRY_PER_BLOCK)
2220 				break;
2221 
2222 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2223 			add_free_nid(sbi, nid, true, false);
2224 
2225 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2226 				goto out;
2227 		}
2228 	}
2229 out:
2230 	scan_curseg_cache(sbi);
2231 
2232 	up_read(&nm_i->nat_tree_lock);
2233 }
2234 
2235 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2236 						bool sync, bool mount)
2237 {
2238 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2239 	int i = 0, ret;
2240 	nid_t nid = nm_i->next_scan_nid;
2241 
2242 	if (unlikely(nid >= nm_i->max_nid))
2243 		nid = 0;
2244 
2245 	/* Enough entries */
2246 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2247 		return 0;
2248 
2249 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2250 		return 0;
2251 
2252 	if (!mount) {
2253 		/* try to find free nids in free_nid_bitmap */
2254 		scan_free_nid_bits(sbi);
2255 
2256 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2257 			return 0;
2258 	}
2259 
2260 	/* readahead nat pages to be scanned */
2261 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2262 							META_NAT, true);
2263 
2264 	down_read(&nm_i->nat_tree_lock);
2265 
2266 	while (1) {
2267 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2268 						nm_i->nat_block_bitmap)) {
2269 			struct page *page = get_current_nat_page(sbi, nid);
2270 
2271 			ret = scan_nat_page(sbi, page, nid);
2272 			f2fs_put_page(page, 1);
2273 
2274 			if (ret) {
2275 				up_read(&nm_i->nat_tree_lock);
2276 				f2fs_bug_on(sbi, !mount);
2277 				f2fs_msg(sbi->sb, KERN_ERR,
2278 					"NAT is corrupt, run fsck to fix it");
2279 				return -EINVAL;
2280 			}
2281 		}
2282 
2283 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2284 		if (unlikely(nid >= nm_i->max_nid))
2285 			nid = 0;
2286 
2287 		if (++i >= FREE_NID_PAGES)
2288 			break;
2289 	}
2290 
2291 	/* go to the next free nat pages to find free nids abundantly */
2292 	nm_i->next_scan_nid = nid;
2293 
2294 	/* find free nids from current sum_pages */
2295 	scan_curseg_cache(sbi);
2296 
2297 	up_read(&nm_i->nat_tree_lock);
2298 
2299 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2300 					nm_i->ra_nid_pages, META_NAT, false);
2301 
2302 	return 0;
2303 }
2304 
2305 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2306 {
2307 	int ret;
2308 
2309 	mutex_lock(&NM_I(sbi)->build_lock);
2310 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2311 	mutex_unlock(&NM_I(sbi)->build_lock);
2312 
2313 	return ret;
2314 }
2315 
2316 /*
2317  * If this function returns success, caller can obtain a new nid
2318  * from second parameter of this function.
2319  * The returned nid could be used ino as well as nid when inode is created.
2320  */
2321 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2322 {
2323 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2324 	struct free_nid *i = NULL;
2325 retry:
2326 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2327 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2328 		return false;
2329 	}
2330 
2331 	spin_lock(&nm_i->nid_list_lock);
2332 
2333 	if (unlikely(nm_i->available_nids == 0)) {
2334 		spin_unlock(&nm_i->nid_list_lock);
2335 		return false;
2336 	}
2337 
2338 	/* We should not use stale free nids created by f2fs_build_free_nids */
2339 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2340 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2341 		i = list_first_entry(&nm_i->free_nid_list,
2342 					struct free_nid, list);
2343 		*nid = i->nid;
2344 
2345 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2346 		nm_i->available_nids--;
2347 
2348 		update_free_nid_bitmap(sbi, *nid, false, false);
2349 
2350 		spin_unlock(&nm_i->nid_list_lock);
2351 		return true;
2352 	}
2353 	spin_unlock(&nm_i->nid_list_lock);
2354 
2355 	/* Let's scan nat pages and its caches to get free nids */
2356 	f2fs_build_free_nids(sbi, true, false);
2357 	goto retry;
2358 }
2359 
2360 /*
2361  * f2fs_alloc_nid() should be called prior to this function.
2362  */
2363 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2364 {
2365 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 	struct free_nid *i;
2367 
2368 	spin_lock(&nm_i->nid_list_lock);
2369 	i = __lookup_free_nid_list(nm_i, nid);
2370 	f2fs_bug_on(sbi, !i);
2371 	__remove_free_nid(sbi, i, PREALLOC_NID);
2372 	spin_unlock(&nm_i->nid_list_lock);
2373 
2374 	kmem_cache_free(free_nid_slab, i);
2375 }
2376 
2377 /*
2378  * f2fs_alloc_nid() should be called prior to this function.
2379  */
2380 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2381 {
2382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2383 	struct free_nid *i;
2384 	bool need_free = false;
2385 
2386 	if (!nid)
2387 		return;
2388 
2389 	spin_lock(&nm_i->nid_list_lock);
2390 	i = __lookup_free_nid_list(nm_i, nid);
2391 	f2fs_bug_on(sbi, !i);
2392 
2393 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2394 		__remove_free_nid(sbi, i, PREALLOC_NID);
2395 		need_free = true;
2396 	} else {
2397 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2398 	}
2399 
2400 	nm_i->available_nids++;
2401 
2402 	update_free_nid_bitmap(sbi, nid, true, false);
2403 
2404 	spin_unlock(&nm_i->nid_list_lock);
2405 
2406 	if (need_free)
2407 		kmem_cache_free(free_nid_slab, i);
2408 }
2409 
2410 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2411 {
2412 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2413 	struct free_nid *i, *next;
2414 	int nr = nr_shrink;
2415 
2416 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2417 		return 0;
2418 
2419 	if (!mutex_trylock(&nm_i->build_lock))
2420 		return 0;
2421 
2422 	spin_lock(&nm_i->nid_list_lock);
2423 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2424 		if (nr_shrink <= 0 ||
2425 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2426 			break;
2427 
2428 		__remove_free_nid(sbi, i, FREE_NID);
2429 		kmem_cache_free(free_nid_slab, i);
2430 		nr_shrink--;
2431 	}
2432 	spin_unlock(&nm_i->nid_list_lock);
2433 	mutex_unlock(&nm_i->build_lock);
2434 
2435 	return nr - nr_shrink;
2436 }
2437 
2438 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2439 {
2440 	void *src_addr, *dst_addr;
2441 	size_t inline_size;
2442 	struct page *ipage;
2443 	struct f2fs_inode *ri;
2444 
2445 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2446 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2447 
2448 	ri = F2FS_INODE(page);
2449 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2450 		set_inode_flag(inode, FI_INLINE_XATTR);
2451 	} else {
2452 		clear_inode_flag(inode, FI_INLINE_XATTR);
2453 		goto update_inode;
2454 	}
2455 
2456 	dst_addr = inline_xattr_addr(inode, ipage);
2457 	src_addr = inline_xattr_addr(inode, page);
2458 	inline_size = inline_xattr_size(inode);
2459 
2460 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2461 	memcpy(dst_addr, src_addr, inline_size);
2462 update_inode:
2463 	f2fs_update_inode(inode, ipage);
2464 	f2fs_put_page(ipage, 1);
2465 }
2466 
2467 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2468 {
2469 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2470 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2471 	nid_t new_xnid;
2472 	struct dnode_of_data dn;
2473 	struct node_info ni;
2474 	struct page *xpage;
2475 	int err;
2476 
2477 	if (!prev_xnid)
2478 		goto recover_xnid;
2479 
2480 	/* 1: invalidate the previous xattr nid */
2481 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2482 	if (err)
2483 		return err;
2484 
2485 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2486 	dec_valid_node_count(sbi, inode, false);
2487 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2488 
2489 recover_xnid:
2490 	/* 2: update xattr nid in inode */
2491 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2492 		return -ENOSPC;
2493 
2494 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2495 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2496 	if (IS_ERR(xpage)) {
2497 		f2fs_alloc_nid_failed(sbi, new_xnid);
2498 		return PTR_ERR(xpage);
2499 	}
2500 
2501 	f2fs_alloc_nid_done(sbi, new_xnid);
2502 	f2fs_update_inode_page(inode);
2503 
2504 	/* 3: update and set xattr node page dirty */
2505 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2506 
2507 	set_page_dirty(xpage);
2508 	f2fs_put_page(xpage, 1);
2509 
2510 	return 0;
2511 }
2512 
2513 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2514 {
2515 	struct f2fs_inode *src, *dst;
2516 	nid_t ino = ino_of_node(page);
2517 	struct node_info old_ni, new_ni;
2518 	struct page *ipage;
2519 	int err;
2520 
2521 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2522 	if (err)
2523 		return err;
2524 
2525 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2526 		return -EINVAL;
2527 retry:
2528 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2529 	if (!ipage) {
2530 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2531 		goto retry;
2532 	}
2533 
2534 	/* Should not use this inode from free nid list */
2535 	remove_free_nid(sbi, ino);
2536 
2537 	if (!PageUptodate(ipage))
2538 		SetPageUptodate(ipage);
2539 	fill_node_footer(ipage, ino, ino, 0, true);
2540 	set_cold_node(page, false);
2541 
2542 	src = F2FS_INODE(page);
2543 	dst = F2FS_INODE(ipage);
2544 
2545 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2546 	dst->i_size = 0;
2547 	dst->i_blocks = cpu_to_le64(1);
2548 	dst->i_links = cpu_to_le32(1);
2549 	dst->i_xattr_nid = 0;
2550 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2551 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2552 		dst->i_extra_isize = src->i_extra_isize;
2553 
2554 		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2555 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2556 							i_inline_xattr_size))
2557 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2558 
2559 		if (f2fs_sb_has_project_quota(sbi->sb) &&
2560 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2561 								i_projid))
2562 			dst->i_projid = src->i_projid;
2563 	}
2564 
2565 	new_ni = old_ni;
2566 	new_ni.ino = ino;
2567 
2568 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2569 		WARN_ON(1);
2570 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2571 	inc_valid_inode_count(sbi);
2572 	set_page_dirty(ipage);
2573 	f2fs_put_page(ipage, 1);
2574 	return 0;
2575 }
2576 
2577 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2578 			unsigned int segno, struct f2fs_summary_block *sum)
2579 {
2580 	struct f2fs_node *rn;
2581 	struct f2fs_summary *sum_entry;
2582 	block_t addr;
2583 	int i, idx, last_offset, nrpages;
2584 
2585 	/* scan the node segment */
2586 	last_offset = sbi->blocks_per_seg;
2587 	addr = START_BLOCK(sbi, segno);
2588 	sum_entry = &sum->entries[0];
2589 
2590 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2591 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2592 
2593 		/* readahead node pages */
2594 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2595 
2596 		for (idx = addr; idx < addr + nrpages; idx++) {
2597 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2598 
2599 			if (IS_ERR(page))
2600 				return PTR_ERR(page);
2601 
2602 			rn = F2FS_NODE(page);
2603 			sum_entry->nid = rn->footer.nid;
2604 			sum_entry->version = 0;
2605 			sum_entry->ofs_in_node = 0;
2606 			sum_entry++;
2607 			f2fs_put_page(page, 1);
2608 		}
2609 
2610 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2611 							addr + nrpages);
2612 	}
2613 	return 0;
2614 }
2615 
2616 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2617 {
2618 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2619 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2620 	struct f2fs_journal *journal = curseg->journal;
2621 	int i;
2622 
2623 	down_write(&curseg->journal_rwsem);
2624 	for (i = 0; i < nats_in_cursum(journal); i++) {
2625 		struct nat_entry *ne;
2626 		struct f2fs_nat_entry raw_ne;
2627 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2628 
2629 		raw_ne = nat_in_journal(journal, i);
2630 
2631 		ne = __lookup_nat_cache(nm_i, nid);
2632 		if (!ne) {
2633 			ne = __alloc_nat_entry(nid, true);
2634 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2635 		}
2636 
2637 		/*
2638 		 * if a free nat in journal has not been used after last
2639 		 * checkpoint, we should remove it from available nids,
2640 		 * since later we will add it again.
2641 		 */
2642 		if (!get_nat_flag(ne, IS_DIRTY) &&
2643 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2644 			spin_lock(&nm_i->nid_list_lock);
2645 			nm_i->available_nids--;
2646 			spin_unlock(&nm_i->nid_list_lock);
2647 		}
2648 
2649 		__set_nat_cache_dirty(nm_i, ne);
2650 	}
2651 	update_nats_in_cursum(journal, -i);
2652 	up_write(&curseg->journal_rwsem);
2653 }
2654 
2655 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2656 						struct list_head *head, int max)
2657 {
2658 	struct nat_entry_set *cur;
2659 
2660 	if (nes->entry_cnt >= max)
2661 		goto add_out;
2662 
2663 	list_for_each_entry(cur, head, set_list) {
2664 		if (cur->entry_cnt >= nes->entry_cnt) {
2665 			list_add(&nes->set_list, cur->set_list.prev);
2666 			return;
2667 		}
2668 	}
2669 add_out:
2670 	list_add_tail(&nes->set_list, head);
2671 }
2672 
2673 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2674 						struct page *page)
2675 {
2676 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2677 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2678 	struct f2fs_nat_block *nat_blk = page_address(page);
2679 	int valid = 0;
2680 	int i = 0;
2681 
2682 	if (!enabled_nat_bits(sbi, NULL))
2683 		return;
2684 
2685 	if (nat_index == 0) {
2686 		valid = 1;
2687 		i = 1;
2688 	}
2689 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2690 		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2691 			valid++;
2692 	}
2693 	if (valid == 0) {
2694 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2695 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2696 		return;
2697 	}
2698 
2699 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2700 	if (valid == NAT_ENTRY_PER_BLOCK)
2701 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2702 	else
2703 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2704 }
2705 
2706 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2707 		struct nat_entry_set *set, struct cp_control *cpc)
2708 {
2709 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2710 	struct f2fs_journal *journal = curseg->journal;
2711 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2712 	bool to_journal = true;
2713 	struct f2fs_nat_block *nat_blk;
2714 	struct nat_entry *ne, *cur;
2715 	struct page *page = NULL;
2716 
2717 	/*
2718 	 * there are two steps to flush nat entries:
2719 	 * #1, flush nat entries to journal in current hot data summary block.
2720 	 * #2, flush nat entries to nat page.
2721 	 */
2722 	if (enabled_nat_bits(sbi, cpc) ||
2723 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2724 		to_journal = false;
2725 
2726 	if (to_journal) {
2727 		down_write(&curseg->journal_rwsem);
2728 	} else {
2729 		page = get_next_nat_page(sbi, start_nid);
2730 		nat_blk = page_address(page);
2731 		f2fs_bug_on(sbi, !nat_blk);
2732 	}
2733 
2734 	/* flush dirty nats in nat entry set */
2735 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2736 		struct f2fs_nat_entry *raw_ne;
2737 		nid_t nid = nat_get_nid(ne);
2738 		int offset;
2739 
2740 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2741 
2742 		if (to_journal) {
2743 			offset = f2fs_lookup_journal_in_cursum(journal,
2744 							NAT_JOURNAL, nid, 1);
2745 			f2fs_bug_on(sbi, offset < 0);
2746 			raw_ne = &nat_in_journal(journal, offset);
2747 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2748 		} else {
2749 			raw_ne = &nat_blk->entries[nid - start_nid];
2750 		}
2751 		raw_nat_from_node_info(raw_ne, &ne->ni);
2752 		nat_reset_flag(ne);
2753 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2754 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2755 			add_free_nid(sbi, nid, false, true);
2756 		} else {
2757 			spin_lock(&NM_I(sbi)->nid_list_lock);
2758 			update_free_nid_bitmap(sbi, nid, false, false);
2759 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2760 		}
2761 	}
2762 
2763 	if (to_journal) {
2764 		up_write(&curseg->journal_rwsem);
2765 	} else {
2766 		__update_nat_bits(sbi, start_nid, page);
2767 		f2fs_put_page(page, 1);
2768 	}
2769 
2770 	/* Allow dirty nats by node block allocation in write_begin */
2771 	if (!set->entry_cnt) {
2772 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2773 		kmem_cache_free(nat_entry_set_slab, set);
2774 	}
2775 }
2776 
2777 /*
2778  * This function is called during the checkpointing process.
2779  */
2780 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2781 {
2782 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2783 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2784 	struct f2fs_journal *journal = curseg->journal;
2785 	struct nat_entry_set *setvec[SETVEC_SIZE];
2786 	struct nat_entry_set *set, *tmp;
2787 	unsigned int found;
2788 	nid_t set_idx = 0;
2789 	LIST_HEAD(sets);
2790 
2791 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2792 	if (enabled_nat_bits(sbi, cpc)) {
2793 		down_write(&nm_i->nat_tree_lock);
2794 		remove_nats_in_journal(sbi);
2795 		up_write(&nm_i->nat_tree_lock);
2796 	}
2797 
2798 	if (!nm_i->dirty_nat_cnt)
2799 		return;
2800 
2801 	down_write(&nm_i->nat_tree_lock);
2802 
2803 	/*
2804 	 * if there are no enough space in journal to store dirty nat
2805 	 * entries, remove all entries from journal and merge them
2806 	 * into nat entry set.
2807 	 */
2808 	if (enabled_nat_bits(sbi, cpc) ||
2809 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2810 		remove_nats_in_journal(sbi);
2811 
2812 	while ((found = __gang_lookup_nat_set(nm_i,
2813 					set_idx, SETVEC_SIZE, setvec))) {
2814 		unsigned idx;
2815 		set_idx = setvec[found - 1]->set + 1;
2816 		for (idx = 0; idx < found; idx++)
2817 			__adjust_nat_entry_set(setvec[idx], &sets,
2818 						MAX_NAT_JENTRIES(journal));
2819 	}
2820 
2821 	/* flush dirty nats in nat entry set */
2822 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2823 		__flush_nat_entry_set(sbi, set, cpc);
2824 
2825 	up_write(&nm_i->nat_tree_lock);
2826 	/* Allow dirty nats by node block allocation in write_begin */
2827 }
2828 
2829 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2830 {
2831 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2832 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2833 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2834 	unsigned int i;
2835 	__u64 cp_ver = cur_cp_version(ckpt);
2836 	block_t nat_bits_addr;
2837 
2838 	if (!enabled_nat_bits(sbi, NULL))
2839 		return 0;
2840 
2841 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2842 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2843 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2844 	if (!nm_i->nat_bits)
2845 		return -ENOMEM;
2846 
2847 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2848 						nm_i->nat_bits_blocks;
2849 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2850 		struct page *page;
2851 
2852 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2853 		if (IS_ERR(page)) {
2854 			disable_nat_bits(sbi, true);
2855 			return PTR_ERR(page);
2856 		}
2857 
2858 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2859 					page_address(page), F2FS_BLKSIZE);
2860 		f2fs_put_page(page, 1);
2861 	}
2862 
2863 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2864 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2865 		disable_nat_bits(sbi, true);
2866 		return 0;
2867 	}
2868 
2869 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2870 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2871 
2872 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2873 	return 0;
2874 }
2875 
2876 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2877 {
2878 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2879 	unsigned int i = 0;
2880 	nid_t nid, last_nid;
2881 
2882 	if (!enabled_nat_bits(sbi, NULL))
2883 		return;
2884 
2885 	for (i = 0; i < nm_i->nat_blocks; i++) {
2886 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2887 		if (i >= nm_i->nat_blocks)
2888 			break;
2889 
2890 		__set_bit_le(i, nm_i->nat_block_bitmap);
2891 
2892 		nid = i * NAT_ENTRY_PER_BLOCK;
2893 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2894 
2895 		spin_lock(&NM_I(sbi)->nid_list_lock);
2896 		for (; nid < last_nid; nid++)
2897 			update_free_nid_bitmap(sbi, nid, true, true);
2898 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2899 	}
2900 
2901 	for (i = 0; i < nm_i->nat_blocks; i++) {
2902 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2903 		if (i >= nm_i->nat_blocks)
2904 			break;
2905 
2906 		__set_bit_le(i, nm_i->nat_block_bitmap);
2907 	}
2908 }
2909 
2910 static int init_node_manager(struct f2fs_sb_info *sbi)
2911 {
2912 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2913 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2914 	unsigned char *version_bitmap;
2915 	unsigned int nat_segs;
2916 	int err;
2917 
2918 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2919 
2920 	/* segment_count_nat includes pair segment so divide to 2. */
2921 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2922 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2923 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2924 
2925 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2926 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2927 				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2928 	nm_i->nid_cnt[FREE_NID] = 0;
2929 	nm_i->nid_cnt[PREALLOC_NID] = 0;
2930 	nm_i->nat_cnt = 0;
2931 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2932 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2933 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2934 
2935 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2936 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2937 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2938 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2939 	INIT_LIST_HEAD(&nm_i->nat_entries);
2940 	spin_lock_init(&nm_i->nat_list_lock);
2941 
2942 	mutex_init(&nm_i->build_lock);
2943 	spin_lock_init(&nm_i->nid_list_lock);
2944 	init_rwsem(&nm_i->nat_tree_lock);
2945 
2946 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2947 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2948 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2949 	if (!version_bitmap)
2950 		return -EFAULT;
2951 
2952 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2953 					GFP_KERNEL);
2954 	if (!nm_i->nat_bitmap)
2955 		return -ENOMEM;
2956 
2957 	err = __get_nat_bitmaps(sbi);
2958 	if (err)
2959 		return err;
2960 
2961 #ifdef CONFIG_F2FS_CHECK_FS
2962 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2963 					GFP_KERNEL);
2964 	if (!nm_i->nat_bitmap_mir)
2965 		return -ENOMEM;
2966 #endif
2967 
2968 	return 0;
2969 }
2970 
2971 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2972 {
2973 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2974 	int i;
2975 
2976 	nm_i->free_nid_bitmap =
2977 		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
2978 					     nm_i->nat_blocks),
2979 			     GFP_KERNEL);
2980 	if (!nm_i->free_nid_bitmap)
2981 		return -ENOMEM;
2982 
2983 	for (i = 0; i < nm_i->nat_blocks; i++) {
2984 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2985 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
2986 		if (!nm_i->free_nid_bitmap[i])
2987 			return -ENOMEM;
2988 	}
2989 
2990 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2991 								GFP_KERNEL);
2992 	if (!nm_i->nat_block_bitmap)
2993 		return -ENOMEM;
2994 
2995 	nm_i->free_nid_count =
2996 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
2997 					      nm_i->nat_blocks),
2998 			      GFP_KERNEL);
2999 	if (!nm_i->free_nid_count)
3000 		return -ENOMEM;
3001 	return 0;
3002 }
3003 
3004 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3005 {
3006 	int err;
3007 
3008 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3009 							GFP_KERNEL);
3010 	if (!sbi->nm_info)
3011 		return -ENOMEM;
3012 
3013 	err = init_node_manager(sbi);
3014 	if (err)
3015 		return err;
3016 
3017 	err = init_free_nid_cache(sbi);
3018 	if (err)
3019 		return err;
3020 
3021 	/* load free nid status from nat_bits table */
3022 	load_free_nid_bitmap(sbi);
3023 
3024 	return f2fs_build_free_nids(sbi, true, true);
3025 }
3026 
3027 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3028 {
3029 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3030 	struct free_nid *i, *next_i;
3031 	struct nat_entry *natvec[NATVEC_SIZE];
3032 	struct nat_entry_set *setvec[SETVEC_SIZE];
3033 	nid_t nid = 0;
3034 	unsigned int found;
3035 
3036 	if (!nm_i)
3037 		return;
3038 
3039 	/* destroy free nid list */
3040 	spin_lock(&nm_i->nid_list_lock);
3041 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3042 		__remove_free_nid(sbi, i, FREE_NID);
3043 		spin_unlock(&nm_i->nid_list_lock);
3044 		kmem_cache_free(free_nid_slab, i);
3045 		spin_lock(&nm_i->nid_list_lock);
3046 	}
3047 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3048 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3049 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3050 	spin_unlock(&nm_i->nid_list_lock);
3051 
3052 	/* destroy nat cache */
3053 	down_write(&nm_i->nat_tree_lock);
3054 	while ((found = __gang_lookup_nat_cache(nm_i,
3055 					nid, NATVEC_SIZE, natvec))) {
3056 		unsigned idx;
3057 
3058 		nid = nat_get_nid(natvec[found - 1]) + 1;
3059 		for (idx = 0; idx < found; idx++) {
3060 			spin_lock(&nm_i->nat_list_lock);
3061 			list_del(&natvec[idx]->list);
3062 			spin_unlock(&nm_i->nat_list_lock);
3063 
3064 			__del_from_nat_cache(nm_i, natvec[idx]);
3065 		}
3066 	}
3067 	f2fs_bug_on(sbi, nm_i->nat_cnt);
3068 
3069 	/* destroy nat set cache */
3070 	nid = 0;
3071 	while ((found = __gang_lookup_nat_set(nm_i,
3072 					nid, SETVEC_SIZE, setvec))) {
3073 		unsigned idx;
3074 
3075 		nid = setvec[found - 1]->set + 1;
3076 		for (idx = 0; idx < found; idx++) {
3077 			/* entry_cnt is not zero, when cp_error was occurred */
3078 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3079 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3080 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3081 		}
3082 	}
3083 	up_write(&nm_i->nat_tree_lock);
3084 
3085 	kvfree(nm_i->nat_block_bitmap);
3086 	if (nm_i->free_nid_bitmap) {
3087 		int i;
3088 
3089 		for (i = 0; i < nm_i->nat_blocks; i++)
3090 			kvfree(nm_i->free_nid_bitmap[i]);
3091 		kfree(nm_i->free_nid_bitmap);
3092 	}
3093 	kvfree(nm_i->free_nid_count);
3094 
3095 	kfree(nm_i->nat_bitmap);
3096 	kfree(nm_i->nat_bits);
3097 #ifdef CONFIG_F2FS_CHECK_FS
3098 	kfree(nm_i->nat_bitmap_mir);
3099 #endif
3100 	sbi->nm_info = NULL;
3101 	kfree(nm_i);
3102 }
3103 
3104 int __init f2fs_create_node_manager_caches(void)
3105 {
3106 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3107 			sizeof(struct nat_entry));
3108 	if (!nat_entry_slab)
3109 		goto fail;
3110 
3111 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3112 			sizeof(struct free_nid));
3113 	if (!free_nid_slab)
3114 		goto destroy_nat_entry;
3115 
3116 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3117 			sizeof(struct nat_entry_set));
3118 	if (!nat_entry_set_slab)
3119 		goto destroy_free_nid;
3120 
3121 	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3122 			sizeof(struct fsync_node_entry));
3123 	if (!fsync_node_entry_slab)
3124 		goto destroy_nat_entry_set;
3125 	return 0;
3126 
3127 destroy_nat_entry_set:
3128 	kmem_cache_destroy(nat_entry_set_slab);
3129 destroy_free_nid:
3130 	kmem_cache_destroy(free_nid_slab);
3131 destroy_nat_entry:
3132 	kmem_cache_destroy(nat_entry_slab);
3133 fail:
3134 	return -ENOMEM;
3135 }
3136 
3137 void f2fs_destroy_node_manager_caches(void)
3138 {
3139 	kmem_cache_destroy(fsync_node_entry_slab);
3140 	kmem_cache_destroy(nat_entry_set_slab);
3141 	kmem_cache_destroy(free_nid_slab);
3142 	kmem_cache_destroy(nat_entry_slab);
3143 }
3144