1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] * 49 sizeof(struct free_nid)) >> PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 if (excess_cached_nats(sbi)) 56 res = false; 57 } else if (type == DIRTY_DENTS) { 58 if (sbi->sb->s_bdi->wb.dirty_exceeded) 59 return false; 60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 62 } else if (type == INO_ENTRIES) { 63 int i; 64 65 for (i = 0; i <= UPDATE_INO; i++) 66 mem_size += sbi->im[i].ino_num * 67 sizeof(struct ino_entry); 68 mem_size >>= PAGE_SHIFT; 69 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 70 } else if (type == EXTENT_CACHE) { 71 mem_size = (atomic_read(&sbi->total_ext_tree) * 72 sizeof(struct extent_tree) + 73 atomic_read(&sbi->total_ext_node) * 74 sizeof(struct extent_node)) >> PAGE_SHIFT; 75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 76 } else { 77 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 78 return true; 79 } 80 return res; 81 } 82 83 static void clear_node_page_dirty(struct page *page) 84 { 85 struct address_space *mapping = page->mapping; 86 unsigned int long flags; 87 88 if (PageDirty(page)) { 89 spin_lock_irqsave(&mapping->tree_lock, flags); 90 radix_tree_tag_clear(&mapping->page_tree, 91 page_index(page), 92 PAGECACHE_TAG_DIRTY); 93 spin_unlock_irqrestore(&mapping->tree_lock, flags); 94 95 clear_page_dirty_for_io(page); 96 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 97 } 98 ClearPageUptodate(page); 99 } 100 101 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 102 { 103 pgoff_t index = current_nat_addr(sbi, nid); 104 return get_meta_page(sbi, index); 105 } 106 107 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 108 { 109 struct page *src_page; 110 struct page *dst_page; 111 pgoff_t src_off; 112 pgoff_t dst_off; 113 void *src_addr; 114 void *dst_addr; 115 struct f2fs_nm_info *nm_i = NM_I(sbi); 116 117 src_off = current_nat_addr(sbi, nid); 118 dst_off = next_nat_addr(sbi, src_off); 119 120 /* get current nat block page with lock */ 121 src_page = get_meta_page(sbi, src_off); 122 dst_page = grab_meta_page(sbi, dst_off); 123 f2fs_bug_on(sbi, PageDirty(src_page)); 124 125 src_addr = page_address(src_page); 126 dst_addr = page_address(dst_page); 127 memcpy(dst_addr, src_addr, PAGE_SIZE); 128 set_page_dirty(dst_page); 129 f2fs_put_page(src_page, 1); 130 131 set_to_next_nat(nm_i, nid); 132 133 return dst_page; 134 } 135 136 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 137 { 138 return radix_tree_lookup(&nm_i->nat_root, n); 139 } 140 141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 142 nid_t start, unsigned int nr, struct nat_entry **ep) 143 { 144 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 145 } 146 147 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 148 { 149 list_del(&e->list); 150 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 151 nm_i->nat_cnt--; 152 kmem_cache_free(nat_entry_slab, e); 153 } 154 155 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 156 struct nat_entry *ne) 157 { 158 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 159 struct nat_entry_set *head; 160 161 if (get_nat_flag(ne, IS_DIRTY)) 162 return; 163 164 head = radix_tree_lookup(&nm_i->nat_set_root, set); 165 if (!head) { 166 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 167 168 INIT_LIST_HEAD(&head->entry_list); 169 INIT_LIST_HEAD(&head->set_list); 170 head->set = set; 171 head->entry_cnt = 0; 172 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 173 } 174 list_move_tail(&ne->list, &head->entry_list); 175 nm_i->dirty_nat_cnt++; 176 head->entry_cnt++; 177 set_nat_flag(ne, IS_DIRTY, true); 178 } 179 180 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 181 struct nat_entry_set *set, struct nat_entry *ne) 182 { 183 list_move_tail(&ne->list, &nm_i->nat_entries); 184 set_nat_flag(ne, IS_DIRTY, false); 185 set->entry_cnt--; 186 nm_i->dirty_nat_cnt--; 187 } 188 189 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 190 nid_t start, unsigned int nr, struct nat_entry_set **ep) 191 { 192 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 193 start, nr); 194 } 195 196 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 197 { 198 struct f2fs_nm_info *nm_i = NM_I(sbi); 199 struct nat_entry *e; 200 bool need = false; 201 202 down_read(&nm_i->nat_tree_lock); 203 e = __lookup_nat_cache(nm_i, nid); 204 if (e) { 205 if (!get_nat_flag(e, IS_CHECKPOINTED) && 206 !get_nat_flag(e, HAS_FSYNCED_INODE)) 207 need = true; 208 } 209 up_read(&nm_i->nat_tree_lock); 210 return need; 211 } 212 213 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 214 { 215 struct f2fs_nm_info *nm_i = NM_I(sbi); 216 struct nat_entry *e; 217 bool is_cp = true; 218 219 down_read(&nm_i->nat_tree_lock); 220 e = __lookup_nat_cache(nm_i, nid); 221 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 222 is_cp = false; 223 up_read(&nm_i->nat_tree_lock); 224 return is_cp; 225 } 226 227 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 228 { 229 struct f2fs_nm_info *nm_i = NM_I(sbi); 230 struct nat_entry *e; 231 bool need_update = true; 232 233 down_read(&nm_i->nat_tree_lock); 234 e = __lookup_nat_cache(nm_i, ino); 235 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 236 (get_nat_flag(e, IS_CHECKPOINTED) || 237 get_nat_flag(e, HAS_FSYNCED_INODE))) 238 need_update = false; 239 up_read(&nm_i->nat_tree_lock); 240 return need_update; 241 } 242 243 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 244 bool no_fail) 245 { 246 struct nat_entry *new; 247 248 if (no_fail) { 249 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 250 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 251 } else { 252 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 253 if (!new) 254 return NULL; 255 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 256 kmem_cache_free(nat_entry_slab, new); 257 return NULL; 258 } 259 } 260 261 memset(new, 0, sizeof(struct nat_entry)); 262 nat_set_nid(new, nid); 263 nat_reset_flag(new); 264 list_add_tail(&new->list, &nm_i->nat_entries); 265 nm_i->nat_cnt++; 266 return new; 267 } 268 269 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 270 struct f2fs_nat_entry *ne) 271 { 272 struct f2fs_nm_info *nm_i = NM_I(sbi); 273 struct nat_entry *e; 274 275 e = __lookup_nat_cache(nm_i, nid); 276 if (!e) { 277 e = grab_nat_entry(nm_i, nid, false); 278 if (e) 279 node_info_from_raw_nat(&e->ni, ne); 280 } else { 281 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 282 nat_get_blkaddr(e) != 283 le32_to_cpu(ne->block_addr) || 284 nat_get_version(e) != ne->version); 285 } 286 } 287 288 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 289 block_t new_blkaddr, bool fsync_done) 290 { 291 struct f2fs_nm_info *nm_i = NM_I(sbi); 292 struct nat_entry *e; 293 294 down_write(&nm_i->nat_tree_lock); 295 e = __lookup_nat_cache(nm_i, ni->nid); 296 if (!e) { 297 e = grab_nat_entry(nm_i, ni->nid, true); 298 copy_node_info(&e->ni, ni); 299 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 300 } else if (new_blkaddr == NEW_ADDR) { 301 /* 302 * when nid is reallocated, 303 * previous nat entry can be remained in nat cache. 304 * So, reinitialize it with new information. 305 */ 306 copy_node_info(&e->ni, ni); 307 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 308 } 309 310 /* sanity check */ 311 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 312 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 313 new_blkaddr == NULL_ADDR); 314 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 315 new_blkaddr == NEW_ADDR); 316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 317 nat_get_blkaddr(e) != NULL_ADDR && 318 new_blkaddr == NEW_ADDR); 319 320 /* increment version no as node is removed */ 321 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 322 unsigned char version = nat_get_version(e); 323 nat_set_version(e, inc_node_version(version)); 324 325 /* in order to reuse the nid */ 326 if (nm_i->next_scan_nid > ni->nid) 327 nm_i->next_scan_nid = ni->nid; 328 } 329 330 /* change address */ 331 nat_set_blkaddr(e, new_blkaddr); 332 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 333 set_nat_flag(e, IS_CHECKPOINTED, false); 334 __set_nat_cache_dirty(nm_i, e); 335 336 /* update fsync_mark if its inode nat entry is still alive */ 337 if (ni->nid != ni->ino) 338 e = __lookup_nat_cache(nm_i, ni->ino); 339 if (e) { 340 if (fsync_done && ni->nid == ni->ino) 341 set_nat_flag(e, HAS_FSYNCED_INODE, true); 342 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 343 } 344 up_write(&nm_i->nat_tree_lock); 345 } 346 347 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 348 { 349 struct f2fs_nm_info *nm_i = NM_I(sbi); 350 int nr = nr_shrink; 351 352 if (!down_write_trylock(&nm_i->nat_tree_lock)) 353 return 0; 354 355 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 356 struct nat_entry *ne; 357 ne = list_first_entry(&nm_i->nat_entries, 358 struct nat_entry, list); 359 __del_from_nat_cache(nm_i, ne); 360 nr_shrink--; 361 } 362 up_write(&nm_i->nat_tree_lock); 363 return nr - nr_shrink; 364 } 365 366 /* 367 * This function always returns success 368 */ 369 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 370 { 371 struct f2fs_nm_info *nm_i = NM_I(sbi); 372 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 373 struct f2fs_journal *journal = curseg->journal; 374 nid_t start_nid = START_NID(nid); 375 struct f2fs_nat_block *nat_blk; 376 struct page *page = NULL; 377 struct f2fs_nat_entry ne; 378 struct nat_entry *e; 379 pgoff_t index; 380 int i; 381 382 ni->nid = nid; 383 384 /* Check nat cache */ 385 down_read(&nm_i->nat_tree_lock); 386 e = __lookup_nat_cache(nm_i, nid); 387 if (e) { 388 ni->ino = nat_get_ino(e); 389 ni->blk_addr = nat_get_blkaddr(e); 390 ni->version = nat_get_version(e); 391 up_read(&nm_i->nat_tree_lock); 392 return; 393 } 394 395 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 396 397 /* Check current segment summary */ 398 down_read(&curseg->journal_rwsem); 399 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 400 if (i >= 0) { 401 ne = nat_in_journal(journal, i); 402 node_info_from_raw_nat(ni, &ne); 403 } 404 up_read(&curseg->journal_rwsem); 405 if (i >= 0) { 406 up_read(&nm_i->nat_tree_lock); 407 goto cache; 408 } 409 410 /* Fill node_info from nat page */ 411 index = current_nat_addr(sbi, nid); 412 up_read(&nm_i->nat_tree_lock); 413 414 page = get_meta_page(sbi, index); 415 nat_blk = (struct f2fs_nat_block *)page_address(page); 416 ne = nat_blk->entries[nid - start_nid]; 417 node_info_from_raw_nat(ni, &ne); 418 f2fs_put_page(page, 1); 419 cache: 420 /* cache nat entry */ 421 down_write(&nm_i->nat_tree_lock); 422 cache_nat_entry(sbi, nid, &ne); 423 up_write(&nm_i->nat_tree_lock); 424 } 425 426 /* 427 * readahead MAX_RA_NODE number of node pages. 428 */ 429 static void ra_node_pages(struct page *parent, int start, int n) 430 { 431 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 432 struct blk_plug plug; 433 int i, end; 434 nid_t nid; 435 436 blk_start_plug(&plug); 437 438 /* Then, try readahead for siblings of the desired node */ 439 end = start + n; 440 end = min(end, NIDS_PER_BLOCK); 441 for (i = start; i < end; i++) { 442 nid = get_nid(parent, i, false); 443 ra_node_page(sbi, nid); 444 } 445 446 blk_finish_plug(&plug); 447 } 448 449 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 450 { 451 const long direct_index = ADDRS_PER_INODE(dn->inode); 452 const long direct_blks = ADDRS_PER_BLOCK; 453 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 454 unsigned int skipped_unit = ADDRS_PER_BLOCK; 455 int cur_level = dn->cur_level; 456 int max_level = dn->max_level; 457 pgoff_t base = 0; 458 459 if (!dn->max_level) 460 return pgofs + 1; 461 462 while (max_level-- > cur_level) 463 skipped_unit *= NIDS_PER_BLOCK; 464 465 switch (dn->max_level) { 466 case 3: 467 base += 2 * indirect_blks; 468 case 2: 469 base += 2 * direct_blks; 470 case 1: 471 base += direct_index; 472 break; 473 default: 474 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 475 } 476 477 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 478 } 479 480 /* 481 * The maximum depth is four. 482 * Offset[0] will have raw inode offset. 483 */ 484 static int get_node_path(struct inode *inode, long block, 485 int offset[4], unsigned int noffset[4]) 486 { 487 const long direct_index = ADDRS_PER_INODE(inode); 488 const long direct_blks = ADDRS_PER_BLOCK; 489 const long dptrs_per_blk = NIDS_PER_BLOCK; 490 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 491 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 492 int n = 0; 493 int level = 0; 494 495 noffset[0] = 0; 496 497 if (block < direct_index) { 498 offset[n] = block; 499 goto got; 500 } 501 block -= direct_index; 502 if (block < direct_blks) { 503 offset[n++] = NODE_DIR1_BLOCK; 504 noffset[n] = 1; 505 offset[n] = block; 506 level = 1; 507 goto got; 508 } 509 block -= direct_blks; 510 if (block < direct_blks) { 511 offset[n++] = NODE_DIR2_BLOCK; 512 noffset[n] = 2; 513 offset[n] = block; 514 level = 1; 515 goto got; 516 } 517 block -= direct_blks; 518 if (block < indirect_blks) { 519 offset[n++] = NODE_IND1_BLOCK; 520 noffset[n] = 3; 521 offset[n++] = block / direct_blks; 522 noffset[n] = 4 + offset[n - 1]; 523 offset[n] = block % direct_blks; 524 level = 2; 525 goto got; 526 } 527 block -= indirect_blks; 528 if (block < indirect_blks) { 529 offset[n++] = NODE_IND2_BLOCK; 530 noffset[n] = 4 + dptrs_per_blk; 531 offset[n++] = block / direct_blks; 532 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 533 offset[n] = block % direct_blks; 534 level = 2; 535 goto got; 536 } 537 block -= indirect_blks; 538 if (block < dindirect_blks) { 539 offset[n++] = NODE_DIND_BLOCK; 540 noffset[n] = 5 + (dptrs_per_blk * 2); 541 offset[n++] = block / indirect_blks; 542 noffset[n] = 6 + (dptrs_per_blk * 2) + 543 offset[n - 1] * (dptrs_per_blk + 1); 544 offset[n++] = (block / direct_blks) % dptrs_per_blk; 545 noffset[n] = 7 + (dptrs_per_blk * 2) + 546 offset[n - 2] * (dptrs_per_blk + 1) + 547 offset[n - 1]; 548 offset[n] = block % direct_blks; 549 level = 3; 550 goto got; 551 } else { 552 BUG(); 553 } 554 got: 555 return level; 556 } 557 558 /* 559 * Caller should call f2fs_put_dnode(dn). 560 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 561 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 562 * In the case of RDONLY_NODE, we don't need to care about mutex. 563 */ 564 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 565 { 566 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 567 struct page *npage[4]; 568 struct page *parent = NULL; 569 int offset[4]; 570 unsigned int noffset[4]; 571 nid_t nids[4]; 572 int level, i = 0; 573 int err = 0; 574 575 level = get_node_path(dn->inode, index, offset, noffset); 576 577 nids[0] = dn->inode->i_ino; 578 npage[0] = dn->inode_page; 579 580 if (!npage[0]) { 581 npage[0] = get_node_page(sbi, nids[0]); 582 if (IS_ERR(npage[0])) 583 return PTR_ERR(npage[0]); 584 } 585 586 /* if inline_data is set, should not report any block indices */ 587 if (f2fs_has_inline_data(dn->inode) && index) { 588 err = -ENOENT; 589 f2fs_put_page(npage[0], 1); 590 goto release_out; 591 } 592 593 parent = npage[0]; 594 if (level != 0) 595 nids[1] = get_nid(parent, offset[0], true); 596 dn->inode_page = npage[0]; 597 dn->inode_page_locked = true; 598 599 /* get indirect or direct nodes */ 600 for (i = 1; i <= level; i++) { 601 bool done = false; 602 603 if (!nids[i] && mode == ALLOC_NODE) { 604 /* alloc new node */ 605 if (!alloc_nid(sbi, &(nids[i]))) { 606 err = -ENOSPC; 607 goto release_pages; 608 } 609 610 dn->nid = nids[i]; 611 npage[i] = new_node_page(dn, noffset[i], NULL); 612 if (IS_ERR(npage[i])) { 613 alloc_nid_failed(sbi, nids[i]); 614 err = PTR_ERR(npage[i]); 615 goto release_pages; 616 } 617 618 set_nid(parent, offset[i - 1], nids[i], i == 1); 619 alloc_nid_done(sbi, nids[i]); 620 done = true; 621 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 622 npage[i] = get_node_page_ra(parent, offset[i - 1]); 623 if (IS_ERR(npage[i])) { 624 err = PTR_ERR(npage[i]); 625 goto release_pages; 626 } 627 done = true; 628 } 629 if (i == 1) { 630 dn->inode_page_locked = false; 631 unlock_page(parent); 632 } else { 633 f2fs_put_page(parent, 1); 634 } 635 636 if (!done) { 637 npage[i] = get_node_page(sbi, nids[i]); 638 if (IS_ERR(npage[i])) { 639 err = PTR_ERR(npage[i]); 640 f2fs_put_page(npage[0], 0); 641 goto release_out; 642 } 643 } 644 if (i < level) { 645 parent = npage[i]; 646 nids[i + 1] = get_nid(parent, offset[i], false); 647 } 648 } 649 dn->nid = nids[level]; 650 dn->ofs_in_node = offset[level]; 651 dn->node_page = npage[level]; 652 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 653 return 0; 654 655 release_pages: 656 f2fs_put_page(parent, 1); 657 if (i > 1) 658 f2fs_put_page(npage[0], 0); 659 release_out: 660 dn->inode_page = NULL; 661 dn->node_page = NULL; 662 if (err == -ENOENT) { 663 dn->cur_level = i; 664 dn->max_level = level; 665 dn->ofs_in_node = offset[level]; 666 } 667 return err; 668 } 669 670 static void truncate_node(struct dnode_of_data *dn) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 673 struct node_info ni; 674 675 get_node_info(sbi, dn->nid, &ni); 676 if (dn->inode->i_blocks == 0) { 677 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 678 goto invalidate; 679 } 680 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 681 682 /* Deallocate node address */ 683 invalidate_blocks(sbi, ni.blk_addr); 684 dec_valid_node_count(sbi, dn->inode); 685 set_node_addr(sbi, &ni, NULL_ADDR, false); 686 687 if (dn->nid == dn->inode->i_ino) { 688 remove_orphan_inode(sbi, dn->nid); 689 dec_valid_inode_count(sbi); 690 f2fs_inode_synced(dn->inode); 691 } 692 invalidate: 693 clear_node_page_dirty(dn->node_page); 694 set_sbi_flag(sbi, SBI_IS_DIRTY); 695 696 f2fs_put_page(dn->node_page, 1); 697 698 invalidate_mapping_pages(NODE_MAPPING(sbi), 699 dn->node_page->index, dn->node_page->index); 700 701 dn->node_page = NULL; 702 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 703 } 704 705 static int truncate_dnode(struct dnode_of_data *dn) 706 { 707 struct page *page; 708 709 if (dn->nid == 0) 710 return 1; 711 712 /* get direct node */ 713 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 714 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 715 return 1; 716 else if (IS_ERR(page)) 717 return PTR_ERR(page); 718 719 /* Make dnode_of_data for parameter */ 720 dn->node_page = page; 721 dn->ofs_in_node = 0; 722 truncate_data_blocks(dn); 723 truncate_node(dn); 724 return 1; 725 } 726 727 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 728 int ofs, int depth) 729 { 730 struct dnode_of_data rdn = *dn; 731 struct page *page; 732 struct f2fs_node *rn; 733 nid_t child_nid; 734 unsigned int child_nofs; 735 int freed = 0; 736 int i, ret; 737 738 if (dn->nid == 0) 739 return NIDS_PER_BLOCK + 1; 740 741 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 742 743 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 744 if (IS_ERR(page)) { 745 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 746 return PTR_ERR(page); 747 } 748 749 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 750 751 rn = F2FS_NODE(page); 752 if (depth < 3) { 753 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 754 child_nid = le32_to_cpu(rn->in.nid[i]); 755 if (child_nid == 0) 756 continue; 757 rdn.nid = child_nid; 758 ret = truncate_dnode(&rdn); 759 if (ret < 0) 760 goto out_err; 761 if (set_nid(page, i, 0, false)) 762 dn->node_changed = true; 763 } 764 } else { 765 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 766 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 767 child_nid = le32_to_cpu(rn->in.nid[i]); 768 if (child_nid == 0) { 769 child_nofs += NIDS_PER_BLOCK + 1; 770 continue; 771 } 772 rdn.nid = child_nid; 773 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 774 if (ret == (NIDS_PER_BLOCK + 1)) { 775 if (set_nid(page, i, 0, false)) 776 dn->node_changed = true; 777 child_nofs += ret; 778 } else if (ret < 0 && ret != -ENOENT) { 779 goto out_err; 780 } 781 } 782 freed = child_nofs; 783 } 784 785 if (!ofs) { 786 /* remove current indirect node */ 787 dn->node_page = page; 788 truncate_node(dn); 789 freed++; 790 } else { 791 f2fs_put_page(page, 1); 792 } 793 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 794 return freed; 795 796 out_err: 797 f2fs_put_page(page, 1); 798 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 799 return ret; 800 } 801 802 static int truncate_partial_nodes(struct dnode_of_data *dn, 803 struct f2fs_inode *ri, int *offset, int depth) 804 { 805 struct page *pages[2]; 806 nid_t nid[3]; 807 nid_t child_nid; 808 int err = 0; 809 int i; 810 int idx = depth - 2; 811 812 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 813 if (!nid[0]) 814 return 0; 815 816 /* get indirect nodes in the path */ 817 for (i = 0; i < idx + 1; i++) { 818 /* reference count'll be increased */ 819 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 820 if (IS_ERR(pages[i])) { 821 err = PTR_ERR(pages[i]); 822 idx = i - 1; 823 goto fail; 824 } 825 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 826 } 827 828 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 829 830 /* free direct nodes linked to a partial indirect node */ 831 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 832 child_nid = get_nid(pages[idx], i, false); 833 if (!child_nid) 834 continue; 835 dn->nid = child_nid; 836 err = truncate_dnode(dn); 837 if (err < 0) 838 goto fail; 839 if (set_nid(pages[idx], i, 0, false)) 840 dn->node_changed = true; 841 } 842 843 if (offset[idx + 1] == 0) { 844 dn->node_page = pages[idx]; 845 dn->nid = nid[idx]; 846 truncate_node(dn); 847 } else { 848 f2fs_put_page(pages[idx], 1); 849 } 850 offset[idx]++; 851 offset[idx + 1] = 0; 852 idx--; 853 fail: 854 for (i = idx; i >= 0; i--) 855 f2fs_put_page(pages[i], 1); 856 857 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 858 859 return err; 860 } 861 862 /* 863 * All the block addresses of data and nodes should be nullified. 864 */ 865 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 866 { 867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 868 int err = 0, cont = 1; 869 int level, offset[4], noffset[4]; 870 unsigned int nofs = 0; 871 struct f2fs_inode *ri; 872 struct dnode_of_data dn; 873 struct page *page; 874 875 trace_f2fs_truncate_inode_blocks_enter(inode, from); 876 877 level = get_node_path(inode, from, offset, noffset); 878 879 page = get_node_page(sbi, inode->i_ino); 880 if (IS_ERR(page)) { 881 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 882 return PTR_ERR(page); 883 } 884 885 set_new_dnode(&dn, inode, page, NULL, 0); 886 unlock_page(page); 887 888 ri = F2FS_INODE(page); 889 switch (level) { 890 case 0: 891 case 1: 892 nofs = noffset[1]; 893 break; 894 case 2: 895 nofs = noffset[1]; 896 if (!offset[level - 1]) 897 goto skip_partial; 898 err = truncate_partial_nodes(&dn, ri, offset, level); 899 if (err < 0 && err != -ENOENT) 900 goto fail; 901 nofs += 1 + NIDS_PER_BLOCK; 902 break; 903 case 3: 904 nofs = 5 + 2 * NIDS_PER_BLOCK; 905 if (!offset[level - 1]) 906 goto skip_partial; 907 err = truncate_partial_nodes(&dn, ri, offset, level); 908 if (err < 0 && err != -ENOENT) 909 goto fail; 910 break; 911 default: 912 BUG(); 913 } 914 915 skip_partial: 916 while (cont) { 917 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 918 switch (offset[0]) { 919 case NODE_DIR1_BLOCK: 920 case NODE_DIR2_BLOCK: 921 err = truncate_dnode(&dn); 922 break; 923 924 case NODE_IND1_BLOCK: 925 case NODE_IND2_BLOCK: 926 err = truncate_nodes(&dn, nofs, offset[1], 2); 927 break; 928 929 case NODE_DIND_BLOCK: 930 err = truncate_nodes(&dn, nofs, offset[1], 3); 931 cont = 0; 932 break; 933 934 default: 935 BUG(); 936 } 937 if (err < 0 && err != -ENOENT) 938 goto fail; 939 if (offset[1] == 0 && 940 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 941 lock_page(page); 942 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 943 f2fs_wait_on_page_writeback(page, NODE, true); 944 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 945 set_page_dirty(page); 946 unlock_page(page); 947 } 948 offset[1] = 0; 949 offset[0]++; 950 nofs += err; 951 } 952 fail: 953 f2fs_put_page(page, 0); 954 trace_f2fs_truncate_inode_blocks_exit(inode, err); 955 return err > 0 ? 0 : err; 956 } 957 958 int truncate_xattr_node(struct inode *inode, struct page *page) 959 { 960 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 961 nid_t nid = F2FS_I(inode)->i_xattr_nid; 962 struct dnode_of_data dn; 963 struct page *npage; 964 965 if (!nid) 966 return 0; 967 968 npage = get_node_page(sbi, nid); 969 if (IS_ERR(npage)) 970 return PTR_ERR(npage); 971 972 f2fs_i_xnid_write(inode, 0); 973 974 set_new_dnode(&dn, inode, page, npage, nid); 975 976 if (page) 977 dn.inode_page_locked = true; 978 truncate_node(&dn); 979 return 0; 980 } 981 982 /* 983 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 984 * f2fs_unlock_op(). 985 */ 986 int remove_inode_page(struct inode *inode) 987 { 988 struct dnode_of_data dn; 989 int err; 990 991 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 992 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 993 if (err) 994 return err; 995 996 err = truncate_xattr_node(inode, dn.inode_page); 997 if (err) { 998 f2fs_put_dnode(&dn); 999 return err; 1000 } 1001 1002 /* remove potential inline_data blocks */ 1003 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1004 S_ISLNK(inode->i_mode)) 1005 truncate_data_blocks_range(&dn, 1); 1006 1007 /* 0 is possible, after f2fs_new_inode() has failed */ 1008 f2fs_bug_on(F2FS_I_SB(inode), 1009 inode->i_blocks != 0 && inode->i_blocks != 1); 1010 1011 /* will put inode & node pages */ 1012 truncate_node(&dn); 1013 return 0; 1014 } 1015 1016 struct page *new_inode_page(struct inode *inode) 1017 { 1018 struct dnode_of_data dn; 1019 1020 /* allocate inode page for new inode */ 1021 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1022 1023 /* caller should f2fs_put_page(page, 1); */ 1024 return new_node_page(&dn, 0, NULL); 1025 } 1026 1027 struct page *new_node_page(struct dnode_of_data *dn, 1028 unsigned int ofs, struct page *ipage) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1031 struct node_info new_ni; 1032 struct page *page; 1033 int err; 1034 1035 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1036 return ERR_PTR(-EPERM); 1037 1038 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1039 if (!page) 1040 return ERR_PTR(-ENOMEM); 1041 1042 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1043 err = -ENOSPC; 1044 goto fail; 1045 } 1046 #ifdef CONFIG_F2FS_CHECK_FS 1047 get_node_info(sbi, dn->nid, &new_ni); 1048 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1049 #endif 1050 new_ni.nid = dn->nid; 1051 new_ni.ino = dn->inode->i_ino; 1052 new_ni.blk_addr = NULL_ADDR; 1053 new_ni.flag = 0; 1054 new_ni.version = 0; 1055 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1056 1057 f2fs_wait_on_page_writeback(page, NODE, true); 1058 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1059 set_cold_node(dn->inode, page); 1060 if (!PageUptodate(page)) 1061 SetPageUptodate(page); 1062 if (set_page_dirty(page)) 1063 dn->node_changed = true; 1064 1065 if (f2fs_has_xattr_block(ofs)) 1066 f2fs_i_xnid_write(dn->inode, dn->nid); 1067 1068 if (ofs == 0) 1069 inc_valid_inode_count(sbi); 1070 return page; 1071 1072 fail: 1073 clear_node_page_dirty(page); 1074 f2fs_put_page(page, 1); 1075 return ERR_PTR(err); 1076 } 1077 1078 /* 1079 * Caller should do after getting the following values. 1080 * 0: f2fs_put_page(page, 0) 1081 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1082 */ 1083 static int read_node_page(struct page *page, int op_flags) 1084 { 1085 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1086 struct node_info ni; 1087 struct f2fs_io_info fio = { 1088 .sbi = sbi, 1089 .type = NODE, 1090 .op = REQ_OP_READ, 1091 .op_flags = op_flags, 1092 .page = page, 1093 .encrypted_page = NULL, 1094 }; 1095 1096 if (PageUptodate(page)) 1097 return LOCKED_PAGE; 1098 1099 get_node_info(sbi, page->index, &ni); 1100 1101 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1102 ClearPageUptodate(page); 1103 return -ENOENT; 1104 } 1105 1106 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1107 return f2fs_submit_page_bio(&fio); 1108 } 1109 1110 /* 1111 * Readahead a node page 1112 */ 1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1114 { 1115 struct page *apage; 1116 int err; 1117 1118 if (!nid) 1119 return; 1120 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1121 1122 rcu_read_lock(); 1123 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1124 rcu_read_unlock(); 1125 if (apage) 1126 return; 1127 1128 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1129 if (!apage) 1130 return; 1131 1132 err = read_node_page(apage, REQ_RAHEAD); 1133 f2fs_put_page(apage, err ? 1 : 0); 1134 } 1135 1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1137 struct page *parent, int start) 1138 { 1139 struct page *page; 1140 int err; 1141 1142 if (!nid) 1143 return ERR_PTR(-ENOENT); 1144 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1145 repeat: 1146 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1147 if (!page) 1148 return ERR_PTR(-ENOMEM); 1149 1150 err = read_node_page(page, 0); 1151 if (err < 0) { 1152 f2fs_put_page(page, 1); 1153 return ERR_PTR(err); 1154 } else if (err == LOCKED_PAGE) { 1155 goto page_hit; 1156 } 1157 1158 if (parent) 1159 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1160 1161 lock_page(page); 1162 1163 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1164 f2fs_put_page(page, 1); 1165 goto repeat; 1166 } 1167 1168 if (unlikely(!PageUptodate(page))) 1169 goto out_err; 1170 page_hit: 1171 if(unlikely(nid != nid_of_node(page))) { 1172 f2fs_bug_on(sbi, 1); 1173 ClearPageUptodate(page); 1174 out_err: 1175 f2fs_put_page(page, 1); 1176 return ERR_PTR(-EIO); 1177 } 1178 return page; 1179 } 1180 1181 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1182 { 1183 return __get_node_page(sbi, nid, NULL, 0); 1184 } 1185 1186 struct page *get_node_page_ra(struct page *parent, int start) 1187 { 1188 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1189 nid_t nid = get_nid(parent, start, false); 1190 1191 return __get_node_page(sbi, nid, parent, start); 1192 } 1193 1194 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1195 { 1196 struct inode *inode; 1197 struct page *page; 1198 int ret; 1199 1200 /* should flush inline_data before evict_inode */ 1201 inode = ilookup(sbi->sb, ino); 1202 if (!inode) 1203 return; 1204 1205 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1206 if (!page) 1207 goto iput_out; 1208 1209 if (!PageUptodate(page)) 1210 goto page_out; 1211 1212 if (!PageDirty(page)) 1213 goto page_out; 1214 1215 if (!clear_page_dirty_for_io(page)) 1216 goto page_out; 1217 1218 ret = f2fs_write_inline_data(inode, page); 1219 inode_dec_dirty_pages(inode); 1220 remove_dirty_inode(inode); 1221 if (ret) 1222 set_page_dirty(page); 1223 page_out: 1224 f2fs_put_page(page, 1); 1225 iput_out: 1226 iput(inode); 1227 } 1228 1229 void move_node_page(struct page *node_page, int gc_type) 1230 { 1231 if (gc_type == FG_GC) { 1232 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1233 struct writeback_control wbc = { 1234 .sync_mode = WB_SYNC_ALL, 1235 .nr_to_write = 1, 1236 .for_reclaim = 0, 1237 }; 1238 1239 set_page_dirty(node_page); 1240 f2fs_wait_on_page_writeback(node_page, NODE, true); 1241 1242 f2fs_bug_on(sbi, PageWriteback(node_page)); 1243 if (!clear_page_dirty_for_io(node_page)) 1244 goto out_page; 1245 1246 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1247 unlock_page(node_page); 1248 goto release_page; 1249 } else { 1250 /* set page dirty and write it */ 1251 if (!PageWriteback(node_page)) 1252 set_page_dirty(node_page); 1253 } 1254 out_page: 1255 unlock_page(node_page); 1256 release_page: 1257 f2fs_put_page(node_page, 0); 1258 } 1259 1260 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1261 { 1262 pgoff_t index, end; 1263 struct pagevec pvec; 1264 struct page *last_page = NULL; 1265 1266 pagevec_init(&pvec, 0); 1267 index = 0; 1268 end = ULONG_MAX; 1269 1270 while (index <= end) { 1271 int i, nr_pages; 1272 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1273 PAGECACHE_TAG_DIRTY, 1274 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1275 if (nr_pages == 0) 1276 break; 1277 1278 for (i = 0; i < nr_pages; i++) { 1279 struct page *page = pvec.pages[i]; 1280 1281 if (unlikely(f2fs_cp_error(sbi))) { 1282 f2fs_put_page(last_page, 0); 1283 pagevec_release(&pvec); 1284 return ERR_PTR(-EIO); 1285 } 1286 1287 if (!IS_DNODE(page) || !is_cold_node(page)) 1288 continue; 1289 if (ino_of_node(page) != ino) 1290 continue; 1291 1292 lock_page(page); 1293 1294 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1295 continue_unlock: 1296 unlock_page(page); 1297 continue; 1298 } 1299 if (ino_of_node(page) != ino) 1300 goto continue_unlock; 1301 1302 if (!PageDirty(page)) { 1303 /* someone wrote it for us */ 1304 goto continue_unlock; 1305 } 1306 1307 if (last_page) 1308 f2fs_put_page(last_page, 0); 1309 1310 get_page(page); 1311 last_page = page; 1312 unlock_page(page); 1313 } 1314 pagevec_release(&pvec); 1315 cond_resched(); 1316 } 1317 return last_page; 1318 } 1319 1320 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1321 struct writeback_control *wbc) 1322 { 1323 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1324 nid_t nid; 1325 struct node_info ni; 1326 struct f2fs_io_info fio = { 1327 .sbi = sbi, 1328 .type = NODE, 1329 .op = REQ_OP_WRITE, 1330 .op_flags = wbc_to_write_flags(wbc), 1331 .page = page, 1332 .encrypted_page = NULL, 1333 .submitted = false, 1334 }; 1335 1336 trace_f2fs_writepage(page, NODE); 1337 1338 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1339 goto redirty_out; 1340 if (unlikely(f2fs_cp_error(sbi))) 1341 goto redirty_out; 1342 1343 /* get old block addr of this node page */ 1344 nid = nid_of_node(page); 1345 f2fs_bug_on(sbi, page->index != nid); 1346 1347 if (wbc->for_reclaim) { 1348 if (!down_read_trylock(&sbi->node_write)) 1349 goto redirty_out; 1350 } else { 1351 down_read(&sbi->node_write); 1352 } 1353 1354 get_node_info(sbi, nid, &ni); 1355 1356 /* This page is already truncated */ 1357 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1358 ClearPageUptodate(page); 1359 dec_page_count(sbi, F2FS_DIRTY_NODES); 1360 up_read(&sbi->node_write); 1361 unlock_page(page); 1362 return 0; 1363 } 1364 1365 if (atomic && !test_opt(sbi, NOBARRIER)) 1366 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1367 1368 set_page_writeback(page); 1369 fio.old_blkaddr = ni.blk_addr; 1370 write_node_page(nid, &fio); 1371 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1372 dec_page_count(sbi, F2FS_DIRTY_NODES); 1373 up_read(&sbi->node_write); 1374 1375 if (wbc->for_reclaim) { 1376 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0, 1377 page->index, NODE, WRITE); 1378 submitted = NULL; 1379 } 1380 1381 unlock_page(page); 1382 1383 if (unlikely(f2fs_cp_error(sbi))) { 1384 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1385 submitted = NULL; 1386 } 1387 if (submitted) 1388 *submitted = fio.submitted; 1389 1390 return 0; 1391 1392 redirty_out: 1393 redirty_page_for_writepage(wbc, page); 1394 return AOP_WRITEPAGE_ACTIVATE; 1395 } 1396 1397 static int f2fs_write_node_page(struct page *page, 1398 struct writeback_control *wbc) 1399 { 1400 return __write_node_page(page, false, NULL, wbc); 1401 } 1402 1403 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1404 struct writeback_control *wbc, bool atomic) 1405 { 1406 pgoff_t index, end; 1407 pgoff_t last_idx = ULONG_MAX; 1408 struct pagevec pvec; 1409 int ret = 0; 1410 struct page *last_page = NULL; 1411 bool marked = false; 1412 nid_t ino = inode->i_ino; 1413 1414 if (atomic) { 1415 last_page = last_fsync_dnode(sbi, ino); 1416 if (IS_ERR_OR_NULL(last_page)) 1417 return PTR_ERR_OR_ZERO(last_page); 1418 } 1419 retry: 1420 pagevec_init(&pvec, 0); 1421 index = 0; 1422 end = ULONG_MAX; 1423 1424 while (index <= end) { 1425 int i, nr_pages; 1426 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1427 PAGECACHE_TAG_DIRTY, 1428 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1429 if (nr_pages == 0) 1430 break; 1431 1432 for (i = 0; i < nr_pages; i++) { 1433 struct page *page = pvec.pages[i]; 1434 bool submitted = false; 1435 1436 if (unlikely(f2fs_cp_error(sbi))) { 1437 f2fs_put_page(last_page, 0); 1438 pagevec_release(&pvec); 1439 ret = -EIO; 1440 goto out; 1441 } 1442 1443 if (!IS_DNODE(page) || !is_cold_node(page)) 1444 continue; 1445 if (ino_of_node(page) != ino) 1446 continue; 1447 1448 lock_page(page); 1449 1450 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1451 continue_unlock: 1452 unlock_page(page); 1453 continue; 1454 } 1455 if (ino_of_node(page) != ino) 1456 goto continue_unlock; 1457 1458 if (!PageDirty(page) && page != last_page) { 1459 /* someone wrote it for us */ 1460 goto continue_unlock; 1461 } 1462 1463 f2fs_wait_on_page_writeback(page, NODE, true); 1464 BUG_ON(PageWriteback(page)); 1465 1466 set_fsync_mark(page, 0); 1467 set_dentry_mark(page, 0); 1468 1469 if (!atomic || page == last_page) { 1470 set_fsync_mark(page, 1); 1471 if (IS_INODE(page)) { 1472 if (is_inode_flag_set(inode, 1473 FI_DIRTY_INODE)) 1474 update_inode(inode, page); 1475 set_dentry_mark(page, 1476 need_dentry_mark(sbi, ino)); 1477 } 1478 /* may be written by other thread */ 1479 if (!PageDirty(page)) 1480 set_page_dirty(page); 1481 } 1482 1483 if (!clear_page_dirty_for_io(page)) 1484 goto continue_unlock; 1485 1486 ret = __write_node_page(page, atomic && 1487 page == last_page, 1488 &submitted, wbc); 1489 if (ret) { 1490 unlock_page(page); 1491 f2fs_put_page(last_page, 0); 1492 break; 1493 } else if (submitted) { 1494 last_idx = page->index; 1495 } 1496 1497 if (page == last_page) { 1498 f2fs_put_page(page, 0); 1499 marked = true; 1500 break; 1501 } 1502 } 1503 pagevec_release(&pvec); 1504 cond_resched(); 1505 1506 if (ret || marked) 1507 break; 1508 } 1509 if (!ret && atomic && !marked) { 1510 f2fs_msg(sbi->sb, KERN_DEBUG, 1511 "Retry to write fsync mark: ino=%u, idx=%lx", 1512 ino, last_page->index); 1513 lock_page(last_page); 1514 f2fs_wait_on_page_writeback(last_page, NODE, true); 1515 set_page_dirty(last_page); 1516 unlock_page(last_page); 1517 goto retry; 1518 } 1519 out: 1520 if (last_idx != ULONG_MAX) 1521 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx, 1522 NODE, WRITE); 1523 return ret ? -EIO: 0; 1524 } 1525 1526 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1527 { 1528 pgoff_t index, end; 1529 struct pagevec pvec; 1530 int step = 0; 1531 int nwritten = 0; 1532 int ret = 0; 1533 1534 pagevec_init(&pvec, 0); 1535 1536 next_step: 1537 index = 0; 1538 end = ULONG_MAX; 1539 1540 while (index <= end) { 1541 int i, nr_pages; 1542 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1543 PAGECACHE_TAG_DIRTY, 1544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1545 if (nr_pages == 0) 1546 break; 1547 1548 for (i = 0; i < nr_pages; i++) { 1549 struct page *page = pvec.pages[i]; 1550 bool submitted = false; 1551 1552 if (unlikely(f2fs_cp_error(sbi))) { 1553 pagevec_release(&pvec); 1554 ret = -EIO; 1555 goto out; 1556 } 1557 1558 /* 1559 * flushing sequence with step: 1560 * 0. indirect nodes 1561 * 1. dentry dnodes 1562 * 2. file dnodes 1563 */ 1564 if (step == 0 && IS_DNODE(page)) 1565 continue; 1566 if (step == 1 && (!IS_DNODE(page) || 1567 is_cold_node(page))) 1568 continue; 1569 if (step == 2 && (!IS_DNODE(page) || 1570 !is_cold_node(page))) 1571 continue; 1572 lock_node: 1573 if (!trylock_page(page)) 1574 continue; 1575 1576 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1577 continue_unlock: 1578 unlock_page(page); 1579 continue; 1580 } 1581 1582 if (!PageDirty(page)) { 1583 /* someone wrote it for us */ 1584 goto continue_unlock; 1585 } 1586 1587 /* flush inline_data */ 1588 if (is_inline_node(page)) { 1589 clear_inline_node(page); 1590 unlock_page(page); 1591 flush_inline_data(sbi, ino_of_node(page)); 1592 goto lock_node; 1593 } 1594 1595 f2fs_wait_on_page_writeback(page, NODE, true); 1596 1597 BUG_ON(PageWriteback(page)); 1598 if (!clear_page_dirty_for_io(page)) 1599 goto continue_unlock; 1600 1601 set_fsync_mark(page, 0); 1602 set_dentry_mark(page, 0); 1603 1604 ret = __write_node_page(page, false, &submitted, wbc); 1605 if (ret) 1606 unlock_page(page); 1607 else if (submitted) 1608 nwritten++; 1609 1610 if (--wbc->nr_to_write == 0) 1611 break; 1612 } 1613 pagevec_release(&pvec); 1614 cond_resched(); 1615 1616 if (wbc->nr_to_write == 0) { 1617 step = 2; 1618 break; 1619 } 1620 } 1621 1622 if (step < 2) { 1623 step++; 1624 goto next_step; 1625 } 1626 out: 1627 if (nwritten) 1628 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1629 return ret; 1630 } 1631 1632 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1633 { 1634 pgoff_t index = 0, end = ULONG_MAX; 1635 struct pagevec pvec; 1636 int ret2, ret = 0; 1637 1638 pagevec_init(&pvec, 0); 1639 1640 while (index <= end) { 1641 int i, nr_pages; 1642 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1643 PAGECACHE_TAG_WRITEBACK, 1644 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1645 if (nr_pages == 0) 1646 break; 1647 1648 for (i = 0; i < nr_pages; i++) { 1649 struct page *page = pvec.pages[i]; 1650 1651 /* until radix tree lookup accepts end_index */ 1652 if (unlikely(page->index > end)) 1653 continue; 1654 1655 if (ino && ino_of_node(page) == ino) { 1656 f2fs_wait_on_page_writeback(page, NODE, true); 1657 if (TestClearPageError(page)) 1658 ret = -EIO; 1659 } 1660 } 1661 pagevec_release(&pvec); 1662 cond_resched(); 1663 } 1664 1665 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1666 if (!ret) 1667 ret = ret2; 1668 return ret; 1669 } 1670 1671 static int f2fs_write_node_pages(struct address_space *mapping, 1672 struct writeback_control *wbc) 1673 { 1674 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1675 struct blk_plug plug; 1676 long diff; 1677 1678 /* balancing f2fs's metadata in background */ 1679 f2fs_balance_fs_bg(sbi); 1680 1681 /* collect a number of dirty node pages and write together */ 1682 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1683 goto skip_write; 1684 1685 trace_f2fs_writepages(mapping->host, wbc, NODE); 1686 1687 diff = nr_pages_to_write(sbi, NODE, wbc); 1688 wbc->sync_mode = WB_SYNC_NONE; 1689 blk_start_plug(&plug); 1690 sync_node_pages(sbi, wbc); 1691 blk_finish_plug(&plug); 1692 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1693 return 0; 1694 1695 skip_write: 1696 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1697 trace_f2fs_writepages(mapping->host, wbc, NODE); 1698 return 0; 1699 } 1700 1701 static int f2fs_set_node_page_dirty(struct page *page) 1702 { 1703 trace_f2fs_set_page_dirty(page, NODE); 1704 1705 if (!PageUptodate(page)) 1706 SetPageUptodate(page); 1707 if (!PageDirty(page)) { 1708 f2fs_set_page_dirty_nobuffers(page); 1709 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1710 SetPagePrivate(page); 1711 f2fs_trace_pid(page); 1712 return 1; 1713 } 1714 return 0; 1715 } 1716 1717 /* 1718 * Structure of the f2fs node operations 1719 */ 1720 const struct address_space_operations f2fs_node_aops = { 1721 .writepage = f2fs_write_node_page, 1722 .writepages = f2fs_write_node_pages, 1723 .set_page_dirty = f2fs_set_node_page_dirty, 1724 .invalidatepage = f2fs_invalidate_page, 1725 .releasepage = f2fs_release_page, 1726 #ifdef CONFIG_MIGRATION 1727 .migratepage = f2fs_migrate_page, 1728 #endif 1729 }; 1730 1731 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1732 nid_t n) 1733 { 1734 return radix_tree_lookup(&nm_i->free_nid_root, n); 1735 } 1736 1737 static int __insert_nid_to_list(struct f2fs_sb_info *sbi, 1738 struct free_nid *i, enum nid_list list, bool new) 1739 { 1740 struct f2fs_nm_info *nm_i = NM_I(sbi); 1741 1742 if (new) { 1743 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1744 if (err) 1745 return err; 1746 } 1747 1748 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1749 i->state != NID_ALLOC); 1750 nm_i->nid_cnt[list]++; 1751 list_add_tail(&i->list, &nm_i->nid_list[list]); 1752 return 0; 1753 } 1754 1755 static void __remove_nid_from_list(struct f2fs_sb_info *sbi, 1756 struct free_nid *i, enum nid_list list, bool reuse) 1757 { 1758 struct f2fs_nm_info *nm_i = NM_I(sbi); 1759 1760 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1761 i->state != NID_ALLOC); 1762 nm_i->nid_cnt[list]--; 1763 list_del(&i->list); 1764 if (!reuse) 1765 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1766 } 1767 1768 /* return if the nid is recognized as free */ 1769 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1770 { 1771 struct f2fs_nm_info *nm_i = NM_I(sbi); 1772 struct free_nid *i, *e; 1773 struct nat_entry *ne; 1774 int err = -EINVAL; 1775 bool ret = false; 1776 1777 /* 0 nid should not be used */ 1778 if (unlikely(nid == 0)) 1779 return false; 1780 1781 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1782 i->nid = nid; 1783 i->state = NID_NEW; 1784 1785 if (radix_tree_preload(GFP_NOFS)) 1786 goto err; 1787 1788 spin_lock(&nm_i->nid_list_lock); 1789 1790 if (build) { 1791 /* 1792 * Thread A Thread B 1793 * - f2fs_create 1794 * - f2fs_new_inode 1795 * - alloc_nid 1796 * - __insert_nid_to_list(ALLOC_NID_LIST) 1797 * - f2fs_balance_fs_bg 1798 * - build_free_nids 1799 * - __build_free_nids 1800 * - scan_nat_page 1801 * - add_free_nid 1802 * - __lookup_nat_cache 1803 * - f2fs_add_link 1804 * - init_inode_metadata 1805 * - new_inode_page 1806 * - new_node_page 1807 * - set_node_addr 1808 * - alloc_nid_done 1809 * - __remove_nid_from_list(ALLOC_NID_LIST) 1810 * - __insert_nid_to_list(FREE_NID_LIST) 1811 */ 1812 ne = __lookup_nat_cache(nm_i, nid); 1813 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1814 nat_get_blkaddr(ne) != NULL_ADDR)) 1815 goto err_out; 1816 1817 e = __lookup_free_nid_list(nm_i, nid); 1818 if (e) { 1819 if (e->state == NID_NEW) 1820 ret = true; 1821 goto err_out; 1822 } 1823 } 1824 ret = true; 1825 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); 1826 err_out: 1827 spin_unlock(&nm_i->nid_list_lock); 1828 radix_tree_preload_end(); 1829 err: 1830 if (err) 1831 kmem_cache_free(free_nid_slab, i); 1832 return ret; 1833 } 1834 1835 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1836 { 1837 struct f2fs_nm_info *nm_i = NM_I(sbi); 1838 struct free_nid *i; 1839 bool need_free = false; 1840 1841 spin_lock(&nm_i->nid_list_lock); 1842 i = __lookup_free_nid_list(nm_i, nid); 1843 if (i && i->state == NID_NEW) { 1844 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1845 need_free = true; 1846 } 1847 spin_unlock(&nm_i->nid_list_lock); 1848 1849 if (need_free) 1850 kmem_cache_free(free_nid_slab, i); 1851 } 1852 1853 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 1854 bool set, bool build) 1855 { 1856 struct f2fs_nm_info *nm_i = NM_I(sbi); 1857 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1858 unsigned int nid_ofs = nid - START_NID(nid); 1859 1860 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1861 return; 1862 1863 if (set) 1864 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1865 else 1866 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1867 1868 if (set) 1869 nm_i->free_nid_count[nat_ofs]++; 1870 else if (!build) 1871 nm_i->free_nid_count[nat_ofs]--; 1872 } 1873 1874 static void scan_nat_page(struct f2fs_sb_info *sbi, 1875 struct page *nat_page, nid_t start_nid) 1876 { 1877 struct f2fs_nm_info *nm_i = NM_I(sbi); 1878 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1879 block_t blk_addr; 1880 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1881 int i; 1882 1883 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1884 return; 1885 1886 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1887 1888 i = start_nid % NAT_ENTRY_PER_BLOCK; 1889 1890 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1891 bool freed = false; 1892 1893 if (unlikely(start_nid >= nm_i->max_nid)) 1894 break; 1895 1896 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1897 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1898 if (blk_addr == NULL_ADDR) 1899 freed = add_free_nid(sbi, start_nid, true); 1900 spin_lock(&NM_I(sbi)->nid_list_lock); 1901 update_free_nid_bitmap(sbi, start_nid, freed, true); 1902 spin_unlock(&NM_I(sbi)->nid_list_lock); 1903 } 1904 } 1905 1906 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 1907 { 1908 struct f2fs_nm_info *nm_i = NM_I(sbi); 1909 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1910 struct f2fs_journal *journal = curseg->journal; 1911 unsigned int i, idx; 1912 1913 down_read(&nm_i->nat_tree_lock); 1914 1915 for (i = 0; i < nm_i->nat_blocks; i++) { 1916 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 1917 continue; 1918 if (!nm_i->free_nid_count[i]) 1919 continue; 1920 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 1921 nid_t nid; 1922 1923 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i])) 1924 continue; 1925 1926 nid = i * NAT_ENTRY_PER_BLOCK + idx; 1927 add_free_nid(sbi, nid, true); 1928 1929 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS) 1930 goto out; 1931 } 1932 } 1933 out: 1934 down_read(&curseg->journal_rwsem); 1935 for (i = 0; i < nats_in_cursum(journal); i++) { 1936 block_t addr; 1937 nid_t nid; 1938 1939 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1940 nid = le32_to_cpu(nid_in_journal(journal, i)); 1941 if (addr == NULL_ADDR) 1942 add_free_nid(sbi, nid, true); 1943 else 1944 remove_free_nid(sbi, nid); 1945 } 1946 up_read(&curseg->journal_rwsem); 1947 up_read(&nm_i->nat_tree_lock); 1948 } 1949 1950 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 1951 { 1952 struct f2fs_nm_info *nm_i = NM_I(sbi); 1953 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1954 struct f2fs_journal *journal = curseg->journal; 1955 int i = 0; 1956 nid_t nid = nm_i->next_scan_nid; 1957 1958 if (unlikely(nid >= nm_i->max_nid)) 1959 nid = 0; 1960 1961 /* Enough entries */ 1962 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK) 1963 return; 1964 1965 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 1966 return; 1967 1968 if (!mount) { 1969 /* try to find free nids in free_nid_bitmap */ 1970 scan_free_nid_bits(sbi); 1971 1972 if (nm_i->nid_cnt[FREE_NID_LIST]) 1973 return; 1974 } 1975 1976 /* readahead nat pages to be scanned */ 1977 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1978 META_NAT, true); 1979 1980 down_read(&nm_i->nat_tree_lock); 1981 1982 while (1) { 1983 struct page *page = get_current_nat_page(sbi, nid); 1984 1985 scan_nat_page(sbi, page, nid); 1986 f2fs_put_page(page, 1); 1987 1988 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1989 if (unlikely(nid >= nm_i->max_nid)) 1990 nid = 0; 1991 1992 if (++i >= FREE_NID_PAGES) 1993 break; 1994 } 1995 1996 /* go to the next free nat pages to find free nids abundantly */ 1997 nm_i->next_scan_nid = nid; 1998 1999 /* find free nids from current sum_pages */ 2000 down_read(&curseg->journal_rwsem); 2001 for (i = 0; i < nats_in_cursum(journal); i++) { 2002 block_t addr; 2003 2004 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2005 nid = le32_to_cpu(nid_in_journal(journal, i)); 2006 if (addr == NULL_ADDR) 2007 add_free_nid(sbi, nid, true); 2008 else 2009 remove_free_nid(sbi, nid); 2010 } 2011 up_read(&curseg->journal_rwsem); 2012 up_read(&nm_i->nat_tree_lock); 2013 2014 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2015 nm_i->ra_nid_pages, META_NAT, false); 2016 } 2017 2018 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2019 { 2020 mutex_lock(&NM_I(sbi)->build_lock); 2021 __build_free_nids(sbi, sync, mount); 2022 mutex_unlock(&NM_I(sbi)->build_lock); 2023 } 2024 2025 /* 2026 * If this function returns success, caller can obtain a new nid 2027 * from second parameter of this function. 2028 * The returned nid could be used ino as well as nid when inode is created. 2029 */ 2030 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2031 { 2032 struct f2fs_nm_info *nm_i = NM_I(sbi); 2033 struct free_nid *i = NULL; 2034 retry: 2035 #ifdef CONFIG_F2FS_FAULT_INJECTION 2036 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2037 f2fs_show_injection_info(FAULT_ALLOC_NID); 2038 return false; 2039 } 2040 #endif 2041 spin_lock(&nm_i->nid_list_lock); 2042 2043 if (unlikely(nm_i->available_nids == 0)) { 2044 spin_unlock(&nm_i->nid_list_lock); 2045 return false; 2046 } 2047 2048 /* We should not use stale free nids created by build_free_nids */ 2049 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) { 2050 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST])); 2051 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 2052 struct free_nid, list); 2053 *nid = i->nid; 2054 2055 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true); 2056 i->state = NID_ALLOC; 2057 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false); 2058 nm_i->available_nids--; 2059 2060 update_free_nid_bitmap(sbi, *nid, false, false); 2061 2062 spin_unlock(&nm_i->nid_list_lock); 2063 return true; 2064 } 2065 spin_unlock(&nm_i->nid_list_lock); 2066 2067 /* Let's scan nat pages and its caches to get free nids */ 2068 build_free_nids(sbi, true, false); 2069 goto retry; 2070 } 2071 2072 /* 2073 * alloc_nid() should be called prior to this function. 2074 */ 2075 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2076 { 2077 struct f2fs_nm_info *nm_i = NM_I(sbi); 2078 struct free_nid *i; 2079 2080 spin_lock(&nm_i->nid_list_lock); 2081 i = __lookup_free_nid_list(nm_i, nid); 2082 f2fs_bug_on(sbi, !i); 2083 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2084 spin_unlock(&nm_i->nid_list_lock); 2085 2086 kmem_cache_free(free_nid_slab, i); 2087 } 2088 2089 /* 2090 * alloc_nid() should be called prior to this function. 2091 */ 2092 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2093 { 2094 struct f2fs_nm_info *nm_i = NM_I(sbi); 2095 struct free_nid *i; 2096 bool need_free = false; 2097 2098 if (!nid) 2099 return; 2100 2101 spin_lock(&nm_i->nid_list_lock); 2102 i = __lookup_free_nid_list(nm_i, nid); 2103 f2fs_bug_on(sbi, !i); 2104 2105 if (!available_free_memory(sbi, FREE_NIDS)) { 2106 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2107 need_free = true; 2108 } else { 2109 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true); 2110 i->state = NID_NEW; 2111 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false); 2112 } 2113 2114 nm_i->available_nids++; 2115 2116 update_free_nid_bitmap(sbi, nid, true, false); 2117 2118 spin_unlock(&nm_i->nid_list_lock); 2119 2120 if (need_free) 2121 kmem_cache_free(free_nid_slab, i); 2122 } 2123 2124 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2125 { 2126 struct f2fs_nm_info *nm_i = NM_I(sbi); 2127 struct free_nid *i, *next; 2128 int nr = nr_shrink; 2129 2130 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2131 return 0; 2132 2133 if (!mutex_trylock(&nm_i->build_lock)) 2134 return 0; 2135 2136 spin_lock(&nm_i->nid_list_lock); 2137 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST], 2138 list) { 2139 if (nr_shrink <= 0 || 2140 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2141 break; 2142 2143 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2144 kmem_cache_free(free_nid_slab, i); 2145 nr_shrink--; 2146 } 2147 spin_unlock(&nm_i->nid_list_lock); 2148 mutex_unlock(&nm_i->build_lock); 2149 2150 return nr - nr_shrink; 2151 } 2152 2153 void recover_inline_xattr(struct inode *inode, struct page *page) 2154 { 2155 void *src_addr, *dst_addr; 2156 size_t inline_size; 2157 struct page *ipage; 2158 struct f2fs_inode *ri; 2159 2160 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2161 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2162 2163 ri = F2FS_INODE(page); 2164 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 2165 clear_inode_flag(inode, FI_INLINE_XATTR); 2166 goto update_inode; 2167 } 2168 2169 dst_addr = inline_xattr_addr(ipage); 2170 src_addr = inline_xattr_addr(page); 2171 inline_size = inline_xattr_size(inode); 2172 2173 f2fs_wait_on_page_writeback(ipage, NODE, true); 2174 memcpy(dst_addr, src_addr, inline_size); 2175 update_inode: 2176 update_inode(inode, ipage); 2177 f2fs_put_page(ipage, 1); 2178 } 2179 2180 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 2181 { 2182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2183 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2184 nid_t new_xnid = nid_of_node(page); 2185 struct node_info ni; 2186 struct page *xpage; 2187 2188 if (!prev_xnid) 2189 goto recover_xnid; 2190 2191 /* 1: invalidate the previous xattr nid */ 2192 get_node_info(sbi, prev_xnid, &ni); 2193 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 2194 invalidate_blocks(sbi, ni.blk_addr); 2195 dec_valid_node_count(sbi, inode); 2196 set_node_addr(sbi, &ni, NULL_ADDR, false); 2197 2198 recover_xnid: 2199 /* 2: update xattr nid in inode */ 2200 remove_free_nid(sbi, new_xnid); 2201 f2fs_i_xnid_write(inode, new_xnid); 2202 if (unlikely(!inc_valid_node_count(sbi, inode))) 2203 f2fs_bug_on(sbi, 1); 2204 update_inode_page(inode); 2205 2206 /* 3: update and set xattr node page dirty */ 2207 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid); 2208 if (!xpage) 2209 return -ENOMEM; 2210 2211 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE); 2212 2213 get_node_info(sbi, new_xnid, &ni); 2214 ni.ino = inode->i_ino; 2215 set_node_addr(sbi, &ni, NEW_ADDR, false); 2216 set_page_dirty(xpage); 2217 f2fs_put_page(xpage, 1); 2218 2219 return 0; 2220 } 2221 2222 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2223 { 2224 struct f2fs_inode *src, *dst; 2225 nid_t ino = ino_of_node(page); 2226 struct node_info old_ni, new_ni; 2227 struct page *ipage; 2228 2229 get_node_info(sbi, ino, &old_ni); 2230 2231 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2232 return -EINVAL; 2233 retry: 2234 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2235 if (!ipage) { 2236 congestion_wait(BLK_RW_ASYNC, HZ/50); 2237 goto retry; 2238 } 2239 2240 /* Should not use this inode from free nid list */ 2241 remove_free_nid(sbi, ino); 2242 2243 if (!PageUptodate(ipage)) 2244 SetPageUptodate(ipage); 2245 fill_node_footer(ipage, ino, ino, 0, true); 2246 2247 src = F2FS_INODE(page); 2248 dst = F2FS_INODE(ipage); 2249 2250 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2251 dst->i_size = 0; 2252 dst->i_blocks = cpu_to_le64(1); 2253 dst->i_links = cpu_to_le32(1); 2254 dst->i_xattr_nid = 0; 2255 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2256 2257 new_ni = old_ni; 2258 new_ni.ino = ino; 2259 2260 if (unlikely(!inc_valid_node_count(sbi, NULL))) 2261 WARN_ON(1); 2262 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2263 inc_valid_inode_count(sbi); 2264 set_page_dirty(ipage); 2265 f2fs_put_page(ipage, 1); 2266 return 0; 2267 } 2268 2269 int restore_node_summary(struct f2fs_sb_info *sbi, 2270 unsigned int segno, struct f2fs_summary_block *sum) 2271 { 2272 struct f2fs_node *rn; 2273 struct f2fs_summary *sum_entry; 2274 block_t addr; 2275 int i, idx, last_offset, nrpages; 2276 2277 /* scan the node segment */ 2278 last_offset = sbi->blocks_per_seg; 2279 addr = START_BLOCK(sbi, segno); 2280 sum_entry = &sum->entries[0]; 2281 2282 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2283 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2284 2285 /* readahead node pages */ 2286 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2287 2288 for (idx = addr; idx < addr + nrpages; idx++) { 2289 struct page *page = get_tmp_page(sbi, idx); 2290 2291 rn = F2FS_NODE(page); 2292 sum_entry->nid = rn->footer.nid; 2293 sum_entry->version = 0; 2294 sum_entry->ofs_in_node = 0; 2295 sum_entry++; 2296 f2fs_put_page(page, 1); 2297 } 2298 2299 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2300 addr + nrpages); 2301 } 2302 return 0; 2303 } 2304 2305 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2306 { 2307 struct f2fs_nm_info *nm_i = NM_I(sbi); 2308 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2309 struct f2fs_journal *journal = curseg->journal; 2310 int i; 2311 2312 down_write(&curseg->journal_rwsem); 2313 for (i = 0; i < nats_in_cursum(journal); i++) { 2314 struct nat_entry *ne; 2315 struct f2fs_nat_entry raw_ne; 2316 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2317 2318 raw_ne = nat_in_journal(journal, i); 2319 2320 ne = __lookup_nat_cache(nm_i, nid); 2321 if (!ne) { 2322 ne = grab_nat_entry(nm_i, nid, true); 2323 node_info_from_raw_nat(&ne->ni, &raw_ne); 2324 } 2325 2326 /* 2327 * if a free nat in journal has not been used after last 2328 * checkpoint, we should remove it from available nids, 2329 * since later we will add it again. 2330 */ 2331 if (!get_nat_flag(ne, IS_DIRTY) && 2332 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2333 spin_lock(&nm_i->nid_list_lock); 2334 nm_i->available_nids--; 2335 spin_unlock(&nm_i->nid_list_lock); 2336 } 2337 2338 __set_nat_cache_dirty(nm_i, ne); 2339 } 2340 update_nats_in_cursum(journal, -i); 2341 up_write(&curseg->journal_rwsem); 2342 } 2343 2344 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2345 struct list_head *head, int max) 2346 { 2347 struct nat_entry_set *cur; 2348 2349 if (nes->entry_cnt >= max) 2350 goto add_out; 2351 2352 list_for_each_entry(cur, head, set_list) { 2353 if (cur->entry_cnt >= nes->entry_cnt) { 2354 list_add(&nes->set_list, cur->set_list.prev); 2355 return; 2356 } 2357 } 2358 add_out: 2359 list_add_tail(&nes->set_list, head); 2360 } 2361 2362 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2363 struct page *page) 2364 { 2365 struct f2fs_nm_info *nm_i = NM_I(sbi); 2366 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2367 struct f2fs_nat_block *nat_blk = page_address(page); 2368 int valid = 0; 2369 int i; 2370 2371 if (!enabled_nat_bits(sbi, NULL)) 2372 return; 2373 2374 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { 2375 if (start_nid == 0 && i == 0) 2376 valid++; 2377 if (nat_blk->entries[i].block_addr) 2378 valid++; 2379 } 2380 if (valid == 0) { 2381 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2382 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2383 return; 2384 } 2385 2386 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2387 if (valid == NAT_ENTRY_PER_BLOCK) 2388 __set_bit_le(nat_index, nm_i->full_nat_bits); 2389 else 2390 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2391 } 2392 2393 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2394 struct nat_entry_set *set, struct cp_control *cpc) 2395 { 2396 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2397 struct f2fs_journal *journal = curseg->journal; 2398 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2399 bool to_journal = true; 2400 struct f2fs_nat_block *nat_blk; 2401 struct nat_entry *ne, *cur; 2402 struct page *page = NULL; 2403 2404 /* 2405 * there are two steps to flush nat entries: 2406 * #1, flush nat entries to journal in current hot data summary block. 2407 * #2, flush nat entries to nat page. 2408 */ 2409 if (enabled_nat_bits(sbi, cpc) || 2410 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2411 to_journal = false; 2412 2413 if (to_journal) { 2414 down_write(&curseg->journal_rwsem); 2415 } else { 2416 page = get_next_nat_page(sbi, start_nid); 2417 nat_blk = page_address(page); 2418 f2fs_bug_on(sbi, !nat_blk); 2419 } 2420 2421 /* flush dirty nats in nat entry set */ 2422 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2423 struct f2fs_nat_entry *raw_ne; 2424 nid_t nid = nat_get_nid(ne); 2425 int offset; 2426 2427 if (nat_get_blkaddr(ne) == NEW_ADDR) 2428 continue; 2429 2430 if (to_journal) { 2431 offset = lookup_journal_in_cursum(journal, 2432 NAT_JOURNAL, nid, 1); 2433 f2fs_bug_on(sbi, offset < 0); 2434 raw_ne = &nat_in_journal(journal, offset); 2435 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2436 } else { 2437 raw_ne = &nat_blk->entries[nid - start_nid]; 2438 } 2439 raw_nat_from_node_info(raw_ne, &ne->ni); 2440 nat_reset_flag(ne); 2441 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2442 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2443 add_free_nid(sbi, nid, false); 2444 spin_lock(&NM_I(sbi)->nid_list_lock); 2445 NM_I(sbi)->available_nids++; 2446 update_free_nid_bitmap(sbi, nid, true, false); 2447 spin_unlock(&NM_I(sbi)->nid_list_lock); 2448 } else { 2449 spin_lock(&NM_I(sbi)->nid_list_lock); 2450 update_free_nid_bitmap(sbi, nid, false, false); 2451 spin_unlock(&NM_I(sbi)->nid_list_lock); 2452 } 2453 } 2454 2455 if (to_journal) { 2456 up_write(&curseg->journal_rwsem); 2457 } else { 2458 __update_nat_bits(sbi, start_nid, page); 2459 f2fs_put_page(page, 1); 2460 } 2461 2462 /* Allow dirty nats by node block allocation in write_begin */ 2463 if (!set->entry_cnt) { 2464 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2465 kmem_cache_free(nat_entry_set_slab, set); 2466 } 2467 } 2468 2469 /* 2470 * This function is called during the checkpointing process. 2471 */ 2472 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2473 { 2474 struct f2fs_nm_info *nm_i = NM_I(sbi); 2475 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2476 struct f2fs_journal *journal = curseg->journal; 2477 struct nat_entry_set *setvec[SETVEC_SIZE]; 2478 struct nat_entry_set *set, *tmp; 2479 unsigned int found; 2480 nid_t set_idx = 0; 2481 LIST_HEAD(sets); 2482 2483 if (!nm_i->dirty_nat_cnt) 2484 return; 2485 2486 down_write(&nm_i->nat_tree_lock); 2487 2488 /* 2489 * if there are no enough space in journal to store dirty nat 2490 * entries, remove all entries from journal and merge them 2491 * into nat entry set. 2492 */ 2493 if (enabled_nat_bits(sbi, cpc) || 2494 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2495 remove_nats_in_journal(sbi); 2496 2497 while ((found = __gang_lookup_nat_set(nm_i, 2498 set_idx, SETVEC_SIZE, setvec))) { 2499 unsigned idx; 2500 set_idx = setvec[found - 1]->set + 1; 2501 for (idx = 0; idx < found; idx++) 2502 __adjust_nat_entry_set(setvec[idx], &sets, 2503 MAX_NAT_JENTRIES(journal)); 2504 } 2505 2506 /* flush dirty nats in nat entry set */ 2507 list_for_each_entry_safe(set, tmp, &sets, set_list) 2508 __flush_nat_entry_set(sbi, set, cpc); 2509 2510 up_write(&nm_i->nat_tree_lock); 2511 /* Allow dirty nats by node block allocation in write_begin */ 2512 } 2513 2514 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2515 { 2516 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2517 struct f2fs_nm_info *nm_i = NM_I(sbi); 2518 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2519 unsigned int i; 2520 __u64 cp_ver = cur_cp_version(ckpt); 2521 block_t nat_bits_addr; 2522 2523 if (!enabled_nat_bits(sbi, NULL)) 2524 return 0; 2525 2526 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + 2527 F2FS_BLKSIZE - 1); 2528 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, 2529 GFP_KERNEL); 2530 if (!nm_i->nat_bits) 2531 return -ENOMEM; 2532 2533 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2534 nm_i->nat_bits_blocks; 2535 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2536 struct page *page = get_meta_page(sbi, nat_bits_addr++); 2537 2538 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2539 page_address(page), F2FS_BLKSIZE); 2540 f2fs_put_page(page, 1); 2541 } 2542 2543 cp_ver |= (cur_cp_crc(ckpt) << 32); 2544 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2545 disable_nat_bits(sbi, true); 2546 return 0; 2547 } 2548 2549 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2550 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2551 2552 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2553 return 0; 2554 } 2555 2556 inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2557 { 2558 struct f2fs_nm_info *nm_i = NM_I(sbi); 2559 unsigned int i = 0; 2560 nid_t nid, last_nid; 2561 2562 if (!enabled_nat_bits(sbi, NULL)) 2563 return; 2564 2565 for (i = 0; i < nm_i->nat_blocks; i++) { 2566 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2567 if (i >= nm_i->nat_blocks) 2568 break; 2569 2570 __set_bit_le(i, nm_i->nat_block_bitmap); 2571 2572 nid = i * NAT_ENTRY_PER_BLOCK; 2573 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK; 2574 2575 spin_lock(&NM_I(sbi)->nid_list_lock); 2576 for (; nid < last_nid; nid++) 2577 update_free_nid_bitmap(sbi, nid, true, true); 2578 spin_unlock(&NM_I(sbi)->nid_list_lock); 2579 } 2580 2581 for (i = 0; i < nm_i->nat_blocks; i++) { 2582 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2583 if (i >= nm_i->nat_blocks) 2584 break; 2585 2586 __set_bit_le(i, nm_i->nat_block_bitmap); 2587 } 2588 } 2589 2590 static int init_node_manager(struct f2fs_sb_info *sbi) 2591 { 2592 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2593 struct f2fs_nm_info *nm_i = NM_I(sbi); 2594 unsigned char *version_bitmap; 2595 unsigned int nat_segs; 2596 int err; 2597 2598 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2599 2600 /* segment_count_nat includes pair segment so divide to 2. */ 2601 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2602 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2603 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2604 2605 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2606 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2607 F2FS_RESERVED_NODE_NUM; 2608 nm_i->nid_cnt[FREE_NID_LIST] = 0; 2609 nm_i->nid_cnt[ALLOC_NID_LIST] = 0; 2610 nm_i->nat_cnt = 0; 2611 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2612 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2613 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2614 2615 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2616 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]); 2617 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]); 2618 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2619 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2620 INIT_LIST_HEAD(&nm_i->nat_entries); 2621 2622 mutex_init(&nm_i->build_lock); 2623 spin_lock_init(&nm_i->nid_list_lock); 2624 init_rwsem(&nm_i->nat_tree_lock); 2625 2626 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2627 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2628 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2629 if (!version_bitmap) 2630 return -EFAULT; 2631 2632 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2633 GFP_KERNEL); 2634 if (!nm_i->nat_bitmap) 2635 return -ENOMEM; 2636 2637 err = __get_nat_bitmaps(sbi); 2638 if (err) 2639 return err; 2640 2641 #ifdef CONFIG_F2FS_CHECK_FS 2642 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2643 GFP_KERNEL); 2644 if (!nm_i->nat_bitmap_mir) 2645 return -ENOMEM; 2646 #endif 2647 2648 return 0; 2649 } 2650 2651 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2652 { 2653 struct f2fs_nm_info *nm_i = NM_I(sbi); 2654 2655 nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks * 2656 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL); 2657 if (!nm_i->free_nid_bitmap) 2658 return -ENOMEM; 2659 2660 nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8, 2661 GFP_KERNEL); 2662 if (!nm_i->nat_block_bitmap) 2663 return -ENOMEM; 2664 2665 nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks * 2666 sizeof(unsigned short), GFP_KERNEL); 2667 if (!nm_i->free_nid_count) 2668 return -ENOMEM; 2669 return 0; 2670 } 2671 2672 int build_node_manager(struct f2fs_sb_info *sbi) 2673 { 2674 int err; 2675 2676 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2677 if (!sbi->nm_info) 2678 return -ENOMEM; 2679 2680 err = init_node_manager(sbi); 2681 if (err) 2682 return err; 2683 2684 err = init_free_nid_cache(sbi); 2685 if (err) 2686 return err; 2687 2688 /* load free nid status from nat_bits table */ 2689 load_free_nid_bitmap(sbi); 2690 2691 build_free_nids(sbi, true, true); 2692 return 0; 2693 } 2694 2695 void destroy_node_manager(struct f2fs_sb_info *sbi) 2696 { 2697 struct f2fs_nm_info *nm_i = NM_I(sbi); 2698 struct free_nid *i, *next_i; 2699 struct nat_entry *natvec[NATVEC_SIZE]; 2700 struct nat_entry_set *setvec[SETVEC_SIZE]; 2701 nid_t nid = 0; 2702 unsigned int found; 2703 2704 if (!nm_i) 2705 return; 2706 2707 /* destroy free nid list */ 2708 spin_lock(&nm_i->nid_list_lock); 2709 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST], 2710 list) { 2711 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2712 spin_unlock(&nm_i->nid_list_lock); 2713 kmem_cache_free(free_nid_slab, i); 2714 spin_lock(&nm_i->nid_list_lock); 2715 } 2716 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]); 2717 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]); 2718 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST])); 2719 spin_unlock(&nm_i->nid_list_lock); 2720 2721 /* destroy nat cache */ 2722 down_write(&nm_i->nat_tree_lock); 2723 while ((found = __gang_lookup_nat_cache(nm_i, 2724 nid, NATVEC_SIZE, natvec))) { 2725 unsigned idx; 2726 2727 nid = nat_get_nid(natvec[found - 1]) + 1; 2728 for (idx = 0; idx < found; idx++) 2729 __del_from_nat_cache(nm_i, natvec[idx]); 2730 } 2731 f2fs_bug_on(sbi, nm_i->nat_cnt); 2732 2733 /* destroy nat set cache */ 2734 nid = 0; 2735 while ((found = __gang_lookup_nat_set(nm_i, 2736 nid, SETVEC_SIZE, setvec))) { 2737 unsigned idx; 2738 2739 nid = setvec[found - 1]->set + 1; 2740 for (idx = 0; idx < found; idx++) { 2741 /* entry_cnt is not zero, when cp_error was occurred */ 2742 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2743 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2744 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2745 } 2746 } 2747 up_write(&nm_i->nat_tree_lock); 2748 2749 kvfree(nm_i->nat_block_bitmap); 2750 kvfree(nm_i->free_nid_bitmap); 2751 kvfree(nm_i->free_nid_count); 2752 2753 kfree(nm_i->nat_bitmap); 2754 kfree(nm_i->nat_bits); 2755 #ifdef CONFIG_F2FS_CHECK_FS 2756 kfree(nm_i->nat_bitmap_mir); 2757 #endif 2758 sbi->nm_info = NULL; 2759 kfree(nm_i); 2760 } 2761 2762 int __init create_node_manager_caches(void) 2763 { 2764 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2765 sizeof(struct nat_entry)); 2766 if (!nat_entry_slab) 2767 goto fail; 2768 2769 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2770 sizeof(struct free_nid)); 2771 if (!free_nid_slab) 2772 goto destroy_nat_entry; 2773 2774 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2775 sizeof(struct nat_entry_set)); 2776 if (!nat_entry_set_slab) 2777 goto destroy_free_nid; 2778 return 0; 2779 2780 destroy_free_nid: 2781 kmem_cache_destroy(free_nid_slab); 2782 destroy_nat_entry: 2783 kmem_cache_destroy(nat_entry_slab); 2784 fail: 2785 return -ENOMEM; 2786 } 2787 2788 void destroy_node_manager_caches(void) 2789 { 2790 kmem_cache_destroy(nat_entry_set_slab); 2791 kmem_cache_destroy(free_nid_slab); 2792 kmem_cache_destroy(nat_entry_slab); 2793 } 2794