xref: /openbmc/linux/fs/f2fs/node.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include <trace/events/f2fs.h>
21 
22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 static struct kmem_cache *nat_entry_set_slab;
27 static struct kmem_cache *fsync_node_entry_slab;
28 
29 /*
30  * Check whether the given nid is within node id range.
31  */
32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33 {
34 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 		set_sbi_flag(sbi, SBI_NEED_FSCK);
36 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 			  __func__, nid);
38 		return -EFSCORRUPTED;
39 	}
40 	return 0;
41 }
42 
43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44 {
45 	struct f2fs_nm_info *nm_i = NM_I(sbi);
46 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	if (!nm_i)
53 		return true;
54 
55 	si_meminfo(&val);
56 
57 	/* only uses low memory */
58 	avail_ram = val.totalram - val.totalhigh;
59 
60 	/*
61 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62 	 */
63 	if (type == FREE_NIDS) {
64 		mem_size = (nm_i->nid_cnt[FREE_NID] *
65 				sizeof(struct free_nid)) >> PAGE_SHIFT;
66 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 	} else if (type == NAT_ENTRIES) {
68 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 		if (excess_cached_nats(sbi))
72 			res = false;
73 	} else if (type == DIRTY_DENTS) {
74 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 			return false;
76 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 	} else if (type == INO_ENTRIES) {
79 		int i;
80 
81 		for (i = 0; i < MAX_INO_ENTRY; i++)
82 			mem_size += sbi->im[i].ino_num *
83 						sizeof(struct ino_entry);
84 		mem_size >>= PAGE_SHIFT;
85 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 	} else if (type == EXTENT_CACHE) {
87 		mem_size = (atomic_read(&sbi->total_ext_tree) *
88 				sizeof(struct extent_tree) +
89 				atomic_read(&sbi->total_ext_node) *
90 				sizeof(struct extent_node)) >> PAGE_SHIFT;
91 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92 	} else if (type == INMEM_PAGES) {
93 		/* it allows 20% / total_ram for inmemory pages */
94 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95 		res = mem_size < (val.totalram / 5);
96 	} else if (type == DISCARD_CACHE) {
97 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100 	} else {
101 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
102 			return true;
103 	}
104 	return res;
105 }
106 
107 static void clear_node_page_dirty(struct page *page)
108 {
109 	if (PageDirty(page)) {
110 		f2fs_clear_page_cache_dirty_tag(page);
111 		clear_page_dirty_for_io(page);
112 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
113 	}
114 	ClearPageUptodate(page);
115 }
116 
117 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
118 {
119 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
120 }
121 
122 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
123 {
124 	struct page *src_page;
125 	struct page *dst_page;
126 	pgoff_t dst_off;
127 	void *src_addr;
128 	void *dst_addr;
129 	struct f2fs_nm_info *nm_i = NM_I(sbi);
130 
131 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
132 
133 	/* get current nat block page with lock */
134 	src_page = get_current_nat_page(sbi, nid);
135 	if (IS_ERR(src_page))
136 		return src_page;
137 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
138 	f2fs_bug_on(sbi, PageDirty(src_page));
139 
140 	src_addr = page_address(src_page);
141 	dst_addr = page_address(dst_page);
142 	memcpy(dst_addr, src_addr, PAGE_SIZE);
143 	set_page_dirty(dst_page);
144 	f2fs_put_page(src_page, 1);
145 
146 	set_to_next_nat(nm_i, nid);
147 
148 	return dst_page;
149 }
150 
151 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
152 {
153 	struct nat_entry *new;
154 
155 	if (no_fail)
156 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
157 	else
158 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
159 	if (new) {
160 		nat_set_nid(new, nid);
161 		nat_reset_flag(new);
162 	}
163 	return new;
164 }
165 
166 static void __free_nat_entry(struct nat_entry *e)
167 {
168 	kmem_cache_free(nat_entry_slab, e);
169 }
170 
171 /* must be locked by nat_tree_lock */
172 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
173 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
174 {
175 	if (no_fail)
176 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
177 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
178 		return NULL;
179 
180 	if (raw_ne)
181 		node_info_from_raw_nat(&ne->ni, raw_ne);
182 
183 	spin_lock(&nm_i->nat_list_lock);
184 	list_add_tail(&ne->list, &nm_i->nat_entries);
185 	spin_unlock(&nm_i->nat_list_lock);
186 
187 	nm_i->nat_cnt[TOTAL_NAT]++;
188 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
189 	return ne;
190 }
191 
192 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
193 {
194 	struct nat_entry *ne;
195 
196 	ne = radix_tree_lookup(&nm_i->nat_root, n);
197 
198 	/* for recent accessed nat entry, move it to tail of lru list */
199 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
200 		spin_lock(&nm_i->nat_list_lock);
201 		if (!list_empty(&ne->list))
202 			list_move_tail(&ne->list, &nm_i->nat_entries);
203 		spin_unlock(&nm_i->nat_list_lock);
204 	}
205 
206 	return ne;
207 }
208 
209 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
210 		nid_t start, unsigned int nr, struct nat_entry **ep)
211 {
212 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
213 }
214 
215 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
216 {
217 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
218 	nm_i->nat_cnt[TOTAL_NAT]--;
219 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
220 	__free_nat_entry(e);
221 }
222 
223 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
224 							struct nat_entry *ne)
225 {
226 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
227 	struct nat_entry_set *head;
228 
229 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
230 	if (!head) {
231 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
232 
233 		INIT_LIST_HEAD(&head->entry_list);
234 		INIT_LIST_HEAD(&head->set_list);
235 		head->set = set;
236 		head->entry_cnt = 0;
237 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
238 	}
239 	return head;
240 }
241 
242 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
243 						struct nat_entry *ne)
244 {
245 	struct nat_entry_set *head;
246 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
247 
248 	if (!new_ne)
249 		head = __grab_nat_entry_set(nm_i, ne);
250 
251 	/*
252 	 * update entry_cnt in below condition:
253 	 * 1. update NEW_ADDR to valid block address;
254 	 * 2. update old block address to new one;
255 	 */
256 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
257 				!get_nat_flag(ne, IS_DIRTY)))
258 		head->entry_cnt++;
259 
260 	set_nat_flag(ne, IS_PREALLOC, new_ne);
261 
262 	if (get_nat_flag(ne, IS_DIRTY))
263 		goto refresh_list;
264 
265 	nm_i->nat_cnt[DIRTY_NAT]++;
266 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
267 	set_nat_flag(ne, IS_DIRTY, true);
268 refresh_list:
269 	spin_lock(&nm_i->nat_list_lock);
270 	if (new_ne)
271 		list_del_init(&ne->list);
272 	else
273 		list_move_tail(&ne->list, &head->entry_list);
274 	spin_unlock(&nm_i->nat_list_lock);
275 }
276 
277 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
278 		struct nat_entry_set *set, struct nat_entry *ne)
279 {
280 	spin_lock(&nm_i->nat_list_lock);
281 	list_move_tail(&ne->list, &nm_i->nat_entries);
282 	spin_unlock(&nm_i->nat_list_lock);
283 
284 	set_nat_flag(ne, IS_DIRTY, false);
285 	set->entry_cnt--;
286 	nm_i->nat_cnt[DIRTY_NAT]--;
287 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
288 }
289 
290 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
291 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
292 {
293 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
294 							start, nr);
295 }
296 
297 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
298 {
299 	return NODE_MAPPING(sbi) == page->mapping &&
300 			IS_DNODE(page) && is_cold_node(page);
301 }
302 
303 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
304 {
305 	spin_lock_init(&sbi->fsync_node_lock);
306 	INIT_LIST_HEAD(&sbi->fsync_node_list);
307 	sbi->fsync_seg_id = 0;
308 	sbi->fsync_node_num = 0;
309 }
310 
311 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
312 							struct page *page)
313 {
314 	struct fsync_node_entry *fn;
315 	unsigned long flags;
316 	unsigned int seq_id;
317 
318 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
319 
320 	get_page(page);
321 	fn->page = page;
322 	INIT_LIST_HEAD(&fn->list);
323 
324 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
325 	list_add_tail(&fn->list, &sbi->fsync_node_list);
326 	fn->seq_id = sbi->fsync_seg_id++;
327 	seq_id = fn->seq_id;
328 	sbi->fsync_node_num++;
329 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
330 
331 	return seq_id;
332 }
333 
334 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
335 {
336 	struct fsync_node_entry *fn;
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
340 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
341 		if (fn->page == page) {
342 			list_del(&fn->list);
343 			sbi->fsync_node_num--;
344 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
345 			kmem_cache_free(fsync_node_entry_slab, fn);
346 			put_page(page);
347 			return;
348 		}
349 	}
350 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 	f2fs_bug_on(sbi, 1);
352 }
353 
354 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
355 {
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
359 	sbi->fsync_seg_id = 0;
360 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 }
362 
363 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
364 {
365 	struct f2fs_nm_info *nm_i = NM_I(sbi);
366 	struct nat_entry *e;
367 	bool need = false;
368 
369 	down_read(&nm_i->nat_tree_lock);
370 	e = __lookup_nat_cache(nm_i, nid);
371 	if (e) {
372 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
373 				!get_nat_flag(e, HAS_FSYNCED_INODE))
374 			need = true;
375 	}
376 	up_read(&nm_i->nat_tree_lock);
377 	return need;
378 }
379 
380 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool is_cp = true;
385 
386 	down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
389 		is_cp = false;
390 	up_read(&nm_i->nat_tree_lock);
391 	return is_cp;
392 }
393 
394 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
395 {
396 	struct f2fs_nm_info *nm_i = NM_I(sbi);
397 	struct nat_entry *e;
398 	bool need_update = true;
399 
400 	down_read(&nm_i->nat_tree_lock);
401 	e = __lookup_nat_cache(nm_i, ino);
402 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
403 			(get_nat_flag(e, IS_CHECKPOINTED) ||
404 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
405 		need_update = false;
406 	up_read(&nm_i->nat_tree_lock);
407 	return need_update;
408 }
409 
410 /* must be locked by nat_tree_lock */
411 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
412 						struct f2fs_nat_entry *ne)
413 {
414 	struct f2fs_nm_info *nm_i = NM_I(sbi);
415 	struct nat_entry *new, *e;
416 
417 	new = __alloc_nat_entry(nid, false);
418 	if (!new)
419 		return;
420 
421 	down_write(&nm_i->nat_tree_lock);
422 	e = __lookup_nat_cache(nm_i, nid);
423 	if (!e)
424 		e = __init_nat_entry(nm_i, new, ne, false);
425 	else
426 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
427 				nat_get_blkaddr(e) !=
428 					le32_to_cpu(ne->block_addr) ||
429 				nat_get_version(e) != ne->version);
430 	up_write(&nm_i->nat_tree_lock);
431 	if (e != new)
432 		__free_nat_entry(new);
433 }
434 
435 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
436 			block_t new_blkaddr, bool fsync_done)
437 {
438 	struct f2fs_nm_info *nm_i = NM_I(sbi);
439 	struct nat_entry *e;
440 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
441 
442 	down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, ni->nid);
444 	if (!e) {
445 		e = __init_nat_entry(nm_i, new, NULL, true);
446 		copy_node_info(&e->ni, ni);
447 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
448 	} else if (new_blkaddr == NEW_ADDR) {
449 		/*
450 		 * when nid is reallocated,
451 		 * previous nat entry can be remained in nat cache.
452 		 * So, reinitialize it with new information.
453 		 */
454 		copy_node_info(&e->ni, ni);
455 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
456 	}
457 	/* let's free early to reduce memory consumption */
458 	if (e != new)
459 		__free_nat_entry(new);
460 
461 	/* sanity check */
462 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
463 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
464 			new_blkaddr == NULL_ADDR);
465 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
466 			new_blkaddr == NEW_ADDR);
467 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
468 			new_blkaddr == NEW_ADDR);
469 
470 	/* increment version no as node is removed */
471 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
472 		unsigned char version = nat_get_version(e);
473 
474 		nat_set_version(e, inc_node_version(version));
475 	}
476 
477 	/* change address */
478 	nat_set_blkaddr(e, new_blkaddr);
479 	if (!__is_valid_data_blkaddr(new_blkaddr))
480 		set_nat_flag(e, IS_CHECKPOINTED, false);
481 	__set_nat_cache_dirty(nm_i, e);
482 
483 	/* update fsync_mark if its inode nat entry is still alive */
484 	if (ni->nid != ni->ino)
485 		e = __lookup_nat_cache(nm_i, ni->ino);
486 	if (e) {
487 		if (fsync_done && ni->nid == ni->ino)
488 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
489 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
490 	}
491 	up_write(&nm_i->nat_tree_lock);
492 }
493 
494 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
495 {
496 	struct f2fs_nm_info *nm_i = NM_I(sbi);
497 	int nr = nr_shrink;
498 
499 	if (!down_write_trylock(&nm_i->nat_tree_lock))
500 		return 0;
501 
502 	spin_lock(&nm_i->nat_list_lock);
503 	while (nr_shrink) {
504 		struct nat_entry *ne;
505 
506 		if (list_empty(&nm_i->nat_entries))
507 			break;
508 
509 		ne = list_first_entry(&nm_i->nat_entries,
510 					struct nat_entry, list);
511 		list_del(&ne->list);
512 		spin_unlock(&nm_i->nat_list_lock);
513 
514 		__del_from_nat_cache(nm_i, ne);
515 		nr_shrink--;
516 
517 		spin_lock(&nm_i->nat_list_lock);
518 	}
519 	spin_unlock(&nm_i->nat_list_lock);
520 
521 	up_write(&nm_i->nat_tree_lock);
522 	return nr - nr_shrink;
523 }
524 
525 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
526 						struct node_info *ni)
527 {
528 	struct f2fs_nm_info *nm_i = NM_I(sbi);
529 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
530 	struct f2fs_journal *journal = curseg->journal;
531 	nid_t start_nid = START_NID(nid);
532 	struct f2fs_nat_block *nat_blk;
533 	struct page *page = NULL;
534 	struct f2fs_nat_entry ne;
535 	struct nat_entry *e;
536 	pgoff_t index;
537 	block_t blkaddr;
538 	int i;
539 
540 	ni->nid = nid;
541 
542 	/* Check nat cache */
543 	down_read(&nm_i->nat_tree_lock);
544 	e = __lookup_nat_cache(nm_i, nid);
545 	if (e) {
546 		ni->ino = nat_get_ino(e);
547 		ni->blk_addr = nat_get_blkaddr(e);
548 		ni->version = nat_get_version(e);
549 		up_read(&nm_i->nat_tree_lock);
550 		return 0;
551 	}
552 
553 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
554 
555 	/* Check current segment summary */
556 	down_read(&curseg->journal_rwsem);
557 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
558 	if (i >= 0) {
559 		ne = nat_in_journal(journal, i);
560 		node_info_from_raw_nat(ni, &ne);
561 	}
562 	up_read(&curseg->journal_rwsem);
563 	if (i >= 0) {
564 		up_read(&nm_i->nat_tree_lock);
565 		goto cache;
566 	}
567 
568 	/* Fill node_info from nat page */
569 	index = current_nat_addr(sbi, nid);
570 	up_read(&nm_i->nat_tree_lock);
571 
572 	page = f2fs_get_meta_page(sbi, index);
573 	if (IS_ERR(page))
574 		return PTR_ERR(page);
575 
576 	nat_blk = (struct f2fs_nat_block *)page_address(page);
577 	ne = nat_blk->entries[nid - start_nid];
578 	node_info_from_raw_nat(ni, &ne);
579 	f2fs_put_page(page, 1);
580 cache:
581 	blkaddr = le32_to_cpu(ne.block_addr);
582 	if (__is_valid_data_blkaddr(blkaddr) &&
583 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
584 		return -EFAULT;
585 
586 	/* cache nat entry */
587 	cache_nat_entry(sbi, nid, &ne);
588 	return 0;
589 }
590 
591 /*
592  * readahead MAX_RA_NODE number of node pages.
593  */
594 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
595 {
596 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
597 	struct blk_plug plug;
598 	int i, end;
599 	nid_t nid;
600 
601 	blk_start_plug(&plug);
602 
603 	/* Then, try readahead for siblings of the desired node */
604 	end = start + n;
605 	end = min(end, NIDS_PER_BLOCK);
606 	for (i = start; i < end; i++) {
607 		nid = get_nid(parent, i, false);
608 		f2fs_ra_node_page(sbi, nid);
609 	}
610 
611 	blk_finish_plug(&plug);
612 }
613 
614 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
615 {
616 	const long direct_index = ADDRS_PER_INODE(dn->inode);
617 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
618 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
619 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
620 	int cur_level = dn->cur_level;
621 	int max_level = dn->max_level;
622 	pgoff_t base = 0;
623 
624 	if (!dn->max_level)
625 		return pgofs + 1;
626 
627 	while (max_level-- > cur_level)
628 		skipped_unit *= NIDS_PER_BLOCK;
629 
630 	switch (dn->max_level) {
631 	case 3:
632 		base += 2 * indirect_blks;
633 		fallthrough;
634 	case 2:
635 		base += 2 * direct_blks;
636 		fallthrough;
637 	case 1:
638 		base += direct_index;
639 		break;
640 	default:
641 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
642 	}
643 
644 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
645 }
646 
647 /*
648  * The maximum depth is four.
649  * Offset[0] will have raw inode offset.
650  */
651 static int get_node_path(struct inode *inode, long block,
652 				int offset[4], unsigned int noffset[4])
653 {
654 	const long direct_index = ADDRS_PER_INODE(inode);
655 	const long direct_blks = ADDRS_PER_BLOCK(inode);
656 	const long dptrs_per_blk = NIDS_PER_BLOCK;
657 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
658 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
659 	int n = 0;
660 	int level = 0;
661 
662 	noffset[0] = 0;
663 
664 	if (block < direct_index) {
665 		offset[n] = block;
666 		goto got;
667 	}
668 	block -= direct_index;
669 	if (block < direct_blks) {
670 		offset[n++] = NODE_DIR1_BLOCK;
671 		noffset[n] = 1;
672 		offset[n] = block;
673 		level = 1;
674 		goto got;
675 	}
676 	block -= direct_blks;
677 	if (block < direct_blks) {
678 		offset[n++] = NODE_DIR2_BLOCK;
679 		noffset[n] = 2;
680 		offset[n] = block;
681 		level = 1;
682 		goto got;
683 	}
684 	block -= direct_blks;
685 	if (block < indirect_blks) {
686 		offset[n++] = NODE_IND1_BLOCK;
687 		noffset[n] = 3;
688 		offset[n++] = block / direct_blks;
689 		noffset[n] = 4 + offset[n - 1];
690 		offset[n] = block % direct_blks;
691 		level = 2;
692 		goto got;
693 	}
694 	block -= indirect_blks;
695 	if (block < indirect_blks) {
696 		offset[n++] = NODE_IND2_BLOCK;
697 		noffset[n] = 4 + dptrs_per_blk;
698 		offset[n++] = block / direct_blks;
699 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
700 		offset[n] = block % direct_blks;
701 		level = 2;
702 		goto got;
703 	}
704 	block -= indirect_blks;
705 	if (block < dindirect_blks) {
706 		offset[n++] = NODE_DIND_BLOCK;
707 		noffset[n] = 5 + (dptrs_per_blk * 2);
708 		offset[n++] = block / indirect_blks;
709 		noffset[n] = 6 + (dptrs_per_blk * 2) +
710 			      offset[n - 1] * (dptrs_per_blk + 1);
711 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
712 		noffset[n] = 7 + (dptrs_per_blk * 2) +
713 			      offset[n - 2] * (dptrs_per_blk + 1) +
714 			      offset[n - 1];
715 		offset[n] = block % direct_blks;
716 		level = 3;
717 		goto got;
718 	} else {
719 		return -E2BIG;
720 	}
721 got:
722 	return level;
723 }
724 
725 /*
726  * Caller should call f2fs_put_dnode(dn).
727  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
728  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
729  */
730 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
731 {
732 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
733 	struct page *npage[4];
734 	struct page *parent = NULL;
735 	int offset[4];
736 	unsigned int noffset[4];
737 	nid_t nids[4];
738 	int level, i = 0;
739 	int err = 0;
740 
741 	level = get_node_path(dn->inode, index, offset, noffset);
742 	if (level < 0)
743 		return level;
744 
745 	nids[0] = dn->inode->i_ino;
746 	npage[0] = dn->inode_page;
747 
748 	if (!npage[0]) {
749 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
750 		if (IS_ERR(npage[0]))
751 			return PTR_ERR(npage[0]);
752 	}
753 
754 	/* if inline_data is set, should not report any block indices */
755 	if (f2fs_has_inline_data(dn->inode) && index) {
756 		err = -ENOENT;
757 		f2fs_put_page(npage[0], 1);
758 		goto release_out;
759 	}
760 
761 	parent = npage[0];
762 	if (level != 0)
763 		nids[1] = get_nid(parent, offset[0], true);
764 	dn->inode_page = npage[0];
765 	dn->inode_page_locked = true;
766 
767 	/* get indirect or direct nodes */
768 	for (i = 1; i <= level; i++) {
769 		bool done = false;
770 
771 		if (!nids[i] && mode == ALLOC_NODE) {
772 			/* alloc new node */
773 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
774 				err = -ENOSPC;
775 				goto release_pages;
776 			}
777 
778 			dn->nid = nids[i];
779 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
780 			if (IS_ERR(npage[i])) {
781 				f2fs_alloc_nid_failed(sbi, nids[i]);
782 				err = PTR_ERR(npage[i]);
783 				goto release_pages;
784 			}
785 
786 			set_nid(parent, offset[i - 1], nids[i], i == 1);
787 			f2fs_alloc_nid_done(sbi, nids[i]);
788 			done = true;
789 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
790 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
791 			if (IS_ERR(npage[i])) {
792 				err = PTR_ERR(npage[i]);
793 				goto release_pages;
794 			}
795 			done = true;
796 		}
797 		if (i == 1) {
798 			dn->inode_page_locked = false;
799 			unlock_page(parent);
800 		} else {
801 			f2fs_put_page(parent, 1);
802 		}
803 
804 		if (!done) {
805 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
806 			if (IS_ERR(npage[i])) {
807 				err = PTR_ERR(npage[i]);
808 				f2fs_put_page(npage[0], 0);
809 				goto release_out;
810 			}
811 		}
812 		if (i < level) {
813 			parent = npage[i];
814 			nids[i + 1] = get_nid(parent, offset[i], false);
815 		}
816 	}
817 	dn->nid = nids[level];
818 	dn->ofs_in_node = offset[level];
819 	dn->node_page = npage[level];
820 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
821 	return 0;
822 
823 release_pages:
824 	f2fs_put_page(parent, 1);
825 	if (i > 1)
826 		f2fs_put_page(npage[0], 0);
827 release_out:
828 	dn->inode_page = NULL;
829 	dn->node_page = NULL;
830 	if (err == -ENOENT) {
831 		dn->cur_level = i;
832 		dn->max_level = level;
833 		dn->ofs_in_node = offset[level];
834 	}
835 	return err;
836 }
837 
838 static int truncate_node(struct dnode_of_data *dn)
839 {
840 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
841 	struct node_info ni;
842 	int err;
843 	pgoff_t index;
844 
845 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
846 	if (err)
847 		return err;
848 
849 	/* Deallocate node address */
850 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
851 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
852 	set_node_addr(sbi, &ni, NULL_ADDR, false);
853 
854 	if (dn->nid == dn->inode->i_ino) {
855 		f2fs_remove_orphan_inode(sbi, dn->nid);
856 		dec_valid_inode_count(sbi);
857 		f2fs_inode_synced(dn->inode);
858 	}
859 
860 	clear_node_page_dirty(dn->node_page);
861 	set_sbi_flag(sbi, SBI_IS_DIRTY);
862 
863 	index = dn->node_page->index;
864 	f2fs_put_page(dn->node_page, 1);
865 
866 	invalidate_mapping_pages(NODE_MAPPING(sbi),
867 			index, index);
868 
869 	dn->node_page = NULL;
870 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
871 
872 	return 0;
873 }
874 
875 static int truncate_dnode(struct dnode_of_data *dn)
876 {
877 	struct page *page;
878 	int err;
879 
880 	if (dn->nid == 0)
881 		return 1;
882 
883 	/* get direct node */
884 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
885 	if (PTR_ERR(page) == -ENOENT)
886 		return 1;
887 	else if (IS_ERR(page))
888 		return PTR_ERR(page);
889 
890 	/* Make dnode_of_data for parameter */
891 	dn->node_page = page;
892 	dn->ofs_in_node = 0;
893 	f2fs_truncate_data_blocks(dn);
894 	err = truncate_node(dn);
895 	if (err)
896 		return err;
897 
898 	return 1;
899 }
900 
901 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
902 						int ofs, int depth)
903 {
904 	struct dnode_of_data rdn = *dn;
905 	struct page *page;
906 	struct f2fs_node *rn;
907 	nid_t child_nid;
908 	unsigned int child_nofs;
909 	int freed = 0;
910 	int i, ret;
911 
912 	if (dn->nid == 0)
913 		return NIDS_PER_BLOCK + 1;
914 
915 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
916 
917 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
918 	if (IS_ERR(page)) {
919 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
920 		return PTR_ERR(page);
921 	}
922 
923 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
924 
925 	rn = F2FS_NODE(page);
926 	if (depth < 3) {
927 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
928 			child_nid = le32_to_cpu(rn->in.nid[i]);
929 			if (child_nid == 0)
930 				continue;
931 			rdn.nid = child_nid;
932 			ret = truncate_dnode(&rdn);
933 			if (ret < 0)
934 				goto out_err;
935 			if (set_nid(page, i, 0, false))
936 				dn->node_changed = true;
937 		}
938 	} else {
939 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
940 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
941 			child_nid = le32_to_cpu(rn->in.nid[i]);
942 			if (child_nid == 0) {
943 				child_nofs += NIDS_PER_BLOCK + 1;
944 				continue;
945 			}
946 			rdn.nid = child_nid;
947 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
948 			if (ret == (NIDS_PER_BLOCK + 1)) {
949 				if (set_nid(page, i, 0, false))
950 					dn->node_changed = true;
951 				child_nofs += ret;
952 			} else if (ret < 0 && ret != -ENOENT) {
953 				goto out_err;
954 			}
955 		}
956 		freed = child_nofs;
957 	}
958 
959 	if (!ofs) {
960 		/* remove current indirect node */
961 		dn->node_page = page;
962 		ret = truncate_node(dn);
963 		if (ret)
964 			goto out_err;
965 		freed++;
966 	} else {
967 		f2fs_put_page(page, 1);
968 	}
969 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
970 	return freed;
971 
972 out_err:
973 	f2fs_put_page(page, 1);
974 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
975 	return ret;
976 }
977 
978 static int truncate_partial_nodes(struct dnode_of_data *dn,
979 			struct f2fs_inode *ri, int *offset, int depth)
980 {
981 	struct page *pages[2];
982 	nid_t nid[3];
983 	nid_t child_nid;
984 	int err = 0;
985 	int i;
986 	int idx = depth - 2;
987 
988 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
989 	if (!nid[0])
990 		return 0;
991 
992 	/* get indirect nodes in the path */
993 	for (i = 0; i < idx + 1; i++) {
994 		/* reference count'll be increased */
995 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
996 		if (IS_ERR(pages[i])) {
997 			err = PTR_ERR(pages[i]);
998 			idx = i - 1;
999 			goto fail;
1000 		}
1001 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1002 	}
1003 
1004 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1005 
1006 	/* free direct nodes linked to a partial indirect node */
1007 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1008 		child_nid = get_nid(pages[idx], i, false);
1009 		if (!child_nid)
1010 			continue;
1011 		dn->nid = child_nid;
1012 		err = truncate_dnode(dn);
1013 		if (err < 0)
1014 			goto fail;
1015 		if (set_nid(pages[idx], i, 0, false))
1016 			dn->node_changed = true;
1017 	}
1018 
1019 	if (offset[idx + 1] == 0) {
1020 		dn->node_page = pages[idx];
1021 		dn->nid = nid[idx];
1022 		err = truncate_node(dn);
1023 		if (err)
1024 			goto fail;
1025 	} else {
1026 		f2fs_put_page(pages[idx], 1);
1027 	}
1028 	offset[idx]++;
1029 	offset[idx + 1] = 0;
1030 	idx--;
1031 fail:
1032 	for (i = idx; i >= 0; i--)
1033 		f2fs_put_page(pages[i], 1);
1034 
1035 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1036 
1037 	return err;
1038 }
1039 
1040 /*
1041  * All the block addresses of data and nodes should be nullified.
1042  */
1043 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1044 {
1045 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 	int err = 0, cont = 1;
1047 	int level, offset[4], noffset[4];
1048 	unsigned int nofs = 0;
1049 	struct f2fs_inode *ri;
1050 	struct dnode_of_data dn;
1051 	struct page *page;
1052 
1053 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1054 
1055 	level = get_node_path(inode, from, offset, noffset);
1056 	if (level < 0) {
1057 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1058 		return level;
1059 	}
1060 
1061 	page = f2fs_get_node_page(sbi, inode->i_ino);
1062 	if (IS_ERR(page)) {
1063 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1064 		return PTR_ERR(page);
1065 	}
1066 
1067 	set_new_dnode(&dn, inode, page, NULL, 0);
1068 	unlock_page(page);
1069 
1070 	ri = F2FS_INODE(page);
1071 	switch (level) {
1072 	case 0:
1073 	case 1:
1074 		nofs = noffset[1];
1075 		break;
1076 	case 2:
1077 		nofs = noffset[1];
1078 		if (!offset[level - 1])
1079 			goto skip_partial;
1080 		err = truncate_partial_nodes(&dn, ri, offset, level);
1081 		if (err < 0 && err != -ENOENT)
1082 			goto fail;
1083 		nofs += 1 + NIDS_PER_BLOCK;
1084 		break;
1085 	case 3:
1086 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1087 		if (!offset[level - 1])
1088 			goto skip_partial;
1089 		err = truncate_partial_nodes(&dn, ri, offset, level);
1090 		if (err < 0 && err != -ENOENT)
1091 			goto fail;
1092 		break;
1093 	default:
1094 		BUG();
1095 	}
1096 
1097 skip_partial:
1098 	while (cont) {
1099 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1100 		switch (offset[0]) {
1101 		case NODE_DIR1_BLOCK:
1102 		case NODE_DIR2_BLOCK:
1103 			err = truncate_dnode(&dn);
1104 			break;
1105 
1106 		case NODE_IND1_BLOCK:
1107 		case NODE_IND2_BLOCK:
1108 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1109 			break;
1110 
1111 		case NODE_DIND_BLOCK:
1112 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1113 			cont = 0;
1114 			break;
1115 
1116 		default:
1117 			BUG();
1118 		}
1119 		if (err < 0 && err != -ENOENT)
1120 			goto fail;
1121 		if (offset[1] == 0 &&
1122 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1123 			lock_page(page);
1124 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1125 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1126 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1127 			set_page_dirty(page);
1128 			unlock_page(page);
1129 		}
1130 		offset[1] = 0;
1131 		offset[0]++;
1132 		nofs += err;
1133 	}
1134 fail:
1135 	f2fs_put_page(page, 0);
1136 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1137 	return err > 0 ? 0 : err;
1138 }
1139 
1140 /* caller must lock inode page */
1141 int f2fs_truncate_xattr_node(struct inode *inode)
1142 {
1143 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1144 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1145 	struct dnode_of_data dn;
1146 	struct page *npage;
1147 	int err;
1148 
1149 	if (!nid)
1150 		return 0;
1151 
1152 	npage = f2fs_get_node_page(sbi, nid);
1153 	if (IS_ERR(npage))
1154 		return PTR_ERR(npage);
1155 
1156 	set_new_dnode(&dn, inode, NULL, npage, nid);
1157 	err = truncate_node(&dn);
1158 	if (err) {
1159 		f2fs_put_page(npage, 1);
1160 		return err;
1161 	}
1162 
1163 	f2fs_i_xnid_write(inode, 0);
1164 
1165 	return 0;
1166 }
1167 
1168 /*
1169  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1170  * f2fs_unlock_op().
1171  */
1172 int f2fs_remove_inode_page(struct inode *inode)
1173 {
1174 	struct dnode_of_data dn;
1175 	int err;
1176 
1177 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1178 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1179 	if (err)
1180 		return err;
1181 
1182 	err = f2fs_truncate_xattr_node(inode);
1183 	if (err) {
1184 		f2fs_put_dnode(&dn);
1185 		return err;
1186 	}
1187 
1188 	/* remove potential inline_data blocks */
1189 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1190 				S_ISLNK(inode->i_mode))
1191 		f2fs_truncate_data_blocks_range(&dn, 1);
1192 
1193 	/* 0 is possible, after f2fs_new_inode() has failed */
1194 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1195 		f2fs_put_dnode(&dn);
1196 		return -EIO;
1197 	}
1198 
1199 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1200 		f2fs_warn(F2FS_I_SB(inode),
1201 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1202 			inode->i_ino, (unsigned long long)inode->i_blocks);
1203 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1204 	}
1205 
1206 	/* will put inode & node pages */
1207 	err = truncate_node(&dn);
1208 	if (err) {
1209 		f2fs_put_dnode(&dn);
1210 		return err;
1211 	}
1212 	return 0;
1213 }
1214 
1215 struct page *f2fs_new_inode_page(struct inode *inode)
1216 {
1217 	struct dnode_of_data dn;
1218 
1219 	/* allocate inode page for new inode */
1220 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1221 
1222 	/* caller should f2fs_put_page(page, 1); */
1223 	return f2fs_new_node_page(&dn, 0);
1224 }
1225 
1226 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1227 {
1228 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1229 	struct node_info new_ni;
1230 	struct page *page;
1231 	int err;
1232 
1233 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1234 		return ERR_PTR(-EPERM);
1235 
1236 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1237 	if (!page)
1238 		return ERR_PTR(-ENOMEM);
1239 
1240 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1241 		goto fail;
1242 
1243 #ifdef CONFIG_F2FS_CHECK_FS
1244 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1245 	if (err) {
1246 		dec_valid_node_count(sbi, dn->inode, !ofs);
1247 		goto fail;
1248 	}
1249 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1250 #endif
1251 	new_ni.nid = dn->nid;
1252 	new_ni.ino = dn->inode->i_ino;
1253 	new_ni.blk_addr = NULL_ADDR;
1254 	new_ni.flag = 0;
1255 	new_ni.version = 0;
1256 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1257 
1258 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1259 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1260 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1261 	if (!PageUptodate(page))
1262 		SetPageUptodate(page);
1263 	if (set_page_dirty(page))
1264 		dn->node_changed = true;
1265 
1266 	if (f2fs_has_xattr_block(ofs))
1267 		f2fs_i_xnid_write(dn->inode, dn->nid);
1268 
1269 	if (ofs == 0)
1270 		inc_valid_inode_count(sbi);
1271 	return page;
1272 
1273 fail:
1274 	clear_node_page_dirty(page);
1275 	f2fs_put_page(page, 1);
1276 	return ERR_PTR(err);
1277 }
1278 
1279 /*
1280  * Caller should do after getting the following values.
1281  * 0: f2fs_put_page(page, 0)
1282  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1283  */
1284 static int read_node_page(struct page *page, int op_flags)
1285 {
1286 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1287 	struct node_info ni;
1288 	struct f2fs_io_info fio = {
1289 		.sbi = sbi,
1290 		.type = NODE,
1291 		.op = REQ_OP_READ,
1292 		.op_flags = op_flags,
1293 		.page = page,
1294 		.encrypted_page = NULL,
1295 	};
1296 	int err;
1297 
1298 	if (PageUptodate(page)) {
1299 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1300 			ClearPageUptodate(page);
1301 			return -EFSBADCRC;
1302 		}
1303 		return LOCKED_PAGE;
1304 	}
1305 
1306 	err = f2fs_get_node_info(sbi, page->index, &ni);
1307 	if (err)
1308 		return err;
1309 
1310 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1311 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1312 		ClearPageUptodate(page);
1313 		return -ENOENT;
1314 	}
1315 
1316 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1317 
1318 	err = f2fs_submit_page_bio(&fio);
1319 
1320 	if (!err)
1321 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1322 
1323 	return err;
1324 }
1325 
1326 /*
1327  * Readahead a node page
1328  */
1329 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1330 {
1331 	struct page *apage;
1332 	int err;
1333 
1334 	if (!nid)
1335 		return;
1336 	if (f2fs_check_nid_range(sbi, nid))
1337 		return;
1338 
1339 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1340 	if (apage)
1341 		return;
1342 
1343 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1344 	if (!apage)
1345 		return;
1346 
1347 	err = read_node_page(apage, REQ_RAHEAD);
1348 	f2fs_put_page(apage, err ? 1 : 0);
1349 }
1350 
1351 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1352 					struct page *parent, int start)
1353 {
1354 	struct page *page;
1355 	int err;
1356 
1357 	if (!nid)
1358 		return ERR_PTR(-ENOENT);
1359 	if (f2fs_check_nid_range(sbi, nid))
1360 		return ERR_PTR(-EINVAL);
1361 repeat:
1362 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1363 	if (!page)
1364 		return ERR_PTR(-ENOMEM);
1365 
1366 	err = read_node_page(page, 0);
1367 	if (err < 0) {
1368 		f2fs_put_page(page, 1);
1369 		return ERR_PTR(err);
1370 	} else if (err == LOCKED_PAGE) {
1371 		err = 0;
1372 		goto page_hit;
1373 	}
1374 
1375 	if (parent)
1376 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1377 
1378 	lock_page(page);
1379 
1380 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1381 		f2fs_put_page(page, 1);
1382 		goto repeat;
1383 	}
1384 
1385 	if (unlikely(!PageUptodate(page))) {
1386 		err = -EIO;
1387 		goto out_err;
1388 	}
1389 
1390 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1391 		err = -EFSBADCRC;
1392 		goto out_err;
1393 	}
1394 page_hit:
1395 	if (unlikely(nid != nid_of_node(page))) {
1396 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1397 			  nid, nid_of_node(page), ino_of_node(page),
1398 			  ofs_of_node(page), cpver_of_node(page),
1399 			  next_blkaddr_of_node(page));
1400 		err = -EINVAL;
1401 out_err:
1402 		ClearPageUptodate(page);
1403 		f2fs_put_page(page, 1);
1404 		return ERR_PTR(err);
1405 	}
1406 	return page;
1407 }
1408 
1409 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1410 {
1411 	return __get_node_page(sbi, nid, NULL, 0);
1412 }
1413 
1414 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1415 {
1416 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1417 	nid_t nid = get_nid(parent, start, false);
1418 
1419 	return __get_node_page(sbi, nid, parent, start);
1420 }
1421 
1422 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1423 {
1424 	struct inode *inode;
1425 	struct page *page;
1426 	int ret;
1427 
1428 	/* should flush inline_data before evict_inode */
1429 	inode = ilookup(sbi->sb, ino);
1430 	if (!inode)
1431 		return;
1432 
1433 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1434 					FGP_LOCK|FGP_NOWAIT, 0);
1435 	if (!page)
1436 		goto iput_out;
1437 
1438 	if (!PageUptodate(page))
1439 		goto page_out;
1440 
1441 	if (!PageDirty(page))
1442 		goto page_out;
1443 
1444 	if (!clear_page_dirty_for_io(page))
1445 		goto page_out;
1446 
1447 	ret = f2fs_write_inline_data(inode, page);
1448 	inode_dec_dirty_pages(inode);
1449 	f2fs_remove_dirty_inode(inode);
1450 	if (ret)
1451 		set_page_dirty(page);
1452 page_out:
1453 	f2fs_put_page(page, 1);
1454 iput_out:
1455 	iput(inode);
1456 }
1457 
1458 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1459 {
1460 	pgoff_t index;
1461 	struct pagevec pvec;
1462 	struct page *last_page = NULL;
1463 	int nr_pages;
1464 
1465 	pagevec_init(&pvec);
1466 	index = 0;
1467 
1468 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1469 				PAGECACHE_TAG_DIRTY))) {
1470 		int i;
1471 
1472 		for (i = 0; i < nr_pages; i++) {
1473 			struct page *page = pvec.pages[i];
1474 
1475 			if (unlikely(f2fs_cp_error(sbi))) {
1476 				f2fs_put_page(last_page, 0);
1477 				pagevec_release(&pvec);
1478 				return ERR_PTR(-EIO);
1479 			}
1480 
1481 			if (!IS_DNODE(page) || !is_cold_node(page))
1482 				continue;
1483 			if (ino_of_node(page) != ino)
1484 				continue;
1485 
1486 			lock_page(page);
1487 
1488 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1489 continue_unlock:
1490 				unlock_page(page);
1491 				continue;
1492 			}
1493 			if (ino_of_node(page) != ino)
1494 				goto continue_unlock;
1495 
1496 			if (!PageDirty(page)) {
1497 				/* someone wrote it for us */
1498 				goto continue_unlock;
1499 			}
1500 
1501 			if (last_page)
1502 				f2fs_put_page(last_page, 0);
1503 
1504 			get_page(page);
1505 			last_page = page;
1506 			unlock_page(page);
1507 		}
1508 		pagevec_release(&pvec);
1509 		cond_resched();
1510 	}
1511 	return last_page;
1512 }
1513 
1514 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1515 				struct writeback_control *wbc, bool do_balance,
1516 				enum iostat_type io_type, unsigned int *seq_id)
1517 {
1518 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1519 	nid_t nid;
1520 	struct node_info ni;
1521 	struct f2fs_io_info fio = {
1522 		.sbi = sbi,
1523 		.ino = ino_of_node(page),
1524 		.type = NODE,
1525 		.op = REQ_OP_WRITE,
1526 		.op_flags = wbc_to_write_flags(wbc),
1527 		.page = page,
1528 		.encrypted_page = NULL,
1529 		.submitted = false,
1530 		.io_type = io_type,
1531 		.io_wbc = wbc,
1532 	};
1533 	unsigned int seq;
1534 
1535 	trace_f2fs_writepage(page, NODE);
1536 
1537 	if (unlikely(f2fs_cp_error(sbi))) {
1538 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1539 			ClearPageUptodate(page);
1540 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1541 			unlock_page(page);
1542 			return 0;
1543 		}
1544 		goto redirty_out;
1545 	}
1546 
1547 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1548 		goto redirty_out;
1549 
1550 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1551 			wbc->sync_mode == WB_SYNC_NONE &&
1552 			IS_DNODE(page) && is_cold_node(page))
1553 		goto redirty_out;
1554 
1555 	/* get old block addr of this node page */
1556 	nid = nid_of_node(page);
1557 	f2fs_bug_on(sbi, page->index != nid);
1558 
1559 	if (f2fs_get_node_info(sbi, nid, &ni))
1560 		goto redirty_out;
1561 
1562 	if (wbc->for_reclaim) {
1563 		if (!down_read_trylock(&sbi->node_write))
1564 			goto redirty_out;
1565 	} else {
1566 		down_read(&sbi->node_write);
1567 	}
1568 
1569 	/* This page is already truncated */
1570 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1571 		ClearPageUptodate(page);
1572 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1573 		up_read(&sbi->node_write);
1574 		unlock_page(page);
1575 		return 0;
1576 	}
1577 
1578 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1579 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1580 					DATA_GENERIC_ENHANCE)) {
1581 		up_read(&sbi->node_write);
1582 		goto redirty_out;
1583 	}
1584 
1585 	if (atomic && !test_opt(sbi, NOBARRIER))
1586 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1587 
1588 	/* should add to global list before clearing PAGECACHE status */
1589 	if (f2fs_in_warm_node_list(sbi, page)) {
1590 		seq = f2fs_add_fsync_node_entry(sbi, page);
1591 		if (seq_id)
1592 			*seq_id = seq;
1593 	}
1594 
1595 	set_page_writeback(page);
1596 	ClearPageError(page);
1597 
1598 	fio.old_blkaddr = ni.blk_addr;
1599 	f2fs_do_write_node_page(nid, &fio);
1600 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1601 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1602 	up_read(&sbi->node_write);
1603 
1604 	if (wbc->for_reclaim) {
1605 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1606 		submitted = NULL;
1607 	}
1608 
1609 	unlock_page(page);
1610 
1611 	if (unlikely(f2fs_cp_error(sbi))) {
1612 		f2fs_submit_merged_write(sbi, NODE);
1613 		submitted = NULL;
1614 	}
1615 	if (submitted)
1616 		*submitted = fio.submitted;
1617 
1618 	if (do_balance)
1619 		f2fs_balance_fs(sbi, false);
1620 	return 0;
1621 
1622 redirty_out:
1623 	redirty_page_for_writepage(wbc, page);
1624 	return AOP_WRITEPAGE_ACTIVATE;
1625 }
1626 
1627 int f2fs_move_node_page(struct page *node_page, int gc_type)
1628 {
1629 	int err = 0;
1630 
1631 	if (gc_type == FG_GC) {
1632 		struct writeback_control wbc = {
1633 			.sync_mode = WB_SYNC_ALL,
1634 			.nr_to_write = 1,
1635 			.for_reclaim = 0,
1636 		};
1637 
1638 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1639 
1640 		set_page_dirty(node_page);
1641 
1642 		if (!clear_page_dirty_for_io(node_page)) {
1643 			err = -EAGAIN;
1644 			goto out_page;
1645 		}
1646 
1647 		if (__write_node_page(node_page, false, NULL,
1648 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1649 			err = -EAGAIN;
1650 			unlock_page(node_page);
1651 		}
1652 		goto release_page;
1653 	} else {
1654 		/* set page dirty and write it */
1655 		if (!PageWriteback(node_page))
1656 			set_page_dirty(node_page);
1657 	}
1658 out_page:
1659 	unlock_page(node_page);
1660 release_page:
1661 	f2fs_put_page(node_page, 0);
1662 	return err;
1663 }
1664 
1665 static int f2fs_write_node_page(struct page *page,
1666 				struct writeback_control *wbc)
1667 {
1668 	return __write_node_page(page, false, NULL, wbc, false,
1669 						FS_NODE_IO, NULL);
1670 }
1671 
1672 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1673 			struct writeback_control *wbc, bool atomic,
1674 			unsigned int *seq_id)
1675 {
1676 	pgoff_t index;
1677 	struct pagevec pvec;
1678 	int ret = 0;
1679 	struct page *last_page = NULL;
1680 	bool marked = false;
1681 	nid_t ino = inode->i_ino;
1682 	int nr_pages;
1683 	int nwritten = 0;
1684 
1685 	if (atomic) {
1686 		last_page = last_fsync_dnode(sbi, ino);
1687 		if (IS_ERR_OR_NULL(last_page))
1688 			return PTR_ERR_OR_ZERO(last_page);
1689 	}
1690 retry:
1691 	pagevec_init(&pvec);
1692 	index = 0;
1693 
1694 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1695 				PAGECACHE_TAG_DIRTY))) {
1696 		int i;
1697 
1698 		for (i = 0; i < nr_pages; i++) {
1699 			struct page *page = pvec.pages[i];
1700 			bool submitted = false;
1701 
1702 			if (unlikely(f2fs_cp_error(sbi))) {
1703 				f2fs_put_page(last_page, 0);
1704 				pagevec_release(&pvec);
1705 				ret = -EIO;
1706 				goto out;
1707 			}
1708 
1709 			if (!IS_DNODE(page) || !is_cold_node(page))
1710 				continue;
1711 			if (ino_of_node(page) != ino)
1712 				continue;
1713 
1714 			lock_page(page);
1715 
1716 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1717 continue_unlock:
1718 				unlock_page(page);
1719 				continue;
1720 			}
1721 			if (ino_of_node(page) != ino)
1722 				goto continue_unlock;
1723 
1724 			if (!PageDirty(page) && page != last_page) {
1725 				/* someone wrote it for us */
1726 				goto continue_unlock;
1727 			}
1728 
1729 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1730 
1731 			set_fsync_mark(page, 0);
1732 			set_dentry_mark(page, 0);
1733 
1734 			if (!atomic || page == last_page) {
1735 				set_fsync_mark(page, 1);
1736 				if (IS_INODE(page)) {
1737 					if (is_inode_flag_set(inode,
1738 								FI_DIRTY_INODE))
1739 						f2fs_update_inode(inode, page);
1740 					set_dentry_mark(page,
1741 						f2fs_need_dentry_mark(sbi, ino));
1742 				}
1743 				/* may be written by other thread */
1744 				if (!PageDirty(page))
1745 					set_page_dirty(page);
1746 			}
1747 
1748 			if (!clear_page_dirty_for_io(page))
1749 				goto continue_unlock;
1750 
1751 			ret = __write_node_page(page, atomic &&
1752 						page == last_page,
1753 						&submitted, wbc, true,
1754 						FS_NODE_IO, seq_id);
1755 			if (ret) {
1756 				unlock_page(page);
1757 				f2fs_put_page(last_page, 0);
1758 				break;
1759 			} else if (submitted) {
1760 				nwritten++;
1761 			}
1762 
1763 			if (page == last_page) {
1764 				f2fs_put_page(page, 0);
1765 				marked = true;
1766 				break;
1767 			}
1768 		}
1769 		pagevec_release(&pvec);
1770 		cond_resched();
1771 
1772 		if (ret || marked)
1773 			break;
1774 	}
1775 	if (!ret && atomic && !marked) {
1776 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1777 			   ino, last_page->index);
1778 		lock_page(last_page);
1779 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1780 		set_page_dirty(last_page);
1781 		unlock_page(last_page);
1782 		goto retry;
1783 	}
1784 out:
1785 	if (nwritten)
1786 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1787 	return ret ? -EIO : 0;
1788 }
1789 
1790 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1791 {
1792 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1793 	bool clean;
1794 
1795 	if (inode->i_ino != ino)
1796 		return 0;
1797 
1798 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1799 		return 0;
1800 
1801 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1802 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1803 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1804 
1805 	if (clean)
1806 		return 0;
1807 
1808 	inode = igrab(inode);
1809 	if (!inode)
1810 		return 0;
1811 	return 1;
1812 }
1813 
1814 static bool flush_dirty_inode(struct page *page)
1815 {
1816 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1817 	struct inode *inode;
1818 	nid_t ino = ino_of_node(page);
1819 
1820 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1821 	if (!inode)
1822 		return false;
1823 
1824 	f2fs_update_inode(inode, page);
1825 	unlock_page(page);
1826 
1827 	iput(inode);
1828 	return true;
1829 }
1830 
1831 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1832 {
1833 	pgoff_t index = 0;
1834 	struct pagevec pvec;
1835 	int nr_pages;
1836 
1837 	pagevec_init(&pvec);
1838 
1839 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1840 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1841 		int i;
1842 
1843 		for (i = 0; i < nr_pages; i++) {
1844 			struct page *page = pvec.pages[i];
1845 
1846 			if (!IS_DNODE(page))
1847 				continue;
1848 
1849 			lock_page(page);
1850 
1851 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1852 continue_unlock:
1853 				unlock_page(page);
1854 				continue;
1855 			}
1856 
1857 			if (!PageDirty(page)) {
1858 				/* someone wrote it for us */
1859 				goto continue_unlock;
1860 			}
1861 
1862 			/* flush inline_data, if it's async context. */
1863 			if (is_inline_node(page)) {
1864 				clear_inline_node(page);
1865 				unlock_page(page);
1866 				flush_inline_data(sbi, ino_of_node(page));
1867 				continue;
1868 			}
1869 			unlock_page(page);
1870 		}
1871 		pagevec_release(&pvec);
1872 		cond_resched();
1873 	}
1874 }
1875 
1876 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1877 				struct writeback_control *wbc,
1878 				bool do_balance, enum iostat_type io_type)
1879 {
1880 	pgoff_t index;
1881 	struct pagevec pvec;
1882 	int step = 0;
1883 	int nwritten = 0;
1884 	int ret = 0;
1885 	int nr_pages, done = 0;
1886 
1887 	pagevec_init(&pvec);
1888 
1889 next_step:
1890 	index = 0;
1891 
1892 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1893 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1894 		int i;
1895 
1896 		for (i = 0; i < nr_pages; i++) {
1897 			struct page *page = pvec.pages[i];
1898 			bool submitted = false;
1899 			bool may_dirty = true;
1900 
1901 			/* give a priority to WB_SYNC threads */
1902 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1903 					wbc->sync_mode == WB_SYNC_NONE) {
1904 				done = 1;
1905 				break;
1906 			}
1907 
1908 			/*
1909 			 * flushing sequence with step:
1910 			 * 0. indirect nodes
1911 			 * 1. dentry dnodes
1912 			 * 2. file dnodes
1913 			 */
1914 			if (step == 0 && IS_DNODE(page))
1915 				continue;
1916 			if (step == 1 && (!IS_DNODE(page) ||
1917 						is_cold_node(page)))
1918 				continue;
1919 			if (step == 2 && (!IS_DNODE(page) ||
1920 						!is_cold_node(page)))
1921 				continue;
1922 lock_node:
1923 			if (wbc->sync_mode == WB_SYNC_ALL)
1924 				lock_page(page);
1925 			else if (!trylock_page(page))
1926 				continue;
1927 
1928 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1929 continue_unlock:
1930 				unlock_page(page);
1931 				continue;
1932 			}
1933 
1934 			if (!PageDirty(page)) {
1935 				/* someone wrote it for us */
1936 				goto continue_unlock;
1937 			}
1938 
1939 			/* flush inline_data/inode, if it's async context. */
1940 			if (!do_balance)
1941 				goto write_node;
1942 
1943 			/* flush inline_data */
1944 			if (is_inline_node(page)) {
1945 				clear_inline_node(page);
1946 				unlock_page(page);
1947 				flush_inline_data(sbi, ino_of_node(page));
1948 				goto lock_node;
1949 			}
1950 
1951 			/* flush dirty inode */
1952 			if (IS_INODE(page) && may_dirty) {
1953 				may_dirty = false;
1954 				if (flush_dirty_inode(page))
1955 					goto lock_node;
1956 			}
1957 write_node:
1958 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1959 
1960 			if (!clear_page_dirty_for_io(page))
1961 				goto continue_unlock;
1962 
1963 			set_fsync_mark(page, 0);
1964 			set_dentry_mark(page, 0);
1965 
1966 			ret = __write_node_page(page, false, &submitted,
1967 						wbc, do_balance, io_type, NULL);
1968 			if (ret)
1969 				unlock_page(page);
1970 			else if (submitted)
1971 				nwritten++;
1972 
1973 			if (--wbc->nr_to_write == 0)
1974 				break;
1975 		}
1976 		pagevec_release(&pvec);
1977 		cond_resched();
1978 
1979 		if (wbc->nr_to_write == 0) {
1980 			step = 2;
1981 			break;
1982 		}
1983 	}
1984 
1985 	if (step < 2) {
1986 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1987 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1988 			goto out;
1989 		step++;
1990 		goto next_step;
1991 	}
1992 out:
1993 	if (nwritten)
1994 		f2fs_submit_merged_write(sbi, NODE);
1995 
1996 	if (unlikely(f2fs_cp_error(sbi)))
1997 		return -EIO;
1998 	return ret;
1999 }
2000 
2001 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2002 						unsigned int seq_id)
2003 {
2004 	struct fsync_node_entry *fn;
2005 	struct page *page;
2006 	struct list_head *head = &sbi->fsync_node_list;
2007 	unsigned long flags;
2008 	unsigned int cur_seq_id = 0;
2009 	int ret2, ret = 0;
2010 
2011 	while (seq_id && cur_seq_id < seq_id) {
2012 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2013 		if (list_empty(head)) {
2014 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2015 			break;
2016 		}
2017 		fn = list_first_entry(head, struct fsync_node_entry, list);
2018 		if (fn->seq_id > seq_id) {
2019 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2020 			break;
2021 		}
2022 		cur_seq_id = fn->seq_id;
2023 		page = fn->page;
2024 		get_page(page);
2025 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2026 
2027 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2028 		if (TestClearPageError(page))
2029 			ret = -EIO;
2030 
2031 		put_page(page);
2032 
2033 		if (ret)
2034 			break;
2035 	}
2036 
2037 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2038 	if (!ret)
2039 		ret = ret2;
2040 
2041 	return ret;
2042 }
2043 
2044 static int f2fs_write_node_pages(struct address_space *mapping,
2045 			    struct writeback_control *wbc)
2046 {
2047 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2048 	struct blk_plug plug;
2049 	long diff;
2050 
2051 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2052 		goto skip_write;
2053 
2054 	/* balancing f2fs's metadata in background */
2055 	f2fs_balance_fs_bg(sbi, true);
2056 
2057 	/* collect a number of dirty node pages and write together */
2058 	if (wbc->sync_mode != WB_SYNC_ALL &&
2059 			get_pages(sbi, F2FS_DIRTY_NODES) <
2060 					nr_pages_to_skip(sbi, NODE))
2061 		goto skip_write;
2062 
2063 	if (wbc->sync_mode == WB_SYNC_ALL)
2064 		atomic_inc(&sbi->wb_sync_req[NODE]);
2065 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
2066 		goto skip_write;
2067 
2068 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2069 
2070 	diff = nr_pages_to_write(sbi, NODE, wbc);
2071 	blk_start_plug(&plug);
2072 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2073 	blk_finish_plug(&plug);
2074 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2075 
2076 	if (wbc->sync_mode == WB_SYNC_ALL)
2077 		atomic_dec(&sbi->wb_sync_req[NODE]);
2078 	return 0;
2079 
2080 skip_write:
2081 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2082 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2083 	return 0;
2084 }
2085 
2086 static int f2fs_set_node_page_dirty(struct page *page)
2087 {
2088 	trace_f2fs_set_page_dirty(page, NODE);
2089 
2090 	if (!PageUptodate(page))
2091 		SetPageUptodate(page);
2092 #ifdef CONFIG_F2FS_CHECK_FS
2093 	if (IS_INODE(page))
2094 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2095 #endif
2096 	if (!PageDirty(page)) {
2097 		__set_page_dirty_nobuffers(page);
2098 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2099 		f2fs_set_page_private(page, 0);
2100 		return 1;
2101 	}
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Structure of the f2fs node operations
2107  */
2108 const struct address_space_operations f2fs_node_aops = {
2109 	.writepage	= f2fs_write_node_page,
2110 	.writepages	= f2fs_write_node_pages,
2111 	.set_page_dirty	= f2fs_set_node_page_dirty,
2112 	.invalidatepage	= f2fs_invalidate_page,
2113 	.releasepage	= f2fs_release_page,
2114 #ifdef CONFIG_MIGRATION
2115 	.migratepage	= f2fs_migrate_page,
2116 #endif
2117 };
2118 
2119 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2120 						nid_t n)
2121 {
2122 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2123 }
2124 
2125 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2126 				struct free_nid *i)
2127 {
2128 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2129 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2130 
2131 	if (err)
2132 		return err;
2133 
2134 	nm_i->nid_cnt[FREE_NID]++;
2135 	list_add_tail(&i->list, &nm_i->free_nid_list);
2136 	return 0;
2137 }
2138 
2139 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2140 			struct free_nid *i, enum nid_state state)
2141 {
2142 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2143 
2144 	f2fs_bug_on(sbi, state != i->state);
2145 	nm_i->nid_cnt[state]--;
2146 	if (state == FREE_NID)
2147 		list_del(&i->list);
2148 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2149 }
2150 
2151 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2152 			enum nid_state org_state, enum nid_state dst_state)
2153 {
2154 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2155 
2156 	f2fs_bug_on(sbi, org_state != i->state);
2157 	i->state = dst_state;
2158 	nm_i->nid_cnt[org_state]--;
2159 	nm_i->nid_cnt[dst_state]++;
2160 
2161 	switch (dst_state) {
2162 	case PREALLOC_NID:
2163 		list_del(&i->list);
2164 		break;
2165 	case FREE_NID:
2166 		list_add_tail(&i->list, &nm_i->free_nid_list);
2167 		break;
2168 	default:
2169 		BUG_ON(1);
2170 	}
2171 }
2172 
2173 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2174 							bool set, bool build)
2175 {
2176 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2177 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2178 	unsigned int nid_ofs = nid - START_NID(nid);
2179 
2180 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2181 		return;
2182 
2183 	if (set) {
2184 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2185 			return;
2186 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2187 		nm_i->free_nid_count[nat_ofs]++;
2188 	} else {
2189 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2190 			return;
2191 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2192 		if (!build)
2193 			nm_i->free_nid_count[nat_ofs]--;
2194 	}
2195 }
2196 
2197 /* return if the nid is recognized as free */
2198 static bool add_free_nid(struct f2fs_sb_info *sbi,
2199 				nid_t nid, bool build, bool update)
2200 {
2201 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2202 	struct free_nid *i, *e;
2203 	struct nat_entry *ne;
2204 	int err = -EINVAL;
2205 	bool ret = false;
2206 
2207 	/* 0 nid should not be used */
2208 	if (unlikely(nid == 0))
2209 		return false;
2210 
2211 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2212 		return false;
2213 
2214 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2215 	i->nid = nid;
2216 	i->state = FREE_NID;
2217 
2218 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2219 
2220 	spin_lock(&nm_i->nid_list_lock);
2221 
2222 	if (build) {
2223 		/*
2224 		 *   Thread A             Thread B
2225 		 *  - f2fs_create
2226 		 *   - f2fs_new_inode
2227 		 *    - f2fs_alloc_nid
2228 		 *     - __insert_nid_to_list(PREALLOC_NID)
2229 		 *                     - f2fs_balance_fs_bg
2230 		 *                      - f2fs_build_free_nids
2231 		 *                       - __f2fs_build_free_nids
2232 		 *                        - scan_nat_page
2233 		 *                         - add_free_nid
2234 		 *                          - __lookup_nat_cache
2235 		 *  - f2fs_add_link
2236 		 *   - f2fs_init_inode_metadata
2237 		 *    - f2fs_new_inode_page
2238 		 *     - f2fs_new_node_page
2239 		 *      - set_node_addr
2240 		 *  - f2fs_alloc_nid_done
2241 		 *   - __remove_nid_from_list(PREALLOC_NID)
2242 		 *                         - __insert_nid_to_list(FREE_NID)
2243 		 */
2244 		ne = __lookup_nat_cache(nm_i, nid);
2245 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2246 				nat_get_blkaddr(ne) != NULL_ADDR))
2247 			goto err_out;
2248 
2249 		e = __lookup_free_nid_list(nm_i, nid);
2250 		if (e) {
2251 			if (e->state == FREE_NID)
2252 				ret = true;
2253 			goto err_out;
2254 		}
2255 	}
2256 	ret = true;
2257 	err = __insert_free_nid(sbi, i);
2258 err_out:
2259 	if (update) {
2260 		update_free_nid_bitmap(sbi, nid, ret, build);
2261 		if (!build)
2262 			nm_i->available_nids++;
2263 	}
2264 	spin_unlock(&nm_i->nid_list_lock);
2265 	radix_tree_preload_end();
2266 
2267 	if (err)
2268 		kmem_cache_free(free_nid_slab, i);
2269 	return ret;
2270 }
2271 
2272 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2273 {
2274 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2275 	struct free_nid *i;
2276 	bool need_free = false;
2277 
2278 	spin_lock(&nm_i->nid_list_lock);
2279 	i = __lookup_free_nid_list(nm_i, nid);
2280 	if (i && i->state == FREE_NID) {
2281 		__remove_free_nid(sbi, i, FREE_NID);
2282 		need_free = true;
2283 	}
2284 	spin_unlock(&nm_i->nid_list_lock);
2285 
2286 	if (need_free)
2287 		kmem_cache_free(free_nid_slab, i);
2288 }
2289 
2290 static int scan_nat_page(struct f2fs_sb_info *sbi,
2291 			struct page *nat_page, nid_t start_nid)
2292 {
2293 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2294 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2295 	block_t blk_addr;
2296 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2297 	int i;
2298 
2299 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2300 
2301 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2302 
2303 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2304 		if (unlikely(start_nid >= nm_i->max_nid))
2305 			break;
2306 
2307 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2308 
2309 		if (blk_addr == NEW_ADDR)
2310 			return -EINVAL;
2311 
2312 		if (blk_addr == NULL_ADDR) {
2313 			add_free_nid(sbi, start_nid, true, true);
2314 		} else {
2315 			spin_lock(&NM_I(sbi)->nid_list_lock);
2316 			update_free_nid_bitmap(sbi, start_nid, false, true);
2317 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2318 		}
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2325 {
2326 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2327 	struct f2fs_journal *journal = curseg->journal;
2328 	int i;
2329 
2330 	down_read(&curseg->journal_rwsem);
2331 	for (i = 0; i < nats_in_cursum(journal); i++) {
2332 		block_t addr;
2333 		nid_t nid;
2334 
2335 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2336 		nid = le32_to_cpu(nid_in_journal(journal, i));
2337 		if (addr == NULL_ADDR)
2338 			add_free_nid(sbi, nid, true, false);
2339 		else
2340 			remove_free_nid(sbi, nid);
2341 	}
2342 	up_read(&curseg->journal_rwsem);
2343 }
2344 
2345 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2346 {
2347 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2348 	unsigned int i, idx;
2349 	nid_t nid;
2350 
2351 	down_read(&nm_i->nat_tree_lock);
2352 
2353 	for (i = 0; i < nm_i->nat_blocks; i++) {
2354 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2355 			continue;
2356 		if (!nm_i->free_nid_count[i])
2357 			continue;
2358 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2359 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2360 						NAT_ENTRY_PER_BLOCK, idx);
2361 			if (idx >= NAT_ENTRY_PER_BLOCK)
2362 				break;
2363 
2364 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2365 			add_free_nid(sbi, nid, true, false);
2366 
2367 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2368 				goto out;
2369 		}
2370 	}
2371 out:
2372 	scan_curseg_cache(sbi);
2373 
2374 	up_read(&nm_i->nat_tree_lock);
2375 }
2376 
2377 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2378 						bool sync, bool mount)
2379 {
2380 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2381 	int i = 0, ret;
2382 	nid_t nid = nm_i->next_scan_nid;
2383 
2384 	if (unlikely(nid >= nm_i->max_nid))
2385 		nid = 0;
2386 
2387 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2388 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2389 
2390 	/* Enough entries */
2391 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2392 		return 0;
2393 
2394 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2395 		return 0;
2396 
2397 	if (!mount) {
2398 		/* try to find free nids in free_nid_bitmap */
2399 		scan_free_nid_bits(sbi);
2400 
2401 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2402 			return 0;
2403 	}
2404 
2405 	/* readahead nat pages to be scanned */
2406 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2407 							META_NAT, true);
2408 
2409 	down_read(&nm_i->nat_tree_lock);
2410 
2411 	while (1) {
2412 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2413 						nm_i->nat_block_bitmap)) {
2414 			struct page *page = get_current_nat_page(sbi, nid);
2415 
2416 			if (IS_ERR(page)) {
2417 				ret = PTR_ERR(page);
2418 			} else {
2419 				ret = scan_nat_page(sbi, page, nid);
2420 				f2fs_put_page(page, 1);
2421 			}
2422 
2423 			if (ret) {
2424 				up_read(&nm_i->nat_tree_lock);
2425 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2426 				return ret;
2427 			}
2428 		}
2429 
2430 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2431 		if (unlikely(nid >= nm_i->max_nid))
2432 			nid = 0;
2433 
2434 		if (++i >= FREE_NID_PAGES)
2435 			break;
2436 	}
2437 
2438 	/* go to the next free nat pages to find free nids abundantly */
2439 	nm_i->next_scan_nid = nid;
2440 
2441 	/* find free nids from current sum_pages */
2442 	scan_curseg_cache(sbi);
2443 
2444 	up_read(&nm_i->nat_tree_lock);
2445 
2446 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2447 					nm_i->ra_nid_pages, META_NAT, false);
2448 
2449 	return 0;
2450 }
2451 
2452 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2453 {
2454 	int ret;
2455 
2456 	mutex_lock(&NM_I(sbi)->build_lock);
2457 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2458 	mutex_unlock(&NM_I(sbi)->build_lock);
2459 
2460 	return ret;
2461 }
2462 
2463 /*
2464  * If this function returns success, caller can obtain a new nid
2465  * from second parameter of this function.
2466  * The returned nid could be used ino as well as nid when inode is created.
2467  */
2468 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2469 {
2470 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2471 	struct free_nid *i = NULL;
2472 retry:
2473 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2474 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2475 		return false;
2476 	}
2477 
2478 	spin_lock(&nm_i->nid_list_lock);
2479 
2480 	if (unlikely(nm_i->available_nids == 0)) {
2481 		spin_unlock(&nm_i->nid_list_lock);
2482 		return false;
2483 	}
2484 
2485 	/* We should not use stale free nids created by f2fs_build_free_nids */
2486 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2487 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2488 		i = list_first_entry(&nm_i->free_nid_list,
2489 					struct free_nid, list);
2490 		*nid = i->nid;
2491 
2492 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2493 		nm_i->available_nids--;
2494 
2495 		update_free_nid_bitmap(sbi, *nid, false, false);
2496 
2497 		spin_unlock(&nm_i->nid_list_lock);
2498 		return true;
2499 	}
2500 	spin_unlock(&nm_i->nid_list_lock);
2501 
2502 	/* Let's scan nat pages and its caches to get free nids */
2503 	if (!f2fs_build_free_nids(sbi, true, false))
2504 		goto retry;
2505 	return false;
2506 }
2507 
2508 /*
2509  * f2fs_alloc_nid() should be called prior to this function.
2510  */
2511 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2512 {
2513 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2514 	struct free_nid *i;
2515 
2516 	spin_lock(&nm_i->nid_list_lock);
2517 	i = __lookup_free_nid_list(nm_i, nid);
2518 	f2fs_bug_on(sbi, !i);
2519 	__remove_free_nid(sbi, i, PREALLOC_NID);
2520 	spin_unlock(&nm_i->nid_list_lock);
2521 
2522 	kmem_cache_free(free_nid_slab, i);
2523 }
2524 
2525 /*
2526  * f2fs_alloc_nid() should be called prior to this function.
2527  */
2528 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2529 {
2530 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2531 	struct free_nid *i;
2532 	bool need_free = false;
2533 
2534 	if (!nid)
2535 		return;
2536 
2537 	spin_lock(&nm_i->nid_list_lock);
2538 	i = __lookup_free_nid_list(nm_i, nid);
2539 	f2fs_bug_on(sbi, !i);
2540 
2541 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2542 		__remove_free_nid(sbi, i, PREALLOC_NID);
2543 		need_free = true;
2544 	} else {
2545 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2546 	}
2547 
2548 	nm_i->available_nids++;
2549 
2550 	update_free_nid_bitmap(sbi, nid, true, false);
2551 
2552 	spin_unlock(&nm_i->nid_list_lock);
2553 
2554 	if (need_free)
2555 		kmem_cache_free(free_nid_slab, i);
2556 }
2557 
2558 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2559 {
2560 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2561 	int nr = nr_shrink;
2562 
2563 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2564 		return 0;
2565 
2566 	if (!mutex_trylock(&nm_i->build_lock))
2567 		return 0;
2568 
2569 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2570 		struct free_nid *i, *next;
2571 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2572 
2573 		spin_lock(&nm_i->nid_list_lock);
2574 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2575 			if (!nr_shrink || !batch ||
2576 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2577 				break;
2578 			__remove_free_nid(sbi, i, FREE_NID);
2579 			kmem_cache_free(free_nid_slab, i);
2580 			nr_shrink--;
2581 			batch--;
2582 		}
2583 		spin_unlock(&nm_i->nid_list_lock);
2584 	}
2585 
2586 	mutex_unlock(&nm_i->build_lock);
2587 
2588 	return nr - nr_shrink;
2589 }
2590 
2591 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2592 {
2593 	void *src_addr, *dst_addr;
2594 	size_t inline_size;
2595 	struct page *ipage;
2596 	struct f2fs_inode *ri;
2597 
2598 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2599 	if (IS_ERR(ipage))
2600 		return PTR_ERR(ipage);
2601 
2602 	ri = F2FS_INODE(page);
2603 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2604 		if (!f2fs_has_inline_xattr(inode)) {
2605 			set_inode_flag(inode, FI_INLINE_XATTR);
2606 			stat_inc_inline_xattr(inode);
2607 		}
2608 	} else {
2609 		if (f2fs_has_inline_xattr(inode)) {
2610 			stat_dec_inline_xattr(inode);
2611 			clear_inode_flag(inode, FI_INLINE_XATTR);
2612 		}
2613 		goto update_inode;
2614 	}
2615 
2616 	dst_addr = inline_xattr_addr(inode, ipage);
2617 	src_addr = inline_xattr_addr(inode, page);
2618 	inline_size = inline_xattr_size(inode);
2619 
2620 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2621 	memcpy(dst_addr, src_addr, inline_size);
2622 update_inode:
2623 	f2fs_update_inode(inode, ipage);
2624 	f2fs_put_page(ipage, 1);
2625 	return 0;
2626 }
2627 
2628 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2629 {
2630 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2631 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2632 	nid_t new_xnid;
2633 	struct dnode_of_data dn;
2634 	struct node_info ni;
2635 	struct page *xpage;
2636 	int err;
2637 
2638 	if (!prev_xnid)
2639 		goto recover_xnid;
2640 
2641 	/* 1: invalidate the previous xattr nid */
2642 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2643 	if (err)
2644 		return err;
2645 
2646 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2647 	dec_valid_node_count(sbi, inode, false);
2648 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2649 
2650 recover_xnid:
2651 	/* 2: update xattr nid in inode */
2652 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2653 		return -ENOSPC;
2654 
2655 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2656 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2657 	if (IS_ERR(xpage)) {
2658 		f2fs_alloc_nid_failed(sbi, new_xnid);
2659 		return PTR_ERR(xpage);
2660 	}
2661 
2662 	f2fs_alloc_nid_done(sbi, new_xnid);
2663 	f2fs_update_inode_page(inode);
2664 
2665 	/* 3: update and set xattr node page dirty */
2666 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2667 
2668 	set_page_dirty(xpage);
2669 	f2fs_put_page(xpage, 1);
2670 
2671 	return 0;
2672 }
2673 
2674 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2675 {
2676 	struct f2fs_inode *src, *dst;
2677 	nid_t ino = ino_of_node(page);
2678 	struct node_info old_ni, new_ni;
2679 	struct page *ipage;
2680 	int err;
2681 
2682 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2683 	if (err)
2684 		return err;
2685 
2686 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2687 		return -EINVAL;
2688 retry:
2689 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2690 	if (!ipage) {
2691 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2692 		goto retry;
2693 	}
2694 
2695 	/* Should not use this inode from free nid list */
2696 	remove_free_nid(sbi, ino);
2697 
2698 	if (!PageUptodate(ipage))
2699 		SetPageUptodate(ipage);
2700 	fill_node_footer(ipage, ino, ino, 0, true);
2701 	set_cold_node(ipage, false);
2702 
2703 	src = F2FS_INODE(page);
2704 	dst = F2FS_INODE(ipage);
2705 
2706 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2707 	dst->i_size = 0;
2708 	dst->i_blocks = cpu_to_le64(1);
2709 	dst->i_links = cpu_to_le32(1);
2710 	dst->i_xattr_nid = 0;
2711 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2712 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2713 		dst->i_extra_isize = src->i_extra_isize;
2714 
2715 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2716 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2717 							i_inline_xattr_size))
2718 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2719 
2720 		if (f2fs_sb_has_project_quota(sbi) &&
2721 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2722 								i_projid))
2723 			dst->i_projid = src->i_projid;
2724 
2725 		if (f2fs_sb_has_inode_crtime(sbi) &&
2726 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2727 							i_crtime_nsec)) {
2728 			dst->i_crtime = src->i_crtime;
2729 			dst->i_crtime_nsec = src->i_crtime_nsec;
2730 		}
2731 	}
2732 
2733 	new_ni = old_ni;
2734 	new_ni.ino = ino;
2735 
2736 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2737 		WARN_ON(1);
2738 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2739 	inc_valid_inode_count(sbi);
2740 	set_page_dirty(ipage);
2741 	f2fs_put_page(ipage, 1);
2742 	return 0;
2743 }
2744 
2745 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2746 			unsigned int segno, struct f2fs_summary_block *sum)
2747 {
2748 	struct f2fs_node *rn;
2749 	struct f2fs_summary *sum_entry;
2750 	block_t addr;
2751 	int i, idx, last_offset, nrpages;
2752 
2753 	/* scan the node segment */
2754 	last_offset = sbi->blocks_per_seg;
2755 	addr = START_BLOCK(sbi, segno);
2756 	sum_entry = &sum->entries[0];
2757 
2758 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2759 		nrpages = bio_max_segs(last_offset - i);
2760 
2761 		/* readahead node pages */
2762 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2763 
2764 		for (idx = addr; idx < addr + nrpages; idx++) {
2765 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2766 
2767 			if (IS_ERR(page))
2768 				return PTR_ERR(page);
2769 
2770 			rn = F2FS_NODE(page);
2771 			sum_entry->nid = rn->footer.nid;
2772 			sum_entry->version = 0;
2773 			sum_entry->ofs_in_node = 0;
2774 			sum_entry++;
2775 			f2fs_put_page(page, 1);
2776 		}
2777 
2778 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2779 							addr + nrpages);
2780 	}
2781 	return 0;
2782 }
2783 
2784 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2785 {
2786 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2787 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2788 	struct f2fs_journal *journal = curseg->journal;
2789 	int i;
2790 
2791 	down_write(&curseg->journal_rwsem);
2792 	for (i = 0; i < nats_in_cursum(journal); i++) {
2793 		struct nat_entry *ne;
2794 		struct f2fs_nat_entry raw_ne;
2795 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2796 
2797 		if (f2fs_check_nid_range(sbi, nid))
2798 			continue;
2799 
2800 		raw_ne = nat_in_journal(journal, i);
2801 
2802 		ne = __lookup_nat_cache(nm_i, nid);
2803 		if (!ne) {
2804 			ne = __alloc_nat_entry(nid, true);
2805 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2806 		}
2807 
2808 		/*
2809 		 * if a free nat in journal has not been used after last
2810 		 * checkpoint, we should remove it from available nids,
2811 		 * since later we will add it again.
2812 		 */
2813 		if (!get_nat_flag(ne, IS_DIRTY) &&
2814 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2815 			spin_lock(&nm_i->nid_list_lock);
2816 			nm_i->available_nids--;
2817 			spin_unlock(&nm_i->nid_list_lock);
2818 		}
2819 
2820 		__set_nat_cache_dirty(nm_i, ne);
2821 	}
2822 	update_nats_in_cursum(journal, -i);
2823 	up_write(&curseg->journal_rwsem);
2824 }
2825 
2826 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2827 						struct list_head *head, int max)
2828 {
2829 	struct nat_entry_set *cur;
2830 
2831 	if (nes->entry_cnt >= max)
2832 		goto add_out;
2833 
2834 	list_for_each_entry(cur, head, set_list) {
2835 		if (cur->entry_cnt >= nes->entry_cnt) {
2836 			list_add(&nes->set_list, cur->set_list.prev);
2837 			return;
2838 		}
2839 	}
2840 add_out:
2841 	list_add_tail(&nes->set_list, head);
2842 }
2843 
2844 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2845 						struct page *page)
2846 {
2847 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2848 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2849 	struct f2fs_nat_block *nat_blk = page_address(page);
2850 	int valid = 0;
2851 	int i = 0;
2852 
2853 	if (!enabled_nat_bits(sbi, NULL))
2854 		return;
2855 
2856 	if (nat_index == 0) {
2857 		valid = 1;
2858 		i = 1;
2859 	}
2860 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2861 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2862 			valid++;
2863 	}
2864 	if (valid == 0) {
2865 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2866 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2867 		return;
2868 	}
2869 
2870 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2871 	if (valid == NAT_ENTRY_PER_BLOCK)
2872 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2873 	else
2874 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2875 }
2876 
2877 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2878 		struct nat_entry_set *set, struct cp_control *cpc)
2879 {
2880 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2881 	struct f2fs_journal *journal = curseg->journal;
2882 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2883 	bool to_journal = true;
2884 	struct f2fs_nat_block *nat_blk;
2885 	struct nat_entry *ne, *cur;
2886 	struct page *page = NULL;
2887 
2888 	/*
2889 	 * there are two steps to flush nat entries:
2890 	 * #1, flush nat entries to journal in current hot data summary block.
2891 	 * #2, flush nat entries to nat page.
2892 	 */
2893 	if (enabled_nat_bits(sbi, cpc) ||
2894 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2895 		to_journal = false;
2896 
2897 	if (to_journal) {
2898 		down_write(&curseg->journal_rwsem);
2899 	} else {
2900 		page = get_next_nat_page(sbi, start_nid);
2901 		if (IS_ERR(page))
2902 			return PTR_ERR(page);
2903 
2904 		nat_blk = page_address(page);
2905 		f2fs_bug_on(sbi, !nat_blk);
2906 	}
2907 
2908 	/* flush dirty nats in nat entry set */
2909 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2910 		struct f2fs_nat_entry *raw_ne;
2911 		nid_t nid = nat_get_nid(ne);
2912 		int offset;
2913 
2914 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2915 
2916 		if (to_journal) {
2917 			offset = f2fs_lookup_journal_in_cursum(journal,
2918 							NAT_JOURNAL, nid, 1);
2919 			f2fs_bug_on(sbi, offset < 0);
2920 			raw_ne = &nat_in_journal(journal, offset);
2921 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2922 		} else {
2923 			raw_ne = &nat_blk->entries[nid - start_nid];
2924 		}
2925 		raw_nat_from_node_info(raw_ne, &ne->ni);
2926 		nat_reset_flag(ne);
2927 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2928 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2929 			add_free_nid(sbi, nid, false, true);
2930 		} else {
2931 			spin_lock(&NM_I(sbi)->nid_list_lock);
2932 			update_free_nid_bitmap(sbi, nid, false, false);
2933 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2934 		}
2935 	}
2936 
2937 	if (to_journal) {
2938 		up_write(&curseg->journal_rwsem);
2939 	} else {
2940 		__update_nat_bits(sbi, start_nid, page);
2941 		f2fs_put_page(page, 1);
2942 	}
2943 
2944 	/* Allow dirty nats by node block allocation in write_begin */
2945 	if (!set->entry_cnt) {
2946 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2947 		kmem_cache_free(nat_entry_set_slab, set);
2948 	}
2949 	return 0;
2950 }
2951 
2952 /*
2953  * This function is called during the checkpointing process.
2954  */
2955 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2956 {
2957 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2958 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2959 	struct f2fs_journal *journal = curseg->journal;
2960 	struct nat_entry_set *setvec[SETVEC_SIZE];
2961 	struct nat_entry_set *set, *tmp;
2962 	unsigned int found;
2963 	nid_t set_idx = 0;
2964 	LIST_HEAD(sets);
2965 	int err = 0;
2966 
2967 	/*
2968 	 * during unmount, let's flush nat_bits before checking
2969 	 * nat_cnt[DIRTY_NAT].
2970 	 */
2971 	if (enabled_nat_bits(sbi, cpc)) {
2972 		down_write(&nm_i->nat_tree_lock);
2973 		remove_nats_in_journal(sbi);
2974 		up_write(&nm_i->nat_tree_lock);
2975 	}
2976 
2977 	if (!nm_i->nat_cnt[DIRTY_NAT])
2978 		return 0;
2979 
2980 	down_write(&nm_i->nat_tree_lock);
2981 
2982 	/*
2983 	 * if there are no enough space in journal to store dirty nat
2984 	 * entries, remove all entries from journal and merge them
2985 	 * into nat entry set.
2986 	 */
2987 	if (enabled_nat_bits(sbi, cpc) ||
2988 		!__has_cursum_space(journal,
2989 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2990 		remove_nats_in_journal(sbi);
2991 
2992 	while ((found = __gang_lookup_nat_set(nm_i,
2993 					set_idx, SETVEC_SIZE, setvec))) {
2994 		unsigned idx;
2995 
2996 		set_idx = setvec[found - 1]->set + 1;
2997 		for (idx = 0; idx < found; idx++)
2998 			__adjust_nat_entry_set(setvec[idx], &sets,
2999 						MAX_NAT_JENTRIES(journal));
3000 	}
3001 
3002 	/* flush dirty nats in nat entry set */
3003 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3004 		err = __flush_nat_entry_set(sbi, set, cpc);
3005 		if (err)
3006 			break;
3007 	}
3008 
3009 	up_write(&nm_i->nat_tree_lock);
3010 	/* Allow dirty nats by node block allocation in write_begin */
3011 
3012 	return err;
3013 }
3014 
3015 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3016 {
3017 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3018 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3019 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3020 	unsigned int i;
3021 	__u64 cp_ver = cur_cp_version(ckpt);
3022 	block_t nat_bits_addr;
3023 
3024 	if (!enabled_nat_bits(sbi, NULL))
3025 		return 0;
3026 
3027 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3028 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3029 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3030 	if (!nm_i->nat_bits)
3031 		return -ENOMEM;
3032 
3033 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3034 						nm_i->nat_bits_blocks;
3035 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3036 		struct page *page;
3037 
3038 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3039 		if (IS_ERR(page))
3040 			return PTR_ERR(page);
3041 
3042 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3043 					page_address(page), F2FS_BLKSIZE);
3044 		f2fs_put_page(page, 1);
3045 	}
3046 
3047 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3048 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3049 		disable_nat_bits(sbi, true);
3050 		return 0;
3051 	}
3052 
3053 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3054 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3055 
3056 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3057 	return 0;
3058 }
3059 
3060 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3061 {
3062 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3063 	unsigned int i = 0;
3064 	nid_t nid, last_nid;
3065 
3066 	if (!enabled_nat_bits(sbi, NULL))
3067 		return;
3068 
3069 	for (i = 0; i < nm_i->nat_blocks; i++) {
3070 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3071 		if (i >= nm_i->nat_blocks)
3072 			break;
3073 
3074 		__set_bit_le(i, nm_i->nat_block_bitmap);
3075 
3076 		nid = i * NAT_ENTRY_PER_BLOCK;
3077 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3078 
3079 		spin_lock(&NM_I(sbi)->nid_list_lock);
3080 		for (; nid < last_nid; nid++)
3081 			update_free_nid_bitmap(sbi, nid, true, true);
3082 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3083 	}
3084 
3085 	for (i = 0; i < nm_i->nat_blocks; i++) {
3086 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3087 		if (i >= nm_i->nat_blocks)
3088 			break;
3089 
3090 		__set_bit_le(i, nm_i->nat_block_bitmap);
3091 	}
3092 }
3093 
3094 static int init_node_manager(struct f2fs_sb_info *sbi)
3095 {
3096 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3097 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3098 	unsigned char *version_bitmap;
3099 	unsigned int nat_segs;
3100 	int err;
3101 
3102 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3103 
3104 	/* segment_count_nat includes pair segment so divide to 2. */
3105 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3106 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3107 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3108 
3109 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3110 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3111 						F2FS_RESERVED_NODE_NUM;
3112 	nm_i->nid_cnt[FREE_NID] = 0;
3113 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3114 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3115 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3116 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3117 
3118 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3119 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3120 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3121 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3122 	INIT_LIST_HEAD(&nm_i->nat_entries);
3123 	spin_lock_init(&nm_i->nat_list_lock);
3124 
3125 	mutex_init(&nm_i->build_lock);
3126 	spin_lock_init(&nm_i->nid_list_lock);
3127 	init_rwsem(&nm_i->nat_tree_lock);
3128 
3129 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3130 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3131 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3132 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3133 					GFP_KERNEL);
3134 	if (!nm_i->nat_bitmap)
3135 		return -ENOMEM;
3136 
3137 	err = __get_nat_bitmaps(sbi);
3138 	if (err)
3139 		return err;
3140 
3141 #ifdef CONFIG_F2FS_CHECK_FS
3142 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3143 					GFP_KERNEL);
3144 	if (!nm_i->nat_bitmap_mir)
3145 		return -ENOMEM;
3146 #endif
3147 
3148 	return 0;
3149 }
3150 
3151 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3152 {
3153 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3154 	int i;
3155 
3156 	nm_i->free_nid_bitmap =
3157 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3158 					      nm_i->nat_blocks),
3159 			      GFP_KERNEL);
3160 	if (!nm_i->free_nid_bitmap)
3161 		return -ENOMEM;
3162 
3163 	for (i = 0; i < nm_i->nat_blocks; i++) {
3164 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3165 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3166 		if (!nm_i->free_nid_bitmap[i])
3167 			return -ENOMEM;
3168 	}
3169 
3170 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3171 								GFP_KERNEL);
3172 	if (!nm_i->nat_block_bitmap)
3173 		return -ENOMEM;
3174 
3175 	nm_i->free_nid_count =
3176 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3177 					      nm_i->nat_blocks),
3178 			      GFP_KERNEL);
3179 	if (!nm_i->free_nid_count)
3180 		return -ENOMEM;
3181 	return 0;
3182 }
3183 
3184 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3185 {
3186 	int err;
3187 
3188 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3189 							GFP_KERNEL);
3190 	if (!sbi->nm_info)
3191 		return -ENOMEM;
3192 
3193 	err = init_node_manager(sbi);
3194 	if (err)
3195 		return err;
3196 
3197 	err = init_free_nid_cache(sbi);
3198 	if (err)
3199 		return err;
3200 
3201 	/* load free nid status from nat_bits table */
3202 	load_free_nid_bitmap(sbi);
3203 
3204 	return f2fs_build_free_nids(sbi, true, true);
3205 }
3206 
3207 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3208 {
3209 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3210 	struct free_nid *i, *next_i;
3211 	struct nat_entry *natvec[NATVEC_SIZE];
3212 	struct nat_entry_set *setvec[SETVEC_SIZE];
3213 	nid_t nid = 0;
3214 	unsigned int found;
3215 
3216 	if (!nm_i)
3217 		return;
3218 
3219 	/* destroy free nid list */
3220 	spin_lock(&nm_i->nid_list_lock);
3221 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3222 		__remove_free_nid(sbi, i, FREE_NID);
3223 		spin_unlock(&nm_i->nid_list_lock);
3224 		kmem_cache_free(free_nid_slab, i);
3225 		spin_lock(&nm_i->nid_list_lock);
3226 	}
3227 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3228 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3229 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3230 	spin_unlock(&nm_i->nid_list_lock);
3231 
3232 	/* destroy nat cache */
3233 	down_write(&nm_i->nat_tree_lock);
3234 	while ((found = __gang_lookup_nat_cache(nm_i,
3235 					nid, NATVEC_SIZE, natvec))) {
3236 		unsigned idx;
3237 
3238 		nid = nat_get_nid(natvec[found - 1]) + 1;
3239 		for (idx = 0; idx < found; idx++) {
3240 			spin_lock(&nm_i->nat_list_lock);
3241 			list_del(&natvec[idx]->list);
3242 			spin_unlock(&nm_i->nat_list_lock);
3243 
3244 			__del_from_nat_cache(nm_i, natvec[idx]);
3245 		}
3246 	}
3247 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3248 
3249 	/* destroy nat set cache */
3250 	nid = 0;
3251 	while ((found = __gang_lookup_nat_set(nm_i,
3252 					nid, SETVEC_SIZE, setvec))) {
3253 		unsigned idx;
3254 
3255 		nid = setvec[found - 1]->set + 1;
3256 		for (idx = 0; idx < found; idx++) {
3257 			/* entry_cnt is not zero, when cp_error was occurred */
3258 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3259 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3260 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3261 		}
3262 	}
3263 	up_write(&nm_i->nat_tree_lock);
3264 
3265 	kvfree(nm_i->nat_block_bitmap);
3266 	if (nm_i->free_nid_bitmap) {
3267 		int i;
3268 
3269 		for (i = 0; i < nm_i->nat_blocks; i++)
3270 			kvfree(nm_i->free_nid_bitmap[i]);
3271 		kvfree(nm_i->free_nid_bitmap);
3272 	}
3273 	kvfree(nm_i->free_nid_count);
3274 
3275 	kvfree(nm_i->nat_bitmap);
3276 	kvfree(nm_i->nat_bits);
3277 #ifdef CONFIG_F2FS_CHECK_FS
3278 	kvfree(nm_i->nat_bitmap_mir);
3279 #endif
3280 	sbi->nm_info = NULL;
3281 	kfree(nm_i);
3282 }
3283 
3284 int __init f2fs_create_node_manager_caches(void)
3285 {
3286 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3287 			sizeof(struct nat_entry));
3288 	if (!nat_entry_slab)
3289 		goto fail;
3290 
3291 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3292 			sizeof(struct free_nid));
3293 	if (!free_nid_slab)
3294 		goto destroy_nat_entry;
3295 
3296 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3297 			sizeof(struct nat_entry_set));
3298 	if (!nat_entry_set_slab)
3299 		goto destroy_free_nid;
3300 
3301 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3302 			sizeof(struct fsync_node_entry));
3303 	if (!fsync_node_entry_slab)
3304 		goto destroy_nat_entry_set;
3305 	return 0;
3306 
3307 destroy_nat_entry_set:
3308 	kmem_cache_destroy(nat_entry_set_slab);
3309 destroy_free_nid:
3310 	kmem_cache_destroy(free_nid_slab);
3311 destroy_nat_entry:
3312 	kmem_cache_destroy(nat_entry_slab);
3313 fail:
3314 	return -ENOMEM;
3315 }
3316 
3317 void f2fs_destroy_node_manager_caches(void)
3318 {
3319 	kmem_cache_destroy(fsync_node_entry_slab);
3320 	kmem_cache_destroy(nat_entry_set_slab);
3321 	kmem_cache_destroy(free_nid_slab);
3322 	kmem_cache_destroy(nat_entry_slab);
3323 }
3324