1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] * 49 sizeof(struct free_nid)) >> PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 if (excess_cached_nats(sbi)) 56 res = false; 57 } else if (type == DIRTY_DENTS) { 58 if (sbi->sb->s_bdi->wb.dirty_exceeded) 59 return false; 60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 62 } else if (type == INO_ENTRIES) { 63 int i; 64 65 for (i = 0; i <= UPDATE_INO; i++) 66 mem_size += (sbi->im[i].ino_num * 67 sizeof(struct ino_entry)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 69 } else if (type == EXTENT_CACHE) { 70 mem_size = (atomic_read(&sbi->total_ext_tree) * 71 sizeof(struct extent_tree) + 72 atomic_read(&sbi->total_ext_node) * 73 sizeof(struct extent_node)) >> PAGE_SHIFT; 74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 75 } else { 76 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 77 return true; 78 } 79 return res; 80 } 81 82 static void clear_node_page_dirty(struct page *page) 83 { 84 struct address_space *mapping = page->mapping; 85 unsigned int long flags; 86 87 if (PageDirty(page)) { 88 spin_lock_irqsave(&mapping->tree_lock, flags); 89 radix_tree_tag_clear(&mapping->page_tree, 90 page_index(page), 91 PAGECACHE_TAG_DIRTY); 92 spin_unlock_irqrestore(&mapping->tree_lock, flags); 93 94 clear_page_dirty_for_io(page); 95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 96 } 97 ClearPageUptodate(page); 98 } 99 100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 101 { 102 pgoff_t index = current_nat_addr(sbi, nid); 103 return get_meta_page(sbi, index); 104 } 105 106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 107 { 108 struct page *src_page; 109 struct page *dst_page; 110 pgoff_t src_off; 111 pgoff_t dst_off; 112 void *src_addr; 113 void *dst_addr; 114 struct f2fs_nm_info *nm_i = NM_I(sbi); 115 116 src_off = current_nat_addr(sbi, nid); 117 dst_off = next_nat_addr(sbi, src_off); 118 119 /* get current nat block page with lock */ 120 src_page = get_meta_page(sbi, src_off); 121 dst_page = grab_meta_page(sbi, dst_off); 122 f2fs_bug_on(sbi, PageDirty(src_page)); 123 124 src_addr = page_address(src_page); 125 dst_addr = page_address(dst_page); 126 memcpy(dst_addr, src_addr, PAGE_SIZE); 127 set_page_dirty(dst_page); 128 f2fs_put_page(src_page, 1); 129 130 set_to_next_nat(nm_i, nid); 131 132 return dst_page; 133 } 134 135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 136 { 137 return radix_tree_lookup(&nm_i->nat_root, n); 138 } 139 140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 141 nid_t start, unsigned int nr, struct nat_entry **ep) 142 { 143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 144 } 145 146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 147 { 148 list_del(&e->list); 149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 150 nm_i->nat_cnt--; 151 kmem_cache_free(nat_entry_slab, e); 152 } 153 154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 155 struct nat_entry *ne) 156 { 157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 158 struct nat_entry_set *head; 159 160 if (get_nat_flag(ne, IS_DIRTY)) 161 return; 162 163 head = radix_tree_lookup(&nm_i->nat_set_root, set); 164 if (!head) { 165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 166 167 INIT_LIST_HEAD(&head->entry_list); 168 INIT_LIST_HEAD(&head->set_list); 169 head->set = set; 170 head->entry_cnt = 0; 171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 172 } 173 list_move_tail(&ne->list, &head->entry_list); 174 nm_i->dirty_nat_cnt++; 175 head->entry_cnt++; 176 set_nat_flag(ne, IS_DIRTY, true); 177 } 178 179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 180 struct nat_entry *ne) 181 { 182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 183 struct nat_entry_set *head; 184 185 head = radix_tree_lookup(&nm_i->nat_set_root, set); 186 if (head) { 187 list_move_tail(&ne->list, &nm_i->nat_entries); 188 set_nat_flag(ne, IS_DIRTY, false); 189 head->entry_cnt--; 190 nm_i->dirty_nat_cnt--; 191 } 192 } 193 194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 195 nid_t start, unsigned int nr, struct nat_entry_set **ep) 196 { 197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 198 start, nr); 199 } 200 201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 202 { 203 struct f2fs_nm_info *nm_i = NM_I(sbi); 204 struct nat_entry *e; 205 bool need = false; 206 207 down_read(&nm_i->nat_tree_lock); 208 e = __lookup_nat_cache(nm_i, nid); 209 if (e) { 210 if (!get_nat_flag(e, IS_CHECKPOINTED) && 211 !get_nat_flag(e, HAS_FSYNCED_INODE)) 212 need = true; 213 } 214 up_read(&nm_i->nat_tree_lock); 215 return need; 216 } 217 218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 219 { 220 struct f2fs_nm_info *nm_i = NM_I(sbi); 221 struct nat_entry *e; 222 bool is_cp = true; 223 224 down_read(&nm_i->nat_tree_lock); 225 e = __lookup_nat_cache(nm_i, nid); 226 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 227 is_cp = false; 228 up_read(&nm_i->nat_tree_lock); 229 return is_cp; 230 } 231 232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 233 { 234 struct f2fs_nm_info *nm_i = NM_I(sbi); 235 struct nat_entry *e; 236 bool need_update = true; 237 238 down_read(&nm_i->nat_tree_lock); 239 e = __lookup_nat_cache(nm_i, ino); 240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 241 (get_nat_flag(e, IS_CHECKPOINTED) || 242 get_nat_flag(e, HAS_FSYNCED_INODE))) 243 need_update = false; 244 up_read(&nm_i->nat_tree_lock); 245 return need_update; 246 } 247 248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 249 bool no_fail) 250 { 251 struct nat_entry *new; 252 253 if (no_fail) { 254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 256 } else { 257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 258 if (!new) 259 return NULL; 260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 261 kmem_cache_free(nat_entry_slab, new); 262 return NULL; 263 } 264 } 265 266 memset(new, 0, sizeof(struct nat_entry)); 267 nat_set_nid(new, nid); 268 nat_reset_flag(new); 269 list_add_tail(&new->list, &nm_i->nat_entries); 270 nm_i->nat_cnt++; 271 return new; 272 } 273 274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 275 struct f2fs_nat_entry *ne) 276 { 277 struct f2fs_nm_info *nm_i = NM_I(sbi); 278 struct nat_entry *e; 279 280 e = __lookup_nat_cache(nm_i, nid); 281 if (!e) { 282 e = grab_nat_entry(nm_i, nid, false); 283 if (e) 284 node_info_from_raw_nat(&e->ni, ne); 285 } else { 286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 287 nat_get_blkaddr(e) != 288 le32_to_cpu(ne->block_addr) || 289 nat_get_version(e) != ne->version); 290 } 291 } 292 293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 294 block_t new_blkaddr, bool fsync_done) 295 { 296 struct f2fs_nm_info *nm_i = NM_I(sbi); 297 struct nat_entry *e; 298 299 down_write(&nm_i->nat_tree_lock); 300 e = __lookup_nat_cache(nm_i, ni->nid); 301 if (!e) { 302 e = grab_nat_entry(nm_i, ni->nid, true); 303 copy_node_info(&e->ni, ni); 304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 305 } else if (new_blkaddr == NEW_ADDR) { 306 /* 307 * when nid is reallocated, 308 * previous nat entry can be remained in nat cache. 309 * So, reinitialize it with new information. 310 */ 311 copy_node_info(&e->ni, ni); 312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 313 } 314 315 /* sanity check */ 316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 318 new_blkaddr == NULL_ADDR); 319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 320 new_blkaddr == NEW_ADDR); 321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 322 nat_get_blkaddr(e) != NULL_ADDR && 323 new_blkaddr == NEW_ADDR); 324 325 /* increment version no as node is removed */ 326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 327 unsigned char version = nat_get_version(e); 328 nat_set_version(e, inc_node_version(version)); 329 330 /* in order to reuse the nid */ 331 if (nm_i->next_scan_nid > ni->nid) 332 nm_i->next_scan_nid = ni->nid; 333 } 334 335 /* change address */ 336 nat_set_blkaddr(e, new_blkaddr); 337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 338 set_nat_flag(e, IS_CHECKPOINTED, false); 339 __set_nat_cache_dirty(nm_i, e); 340 341 /* update fsync_mark if its inode nat entry is still alive */ 342 if (ni->nid != ni->ino) 343 e = __lookup_nat_cache(nm_i, ni->ino); 344 if (e) { 345 if (fsync_done && ni->nid == ni->ino) 346 set_nat_flag(e, HAS_FSYNCED_INODE, true); 347 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 348 } 349 up_write(&nm_i->nat_tree_lock); 350 } 351 352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 353 { 354 struct f2fs_nm_info *nm_i = NM_I(sbi); 355 int nr = nr_shrink; 356 357 if (!down_write_trylock(&nm_i->nat_tree_lock)) 358 return 0; 359 360 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 361 struct nat_entry *ne; 362 ne = list_first_entry(&nm_i->nat_entries, 363 struct nat_entry, list); 364 __del_from_nat_cache(nm_i, ne); 365 nr_shrink--; 366 } 367 up_write(&nm_i->nat_tree_lock); 368 return nr - nr_shrink; 369 } 370 371 /* 372 * This function always returns success 373 */ 374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 375 { 376 struct f2fs_nm_info *nm_i = NM_I(sbi); 377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 378 struct f2fs_journal *journal = curseg->journal; 379 nid_t start_nid = START_NID(nid); 380 struct f2fs_nat_block *nat_blk; 381 struct page *page = NULL; 382 struct f2fs_nat_entry ne; 383 struct nat_entry *e; 384 int i; 385 386 ni->nid = nid; 387 388 /* Check nat cache */ 389 down_read(&nm_i->nat_tree_lock); 390 e = __lookup_nat_cache(nm_i, nid); 391 if (e) { 392 ni->ino = nat_get_ino(e); 393 ni->blk_addr = nat_get_blkaddr(e); 394 ni->version = nat_get_version(e); 395 up_read(&nm_i->nat_tree_lock); 396 return; 397 } 398 399 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 400 401 /* Check current segment summary */ 402 down_read(&curseg->journal_rwsem); 403 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 404 if (i >= 0) { 405 ne = nat_in_journal(journal, i); 406 node_info_from_raw_nat(ni, &ne); 407 } 408 up_read(&curseg->journal_rwsem); 409 if (i >= 0) 410 goto cache; 411 412 /* Fill node_info from nat page */ 413 page = get_current_nat_page(sbi, start_nid); 414 nat_blk = (struct f2fs_nat_block *)page_address(page); 415 ne = nat_blk->entries[nid - start_nid]; 416 node_info_from_raw_nat(ni, &ne); 417 f2fs_put_page(page, 1); 418 cache: 419 up_read(&nm_i->nat_tree_lock); 420 /* cache nat entry */ 421 down_write(&nm_i->nat_tree_lock); 422 cache_nat_entry(sbi, nid, &ne); 423 up_write(&nm_i->nat_tree_lock); 424 } 425 426 /* 427 * readahead MAX_RA_NODE number of node pages. 428 */ 429 static void ra_node_pages(struct page *parent, int start, int n) 430 { 431 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 432 struct blk_plug plug; 433 int i, end; 434 nid_t nid; 435 436 blk_start_plug(&plug); 437 438 /* Then, try readahead for siblings of the desired node */ 439 end = start + n; 440 end = min(end, NIDS_PER_BLOCK); 441 for (i = start; i < end; i++) { 442 nid = get_nid(parent, i, false); 443 ra_node_page(sbi, nid); 444 } 445 446 blk_finish_plug(&plug); 447 } 448 449 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 450 { 451 const long direct_index = ADDRS_PER_INODE(dn->inode); 452 const long direct_blks = ADDRS_PER_BLOCK; 453 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 454 unsigned int skipped_unit = ADDRS_PER_BLOCK; 455 int cur_level = dn->cur_level; 456 int max_level = dn->max_level; 457 pgoff_t base = 0; 458 459 if (!dn->max_level) 460 return pgofs + 1; 461 462 while (max_level-- > cur_level) 463 skipped_unit *= NIDS_PER_BLOCK; 464 465 switch (dn->max_level) { 466 case 3: 467 base += 2 * indirect_blks; 468 case 2: 469 base += 2 * direct_blks; 470 case 1: 471 base += direct_index; 472 break; 473 default: 474 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 475 } 476 477 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 478 } 479 480 /* 481 * The maximum depth is four. 482 * Offset[0] will have raw inode offset. 483 */ 484 static int get_node_path(struct inode *inode, long block, 485 int offset[4], unsigned int noffset[4]) 486 { 487 const long direct_index = ADDRS_PER_INODE(inode); 488 const long direct_blks = ADDRS_PER_BLOCK; 489 const long dptrs_per_blk = NIDS_PER_BLOCK; 490 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 491 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 492 int n = 0; 493 int level = 0; 494 495 noffset[0] = 0; 496 497 if (block < direct_index) { 498 offset[n] = block; 499 goto got; 500 } 501 block -= direct_index; 502 if (block < direct_blks) { 503 offset[n++] = NODE_DIR1_BLOCK; 504 noffset[n] = 1; 505 offset[n] = block; 506 level = 1; 507 goto got; 508 } 509 block -= direct_blks; 510 if (block < direct_blks) { 511 offset[n++] = NODE_DIR2_BLOCK; 512 noffset[n] = 2; 513 offset[n] = block; 514 level = 1; 515 goto got; 516 } 517 block -= direct_blks; 518 if (block < indirect_blks) { 519 offset[n++] = NODE_IND1_BLOCK; 520 noffset[n] = 3; 521 offset[n++] = block / direct_blks; 522 noffset[n] = 4 + offset[n - 1]; 523 offset[n] = block % direct_blks; 524 level = 2; 525 goto got; 526 } 527 block -= indirect_blks; 528 if (block < indirect_blks) { 529 offset[n++] = NODE_IND2_BLOCK; 530 noffset[n] = 4 + dptrs_per_blk; 531 offset[n++] = block / direct_blks; 532 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 533 offset[n] = block % direct_blks; 534 level = 2; 535 goto got; 536 } 537 block -= indirect_blks; 538 if (block < dindirect_blks) { 539 offset[n++] = NODE_DIND_BLOCK; 540 noffset[n] = 5 + (dptrs_per_blk * 2); 541 offset[n++] = block / indirect_blks; 542 noffset[n] = 6 + (dptrs_per_blk * 2) + 543 offset[n - 1] * (dptrs_per_blk + 1); 544 offset[n++] = (block / direct_blks) % dptrs_per_blk; 545 noffset[n] = 7 + (dptrs_per_blk * 2) + 546 offset[n - 2] * (dptrs_per_blk + 1) + 547 offset[n - 1]; 548 offset[n] = block % direct_blks; 549 level = 3; 550 goto got; 551 } else { 552 BUG(); 553 } 554 got: 555 return level; 556 } 557 558 /* 559 * Caller should call f2fs_put_dnode(dn). 560 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 561 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 562 * In the case of RDONLY_NODE, we don't need to care about mutex. 563 */ 564 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 565 { 566 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 567 struct page *npage[4]; 568 struct page *parent = NULL; 569 int offset[4]; 570 unsigned int noffset[4]; 571 nid_t nids[4]; 572 int level, i = 0; 573 int err = 0; 574 575 level = get_node_path(dn->inode, index, offset, noffset); 576 577 nids[0] = dn->inode->i_ino; 578 npage[0] = dn->inode_page; 579 580 if (!npage[0]) { 581 npage[0] = get_node_page(sbi, nids[0]); 582 if (IS_ERR(npage[0])) 583 return PTR_ERR(npage[0]); 584 } 585 586 /* if inline_data is set, should not report any block indices */ 587 if (f2fs_has_inline_data(dn->inode) && index) { 588 err = -ENOENT; 589 f2fs_put_page(npage[0], 1); 590 goto release_out; 591 } 592 593 parent = npage[0]; 594 if (level != 0) 595 nids[1] = get_nid(parent, offset[0], true); 596 dn->inode_page = npage[0]; 597 dn->inode_page_locked = true; 598 599 /* get indirect or direct nodes */ 600 for (i = 1; i <= level; i++) { 601 bool done = false; 602 603 if (!nids[i] && mode == ALLOC_NODE) { 604 /* alloc new node */ 605 if (!alloc_nid(sbi, &(nids[i]))) { 606 err = -ENOSPC; 607 goto release_pages; 608 } 609 610 dn->nid = nids[i]; 611 npage[i] = new_node_page(dn, noffset[i], NULL); 612 if (IS_ERR(npage[i])) { 613 alloc_nid_failed(sbi, nids[i]); 614 err = PTR_ERR(npage[i]); 615 goto release_pages; 616 } 617 618 set_nid(parent, offset[i - 1], nids[i], i == 1); 619 alloc_nid_done(sbi, nids[i]); 620 done = true; 621 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 622 npage[i] = get_node_page_ra(parent, offset[i - 1]); 623 if (IS_ERR(npage[i])) { 624 err = PTR_ERR(npage[i]); 625 goto release_pages; 626 } 627 done = true; 628 } 629 if (i == 1) { 630 dn->inode_page_locked = false; 631 unlock_page(parent); 632 } else { 633 f2fs_put_page(parent, 1); 634 } 635 636 if (!done) { 637 npage[i] = get_node_page(sbi, nids[i]); 638 if (IS_ERR(npage[i])) { 639 err = PTR_ERR(npage[i]); 640 f2fs_put_page(npage[0], 0); 641 goto release_out; 642 } 643 } 644 if (i < level) { 645 parent = npage[i]; 646 nids[i + 1] = get_nid(parent, offset[i], false); 647 } 648 } 649 dn->nid = nids[level]; 650 dn->ofs_in_node = offset[level]; 651 dn->node_page = npage[level]; 652 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 653 return 0; 654 655 release_pages: 656 f2fs_put_page(parent, 1); 657 if (i > 1) 658 f2fs_put_page(npage[0], 0); 659 release_out: 660 dn->inode_page = NULL; 661 dn->node_page = NULL; 662 if (err == -ENOENT) { 663 dn->cur_level = i; 664 dn->max_level = level; 665 dn->ofs_in_node = offset[level]; 666 } 667 return err; 668 } 669 670 static void truncate_node(struct dnode_of_data *dn) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 673 struct node_info ni; 674 675 get_node_info(sbi, dn->nid, &ni); 676 if (dn->inode->i_blocks == 0) { 677 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 678 goto invalidate; 679 } 680 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 681 682 /* Deallocate node address */ 683 invalidate_blocks(sbi, ni.blk_addr); 684 dec_valid_node_count(sbi, dn->inode); 685 set_node_addr(sbi, &ni, NULL_ADDR, false); 686 687 if (dn->nid == dn->inode->i_ino) { 688 remove_orphan_inode(sbi, dn->nid); 689 dec_valid_inode_count(sbi); 690 f2fs_inode_synced(dn->inode); 691 } 692 invalidate: 693 clear_node_page_dirty(dn->node_page); 694 set_sbi_flag(sbi, SBI_IS_DIRTY); 695 696 f2fs_put_page(dn->node_page, 1); 697 698 invalidate_mapping_pages(NODE_MAPPING(sbi), 699 dn->node_page->index, dn->node_page->index); 700 701 dn->node_page = NULL; 702 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 703 } 704 705 static int truncate_dnode(struct dnode_of_data *dn) 706 { 707 struct page *page; 708 709 if (dn->nid == 0) 710 return 1; 711 712 /* get direct node */ 713 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 714 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 715 return 1; 716 else if (IS_ERR(page)) 717 return PTR_ERR(page); 718 719 /* Make dnode_of_data for parameter */ 720 dn->node_page = page; 721 dn->ofs_in_node = 0; 722 truncate_data_blocks(dn); 723 truncate_node(dn); 724 return 1; 725 } 726 727 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 728 int ofs, int depth) 729 { 730 struct dnode_of_data rdn = *dn; 731 struct page *page; 732 struct f2fs_node *rn; 733 nid_t child_nid; 734 unsigned int child_nofs; 735 int freed = 0; 736 int i, ret; 737 738 if (dn->nid == 0) 739 return NIDS_PER_BLOCK + 1; 740 741 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 742 743 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 744 if (IS_ERR(page)) { 745 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 746 return PTR_ERR(page); 747 } 748 749 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 750 751 rn = F2FS_NODE(page); 752 if (depth < 3) { 753 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 754 child_nid = le32_to_cpu(rn->in.nid[i]); 755 if (child_nid == 0) 756 continue; 757 rdn.nid = child_nid; 758 ret = truncate_dnode(&rdn); 759 if (ret < 0) 760 goto out_err; 761 if (set_nid(page, i, 0, false)) 762 dn->node_changed = true; 763 } 764 } else { 765 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 766 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 767 child_nid = le32_to_cpu(rn->in.nid[i]); 768 if (child_nid == 0) { 769 child_nofs += NIDS_PER_BLOCK + 1; 770 continue; 771 } 772 rdn.nid = child_nid; 773 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 774 if (ret == (NIDS_PER_BLOCK + 1)) { 775 if (set_nid(page, i, 0, false)) 776 dn->node_changed = true; 777 child_nofs += ret; 778 } else if (ret < 0 && ret != -ENOENT) { 779 goto out_err; 780 } 781 } 782 freed = child_nofs; 783 } 784 785 if (!ofs) { 786 /* remove current indirect node */ 787 dn->node_page = page; 788 truncate_node(dn); 789 freed++; 790 } else { 791 f2fs_put_page(page, 1); 792 } 793 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 794 return freed; 795 796 out_err: 797 f2fs_put_page(page, 1); 798 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 799 return ret; 800 } 801 802 static int truncate_partial_nodes(struct dnode_of_data *dn, 803 struct f2fs_inode *ri, int *offset, int depth) 804 { 805 struct page *pages[2]; 806 nid_t nid[3]; 807 nid_t child_nid; 808 int err = 0; 809 int i; 810 int idx = depth - 2; 811 812 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 813 if (!nid[0]) 814 return 0; 815 816 /* get indirect nodes in the path */ 817 for (i = 0; i < idx + 1; i++) { 818 /* reference count'll be increased */ 819 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 820 if (IS_ERR(pages[i])) { 821 err = PTR_ERR(pages[i]); 822 idx = i - 1; 823 goto fail; 824 } 825 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 826 } 827 828 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 829 830 /* free direct nodes linked to a partial indirect node */ 831 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 832 child_nid = get_nid(pages[idx], i, false); 833 if (!child_nid) 834 continue; 835 dn->nid = child_nid; 836 err = truncate_dnode(dn); 837 if (err < 0) 838 goto fail; 839 if (set_nid(pages[idx], i, 0, false)) 840 dn->node_changed = true; 841 } 842 843 if (offset[idx + 1] == 0) { 844 dn->node_page = pages[idx]; 845 dn->nid = nid[idx]; 846 truncate_node(dn); 847 } else { 848 f2fs_put_page(pages[idx], 1); 849 } 850 offset[idx]++; 851 offset[idx + 1] = 0; 852 idx--; 853 fail: 854 for (i = idx; i >= 0; i--) 855 f2fs_put_page(pages[i], 1); 856 857 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 858 859 return err; 860 } 861 862 /* 863 * All the block addresses of data and nodes should be nullified. 864 */ 865 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 866 { 867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 868 int err = 0, cont = 1; 869 int level, offset[4], noffset[4]; 870 unsigned int nofs = 0; 871 struct f2fs_inode *ri; 872 struct dnode_of_data dn; 873 struct page *page; 874 875 trace_f2fs_truncate_inode_blocks_enter(inode, from); 876 877 level = get_node_path(inode, from, offset, noffset); 878 879 page = get_node_page(sbi, inode->i_ino); 880 if (IS_ERR(page)) { 881 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 882 return PTR_ERR(page); 883 } 884 885 set_new_dnode(&dn, inode, page, NULL, 0); 886 unlock_page(page); 887 888 ri = F2FS_INODE(page); 889 switch (level) { 890 case 0: 891 case 1: 892 nofs = noffset[1]; 893 break; 894 case 2: 895 nofs = noffset[1]; 896 if (!offset[level - 1]) 897 goto skip_partial; 898 err = truncate_partial_nodes(&dn, ri, offset, level); 899 if (err < 0 && err != -ENOENT) 900 goto fail; 901 nofs += 1 + NIDS_PER_BLOCK; 902 break; 903 case 3: 904 nofs = 5 + 2 * NIDS_PER_BLOCK; 905 if (!offset[level - 1]) 906 goto skip_partial; 907 err = truncate_partial_nodes(&dn, ri, offset, level); 908 if (err < 0 && err != -ENOENT) 909 goto fail; 910 break; 911 default: 912 BUG(); 913 } 914 915 skip_partial: 916 while (cont) { 917 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 918 switch (offset[0]) { 919 case NODE_DIR1_BLOCK: 920 case NODE_DIR2_BLOCK: 921 err = truncate_dnode(&dn); 922 break; 923 924 case NODE_IND1_BLOCK: 925 case NODE_IND2_BLOCK: 926 err = truncate_nodes(&dn, nofs, offset[1], 2); 927 break; 928 929 case NODE_DIND_BLOCK: 930 err = truncate_nodes(&dn, nofs, offset[1], 3); 931 cont = 0; 932 break; 933 934 default: 935 BUG(); 936 } 937 if (err < 0 && err != -ENOENT) 938 goto fail; 939 if (offset[1] == 0 && 940 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 941 lock_page(page); 942 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 943 f2fs_wait_on_page_writeback(page, NODE, true); 944 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 945 set_page_dirty(page); 946 unlock_page(page); 947 } 948 offset[1] = 0; 949 offset[0]++; 950 nofs += err; 951 } 952 fail: 953 f2fs_put_page(page, 0); 954 trace_f2fs_truncate_inode_blocks_exit(inode, err); 955 return err > 0 ? 0 : err; 956 } 957 958 int truncate_xattr_node(struct inode *inode, struct page *page) 959 { 960 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 961 nid_t nid = F2FS_I(inode)->i_xattr_nid; 962 struct dnode_of_data dn; 963 struct page *npage; 964 965 if (!nid) 966 return 0; 967 968 npage = get_node_page(sbi, nid); 969 if (IS_ERR(npage)) 970 return PTR_ERR(npage); 971 972 f2fs_i_xnid_write(inode, 0); 973 974 set_new_dnode(&dn, inode, page, npage, nid); 975 976 if (page) 977 dn.inode_page_locked = true; 978 truncate_node(&dn); 979 return 0; 980 } 981 982 /* 983 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 984 * f2fs_unlock_op(). 985 */ 986 int remove_inode_page(struct inode *inode) 987 { 988 struct dnode_of_data dn; 989 int err; 990 991 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 992 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 993 if (err) 994 return err; 995 996 err = truncate_xattr_node(inode, dn.inode_page); 997 if (err) { 998 f2fs_put_dnode(&dn); 999 return err; 1000 } 1001 1002 /* remove potential inline_data blocks */ 1003 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1004 S_ISLNK(inode->i_mode)) 1005 truncate_data_blocks_range(&dn, 1); 1006 1007 /* 0 is possible, after f2fs_new_inode() has failed */ 1008 f2fs_bug_on(F2FS_I_SB(inode), 1009 inode->i_blocks != 0 && inode->i_blocks != 1); 1010 1011 /* will put inode & node pages */ 1012 truncate_node(&dn); 1013 return 0; 1014 } 1015 1016 struct page *new_inode_page(struct inode *inode) 1017 { 1018 struct dnode_of_data dn; 1019 1020 /* allocate inode page for new inode */ 1021 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1022 1023 /* caller should f2fs_put_page(page, 1); */ 1024 return new_node_page(&dn, 0, NULL); 1025 } 1026 1027 struct page *new_node_page(struct dnode_of_data *dn, 1028 unsigned int ofs, struct page *ipage) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1031 struct node_info new_ni; 1032 struct page *page; 1033 int err; 1034 1035 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1036 return ERR_PTR(-EPERM); 1037 1038 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1039 if (!page) 1040 return ERR_PTR(-ENOMEM); 1041 1042 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1043 err = -ENOSPC; 1044 goto fail; 1045 } 1046 #ifdef CONFIG_F2FS_CHECK_FS 1047 get_node_info(sbi, dn->nid, &new_ni); 1048 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1049 #endif 1050 new_ni.nid = dn->nid; 1051 new_ni.ino = dn->inode->i_ino; 1052 new_ni.blk_addr = NULL_ADDR; 1053 new_ni.flag = 0; 1054 new_ni.version = 0; 1055 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1056 1057 f2fs_wait_on_page_writeback(page, NODE, true); 1058 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1059 set_cold_node(dn->inode, page); 1060 if (!PageUptodate(page)) 1061 SetPageUptodate(page); 1062 if (set_page_dirty(page)) 1063 dn->node_changed = true; 1064 1065 if (f2fs_has_xattr_block(ofs)) 1066 f2fs_i_xnid_write(dn->inode, dn->nid); 1067 1068 if (ofs == 0) 1069 inc_valid_inode_count(sbi); 1070 return page; 1071 1072 fail: 1073 clear_node_page_dirty(page); 1074 f2fs_put_page(page, 1); 1075 return ERR_PTR(err); 1076 } 1077 1078 /* 1079 * Caller should do after getting the following values. 1080 * 0: f2fs_put_page(page, 0) 1081 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1082 */ 1083 static int read_node_page(struct page *page, int op_flags) 1084 { 1085 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1086 struct node_info ni; 1087 struct f2fs_io_info fio = { 1088 .sbi = sbi, 1089 .type = NODE, 1090 .op = REQ_OP_READ, 1091 .op_flags = op_flags, 1092 .page = page, 1093 .encrypted_page = NULL, 1094 }; 1095 1096 if (PageUptodate(page)) 1097 return LOCKED_PAGE; 1098 1099 get_node_info(sbi, page->index, &ni); 1100 1101 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1102 ClearPageUptodate(page); 1103 return -ENOENT; 1104 } 1105 1106 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1107 return f2fs_submit_page_bio(&fio); 1108 } 1109 1110 /* 1111 * Readahead a node page 1112 */ 1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1114 { 1115 struct page *apage; 1116 int err; 1117 1118 if (!nid) 1119 return; 1120 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1121 1122 rcu_read_lock(); 1123 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1124 rcu_read_unlock(); 1125 if (apage) 1126 return; 1127 1128 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1129 if (!apage) 1130 return; 1131 1132 err = read_node_page(apage, REQ_RAHEAD); 1133 f2fs_put_page(apage, err ? 1 : 0); 1134 } 1135 1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1137 struct page *parent, int start) 1138 { 1139 struct page *page; 1140 int err; 1141 1142 if (!nid) 1143 return ERR_PTR(-ENOENT); 1144 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1145 repeat: 1146 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1147 if (!page) 1148 return ERR_PTR(-ENOMEM); 1149 1150 err = read_node_page(page, 0); 1151 if (err < 0) { 1152 f2fs_put_page(page, 1); 1153 return ERR_PTR(err); 1154 } else if (err == LOCKED_PAGE) { 1155 goto page_hit; 1156 } 1157 1158 if (parent) 1159 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1160 1161 lock_page(page); 1162 1163 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1164 f2fs_put_page(page, 1); 1165 goto repeat; 1166 } 1167 1168 if (unlikely(!PageUptodate(page))) 1169 goto out_err; 1170 page_hit: 1171 if(unlikely(nid != nid_of_node(page))) { 1172 f2fs_bug_on(sbi, 1); 1173 ClearPageUptodate(page); 1174 out_err: 1175 f2fs_put_page(page, 1); 1176 return ERR_PTR(-EIO); 1177 } 1178 return page; 1179 } 1180 1181 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1182 { 1183 return __get_node_page(sbi, nid, NULL, 0); 1184 } 1185 1186 struct page *get_node_page_ra(struct page *parent, int start) 1187 { 1188 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1189 nid_t nid = get_nid(parent, start, false); 1190 1191 return __get_node_page(sbi, nid, parent, start); 1192 } 1193 1194 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1195 { 1196 struct inode *inode; 1197 struct page *page; 1198 int ret; 1199 1200 /* should flush inline_data before evict_inode */ 1201 inode = ilookup(sbi->sb, ino); 1202 if (!inode) 1203 return; 1204 1205 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1206 if (!page) 1207 goto iput_out; 1208 1209 if (!PageUptodate(page)) 1210 goto page_out; 1211 1212 if (!PageDirty(page)) 1213 goto page_out; 1214 1215 if (!clear_page_dirty_for_io(page)) 1216 goto page_out; 1217 1218 ret = f2fs_write_inline_data(inode, page); 1219 inode_dec_dirty_pages(inode); 1220 remove_dirty_inode(inode); 1221 if (ret) 1222 set_page_dirty(page); 1223 page_out: 1224 f2fs_put_page(page, 1); 1225 iput_out: 1226 iput(inode); 1227 } 1228 1229 void move_node_page(struct page *node_page, int gc_type) 1230 { 1231 if (gc_type == FG_GC) { 1232 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1233 struct writeback_control wbc = { 1234 .sync_mode = WB_SYNC_ALL, 1235 .nr_to_write = 1, 1236 .for_reclaim = 0, 1237 }; 1238 1239 set_page_dirty(node_page); 1240 f2fs_wait_on_page_writeback(node_page, NODE, true); 1241 1242 f2fs_bug_on(sbi, PageWriteback(node_page)); 1243 if (!clear_page_dirty_for_io(node_page)) 1244 goto out_page; 1245 1246 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1247 unlock_page(node_page); 1248 goto release_page; 1249 } else { 1250 /* set page dirty and write it */ 1251 if (!PageWriteback(node_page)) 1252 set_page_dirty(node_page); 1253 } 1254 out_page: 1255 unlock_page(node_page); 1256 release_page: 1257 f2fs_put_page(node_page, 0); 1258 } 1259 1260 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1261 { 1262 pgoff_t index, end; 1263 struct pagevec pvec; 1264 struct page *last_page = NULL; 1265 1266 pagevec_init(&pvec, 0); 1267 index = 0; 1268 end = ULONG_MAX; 1269 1270 while (index <= end) { 1271 int i, nr_pages; 1272 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1273 PAGECACHE_TAG_DIRTY, 1274 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1275 if (nr_pages == 0) 1276 break; 1277 1278 for (i = 0; i < nr_pages; i++) { 1279 struct page *page = pvec.pages[i]; 1280 1281 if (unlikely(f2fs_cp_error(sbi))) { 1282 f2fs_put_page(last_page, 0); 1283 pagevec_release(&pvec); 1284 return ERR_PTR(-EIO); 1285 } 1286 1287 if (!IS_DNODE(page) || !is_cold_node(page)) 1288 continue; 1289 if (ino_of_node(page) != ino) 1290 continue; 1291 1292 lock_page(page); 1293 1294 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1295 continue_unlock: 1296 unlock_page(page); 1297 continue; 1298 } 1299 if (ino_of_node(page) != ino) 1300 goto continue_unlock; 1301 1302 if (!PageDirty(page)) { 1303 /* someone wrote it for us */ 1304 goto continue_unlock; 1305 } 1306 1307 if (last_page) 1308 f2fs_put_page(last_page, 0); 1309 1310 get_page(page); 1311 last_page = page; 1312 unlock_page(page); 1313 } 1314 pagevec_release(&pvec); 1315 cond_resched(); 1316 } 1317 return last_page; 1318 } 1319 1320 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1321 struct writeback_control *wbc) 1322 { 1323 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1324 nid_t nid; 1325 struct node_info ni; 1326 struct f2fs_io_info fio = { 1327 .sbi = sbi, 1328 .type = NODE, 1329 .op = REQ_OP_WRITE, 1330 .op_flags = wbc_to_write_flags(wbc), 1331 .page = page, 1332 .encrypted_page = NULL, 1333 .submitted = false, 1334 }; 1335 1336 trace_f2fs_writepage(page, NODE); 1337 1338 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1339 goto redirty_out; 1340 if (unlikely(f2fs_cp_error(sbi))) 1341 goto redirty_out; 1342 1343 /* get old block addr of this node page */ 1344 nid = nid_of_node(page); 1345 f2fs_bug_on(sbi, page->index != nid); 1346 1347 if (wbc->for_reclaim) { 1348 if (!down_read_trylock(&sbi->node_write)) 1349 goto redirty_out; 1350 } else { 1351 down_read(&sbi->node_write); 1352 } 1353 1354 get_node_info(sbi, nid, &ni); 1355 1356 /* This page is already truncated */ 1357 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1358 ClearPageUptodate(page); 1359 dec_page_count(sbi, F2FS_DIRTY_NODES); 1360 up_read(&sbi->node_write); 1361 unlock_page(page); 1362 return 0; 1363 } 1364 1365 if (atomic && !test_opt(sbi, NOBARRIER)) 1366 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1367 1368 set_page_writeback(page); 1369 fio.old_blkaddr = ni.blk_addr; 1370 write_node_page(nid, &fio); 1371 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1372 dec_page_count(sbi, F2FS_DIRTY_NODES); 1373 up_read(&sbi->node_write); 1374 1375 if (wbc->for_reclaim) { 1376 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0, 1377 page->index, NODE, WRITE); 1378 submitted = NULL; 1379 } 1380 1381 unlock_page(page); 1382 1383 if (unlikely(f2fs_cp_error(sbi))) { 1384 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1385 submitted = NULL; 1386 } 1387 if (submitted) 1388 *submitted = fio.submitted; 1389 1390 return 0; 1391 1392 redirty_out: 1393 redirty_page_for_writepage(wbc, page); 1394 return AOP_WRITEPAGE_ACTIVATE; 1395 } 1396 1397 static int f2fs_write_node_page(struct page *page, 1398 struct writeback_control *wbc) 1399 { 1400 return __write_node_page(page, false, NULL, wbc); 1401 } 1402 1403 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1404 struct writeback_control *wbc, bool atomic) 1405 { 1406 pgoff_t index, end; 1407 pgoff_t last_idx = ULONG_MAX; 1408 struct pagevec pvec; 1409 int ret = 0; 1410 struct page *last_page = NULL; 1411 bool marked = false; 1412 nid_t ino = inode->i_ino; 1413 1414 if (atomic) { 1415 last_page = last_fsync_dnode(sbi, ino); 1416 if (IS_ERR_OR_NULL(last_page)) 1417 return PTR_ERR_OR_ZERO(last_page); 1418 } 1419 retry: 1420 pagevec_init(&pvec, 0); 1421 index = 0; 1422 end = ULONG_MAX; 1423 1424 while (index <= end) { 1425 int i, nr_pages; 1426 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1427 PAGECACHE_TAG_DIRTY, 1428 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1429 if (nr_pages == 0) 1430 break; 1431 1432 for (i = 0; i < nr_pages; i++) { 1433 struct page *page = pvec.pages[i]; 1434 bool submitted = false; 1435 1436 if (unlikely(f2fs_cp_error(sbi))) { 1437 f2fs_put_page(last_page, 0); 1438 pagevec_release(&pvec); 1439 ret = -EIO; 1440 goto out; 1441 } 1442 1443 if (!IS_DNODE(page) || !is_cold_node(page)) 1444 continue; 1445 if (ino_of_node(page) != ino) 1446 continue; 1447 1448 lock_page(page); 1449 1450 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1451 continue_unlock: 1452 unlock_page(page); 1453 continue; 1454 } 1455 if (ino_of_node(page) != ino) 1456 goto continue_unlock; 1457 1458 if (!PageDirty(page) && page != last_page) { 1459 /* someone wrote it for us */ 1460 goto continue_unlock; 1461 } 1462 1463 f2fs_wait_on_page_writeback(page, NODE, true); 1464 BUG_ON(PageWriteback(page)); 1465 1466 if (!atomic || page == last_page) { 1467 set_fsync_mark(page, 1); 1468 if (IS_INODE(page)) { 1469 if (is_inode_flag_set(inode, 1470 FI_DIRTY_INODE)) 1471 update_inode(inode, page); 1472 set_dentry_mark(page, 1473 need_dentry_mark(sbi, ino)); 1474 } 1475 /* may be written by other thread */ 1476 if (!PageDirty(page)) 1477 set_page_dirty(page); 1478 } 1479 1480 if (!clear_page_dirty_for_io(page)) 1481 goto continue_unlock; 1482 1483 ret = __write_node_page(page, atomic && 1484 page == last_page, 1485 &submitted, wbc); 1486 if (ret) { 1487 unlock_page(page); 1488 f2fs_put_page(last_page, 0); 1489 break; 1490 } else if (submitted) { 1491 last_idx = page->index; 1492 } 1493 1494 if (page == last_page) { 1495 f2fs_put_page(page, 0); 1496 marked = true; 1497 break; 1498 } 1499 } 1500 pagevec_release(&pvec); 1501 cond_resched(); 1502 1503 if (ret || marked) 1504 break; 1505 } 1506 if (!ret && atomic && !marked) { 1507 f2fs_msg(sbi->sb, KERN_DEBUG, 1508 "Retry to write fsync mark: ino=%u, idx=%lx", 1509 ino, last_page->index); 1510 lock_page(last_page); 1511 f2fs_wait_on_page_writeback(last_page, NODE, true); 1512 set_page_dirty(last_page); 1513 unlock_page(last_page); 1514 goto retry; 1515 } 1516 out: 1517 if (last_idx != ULONG_MAX) 1518 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx, 1519 NODE, WRITE); 1520 return ret ? -EIO: 0; 1521 } 1522 1523 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1524 { 1525 pgoff_t index, end; 1526 struct pagevec pvec; 1527 int step = 0; 1528 int nwritten = 0; 1529 int ret = 0; 1530 1531 pagevec_init(&pvec, 0); 1532 1533 next_step: 1534 index = 0; 1535 end = ULONG_MAX; 1536 1537 while (index <= end) { 1538 int i, nr_pages; 1539 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1540 PAGECACHE_TAG_DIRTY, 1541 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1542 if (nr_pages == 0) 1543 break; 1544 1545 for (i = 0; i < nr_pages; i++) { 1546 struct page *page = pvec.pages[i]; 1547 bool submitted = false; 1548 1549 if (unlikely(f2fs_cp_error(sbi))) { 1550 pagevec_release(&pvec); 1551 ret = -EIO; 1552 goto out; 1553 } 1554 1555 /* 1556 * flushing sequence with step: 1557 * 0. indirect nodes 1558 * 1. dentry dnodes 1559 * 2. file dnodes 1560 */ 1561 if (step == 0 && IS_DNODE(page)) 1562 continue; 1563 if (step == 1 && (!IS_DNODE(page) || 1564 is_cold_node(page))) 1565 continue; 1566 if (step == 2 && (!IS_DNODE(page) || 1567 !is_cold_node(page))) 1568 continue; 1569 lock_node: 1570 if (!trylock_page(page)) 1571 continue; 1572 1573 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1574 continue_unlock: 1575 unlock_page(page); 1576 continue; 1577 } 1578 1579 if (!PageDirty(page)) { 1580 /* someone wrote it for us */ 1581 goto continue_unlock; 1582 } 1583 1584 /* flush inline_data */ 1585 if (is_inline_node(page)) { 1586 clear_inline_node(page); 1587 unlock_page(page); 1588 flush_inline_data(sbi, ino_of_node(page)); 1589 goto lock_node; 1590 } 1591 1592 f2fs_wait_on_page_writeback(page, NODE, true); 1593 1594 BUG_ON(PageWriteback(page)); 1595 if (!clear_page_dirty_for_io(page)) 1596 goto continue_unlock; 1597 1598 set_fsync_mark(page, 0); 1599 set_dentry_mark(page, 0); 1600 1601 ret = __write_node_page(page, false, &submitted, wbc); 1602 if (ret) 1603 unlock_page(page); 1604 else if (submitted) 1605 nwritten++; 1606 1607 if (--wbc->nr_to_write == 0) 1608 break; 1609 } 1610 pagevec_release(&pvec); 1611 cond_resched(); 1612 1613 if (wbc->nr_to_write == 0) { 1614 step = 2; 1615 break; 1616 } 1617 } 1618 1619 if (step < 2) { 1620 step++; 1621 goto next_step; 1622 } 1623 out: 1624 if (nwritten) 1625 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1626 return ret; 1627 } 1628 1629 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1630 { 1631 pgoff_t index = 0, end = ULONG_MAX; 1632 struct pagevec pvec; 1633 int ret2, ret = 0; 1634 1635 pagevec_init(&pvec, 0); 1636 1637 while (index <= end) { 1638 int i, nr_pages; 1639 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1640 PAGECACHE_TAG_WRITEBACK, 1641 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1642 if (nr_pages == 0) 1643 break; 1644 1645 for (i = 0; i < nr_pages; i++) { 1646 struct page *page = pvec.pages[i]; 1647 1648 /* until radix tree lookup accepts end_index */ 1649 if (unlikely(page->index > end)) 1650 continue; 1651 1652 if (ino && ino_of_node(page) == ino) { 1653 f2fs_wait_on_page_writeback(page, NODE, true); 1654 if (TestClearPageError(page)) 1655 ret = -EIO; 1656 } 1657 } 1658 pagevec_release(&pvec); 1659 cond_resched(); 1660 } 1661 1662 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1663 if (!ret) 1664 ret = ret2; 1665 return ret; 1666 } 1667 1668 static int f2fs_write_node_pages(struct address_space *mapping, 1669 struct writeback_control *wbc) 1670 { 1671 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1672 struct blk_plug plug; 1673 long diff; 1674 1675 /* balancing f2fs's metadata in background */ 1676 f2fs_balance_fs_bg(sbi); 1677 1678 /* collect a number of dirty node pages and write together */ 1679 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1680 goto skip_write; 1681 1682 trace_f2fs_writepages(mapping->host, wbc, NODE); 1683 1684 diff = nr_pages_to_write(sbi, NODE, wbc); 1685 wbc->sync_mode = WB_SYNC_NONE; 1686 blk_start_plug(&plug); 1687 sync_node_pages(sbi, wbc); 1688 blk_finish_plug(&plug); 1689 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1690 return 0; 1691 1692 skip_write: 1693 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1694 trace_f2fs_writepages(mapping->host, wbc, NODE); 1695 return 0; 1696 } 1697 1698 static int f2fs_set_node_page_dirty(struct page *page) 1699 { 1700 trace_f2fs_set_page_dirty(page, NODE); 1701 1702 if (!PageUptodate(page)) 1703 SetPageUptodate(page); 1704 if (!PageDirty(page)) { 1705 f2fs_set_page_dirty_nobuffers(page); 1706 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1707 SetPagePrivate(page); 1708 f2fs_trace_pid(page); 1709 return 1; 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * Structure of the f2fs node operations 1716 */ 1717 const struct address_space_operations f2fs_node_aops = { 1718 .writepage = f2fs_write_node_page, 1719 .writepages = f2fs_write_node_pages, 1720 .set_page_dirty = f2fs_set_node_page_dirty, 1721 .invalidatepage = f2fs_invalidate_page, 1722 .releasepage = f2fs_release_page, 1723 #ifdef CONFIG_MIGRATION 1724 .migratepage = f2fs_migrate_page, 1725 #endif 1726 }; 1727 1728 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1729 nid_t n) 1730 { 1731 return radix_tree_lookup(&nm_i->free_nid_root, n); 1732 } 1733 1734 static int __insert_nid_to_list(struct f2fs_sb_info *sbi, 1735 struct free_nid *i, enum nid_list list, bool new) 1736 { 1737 struct f2fs_nm_info *nm_i = NM_I(sbi); 1738 1739 if (new) { 1740 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1741 if (err) 1742 return err; 1743 } 1744 1745 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1746 i->state != NID_ALLOC); 1747 nm_i->nid_cnt[list]++; 1748 list_add_tail(&i->list, &nm_i->nid_list[list]); 1749 return 0; 1750 } 1751 1752 static void __remove_nid_from_list(struct f2fs_sb_info *sbi, 1753 struct free_nid *i, enum nid_list list, bool reuse) 1754 { 1755 struct f2fs_nm_info *nm_i = NM_I(sbi); 1756 1757 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1758 i->state != NID_ALLOC); 1759 nm_i->nid_cnt[list]--; 1760 list_del(&i->list); 1761 if (!reuse) 1762 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1763 } 1764 1765 /* return if the nid is recognized as free */ 1766 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1767 { 1768 struct f2fs_nm_info *nm_i = NM_I(sbi); 1769 struct free_nid *i; 1770 struct nat_entry *ne; 1771 int err; 1772 1773 /* 0 nid should not be used */ 1774 if (unlikely(nid == 0)) 1775 return false; 1776 1777 if (build) { 1778 /* do not add allocated nids */ 1779 ne = __lookup_nat_cache(nm_i, nid); 1780 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1781 nat_get_blkaddr(ne) != NULL_ADDR)) 1782 return false; 1783 } 1784 1785 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1786 i->nid = nid; 1787 i->state = NID_NEW; 1788 1789 if (radix_tree_preload(GFP_NOFS)) { 1790 kmem_cache_free(free_nid_slab, i); 1791 return true; 1792 } 1793 1794 spin_lock(&nm_i->nid_list_lock); 1795 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); 1796 spin_unlock(&nm_i->nid_list_lock); 1797 radix_tree_preload_end(); 1798 if (err) { 1799 kmem_cache_free(free_nid_slab, i); 1800 return true; 1801 } 1802 return true; 1803 } 1804 1805 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1806 { 1807 struct f2fs_nm_info *nm_i = NM_I(sbi); 1808 struct free_nid *i; 1809 bool need_free = false; 1810 1811 spin_lock(&nm_i->nid_list_lock); 1812 i = __lookup_free_nid_list(nm_i, nid); 1813 if (i && i->state == NID_NEW) { 1814 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1815 need_free = true; 1816 } 1817 spin_unlock(&nm_i->nid_list_lock); 1818 1819 if (need_free) 1820 kmem_cache_free(free_nid_slab, i); 1821 } 1822 1823 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 1824 bool set, bool build, bool locked) 1825 { 1826 struct f2fs_nm_info *nm_i = NM_I(sbi); 1827 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1828 unsigned int nid_ofs = nid - START_NID(nid); 1829 1830 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1831 return; 1832 1833 if (set) 1834 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1835 else 1836 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1837 1838 if (!locked) 1839 spin_lock(&nm_i->free_nid_lock); 1840 if (set) 1841 nm_i->free_nid_count[nat_ofs]++; 1842 else if (!build) 1843 nm_i->free_nid_count[nat_ofs]--; 1844 if (!locked) 1845 spin_unlock(&nm_i->free_nid_lock); 1846 } 1847 1848 static void scan_nat_page(struct f2fs_sb_info *sbi, 1849 struct page *nat_page, nid_t start_nid) 1850 { 1851 struct f2fs_nm_info *nm_i = NM_I(sbi); 1852 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1853 block_t blk_addr; 1854 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1855 int i; 1856 1857 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1858 return; 1859 1860 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1861 1862 i = start_nid % NAT_ENTRY_PER_BLOCK; 1863 1864 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1865 bool freed = false; 1866 1867 if (unlikely(start_nid >= nm_i->max_nid)) 1868 break; 1869 1870 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1871 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1872 if (blk_addr == NULL_ADDR) 1873 freed = add_free_nid(sbi, start_nid, true); 1874 update_free_nid_bitmap(sbi, start_nid, freed, true, false); 1875 } 1876 } 1877 1878 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 1879 { 1880 struct f2fs_nm_info *nm_i = NM_I(sbi); 1881 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1882 struct f2fs_journal *journal = curseg->journal; 1883 unsigned int i, idx; 1884 1885 down_read(&nm_i->nat_tree_lock); 1886 1887 for (i = 0; i < nm_i->nat_blocks; i++) { 1888 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 1889 continue; 1890 if (!nm_i->free_nid_count[i]) 1891 continue; 1892 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 1893 nid_t nid; 1894 1895 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i])) 1896 continue; 1897 1898 nid = i * NAT_ENTRY_PER_BLOCK + idx; 1899 add_free_nid(sbi, nid, true); 1900 1901 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS) 1902 goto out; 1903 } 1904 } 1905 out: 1906 down_read(&curseg->journal_rwsem); 1907 for (i = 0; i < nats_in_cursum(journal); i++) { 1908 block_t addr; 1909 nid_t nid; 1910 1911 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1912 nid = le32_to_cpu(nid_in_journal(journal, i)); 1913 if (addr == NULL_ADDR) 1914 add_free_nid(sbi, nid, true); 1915 else 1916 remove_free_nid(sbi, nid); 1917 } 1918 up_read(&curseg->journal_rwsem); 1919 up_read(&nm_i->nat_tree_lock); 1920 } 1921 1922 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 1923 { 1924 struct f2fs_nm_info *nm_i = NM_I(sbi); 1925 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1926 struct f2fs_journal *journal = curseg->journal; 1927 int i = 0; 1928 nid_t nid = nm_i->next_scan_nid; 1929 1930 /* Enough entries */ 1931 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK) 1932 return; 1933 1934 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 1935 return; 1936 1937 if (!mount) { 1938 /* try to find free nids in free_nid_bitmap */ 1939 scan_free_nid_bits(sbi); 1940 1941 if (nm_i->nid_cnt[FREE_NID_LIST]) 1942 return; 1943 } 1944 1945 /* readahead nat pages to be scanned */ 1946 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1947 META_NAT, true); 1948 1949 down_read(&nm_i->nat_tree_lock); 1950 1951 while (1) { 1952 struct page *page = get_current_nat_page(sbi, nid); 1953 1954 scan_nat_page(sbi, page, nid); 1955 f2fs_put_page(page, 1); 1956 1957 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1958 if (unlikely(nid >= nm_i->max_nid)) 1959 nid = 0; 1960 1961 if (++i >= FREE_NID_PAGES) 1962 break; 1963 } 1964 1965 /* go to the next free nat pages to find free nids abundantly */ 1966 nm_i->next_scan_nid = nid; 1967 1968 /* find free nids from current sum_pages */ 1969 down_read(&curseg->journal_rwsem); 1970 for (i = 0; i < nats_in_cursum(journal); i++) { 1971 block_t addr; 1972 1973 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1974 nid = le32_to_cpu(nid_in_journal(journal, i)); 1975 if (addr == NULL_ADDR) 1976 add_free_nid(sbi, nid, true); 1977 else 1978 remove_free_nid(sbi, nid); 1979 } 1980 up_read(&curseg->journal_rwsem); 1981 up_read(&nm_i->nat_tree_lock); 1982 1983 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 1984 nm_i->ra_nid_pages, META_NAT, false); 1985 } 1986 1987 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 1988 { 1989 mutex_lock(&NM_I(sbi)->build_lock); 1990 __build_free_nids(sbi, sync, mount); 1991 mutex_unlock(&NM_I(sbi)->build_lock); 1992 } 1993 1994 /* 1995 * If this function returns success, caller can obtain a new nid 1996 * from second parameter of this function. 1997 * The returned nid could be used ino as well as nid when inode is created. 1998 */ 1999 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2000 { 2001 struct f2fs_nm_info *nm_i = NM_I(sbi); 2002 struct free_nid *i = NULL; 2003 retry: 2004 #ifdef CONFIG_F2FS_FAULT_INJECTION 2005 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2006 f2fs_show_injection_info(FAULT_ALLOC_NID); 2007 return false; 2008 } 2009 #endif 2010 spin_lock(&nm_i->nid_list_lock); 2011 2012 if (unlikely(nm_i->available_nids == 0)) { 2013 spin_unlock(&nm_i->nid_list_lock); 2014 return false; 2015 } 2016 2017 /* We should not use stale free nids created by build_free_nids */ 2018 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) { 2019 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST])); 2020 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 2021 struct free_nid, list); 2022 *nid = i->nid; 2023 2024 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true); 2025 i->state = NID_ALLOC; 2026 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false); 2027 nm_i->available_nids--; 2028 2029 update_free_nid_bitmap(sbi, *nid, false, false, false); 2030 2031 spin_unlock(&nm_i->nid_list_lock); 2032 return true; 2033 } 2034 spin_unlock(&nm_i->nid_list_lock); 2035 2036 /* Let's scan nat pages and its caches to get free nids */ 2037 build_free_nids(sbi, true, false); 2038 goto retry; 2039 } 2040 2041 /* 2042 * alloc_nid() should be called prior to this function. 2043 */ 2044 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2045 { 2046 struct f2fs_nm_info *nm_i = NM_I(sbi); 2047 struct free_nid *i; 2048 2049 spin_lock(&nm_i->nid_list_lock); 2050 i = __lookup_free_nid_list(nm_i, nid); 2051 f2fs_bug_on(sbi, !i); 2052 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2053 spin_unlock(&nm_i->nid_list_lock); 2054 2055 kmem_cache_free(free_nid_slab, i); 2056 } 2057 2058 /* 2059 * alloc_nid() should be called prior to this function. 2060 */ 2061 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2062 { 2063 struct f2fs_nm_info *nm_i = NM_I(sbi); 2064 struct free_nid *i; 2065 bool need_free = false; 2066 2067 if (!nid) 2068 return; 2069 2070 spin_lock(&nm_i->nid_list_lock); 2071 i = __lookup_free_nid_list(nm_i, nid); 2072 f2fs_bug_on(sbi, !i); 2073 2074 if (!available_free_memory(sbi, FREE_NIDS)) { 2075 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2076 need_free = true; 2077 } else { 2078 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true); 2079 i->state = NID_NEW; 2080 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false); 2081 } 2082 2083 nm_i->available_nids++; 2084 2085 update_free_nid_bitmap(sbi, nid, true, false, false); 2086 2087 spin_unlock(&nm_i->nid_list_lock); 2088 2089 if (need_free) 2090 kmem_cache_free(free_nid_slab, i); 2091 } 2092 2093 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2094 { 2095 struct f2fs_nm_info *nm_i = NM_I(sbi); 2096 struct free_nid *i, *next; 2097 int nr = nr_shrink; 2098 2099 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2100 return 0; 2101 2102 if (!mutex_trylock(&nm_i->build_lock)) 2103 return 0; 2104 2105 spin_lock(&nm_i->nid_list_lock); 2106 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST], 2107 list) { 2108 if (nr_shrink <= 0 || 2109 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2110 break; 2111 2112 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2113 kmem_cache_free(free_nid_slab, i); 2114 nr_shrink--; 2115 } 2116 spin_unlock(&nm_i->nid_list_lock); 2117 mutex_unlock(&nm_i->build_lock); 2118 2119 return nr - nr_shrink; 2120 } 2121 2122 void recover_inline_xattr(struct inode *inode, struct page *page) 2123 { 2124 void *src_addr, *dst_addr; 2125 size_t inline_size; 2126 struct page *ipage; 2127 struct f2fs_inode *ri; 2128 2129 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2130 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2131 2132 ri = F2FS_INODE(page); 2133 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 2134 clear_inode_flag(inode, FI_INLINE_XATTR); 2135 goto update_inode; 2136 } 2137 2138 dst_addr = inline_xattr_addr(ipage); 2139 src_addr = inline_xattr_addr(page); 2140 inline_size = inline_xattr_size(inode); 2141 2142 f2fs_wait_on_page_writeback(ipage, NODE, true); 2143 memcpy(dst_addr, src_addr, inline_size); 2144 update_inode: 2145 update_inode(inode, ipage); 2146 f2fs_put_page(ipage, 1); 2147 } 2148 2149 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 2150 { 2151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2152 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2153 nid_t new_xnid = nid_of_node(page); 2154 struct node_info ni; 2155 struct page *xpage; 2156 2157 if (!prev_xnid) 2158 goto recover_xnid; 2159 2160 /* 1: invalidate the previous xattr nid */ 2161 get_node_info(sbi, prev_xnid, &ni); 2162 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 2163 invalidate_blocks(sbi, ni.blk_addr); 2164 dec_valid_node_count(sbi, inode); 2165 set_node_addr(sbi, &ni, NULL_ADDR, false); 2166 2167 recover_xnid: 2168 /* 2: update xattr nid in inode */ 2169 remove_free_nid(sbi, new_xnid); 2170 f2fs_i_xnid_write(inode, new_xnid); 2171 if (unlikely(!inc_valid_node_count(sbi, inode))) 2172 f2fs_bug_on(sbi, 1); 2173 update_inode_page(inode); 2174 2175 /* 3: update and set xattr node page dirty */ 2176 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid); 2177 if (!xpage) 2178 return -ENOMEM; 2179 2180 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE); 2181 2182 get_node_info(sbi, new_xnid, &ni); 2183 ni.ino = inode->i_ino; 2184 set_node_addr(sbi, &ni, NEW_ADDR, false); 2185 set_page_dirty(xpage); 2186 f2fs_put_page(xpage, 1); 2187 2188 return 0; 2189 } 2190 2191 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2192 { 2193 struct f2fs_inode *src, *dst; 2194 nid_t ino = ino_of_node(page); 2195 struct node_info old_ni, new_ni; 2196 struct page *ipage; 2197 2198 get_node_info(sbi, ino, &old_ni); 2199 2200 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2201 return -EINVAL; 2202 retry: 2203 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2204 if (!ipage) { 2205 congestion_wait(BLK_RW_ASYNC, HZ/50); 2206 goto retry; 2207 } 2208 2209 /* Should not use this inode from free nid list */ 2210 remove_free_nid(sbi, ino); 2211 2212 if (!PageUptodate(ipage)) 2213 SetPageUptodate(ipage); 2214 fill_node_footer(ipage, ino, ino, 0, true); 2215 2216 src = F2FS_INODE(page); 2217 dst = F2FS_INODE(ipage); 2218 2219 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2220 dst->i_size = 0; 2221 dst->i_blocks = cpu_to_le64(1); 2222 dst->i_links = cpu_to_le32(1); 2223 dst->i_xattr_nid = 0; 2224 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2225 2226 new_ni = old_ni; 2227 new_ni.ino = ino; 2228 2229 if (unlikely(!inc_valid_node_count(sbi, NULL))) 2230 WARN_ON(1); 2231 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2232 inc_valid_inode_count(sbi); 2233 set_page_dirty(ipage); 2234 f2fs_put_page(ipage, 1); 2235 return 0; 2236 } 2237 2238 int restore_node_summary(struct f2fs_sb_info *sbi, 2239 unsigned int segno, struct f2fs_summary_block *sum) 2240 { 2241 struct f2fs_node *rn; 2242 struct f2fs_summary *sum_entry; 2243 block_t addr; 2244 int i, idx, last_offset, nrpages; 2245 2246 /* scan the node segment */ 2247 last_offset = sbi->blocks_per_seg; 2248 addr = START_BLOCK(sbi, segno); 2249 sum_entry = &sum->entries[0]; 2250 2251 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2252 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2253 2254 /* readahead node pages */ 2255 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2256 2257 for (idx = addr; idx < addr + nrpages; idx++) { 2258 struct page *page = get_tmp_page(sbi, idx); 2259 2260 rn = F2FS_NODE(page); 2261 sum_entry->nid = rn->footer.nid; 2262 sum_entry->version = 0; 2263 sum_entry->ofs_in_node = 0; 2264 sum_entry++; 2265 f2fs_put_page(page, 1); 2266 } 2267 2268 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2269 addr + nrpages); 2270 } 2271 return 0; 2272 } 2273 2274 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2275 { 2276 struct f2fs_nm_info *nm_i = NM_I(sbi); 2277 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2278 struct f2fs_journal *journal = curseg->journal; 2279 int i; 2280 2281 down_write(&curseg->journal_rwsem); 2282 for (i = 0; i < nats_in_cursum(journal); i++) { 2283 struct nat_entry *ne; 2284 struct f2fs_nat_entry raw_ne; 2285 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2286 2287 raw_ne = nat_in_journal(journal, i); 2288 2289 ne = __lookup_nat_cache(nm_i, nid); 2290 if (!ne) { 2291 ne = grab_nat_entry(nm_i, nid, true); 2292 node_info_from_raw_nat(&ne->ni, &raw_ne); 2293 } 2294 2295 /* 2296 * if a free nat in journal has not been used after last 2297 * checkpoint, we should remove it from available nids, 2298 * since later we will add it again. 2299 */ 2300 if (!get_nat_flag(ne, IS_DIRTY) && 2301 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2302 spin_lock(&nm_i->nid_list_lock); 2303 nm_i->available_nids--; 2304 spin_unlock(&nm_i->nid_list_lock); 2305 } 2306 2307 __set_nat_cache_dirty(nm_i, ne); 2308 } 2309 update_nats_in_cursum(journal, -i); 2310 up_write(&curseg->journal_rwsem); 2311 } 2312 2313 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2314 struct list_head *head, int max) 2315 { 2316 struct nat_entry_set *cur; 2317 2318 if (nes->entry_cnt >= max) 2319 goto add_out; 2320 2321 list_for_each_entry(cur, head, set_list) { 2322 if (cur->entry_cnt >= nes->entry_cnt) { 2323 list_add(&nes->set_list, cur->set_list.prev); 2324 return; 2325 } 2326 } 2327 add_out: 2328 list_add_tail(&nes->set_list, head); 2329 } 2330 2331 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2332 struct page *page) 2333 { 2334 struct f2fs_nm_info *nm_i = NM_I(sbi); 2335 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2336 struct f2fs_nat_block *nat_blk = page_address(page); 2337 int valid = 0; 2338 int i; 2339 2340 if (!enabled_nat_bits(sbi, NULL)) 2341 return; 2342 2343 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { 2344 if (start_nid == 0 && i == 0) 2345 valid++; 2346 if (nat_blk->entries[i].block_addr) 2347 valid++; 2348 } 2349 if (valid == 0) { 2350 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2351 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2352 return; 2353 } 2354 2355 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2356 if (valid == NAT_ENTRY_PER_BLOCK) 2357 __set_bit_le(nat_index, nm_i->full_nat_bits); 2358 else 2359 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2360 } 2361 2362 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2363 struct nat_entry_set *set, struct cp_control *cpc) 2364 { 2365 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2366 struct f2fs_journal *journal = curseg->journal; 2367 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2368 bool to_journal = true; 2369 struct f2fs_nat_block *nat_blk; 2370 struct nat_entry *ne, *cur; 2371 struct page *page = NULL; 2372 2373 /* 2374 * there are two steps to flush nat entries: 2375 * #1, flush nat entries to journal in current hot data summary block. 2376 * #2, flush nat entries to nat page. 2377 */ 2378 if (enabled_nat_bits(sbi, cpc) || 2379 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2380 to_journal = false; 2381 2382 if (to_journal) { 2383 down_write(&curseg->journal_rwsem); 2384 } else { 2385 page = get_next_nat_page(sbi, start_nid); 2386 nat_blk = page_address(page); 2387 f2fs_bug_on(sbi, !nat_blk); 2388 } 2389 2390 /* flush dirty nats in nat entry set */ 2391 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2392 struct f2fs_nat_entry *raw_ne; 2393 nid_t nid = nat_get_nid(ne); 2394 int offset; 2395 2396 if (nat_get_blkaddr(ne) == NEW_ADDR) 2397 continue; 2398 2399 if (to_journal) { 2400 offset = lookup_journal_in_cursum(journal, 2401 NAT_JOURNAL, nid, 1); 2402 f2fs_bug_on(sbi, offset < 0); 2403 raw_ne = &nat_in_journal(journal, offset); 2404 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2405 } else { 2406 raw_ne = &nat_blk->entries[nid - start_nid]; 2407 } 2408 raw_nat_from_node_info(raw_ne, &ne->ni); 2409 nat_reset_flag(ne); 2410 __clear_nat_cache_dirty(NM_I(sbi), ne); 2411 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2412 add_free_nid(sbi, nid, false); 2413 spin_lock(&NM_I(sbi)->nid_list_lock); 2414 NM_I(sbi)->available_nids++; 2415 update_free_nid_bitmap(sbi, nid, true, false, false); 2416 spin_unlock(&NM_I(sbi)->nid_list_lock); 2417 } else { 2418 spin_lock(&NM_I(sbi)->nid_list_lock); 2419 update_free_nid_bitmap(sbi, nid, false, false, false); 2420 spin_unlock(&NM_I(sbi)->nid_list_lock); 2421 } 2422 } 2423 2424 if (to_journal) { 2425 up_write(&curseg->journal_rwsem); 2426 } else { 2427 __update_nat_bits(sbi, start_nid, page); 2428 f2fs_put_page(page, 1); 2429 } 2430 2431 f2fs_bug_on(sbi, set->entry_cnt); 2432 2433 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2434 kmem_cache_free(nat_entry_set_slab, set); 2435 } 2436 2437 /* 2438 * This function is called during the checkpointing process. 2439 */ 2440 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2441 { 2442 struct f2fs_nm_info *nm_i = NM_I(sbi); 2443 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2444 struct f2fs_journal *journal = curseg->journal; 2445 struct nat_entry_set *setvec[SETVEC_SIZE]; 2446 struct nat_entry_set *set, *tmp; 2447 unsigned int found; 2448 nid_t set_idx = 0; 2449 LIST_HEAD(sets); 2450 2451 if (!nm_i->dirty_nat_cnt) 2452 return; 2453 2454 down_write(&nm_i->nat_tree_lock); 2455 2456 /* 2457 * if there are no enough space in journal to store dirty nat 2458 * entries, remove all entries from journal and merge them 2459 * into nat entry set. 2460 */ 2461 if (enabled_nat_bits(sbi, cpc) || 2462 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2463 remove_nats_in_journal(sbi); 2464 2465 while ((found = __gang_lookup_nat_set(nm_i, 2466 set_idx, SETVEC_SIZE, setvec))) { 2467 unsigned idx; 2468 set_idx = setvec[found - 1]->set + 1; 2469 for (idx = 0; idx < found; idx++) 2470 __adjust_nat_entry_set(setvec[idx], &sets, 2471 MAX_NAT_JENTRIES(journal)); 2472 } 2473 2474 /* flush dirty nats in nat entry set */ 2475 list_for_each_entry_safe(set, tmp, &sets, set_list) 2476 __flush_nat_entry_set(sbi, set, cpc); 2477 2478 up_write(&nm_i->nat_tree_lock); 2479 2480 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 2481 } 2482 2483 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2484 { 2485 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2486 struct f2fs_nm_info *nm_i = NM_I(sbi); 2487 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2488 unsigned int i; 2489 __u64 cp_ver = cur_cp_version(ckpt); 2490 block_t nat_bits_addr; 2491 2492 if (!enabled_nat_bits(sbi, NULL)) 2493 return 0; 2494 2495 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + 2496 F2FS_BLKSIZE - 1); 2497 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, 2498 GFP_KERNEL); 2499 if (!nm_i->nat_bits) 2500 return -ENOMEM; 2501 2502 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2503 nm_i->nat_bits_blocks; 2504 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2505 struct page *page = get_meta_page(sbi, nat_bits_addr++); 2506 2507 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2508 page_address(page), F2FS_BLKSIZE); 2509 f2fs_put_page(page, 1); 2510 } 2511 2512 cp_ver |= (cur_cp_crc(ckpt) << 32); 2513 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2514 disable_nat_bits(sbi, true); 2515 return 0; 2516 } 2517 2518 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2519 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2520 2521 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2522 return 0; 2523 } 2524 2525 inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2526 { 2527 struct f2fs_nm_info *nm_i = NM_I(sbi); 2528 unsigned int i = 0; 2529 nid_t nid, last_nid; 2530 2531 if (!enabled_nat_bits(sbi, NULL)) 2532 return; 2533 2534 for (i = 0; i < nm_i->nat_blocks; i++) { 2535 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2536 if (i >= nm_i->nat_blocks) 2537 break; 2538 2539 __set_bit_le(i, nm_i->nat_block_bitmap); 2540 2541 nid = i * NAT_ENTRY_PER_BLOCK; 2542 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK; 2543 2544 spin_lock(&nm_i->free_nid_lock); 2545 for (; nid < last_nid; nid++) 2546 update_free_nid_bitmap(sbi, nid, true, true, true); 2547 spin_unlock(&nm_i->free_nid_lock); 2548 } 2549 2550 for (i = 0; i < nm_i->nat_blocks; i++) { 2551 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2552 if (i >= nm_i->nat_blocks) 2553 break; 2554 2555 __set_bit_le(i, nm_i->nat_block_bitmap); 2556 } 2557 } 2558 2559 static int init_node_manager(struct f2fs_sb_info *sbi) 2560 { 2561 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2562 struct f2fs_nm_info *nm_i = NM_I(sbi); 2563 unsigned char *version_bitmap; 2564 unsigned int nat_segs; 2565 int err; 2566 2567 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2568 2569 /* segment_count_nat includes pair segment so divide to 2. */ 2570 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2571 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2572 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2573 2574 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2575 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2576 F2FS_RESERVED_NODE_NUM; 2577 nm_i->nid_cnt[FREE_NID_LIST] = 0; 2578 nm_i->nid_cnt[ALLOC_NID_LIST] = 0; 2579 nm_i->nat_cnt = 0; 2580 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2581 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2582 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2583 2584 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2585 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]); 2586 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]); 2587 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2588 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2589 INIT_LIST_HEAD(&nm_i->nat_entries); 2590 2591 mutex_init(&nm_i->build_lock); 2592 spin_lock_init(&nm_i->nid_list_lock); 2593 init_rwsem(&nm_i->nat_tree_lock); 2594 2595 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2596 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2597 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2598 if (!version_bitmap) 2599 return -EFAULT; 2600 2601 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2602 GFP_KERNEL); 2603 if (!nm_i->nat_bitmap) 2604 return -ENOMEM; 2605 2606 err = __get_nat_bitmaps(sbi); 2607 if (err) 2608 return err; 2609 2610 #ifdef CONFIG_F2FS_CHECK_FS 2611 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2612 GFP_KERNEL); 2613 if (!nm_i->nat_bitmap_mir) 2614 return -ENOMEM; 2615 #endif 2616 2617 return 0; 2618 } 2619 2620 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2621 { 2622 struct f2fs_nm_info *nm_i = NM_I(sbi); 2623 2624 nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks * 2625 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL); 2626 if (!nm_i->free_nid_bitmap) 2627 return -ENOMEM; 2628 2629 nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8, 2630 GFP_KERNEL); 2631 if (!nm_i->nat_block_bitmap) 2632 return -ENOMEM; 2633 2634 nm_i->free_nid_count = f2fs_kvzalloc(nm_i->nat_blocks * 2635 sizeof(unsigned short), GFP_KERNEL); 2636 if (!nm_i->free_nid_count) 2637 return -ENOMEM; 2638 2639 spin_lock_init(&nm_i->free_nid_lock); 2640 2641 return 0; 2642 } 2643 2644 int build_node_manager(struct f2fs_sb_info *sbi) 2645 { 2646 int err; 2647 2648 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2649 if (!sbi->nm_info) 2650 return -ENOMEM; 2651 2652 err = init_node_manager(sbi); 2653 if (err) 2654 return err; 2655 2656 err = init_free_nid_cache(sbi); 2657 if (err) 2658 return err; 2659 2660 /* load free nid status from nat_bits table */ 2661 load_free_nid_bitmap(sbi); 2662 2663 build_free_nids(sbi, true, true); 2664 return 0; 2665 } 2666 2667 void destroy_node_manager(struct f2fs_sb_info *sbi) 2668 { 2669 struct f2fs_nm_info *nm_i = NM_I(sbi); 2670 struct free_nid *i, *next_i; 2671 struct nat_entry *natvec[NATVEC_SIZE]; 2672 struct nat_entry_set *setvec[SETVEC_SIZE]; 2673 nid_t nid = 0; 2674 unsigned int found; 2675 2676 if (!nm_i) 2677 return; 2678 2679 /* destroy free nid list */ 2680 spin_lock(&nm_i->nid_list_lock); 2681 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST], 2682 list) { 2683 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2684 spin_unlock(&nm_i->nid_list_lock); 2685 kmem_cache_free(free_nid_slab, i); 2686 spin_lock(&nm_i->nid_list_lock); 2687 } 2688 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]); 2689 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]); 2690 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST])); 2691 spin_unlock(&nm_i->nid_list_lock); 2692 2693 /* destroy nat cache */ 2694 down_write(&nm_i->nat_tree_lock); 2695 while ((found = __gang_lookup_nat_cache(nm_i, 2696 nid, NATVEC_SIZE, natvec))) { 2697 unsigned idx; 2698 2699 nid = nat_get_nid(natvec[found - 1]) + 1; 2700 for (idx = 0; idx < found; idx++) 2701 __del_from_nat_cache(nm_i, natvec[idx]); 2702 } 2703 f2fs_bug_on(sbi, nm_i->nat_cnt); 2704 2705 /* destroy nat set cache */ 2706 nid = 0; 2707 while ((found = __gang_lookup_nat_set(nm_i, 2708 nid, SETVEC_SIZE, setvec))) { 2709 unsigned idx; 2710 2711 nid = setvec[found - 1]->set + 1; 2712 for (idx = 0; idx < found; idx++) { 2713 /* entry_cnt is not zero, when cp_error was occurred */ 2714 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2715 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2716 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2717 } 2718 } 2719 up_write(&nm_i->nat_tree_lock); 2720 2721 kvfree(nm_i->nat_block_bitmap); 2722 kvfree(nm_i->free_nid_bitmap); 2723 kvfree(nm_i->free_nid_count); 2724 2725 kfree(nm_i->nat_bitmap); 2726 kfree(nm_i->nat_bits); 2727 #ifdef CONFIG_F2FS_CHECK_FS 2728 kfree(nm_i->nat_bitmap_mir); 2729 #endif 2730 sbi->nm_info = NULL; 2731 kfree(nm_i); 2732 } 2733 2734 int __init create_node_manager_caches(void) 2735 { 2736 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2737 sizeof(struct nat_entry)); 2738 if (!nat_entry_slab) 2739 goto fail; 2740 2741 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2742 sizeof(struct free_nid)); 2743 if (!free_nid_slab) 2744 goto destroy_nat_entry; 2745 2746 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2747 sizeof(struct nat_entry_set)); 2748 if (!nat_entry_set_slab) 2749 goto destroy_free_nid; 2750 return 0; 2751 2752 destroy_free_nid: 2753 kmem_cache_destroy(free_nid_slab); 2754 destroy_nat_entry: 2755 kmem_cache_destroy(nat_entry_slab); 2756 fail: 2757 return -ENOMEM; 2758 } 2759 2760 void destroy_node_manager_caches(void) 2761 { 2762 kmem_cache_destroy(nat_entry_set_slab); 2763 kmem_cache_destroy(free_nid_slab); 2764 kmem_cache_destroy(nat_entry_slab); 2765 } 2766