1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] * 49 sizeof(struct free_nid)) >> PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 if (excess_cached_nats(sbi)) 56 res = false; 57 } else if (type == DIRTY_DENTS) { 58 if (sbi->sb->s_bdi->wb.dirty_exceeded) 59 return false; 60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 62 } else if (type == INO_ENTRIES) { 63 int i; 64 65 for (i = 0; i <= UPDATE_INO; i++) 66 mem_size += (sbi->im[i].ino_num * 67 sizeof(struct ino_entry)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 69 } else if (type == EXTENT_CACHE) { 70 mem_size = (atomic_read(&sbi->total_ext_tree) * 71 sizeof(struct extent_tree) + 72 atomic_read(&sbi->total_ext_node) * 73 sizeof(struct extent_node)) >> PAGE_SHIFT; 74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 75 } else { 76 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 77 return true; 78 } 79 return res; 80 } 81 82 static void clear_node_page_dirty(struct page *page) 83 { 84 struct address_space *mapping = page->mapping; 85 unsigned int long flags; 86 87 if (PageDirty(page)) { 88 spin_lock_irqsave(&mapping->tree_lock, flags); 89 radix_tree_tag_clear(&mapping->page_tree, 90 page_index(page), 91 PAGECACHE_TAG_DIRTY); 92 spin_unlock_irqrestore(&mapping->tree_lock, flags); 93 94 clear_page_dirty_for_io(page); 95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 96 } 97 ClearPageUptodate(page); 98 } 99 100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 101 { 102 pgoff_t index = current_nat_addr(sbi, nid); 103 return get_meta_page(sbi, index); 104 } 105 106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 107 { 108 struct page *src_page; 109 struct page *dst_page; 110 pgoff_t src_off; 111 pgoff_t dst_off; 112 void *src_addr; 113 void *dst_addr; 114 struct f2fs_nm_info *nm_i = NM_I(sbi); 115 116 src_off = current_nat_addr(sbi, nid); 117 dst_off = next_nat_addr(sbi, src_off); 118 119 /* get current nat block page with lock */ 120 src_page = get_meta_page(sbi, src_off); 121 dst_page = grab_meta_page(sbi, dst_off); 122 f2fs_bug_on(sbi, PageDirty(src_page)); 123 124 src_addr = page_address(src_page); 125 dst_addr = page_address(dst_page); 126 memcpy(dst_addr, src_addr, PAGE_SIZE); 127 set_page_dirty(dst_page); 128 f2fs_put_page(src_page, 1); 129 130 set_to_next_nat(nm_i, nid); 131 132 return dst_page; 133 } 134 135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 136 { 137 return radix_tree_lookup(&nm_i->nat_root, n); 138 } 139 140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 141 nid_t start, unsigned int nr, struct nat_entry **ep) 142 { 143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 144 } 145 146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 147 { 148 list_del(&e->list); 149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 150 nm_i->nat_cnt--; 151 kmem_cache_free(nat_entry_slab, e); 152 } 153 154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 155 struct nat_entry *ne) 156 { 157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 158 struct nat_entry_set *head; 159 160 if (get_nat_flag(ne, IS_DIRTY)) 161 return; 162 163 head = radix_tree_lookup(&nm_i->nat_set_root, set); 164 if (!head) { 165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 166 167 INIT_LIST_HEAD(&head->entry_list); 168 INIT_LIST_HEAD(&head->set_list); 169 head->set = set; 170 head->entry_cnt = 0; 171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 172 } 173 list_move_tail(&ne->list, &head->entry_list); 174 nm_i->dirty_nat_cnt++; 175 head->entry_cnt++; 176 set_nat_flag(ne, IS_DIRTY, true); 177 } 178 179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 180 struct nat_entry *ne) 181 { 182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 183 struct nat_entry_set *head; 184 185 head = radix_tree_lookup(&nm_i->nat_set_root, set); 186 if (head) { 187 list_move_tail(&ne->list, &nm_i->nat_entries); 188 set_nat_flag(ne, IS_DIRTY, false); 189 head->entry_cnt--; 190 nm_i->dirty_nat_cnt--; 191 } 192 } 193 194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 195 nid_t start, unsigned int nr, struct nat_entry_set **ep) 196 { 197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 198 start, nr); 199 } 200 201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 202 { 203 struct f2fs_nm_info *nm_i = NM_I(sbi); 204 struct nat_entry *e; 205 bool need = false; 206 207 down_read(&nm_i->nat_tree_lock); 208 e = __lookup_nat_cache(nm_i, nid); 209 if (e) { 210 if (!get_nat_flag(e, IS_CHECKPOINTED) && 211 !get_nat_flag(e, HAS_FSYNCED_INODE)) 212 need = true; 213 } 214 up_read(&nm_i->nat_tree_lock); 215 return need; 216 } 217 218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 219 { 220 struct f2fs_nm_info *nm_i = NM_I(sbi); 221 struct nat_entry *e; 222 bool is_cp = true; 223 224 down_read(&nm_i->nat_tree_lock); 225 e = __lookup_nat_cache(nm_i, nid); 226 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 227 is_cp = false; 228 up_read(&nm_i->nat_tree_lock); 229 return is_cp; 230 } 231 232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 233 { 234 struct f2fs_nm_info *nm_i = NM_I(sbi); 235 struct nat_entry *e; 236 bool need_update = true; 237 238 down_read(&nm_i->nat_tree_lock); 239 e = __lookup_nat_cache(nm_i, ino); 240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 241 (get_nat_flag(e, IS_CHECKPOINTED) || 242 get_nat_flag(e, HAS_FSYNCED_INODE))) 243 need_update = false; 244 up_read(&nm_i->nat_tree_lock); 245 return need_update; 246 } 247 248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 249 bool no_fail) 250 { 251 struct nat_entry *new; 252 253 if (no_fail) { 254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 256 } else { 257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 258 if (!new) 259 return NULL; 260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) { 261 kmem_cache_free(nat_entry_slab, new); 262 return NULL; 263 } 264 } 265 266 memset(new, 0, sizeof(struct nat_entry)); 267 nat_set_nid(new, nid); 268 nat_reset_flag(new); 269 list_add_tail(&new->list, &nm_i->nat_entries); 270 nm_i->nat_cnt++; 271 return new; 272 } 273 274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 275 struct f2fs_nat_entry *ne) 276 { 277 struct f2fs_nm_info *nm_i = NM_I(sbi); 278 struct nat_entry *e; 279 280 e = __lookup_nat_cache(nm_i, nid); 281 if (!e) { 282 e = grab_nat_entry(nm_i, nid, false); 283 if (e) 284 node_info_from_raw_nat(&e->ni, ne); 285 } else { 286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 287 nat_get_blkaddr(e) != 288 le32_to_cpu(ne->block_addr) || 289 nat_get_version(e) != ne->version); 290 } 291 } 292 293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 294 block_t new_blkaddr, bool fsync_done) 295 { 296 struct f2fs_nm_info *nm_i = NM_I(sbi); 297 struct nat_entry *e; 298 299 down_write(&nm_i->nat_tree_lock); 300 e = __lookup_nat_cache(nm_i, ni->nid); 301 if (!e) { 302 e = grab_nat_entry(nm_i, ni->nid, true); 303 copy_node_info(&e->ni, ni); 304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 305 } else if (new_blkaddr == NEW_ADDR) { 306 /* 307 * when nid is reallocated, 308 * previous nat entry can be remained in nat cache. 309 * So, reinitialize it with new information. 310 */ 311 copy_node_info(&e->ni, ni); 312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 313 } 314 315 /* sanity check */ 316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 318 new_blkaddr == NULL_ADDR); 319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 320 new_blkaddr == NEW_ADDR); 321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 322 nat_get_blkaddr(e) != NULL_ADDR && 323 new_blkaddr == NEW_ADDR); 324 325 /* increment version no as node is removed */ 326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 327 unsigned char version = nat_get_version(e); 328 nat_set_version(e, inc_node_version(version)); 329 330 /* in order to reuse the nid */ 331 if (nm_i->next_scan_nid > ni->nid) 332 nm_i->next_scan_nid = ni->nid; 333 } 334 335 /* change address */ 336 nat_set_blkaddr(e, new_blkaddr); 337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 338 set_nat_flag(e, IS_CHECKPOINTED, false); 339 __set_nat_cache_dirty(nm_i, e); 340 341 if (enabled_nat_bits(sbi, NULL) && new_blkaddr == NEW_ADDR) 342 clear_bit_le(NAT_BLOCK_OFFSET(ni->nid), nm_i->empty_nat_bits); 343 344 /* update fsync_mark if its inode nat entry is still alive */ 345 if (ni->nid != ni->ino) 346 e = __lookup_nat_cache(nm_i, ni->ino); 347 if (e) { 348 if (fsync_done && ni->nid == ni->ino) 349 set_nat_flag(e, HAS_FSYNCED_INODE, true); 350 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 351 } 352 up_write(&nm_i->nat_tree_lock); 353 } 354 355 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 356 { 357 struct f2fs_nm_info *nm_i = NM_I(sbi); 358 int nr = nr_shrink; 359 360 if (!down_write_trylock(&nm_i->nat_tree_lock)) 361 return 0; 362 363 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 364 struct nat_entry *ne; 365 ne = list_first_entry(&nm_i->nat_entries, 366 struct nat_entry, list); 367 __del_from_nat_cache(nm_i, ne); 368 nr_shrink--; 369 } 370 up_write(&nm_i->nat_tree_lock); 371 return nr - nr_shrink; 372 } 373 374 /* 375 * This function always returns success 376 */ 377 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 378 { 379 struct f2fs_nm_info *nm_i = NM_I(sbi); 380 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 381 struct f2fs_journal *journal = curseg->journal; 382 nid_t start_nid = START_NID(nid); 383 struct f2fs_nat_block *nat_blk; 384 struct page *page = NULL; 385 struct f2fs_nat_entry ne; 386 struct nat_entry *e; 387 int i; 388 389 ni->nid = nid; 390 391 /* Check nat cache */ 392 down_read(&nm_i->nat_tree_lock); 393 e = __lookup_nat_cache(nm_i, nid); 394 if (e) { 395 ni->ino = nat_get_ino(e); 396 ni->blk_addr = nat_get_blkaddr(e); 397 ni->version = nat_get_version(e); 398 up_read(&nm_i->nat_tree_lock); 399 return; 400 } 401 402 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 403 404 /* Check current segment summary */ 405 down_read(&curseg->journal_rwsem); 406 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 407 if (i >= 0) { 408 ne = nat_in_journal(journal, i); 409 node_info_from_raw_nat(ni, &ne); 410 } 411 up_read(&curseg->journal_rwsem); 412 if (i >= 0) 413 goto cache; 414 415 /* Fill node_info from nat page */ 416 page = get_current_nat_page(sbi, start_nid); 417 nat_blk = (struct f2fs_nat_block *)page_address(page); 418 ne = nat_blk->entries[nid - start_nid]; 419 node_info_from_raw_nat(ni, &ne); 420 f2fs_put_page(page, 1); 421 cache: 422 up_read(&nm_i->nat_tree_lock); 423 /* cache nat entry */ 424 down_write(&nm_i->nat_tree_lock); 425 cache_nat_entry(sbi, nid, &ne); 426 up_write(&nm_i->nat_tree_lock); 427 } 428 429 /* 430 * readahead MAX_RA_NODE number of node pages. 431 */ 432 static void ra_node_pages(struct page *parent, int start, int n) 433 { 434 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 435 struct blk_plug plug; 436 int i, end; 437 nid_t nid; 438 439 blk_start_plug(&plug); 440 441 /* Then, try readahead for siblings of the desired node */ 442 end = start + n; 443 end = min(end, NIDS_PER_BLOCK); 444 for (i = start; i < end; i++) { 445 nid = get_nid(parent, i, false); 446 ra_node_page(sbi, nid); 447 } 448 449 blk_finish_plug(&plug); 450 } 451 452 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 453 { 454 const long direct_index = ADDRS_PER_INODE(dn->inode); 455 const long direct_blks = ADDRS_PER_BLOCK; 456 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 457 unsigned int skipped_unit = ADDRS_PER_BLOCK; 458 int cur_level = dn->cur_level; 459 int max_level = dn->max_level; 460 pgoff_t base = 0; 461 462 if (!dn->max_level) 463 return pgofs + 1; 464 465 while (max_level-- > cur_level) 466 skipped_unit *= NIDS_PER_BLOCK; 467 468 switch (dn->max_level) { 469 case 3: 470 base += 2 * indirect_blks; 471 case 2: 472 base += 2 * direct_blks; 473 case 1: 474 base += direct_index; 475 break; 476 default: 477 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 478 } 479 480 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 481 } 482 483 /* 484 * The maximum depth is four. 485 * Offset[0] will have raw inode offset. 486 */ 487 static int get_node_path(struct inode *inode, long block, 488 int offset[4], unsigned int noffset[4]) 489 { 490 const long direct_index = ADDRS_PER_INODE(inode); 491 const long direct_blks = ADDRS_PER_BLOCK; 492 const long dptrs_per_blk = NIDS_PER_BLOCK; 493 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 494 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 495 int n = 0; 496 int level = 0; 497 498 noffset[0] = 0; 499 500 if (block < direct_index) { 501 offset[n] = block; 502 goto got; 503 } 504 block -= direct_index; 505 if (block < direct_blks) { 506 offset[n++] = NODE_DIR1_BLOCK; 507 noffset[n] = 1; 508 offset[n] = block; 509 level = 1; 510 goto got; 511 } 512 block -= direct_blks; 513 if (block < direct_blks) { 514 offset[n++] = NODE_DIR2_BLOCK; 515 noffset[n] = 2; 516 offset[n] = block; 517 level = 1; 518 goto got; 519 } 520 block -= direct_blks; 521 if (block < indirect_blks) { 522 offset[n++] = NODE_IND1_BLOCK; 523 noffset[n] = 3; 524 offset[n++] = block / direct_blks; 525 noffset[n] = 4 + offset[n - 1]; 526 offset[n] = block % direct_blks; 527 level = 2; 528 goto got; 529 } 530 block -= indirect_blks; 531 if (block < indirect_blks) { 532 offset[n++] = NODE_IND2_BLOCK; 533 noffset[n] = 4 + dptrs_per_blk; 534 offset[n++] = block / direct_blks; 535 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 536 offset[n] = block % direct_blks; 537 level = 2; 538 goto got; 539 } 540 block -= indirect_blks; 541 if (block < dindirect_blks) { 542 offset[n++] = NODE_DIND_BLOCK; 543 noffset[n] = 5 + (dptrs_per_blk * 2); 544 offset[n++] = block / indirect_blks; 545 noffset[n] = 6 + (dptrs_per_blk * 2) + 546 offset[n - 1] * (dptrs_per_blk + 1); 547 offset[n++] = (block / direct_blks) % dptrs_per_blk; 548 noffset[n] = 7 + (dptrs_per_blk * 2) + 549 offset[n - 2] * (dptrs_per_blk + 1) + 550 offset[n - 1]; 551 offset[n] = block % direct_blks; 552 level = 3; 553 goto got; 554 } else { 555 BUG(); 556 } 557 got: 558 return level; 559 } 560 561 /* 562 * Caller should call f2fs_put_dnode(dn). 563 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 564 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 565 * In the case of RDONLY_NODE, we don't need to care about mutex. 566 */ 567 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 568 { 569 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 570 struct page *npage[4]; 571 struct page *parent = NULL; 572 int offset[4]; 573 unsigned int noffset[4]; 574 nid_t nids[4]; 575 int level, i = 0; 576 int err = 0; 577 578 level = get_node_path(dn->inode, index, offset, noffset); 579 580 nids[0] = dn->inode->i_ino; 581 npage[0] = dn->inode_page; 582 583 if (!npage[0]) { 584 npage[0] = get_node_page(sbi, nids[0]); 585 if (IS_ERR(npage[0])) 586 return PTR_ERR(npage[0]); 587 } 588 589 /* if inline_data is set, should not report any block indices */ 590 if (f2fs_has_inline_data(dn->inode) && index) { 591 err = -ENOENT; 592 f2fs_put_page(npage[0], 1); 593 goto release_out; 594 } 595 596 parent = npage[0]; 597 if (level != 0) 598 nids[1] = get_nid(parent, offset[0], true); 599 dn->inode_page = npage[0]; 600 dn->inode_page_locked = true; 601 602 /* get indirect or direct nodes */ 603 for (i = 1; i <= level; i++) { 604 bool done = false; 605 606 if (!nids[i] && mode == ALLOC_NODE) { 607 /* alloc new node */ 608 if (!alloc_nid(sbi, &(nids[i]))) { 609 err = -ENOSPC; 610 goto release_pages; 611 } 612 613 dn->nid = nids[i]; 614 npage[i] = new_node_page(dn, noffset[i], NULL); 615 if (IS_ERR(npage[i])) { 616 alloc_nid_failed(sbi, nids[i]); 617 err = PTR_ERR(npage[i]); 618 goto release_pages; 619 } 620 621 set_nid(parent, offset[i - 1], nids[i], i == 1); 622 alloc_nid_done(sbi, nids[i]); 623 done = true; 624 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 625 npage[i] = get_node_page_ra(parent, offset[i - 1]); 626 if (IS_ERR(npage[i])) { 627 err = PTR_ERR(npage[i]); 628 goto release_pages; 629 } 630 done = true; 631 } 632 if (i == 1) { 633 dn->inode_page_locked = false; 634 unlock_page(parent); 635 } else { 636 f2fs_put_page(parent, 1); 637 } 638 639 if (!done) { 640 npage[i] = get_node_page(sbi, nids[i]); 641 if (IS_ERR(npage[i])) { 642 err = PTR_ERR(npage[i]); 643 f2fs_put_page(npage[0], 0); 644 goto release_out; 645 } 646 } 647 if (i < level) { 648 parent = npage[i]; 649 nids[i + 1] = get_nid(parent, offset[i], false); 650 } 651 } 652 dn->nid = nids[level]; 653 dn->ofs_in_node = offset[level]; 654 dn->node_page = npage[level]; 655 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 656 return 0; 657 658 release_pages: 659 f2fs_put_page(parent, 1); 660 if (i > 1) 661 f2fs_put_page(npage[0], 0); 662 release_out: 663 dn->inode_page = NULL; 664 dn->node_page = NULL; 665 if (err == -ENOENT) { 666 dn->cur_level = i; 667 dn->max_level = level; 668 dn->ofs_in_node = offset[level]; 669 } 670 return err; 671 } 672 673 static void truncate_node(struct dnode_of_data *dn) 674 { 675 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 676 struct node_info ni; 677 678 get_node_info(sbi, dn->nid, &ni); 679 if (dn->inode->i_blocks == 0) { 680 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 681 goto invalidate; 682 } 683 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 684 685 /* Deallocate node address */ 686 invalidate_blocks(sbi, ni.blk_addr); 687 dec_valid_node_count(sbi, dn->inode); 688 set_node_addr(sbi, &ni, NULL_ADDR, false); 689 690 if (dn->nid == dn->inode->i_ino) { 691 remove_orphan_inode(sbi, dn->nid); 692 dec_valid_inode_count(sbi); 693 f2fs_inode_synced(dn->inode); 694 } 695 invalidate: 696 clear_node_page_dirty(dn->node_page); 697 set_sbi_flag(sbi, SBI_IS_DIRTY); 698 699 f2fs_put_page(dn->node_page, 1); 700 701 invalidate_mapping_pages(NODE_MAPPING(sbi), 702 dn->node_page->index, dn->node_page->index); 703 704 dn->node_page = NULL; 705 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 706 } 707 708 static int truncate_dnode(struct dnode_of_data *dn) 709 { 710 struct page *page; 711 712 if (dn->nid == 0) 713 return 1; 714 715 /* get direct node */ 716 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 717 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 718 return 1; 719 else if (IS_ERR(page)) 720 return PTR_ERR(page); 721 722 /* Make dnode_of_data for parameter */ 723 dn->node_page = page; 724 dn->ofs_in_node = 0; 725 truncate_data_blocks(dn); 726 truncate_node(dn); 727 return 1; 728 } 729 730 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 731 int ofs, int depth) 732 { 733 struct dnode_of_data rdn = *dn; 734 struct page *page; 735 struct f2fs_node *rn; 736 nid_t child_nid; 737 unsigned int child_nofs; 738 int freed = 0; 739 int i, ret; 740 741 if (dn->nid == 0) 742 return NIDS_PER_BLOCK + 1; 743 744 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 745 746 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 747 if (IS_ERR(page)) { 748 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 749 return PTR_ERR(page); 750 } 751 752 ra_node_pages(page, ofs, NIDS_PER_BLOCK); 753 754 rn = F2FS_NODE(page); 755 if (depth < 3) { 756 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 757 child_nid = le32_to_cpu(rn->in.nid[i]); 758 if (child_nid == 0) 759 continue; 760 rdn.nid = child_nid; 761 ret = truncate_dnode(&rdn); 762 if (ret < 0) 763 goto out_err; 764 if (set_nid(page, i, 0, false)) 765 dn->node_changed = true; 766 } 767 } else { 768 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 769 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 770 child_nid = le32_to_cpu(rn->in.nid[i]); 771 if (child_nid == 0) { 772 child_nofs += NIDS_PER_BLOCK + 1; 773 continue; 774 } 775 rdn.nid = child_nid; 776 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 777 if (ret == (NIDS_PER_BLOCK + 1)) { 778 if (set_nid(page, i, 0, false)) 779 dn->node_changed = true; 780 child_nofs += ret; 781 } else if (ret < 0 && ret != -ENOENT) { 782 goto out_err; 783 } 784 } 785 freed = child_nofs; 786 } 787 788 if (!ofs) { 789 /* remove current indirect node */ 790 dn->node_page = page; 791 truncate_node(dn); 792 freed++; 793 } else { 794 f2fs_put_page(page, 1); 795 } 796 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 797 return freed; 798 799 out_err: 800 f2fs_put_page(page, 1); 801 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 802 return ret; 803 } 804 805 static int truncate_partial_nodes(struct dnode_of_data *dn, 806 struct f2fs_inode *ri, int *offset, int depth) 807 { 808 struct page *pages[2]; 809 nid_t nid[3]; 810 nid_t child_nid; 811 int err = 0; 812 int i; 813 int idx = depth - 2; 814 815 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 816 if (!nid[0]) 817 return 0; 818 819 /* get indirect nodes in the path */ 820 for (i = 0; i < idx + 1; i++) { 821 /* reference count'll be increased */ 822 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 823 if (IS_ERR(pages[i])) { 824 err = PTR_ERR(pages[i]); 825 idx = i - 1; 826 goto fail; 827 } 828 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 829 } 830 831 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 832 833 /* free direct nodes linked to a partial indirect node */ 834 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 835 child_nid = get_nid(pages[idx], i, false); 836 if (!child_nid) 837 continue; 838 dn->nid = child_nid; 839 err = truncate_dnode(dn); 840 if (err < 0) 841 goto fail; 842 if (set_nid(pages[idx], i, 0, false)) 843 dn->node_changed = true; 844 } 845 846 if (offset[idx + 1] == 0) { 847 dn->node_page = pages[idx]; 848 dn->nid = nid[idx]; 849 truncate_node(dn); 850 } else { 851 f2fs_put_page(pages[idx], 1); 852 } 853 offset[idx]++; 854 offset[idx + 1] = 0; 855 idx--; 856 fail: 857 for (i = idx; i >= 0; i--) 858 f2fs_put_page(pages[i], 1); 859 860 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 861 862 return err; 863 } 864 865 /* 866 * All the block addresses of data and nodes should be nullified. 867 */ 868 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 869 { 870 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 871 int err = 0, cont = 1; 872 int level, offset[4], noffset[4]; 873 unsigned int nofs = 0; 874 struct f2fs_inode *ri; 875 struct dnode_of_data dn; 876 struct page *page; 877 878 trace_f2fs_truncate_inode_blocks_enter(inode, from); 879 880 level = get_node_path(inode, from, offset, noffset); 881 882 page = get_node_page(sbi, inode->i_ino); 883 if (IS_ERR(page)) { 884 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 885 return PTR_ERR(page); 886 } 887 888 set_new_dnode(&dn, inode, page, NULL, 0); 889 unlock_page(page); 890 891 ri = F2FS_INODE(page); 892 switch (level) { 893 case 0: 894 case 1: 895 nofs = noffset[1]; 896 break; 897 case 2: 898 nofs = noffset[1]; 899 if (!offset[level - 1]) 900 goto skip_partial; 901 err = truncate_partial_nodes(&dn, ri, offset, level); 902 if (err < 0 && err != -ENOENT) 903 goto fail; 904 nofs += 1 + NIDS_PER_BLOCK; 905 break; 906 case 3: 907 nofs = 5 + 2 * NIDS_PER_BLOCK; 908 if (!offset[level - 1]) 909 goto skip_partial; 910 err = truncate_partial_nodes(&dn, ri, offset, level); 911 if (err < 0 && err != -ENOENT) 912 goto fail; 913 break; 914 default: 915 BUG(); 916 } 917 918 skip_partial: 919 while (cont) { 920 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 921 switch (offset[0]) { 922 case NODE_DIR1_BLOCK: 923 case NODE_DIR2_BLOCK: 924 err = truncate_dnode(&dn); 925 break; 926 927 case NODE_IND1_BLOCK: 928 case NODE_IND2_BLOCK: 929 err = truncate_nodes(&dn, nofs, offset[1], 2); 930 break; 931 932 case NODE_DIND_BLOCK: 933 err = truncate_nodes(&dn, nofs, offset[1], 3); 934 cont = 0; 935 break; 936 937 default: 938 BUG(); 939 } 940 if (err < 0 && err != -ENOENT) 941 goto fail; 942 if (offset[1] == 0 && 943 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 944 lock_page(page); 945 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 946 f2fs_wait_on_page_writeback(page, NODE, true); 947 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 948 set_page_dirty(page); 949 unlock_page(page); 950 } 951 offset[1] = 0; 952 offset[0]++; 953 nofs += err; 954 } 955 fail: 956 f2fs_put_page(page, 0); 957 trace_f2fs_truncate_inode_blocks_exit(inode, err); 958 return err > 0 ? 0 : err; 959 } 960 961 int truncate_xattr_node(struct inode *inode, struct page *page) 962 { 963 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 964 nid_t nid = F2FS_I(inode)->i_xattr_nid; 965 struct dnode_of_data dn; 966 struct page *npage; 967 968 if (!nid) 969 return 0; 970 971 npage = get_node_page(sbi, nid); 972 if (IS_ERR(npage)) 973 return PTR_ERR(npage); 974 975 f2fs_i_xnid_write(inode, 0); 976 977 set_new_dnode(&dn, inode, page, npage, nid); 978 979 if (page) 980 dn.inode_page_locked = true; 981 truncate_node(&dn); 982 return 0; 983 } 984 985 /* 986 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 987 * f2fs_unlock_op(). 988 */ 989 int remove_inode_page(struct inode *inode) 990 { 991 struct dnode_of_data dn; 992 int err; 993 994 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 995 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 996 if (err) 997 return err; 998 999 err = truncate_xattr_node(inode, dn.inode_page); 1000 if (err) { 1001 f2fs_put_dnode(&dn); 1002 return err; 1003 } 1004 1005 /* remove potential inline_data blocks */ 1006 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1007 S_ISLNK(inode->i_mode)) 1008 truncate_data_blocks_range(&dn, 1); 1009 1010 /* 0 is possible, after f2fs_new_inode() has failed */ 1011 f2fs_bug_on(F2FS_I_SB(inode), 1012 inode->i_blocks != 0 && inode->i_blocks != 1); 1013 1014 /* will put inode & node pages */ 1015 truncate_node(&dn); 1016 return 0; 1017 } 1018 1019 struct page *new_inode_page(struct inode *inode) 1020 { 1021 struct dnode_of_data dn; 1022 1023 /* allocate inode page for new inode */ 1024 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1025 1026 /* caller should f2fs_put_page(page, 1); */ 1027 return new_node_page(&dn, 0, NULL); 1028 } 1029 1030 struct page *new_node_page(struct dnode_of_data *dn, 1031 unsigned int ofs, struct page *ipage) 1032 { 1033 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1034 struct node_info new_ni; 1035 struct page *page; 1036 int err; 1037 1038 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1039 return ERR_PTR(-EPERM); 1040 1041 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1042 if (!page) 1043 return ERR_PTR(-ENOMEM); 1044 1045 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1046 err = -ENOSPC; 1047 goto fail; 1048 } 1049 #ifdef CONFIG_F2FS_CHECK_FS 1050 get_node_info(sbi, dn->nid, &new_ni); 1051 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1052 #endif 1053 new_ni.nid = dn->nid; 1054 new_ni.ino = dn->inode->i_ino; 1055 new_ni.blk_addr = NULL_ADDR; 1056 new_ni.flag = 0; 1057 new_ni.version = 0; 1058 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1059 1060 f2fs_wait_on_page_writeback(page, NODE, true); 1061 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1062 set_cold_node(dn->inode, page); 1063 if (!PageUptodate(page)) 1064 SetPageUptodate(page); 1065 if (set_page_dirty(page)) 1066 dn->node_changed = true; 1067 1068 if (f2fs_has_xattr_block(ofs)) 1069 f2fs_i_xnid_write(dn->inode, dn->nid); 1070 1071 if (ofs == 0) 1072 inc_valid_inode_count(sbi); 1073 return page; 1074 1075 fail: 1076 clear_node_page_dirty(page); 1077 f2fs_put_page(page, 1); 1078 return ERR_PTR(err); 1079 } 1080 1081 /* 1082 * Caller should do after getting the following values. 1083 * 0: f2fs_put_page(page, 0) 1084 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1085 */ 1086 static int read_node_page(struct page *page, int op_flags) 1087 { 1088 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1089 struct node_info ni; 1090 struct f2fs_io_info fio = { 1091 .sbi = sbi, 1092 .type = NODE, 1093 .op = REQ_OP_READ, 1094 .op_flags = op_flags, 1095 .page = page, 1096 .encrypted_page = NULL, 1097 }; 1098 1099 if (PageUptodate(page)) 1100 return LOCKED_PAGE; 1101 1102 get_node_info(sbi, page->index, &ni); 1103 1104 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1105 ClearPageUptodate(page); 1106 return -ENOENT; 1107 } 1108 1109 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1110 return f2fs_submit_page_bio(&fio); 1111 } 1112 1113 /* 1114 * Readahead a node page 1115 */ 1116 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1117 { 1118 struct page *apage; 1119 int err; 1120 1121 if (!nid) 1122 return; 1123 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1124 1125 rcu_read_lock(); 1126 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1127 rcu_read_unlock(); 1128 if (apage) 1129 return; 1130 1131 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1132 if (!apage) 1133 return; 1134 1135 err = read_node_page(apage, REQ_RAHEAD); 1136 f2fs_put_page(apage, err ? 1 : 0); 1137 } 1138 1139 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1140 struct page *parent, int start) 1141 { 1142 struct page *page; 1143 int err; 1144 1145 if (!nid) 1146 return ERR_PTR(-ENOENT); 1147 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1148 repeat: 1149 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1150 if (!page) 1151 return ERR_PTR(-ENOMEM); 1152 1153 err = read_node_page(page, 0); 1154 if (err < 0) { 1155 f2fs_put_page(page, 1); 1156 return ERR_PTR(err); 1157 } else if (err == LOCKED_PAGE) { 1158 goto page_hit; 1159 } 1160 1161 if (parent) 1162 ra_node_pages(parent, start + 1, MAX_RA_NODE); 1163 1164 lock_page(page); 1165 1166 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1167 f2fs_put_page(page, 1); 1168 goto repeat; 1169 } 1170 1171 if (unlikely(!PageUptodate(page))) 1172 goto out_err; 1173 page_hit: 1174 if(unlikely(nid != nid_of_node(page))) { 1175 f2fs_bug_on(sbi, 1); 1176 ClearPageUptodate(page); 1177 out_err: 1178 f2fs_put_page(page, 1); 1179 return ERR_PTR(-EIO); 1180 } 1181 return page; 1182 } 1183 1184 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1185 { 1186 return __get_node_page(sbi, nid, NULL, 0); 1187 } 1188 1189 struct page *get_node_page_ra(struct page *parent, int start) 1190 { 1191 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1192 nid_t nid = get_nid(parent, start, false); 1193 1194 return __get_node_page(sbi, nid, parent, start); 1195 } 1196 1197 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1198 { 1199 struct inode *inode; 1200 struct page *page; 1201 int ret; 1202 1203 /* should flush inline_data before evict_inode */ 1204 inode = ilookup(sbi->sb, ino); 1205 if (!inode) 1206 return; 1207 1208 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0); 1209 if (!page) 1210 goto iput_out; 1211 1212 if (!PageUptodate(page)) 1213 goto page_out; 1214 1215 if (!PageDirty(page)) 1216 goto page_out; 1217 1218 if (!clear_page_dirty_for_io(page)) 1219 goto page_out; 1220 1221 ret = f2fs_write_inline_data(inode, page); 1222 inode_dec_dirty_pages(inode); 1223 remove_dirty_inode(inode); 1224 if (ret) 1225 set_page_dirty(page); 1226 page_out: 1227 f2fs_put_page(page, 1); 1228 iput_out: 1229 iput(inode); 1230 } 1231 1232 void move_node_page(struct page *node_page, int gc_type) 1233 { 1234 if (gc_type == FG_GC) { 1235 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page); 1236 struct writeback_control wbc = { 1237 .sync_mode = WB_SYNC_ALL, 1238 .nr_to_write = 1, 1239 .for_reclaim = 0, 1240 }; 1241 1242 set_page_dirty(node_page); 1243 f2fs_wait_on_page_writeback(node_page, NODE, true); 1244 1245 f2fs_bug_on(sbi, PageWriteback(node_page)); 1246 if (!clear_page_dirty_for_io(node_page)) 1247 goto out_page; 1248 1249 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc)) 1250 unlock_page(node_page); 1251 goto release_page; 1252 } else { 1253 /* set page dirty and write it */ 1254 if (!PageWriteback(node_page)) 1255 set_page_dirty(node_page); 1256 } 1257 out_page: 1258 unlock_page(node_page); 1259 release_page: 1260 f2fs_put_page(node_page, 0); 1261 } 1262 1263 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1264 { 1265 pgoff_t index, end; 1266 struct pagevec pvec; 1267 struct page *last_page = NULL; 1268 1269 pagevec_init(&pvec, 0); 1270 index = 0; 1271 end = ULONG_MAX; 1272 1273 while (index <= end) { 1274 int i, nr_pages; 1275 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1276 PAGECACHE_TAG_DIRTY, 1277 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1278 if (nr_pages == 0) 1279 break; 1280 1281 for (i = 0; i < nr_pages; i++) { 1282 struct page *page = pvec.pages[i]; 1283 1284 if (unlikely(f2fs_cp_error(sbi))) { 1285 f2fs_put_page(last_page, 0); 1286 pagevec_release(&pvec); 1287 return ERR_PTR(-EIO); 1288 } 1289 1290 if (!IS_DNODE(page) || !is_cold_node(page)) 1291 continue; 1292 if (ino_of_node(page) != ino) 1293 continue; 1294 1295 lock_page(page); 1296 1297 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1298 continue_unlock: 1299 unlock_page(page); 1300 continue; 1301 } 1302 if (ino_of_node(page) != ino) 1303 goto continue_unlock; 1304 1305 if (!PageDirty(page)) { 1306 /* someone wrote it for us */ 1307 goto continue_unlock; 1308 } 1309 1310 if (last_page) 1311 f2fs_put_page(last_page, 0); 1312 1313 get_page(page); 1314 last_page = page; 1315 unlock_page(page); 1316 } 1317 pagevec_release(&pvec); 1318 cond_resched(); 1319 } 1320 return last_page; 1321 } 1322 1323 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1324 struct writeback_control *wbc) 1325 { 1326 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1327 nid_t nid; 1328 struct node_info ni; 1329 struct f2fs_io_info fio = { 1330 .sbi = sbi, 1331 .type = NODE, 1332 .op = REQ_OP_WRITE, 1333 .op_flags = wbc_to_write_flags(wbc), 1334 .page = page, 1335 .encrypted_page = NULL, 1336 .submitted = false, 1337 }; 1338 1339 trace_f2fs_writepage(page, NODE); 1340 1341 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1342 goto redirty_out; 1343 if (unlikely(f2fs_cp_error(sbi))) 1344 goto redirty_out; 1345 1346 /* get old block addr of this node page */ 1347 nid = nid_of_node(page); 1348 f2fs_bug_on(sbi, page->index != nid); 1349 1350 if (wbc->for_reclaim) { 1351 if (!down_read_trylock(&sbi->node_write)) 1352 goto redirty_out; 1353 } else { 1354 down_read(&sbi->node_write); 1355 } 1356 1357 get_node_info(sbi, nid, &ni); 1358 1359 /* This page is already truncated */ 1360 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1361 ClearPageUptodate(page); 1362 dec_page_count(sbi, F2FS_DIRTY_NODES); 1363 up_read(&sbi->node_write); 1364 unlock_page(page); 1365 return 0; 1366 } 1367 1368 if (atomic && !test_opt(sbi, NOBARRIER)) 1369 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1370 1371 set_page_writeback(page); 1372 fio.old_blkaddr = ni.blk_addr; 1373 write_node_page(nid, &fio); 1374 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1375 dec_page_count(sbi, F2FS_DIRTY_NODES); 1376 up_read(&sbi->node_write); 1377 1378 if (wbc->for_reclaim) { 1379 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0, 1380 page->index, NODE, WRITE); 1381 submitted = NULL; 1382 } 1383 1384 unlock_page(page); 1385 1386 if (unlikely(f2fs_cp_error(sbi))) { 1387 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1388 submitted = NULL; 1389 } 1390 if (submitted) 1391 *submitted = fio.submitted; 1392 1393 return 0; 1394 1395 redirty_out: 1396 redirty_page_for_writepage(wbc, page); 1397 return AOP_WRITEPAGE_ACTIVATE; 1398 } 1399 1400 static int f2fs_write_node_page(struct page *page, 1401 struct writeback_control *wbc) 1402 { 1403 return __write_node_page(page, false, NULL, wbc); 1404 } 1405 1406 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1407 struct writeback_control *wbc, bool atomic) 1408 { 1409 pgoff_t index, end; 1410 pgoff_t last_idx = ULONG_MAX; 1411 struct pagevec pvec; 1412 int ret = 0; 1413 struct page *last_page = NULL; 1414 bool marked = false; 1415 nid_t ino = inode->i_ino; 1416 1417 if (atomic) { 1418 last_page = last_fsync_dnode(sbi, ino); 1419 if (IS_ERR_OR_NULL(last_page)) 1420 return PTR_ERR_OR_ZERO(last_page); 1421 } 1422 retry: 1423 pagevec_init(&pvec, 0); 1424 index = 0; 1425 end = ULONG_MAX; 1426 1427 while (index <= end) { 1428 int i, nr_pages; 1429 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1430 PAGECACHE_TAG_DIRTY, 1431 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1432 if (nr_pages == 0) 1433 break; 1434 1435 for (i = 0; i < nr_pages; i++) { 1436 struct page *page = pvec.pages[i]; 1437 bool submitted = false; 1438 1439 if (unlikely(f2fs_cp_error(sbi))) { 1440 f2fs_put_page(last_page, 0); 1441 pagevec_release(&pvec); 1442 ret = -EIO; 1443 goto out; 1444 } 1445 1446 if (!IS_DNODE(page) || !is_cold_node(page)) 1447 continue; 1448 if (ino_of_node(page) != ino) 1449 continue; 1450 1451 lock_page(page); 1452 1453 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1454 continue_unlock: 1455 unlock_page(page); 1456 continue; 1457 } 1458 if (ino_of_node(page) != ino) 1459 goto continue_unlock; 1460 1461 if (!PageDirty(page) && page != last_page) { 1462 /* someone wrote it for us */ 1463 goto continue_unlock; 1464 } 1465 1466 f2fs_wait_on_page_writeback(page, NODE, true); 1467 BUG_ON(PageWriteback(page)); 1468 1469 if (!atomic || page == last_page) { 1470 set_fsync_mark(page, 1); 1471 if (IS_INODE(page)) { 1472 if (is_inode_flag_set(inode, 1473 FI_DIRTY_INODE)) 1474 update_inode(inode, page); 1475 set_dentry_mark(page, 1476 need_dentry_mark(sbi, ino)); 1477 } 1478 /* may be written by other thread */ 1479 if (!PageDirty(page)) 1480 set_page_dirty(page); 1481 } 1482 1483 if (!clear_page_dirty_for_io(page)) 1484 goto continue_unlock; 1485 1486 ret = __write_node_page(page, atomic && 1487 page == last_page, 1488 &submitted, wbc); 1489 if (ret) { 1490 unlock_page(page); 1491 f2fs_put_page(last_page, 0); 1492 break; 1493 } else if (submitted) { 1494 last_idx = page->index; 1495 } 1496 1497 if (page == last_page) { 1498 f2fs_put_page(page, 0); 1499 marked = true; 1500 break; 1501 } 1502 } 1503 pagevec_release(&pvec); 1504 cond_resched(); 1505 1506 if (ret || marked) 1507 break; 1508 } 1509 if (!ret && atomic && !marked) { 1510 f2fs_msg(sbi->sb, KERN_DEBUG, 1511 "Retry to write fsync mark: ino=%u, idx=%lx", 1512 ino, last_page->index); 1513 lock_page(last_page); 1514 f2fs_wait_on_page_writeback(last_page, NODE, true); 1515 set_page_dirty(last_page); 1516 unlock_page(last_page); 1517 goto retry; 1518 } 1519 out: 1520 if (last_idx != ULONG_MAX) 1521 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx, 1522 NODE, WRITE); 1523 return ret ? -EIO: 0; 1524 } 1525 1526 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc) 1527 { 1528 pgoff_t index, end; 1529 struct pagevec pvec; 1530 int step = 0; 1531 int nwritten = 0; 1532 int ret = 0; 1533 1534 pagevec_init(&pvec, 0); 1535 1536 next_step: 1537 index = 0; 1538 end = ULONG_MAX; 1539 1540 while (index <= end) { 1541 int i, nr_pages; 1542 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1543 PAGECACHE_TAG_DIRTY, 1544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1545 if (nr_pages == 0) 1546 break; 1547 1548 for (i = 0; i < nr_pages; i++) { 1549 struct page *page = pvec.pages[i]; 1550 bool submitted = false; 1551 1552 if (unlikely(f2fs_cp_error(sbi))) { 1553 pagevec_release(&pvec); 1554 ret = -EIO; 1555 goto out; 1556 } 1557 1558 /* 1559 * flushing sequence with step: 1560 * 0. indirect nodes 1561 * 1. dentry dnodes 1562 * 2. file dnodes 1563 */ 1564 if (step == 0 && IS_DNODE(page)) 1565 continue; 1566 if (step == 1 && (!IS_DNODE(page) || 1567 is_cold_node(page))) 1568 continue; 1569 if (step == 2 && (!IS_DNODE(page) || 1570 !is_cold_node(page))) 1571 continue; 1572 lock_node: 1573 if (!trylock_page(page)) 1574 continue; 1575 1576 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1577 continue_unlock: 1578 unlock_page(page); 1579 continue; 1580 } 1581 1582 if (!PageDirty(page)) { 1583 /* someone wrote it for us */ 1584 goto continue_unlock; 1585 } 1586 1587 /* flush inline_data */ 1588 if (is_inline_node(page)) { 1589 clear_inline_node(page); 1590 unlock_page(page); 1591 flush_inline_data(sbi, ino_of_node(page)); 1592 goto lock_node; 1593 } 1594 1595 f2fs_wait_on_page_writeback(page, NODE, true); 1596 1597 BUG_ON(PageWriteback(page)); 1598 if (!clear_page_dirty_for_io(page)) 1599 goto continue_unlock; 1600 1601 set_fsync_mark(page, 0); 1602 set_dentry_mark(page, 0); 1603 1604 ret = __write_node_page(page, false, &submitted, wbc); 1605 if (ret) 1606 unlock_page(page); 1607 else if (submitted) 1608 nwritten++; 1609 1610 if (--wbc->nr_to_write == 0) 1611 break; 1612 } 1613 pagevec_release(&pvec); 1614 cond_resched(); 1615 1616 if (wbc->nr_to_write == 0) { 1617 step = 2; 1618 break; 1619 } 1620 } 1621 1622 if (step < 2) { 1623 step++; 1624 goto next_step; 1625 } 1626 out: 1627 if (nwritten) 1628 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1629 return ret; 1630 } 1631 1632 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1633 { 1634 pgoff_t index = 0, end = ULONG_MAX; 1635 struct pagevec pvec; 1636 int ret2, ret = 0; 1637 1638 pagevec_init(&pvec, 0); 1639 1640 while (index <= end) { 1641 int i, nr_pages; 1642 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1643 PAGECACHE_TAG_WRITEBACK, 1644 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1645 if (nr_pages == 0) 1646 break; 1647 1648 for (i = 0; i < nr_pages; i++) { 1649 struct page *page = pvec.pages[i]; 1650 1651 /* until radix tree lookup accepts end_index */ 1652 if (unlikely(page->index > end)) 1653 continue; 1654 1655 if (ino && ino_of_node(page) == ino) { 1656 f2fs_wait_on_page_writeback(page, NODE, true); 1657 if (TestClearPageError(page)) 1658 ret = -EIO; 1659 } 1660 } 1661 pagevec_release(&pvec); 1662 cond_resched(); 1663 } 1664 1665 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1666 if (!ret) 1667 ret = ret2; 1668 return ret; 1669 } 1670 1671 static int f2fs_write_node_pages(struct address_space *mapping, 1672 struct writeback_control *wbc) 1673 { 1674 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1675 struct blk_plug plug; 1676 long diff; 1677 1678 /* balancing f2fs's metadata in background */ 1679 f2fs_balance_fs_bg(sbi); 1680 1681 /* collect a number of dirty node pages and write together */ 1682 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1683 goto skip_write; 1684 1685 trace_f2fs_writepages(mapping->host, wbc, NODE); 1686 1687 diff = nr_pages_to_write(sbi, NODE, wbc); 1688 wbc->sync_mode = WB_SYNC_NONE; 1689 blk_start_plug(&plug); 1690 sync_node_pages(sbi, wbc); 1691 blk_finish_plug(&plug); 1692 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1693 return 0; 1694 1695 skip_write: 1696 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1697 trace_f2fs_writepages(mapping->host, wbc, NODE); 1698 return 0; 1699 } 1700 1701 static int f2fs_set_node_page_dirty(struct page *page) 1702 { 1703 trace_f2fs_set_page_dirty(page, NODE); 1704 1705 if (!PageUptodate(page)) 1706 SetPageUptodate(page); 1707 if (!PageDirty(page)) { 1708 f2fs_set_page_dirty_nobuffers(page); 1709 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1710 SetPagePrivate(page); 1711 f2fs_trace_pid(page); 1712 return 1; 1713 } 1714 return 0; 1715 } 1716 1717 /* 1718 * Structure of the f2fs node operations 1719 */ 1720 const struct address_space_operations f2fs_node_aops = { 1721 .writepage = f2fs_write_node_page, 1722 .writepages = f2fs_write_node_pages, 1723 .set_page_dirty = f2fs_set_node_page_dirty, 1724 .invalidatepage = f2fs_invalidate_page, 1725 .releasepage = f2fs_release_page, 1726 #ifdef CONFIG_MIGRATION 1727 .migratepage = f2fs_migrate_page, 1728 #endif 1729 }; 1730 1731 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1732 nid_t n) 1733 { 1734 return radix_tree_lookup(&nm_i->free_nid_root, n); 1735 } 1736 1737 static int __insert_nid_to_list(struct f2fs_sb_info *sbi, 1738 struct free_nid *i, enum nid_list list, bool new) 1739 { 1740 struct f2fs_nm_info *nm_i = NM_I(sbi); 1741 1742 if (new) { 1743 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1744 if (err) 1745 return err; 1746 } 1747 1748 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1749 i->state != NID_ALLOC); 1750 nm_i->nid_cnt[list]++; 1751 list_add_tail(&i->list, &nm_i->nid_list[list]); 1752 return 0; 1753 } 1754 1755 static void __remove_nid_from_list(struct f2fs_sb_info *sbi, 1756 struct free_nid *i, enum nid_list list, bool reuse) 1757 { 1758 struct f2fs_nm_info *nm_i = NM_I(sbi); 1759 1760 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW : 1761 i->state != NID_ALLOC); 1762 nm_i->nid_cnt[list]--; 1763 list_del(&i->list); 1764 if (!reuse) 1765 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1766 } 1767 1768 /* return if the nid is recognized as free */ 1769 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1770 { 1771 struct f2fs_nm_info *nm_i = NM_I(sbi); 1772 struct free_nid *i; 1773 struct nat_entry *ne; 1774 int err; 1775 1776 /* 0 nid should not be used */ 1777 if (unlikely(nid == 0)) 1778 return false; 1779 1780 if (build) { 1781 /* do not add allocated nids */ 1782 ne = __lookup_nat_cache(nm_i, nid); 1783 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1784 nat_get_blkaddr(ne) != NULL_ADDR)) 1785 return false; 1786 } 1787 1788 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1789 i->nid = nid; 1790 i->state = NID_NEW; 1791 1792 if (radix_tree_preload(GFP_NOFS)) { 1793 kmem_cache_free(free_nid_slab, i); 1794 return true; 1795 } 1796 1797 spin_lock(&nm_i->nid_list_lock); 1798 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); 1799 spin_unlock(&nm_i->nid_list_lock); 1800 radix_tree_preload_end(); 1801 if (err) { 1802 kmem_cache_free(free_nid_slab, i); 1803 return true; 1804 } 1805 return true; 1806 } 1807 1808 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1809 { 1810 struct f2fs_nm_info *nm_i = NM_I(sbi); 1811 struct free_nid *i; 1812 bool need_free = false; 1813 1814 spin_lock(&nm_i->nid_list_lock); 1815 i = __lookup_free_nid_list(nm_i, nid); 1816 if (i && i->state == NID_NEW) { 1817 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 1818 need_free = true; 1819 } 1820 spin_unlock(&nm_i->nid_list_lock); 1821 1822 if (need_free) 1823 kmem_cache_free(free_nid_slab, i); 1824 } 1825 1826 void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, bool set) 1827 { 1828 struct f2fs_nm_info *nm_i = NM_I(sbi); 1829 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1830 unsigned int nid_ofs = nid - START_NID(nid); 1831 1832 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1833 return; 1834 1835 if (set) 1836 set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1837 else 1838 clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1839 } 1840 1841 static void scan_nat_page(struct f2fs_sb_info *sbi, 1842 struct page *nat_page, nid_t start_nid) 1843 { 1844 struct f2fs_nm_info *nm_i = NM_I(sbi); 1845 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1846 block_t blk_addr; 1847 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1848 int i; 1849 1850 set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1851 1852 i = start_nid % NAT_ENTRY_PER_BLOCK; 1853 1854 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1855 bool freed = false; 1856 1857 if (unlikely(start_nid >= nm_i->max_nid)) 1858 break; 1859 1860 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1861 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1862 if (blk_addr == NULL_ADDR) 1863 freed = add_free_nid(sbi, start_nid, true); 1864 update_free_nid_bitmap(sbi, start_nid, freed); 1865 } 1866 } 1867 1868 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 1869 { 1870 struct f2fs_nm_info *nm_i = NM_I(sbi); 1871 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1872 struct f2fs_journal *journal = curseg->journal; 1873 unsigned int i, idx; 1874 1875 down_read(&nm_i->nat_tree_lock); 1876 1877 for (i = 0; i < nm_i->nat_blocks; i++) { 1878 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 1879 continue; 1880 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 1881 nid_t nid; 1882 1883 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i])) 1884 continue; 1885 1886 nid = i * NAT_ENTRY_PER_BLOCK + idx; 1887 add_free_nid(sbi, nid, true); 1888 1889 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS) 1890 goto out; 1891 } 1892 } 1893 out: 1894 down_read(&curseg->journal_rwsem); 1895 for (i = 0; i < nats_in_cursum(journal); i++) { 1896 block_t addr; 1897 nid_t nid; 1898 1899 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1900 nid = le32_to_cpu(nid_in_journal(journal, i)); 1901 if (addr == NULL_ADDR) 1902 add_free_nid(sbi, nid, true); 1903 else 1904 remove_free_nid(sbi, nid); 1905 } 1906 up_read(&curseg->journal_rwsem); 1907 up_read(&nm_i->nat_tree_lock); 1908 } 1909 1910 static int scan_nat_bits(struct f2fs_sb_info *sbi) 1911 { 1912 struct f2fs_nm_info *nm_i = NM_I(sbi); 1913 struct page *page; 1914 unsigned int i = 0; 1915 nid_t nid; 1916 1917 if (!enabled_nat_bits(sbi, NULL)) 1918 return -EAGAIN; 1919 1920 down_read(&nm_i->nat_tree_lock); 1921 check_empty: 1922 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 1923 if (i >= nm_i->nat_blocks) { 1924 i = 0; 1925 goto check_partial; 1926 } 1927 1928 for (nid = i * NAT_ENTRY_PER_BLOCK; nid < (i + 1) * NAT_ENTRY_PER_BLOCK; 1929 nid++) { 1930 if (unlikely(nid >= nm_i->max_nid)) 1931 break; 1932 add_free_nid(sbi, nid, true); 1933 } 1934 1935 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS) 1936 goto out; 1937 i++; 1938 goto check_empty; 1939 1940 check_partial: 1941 i = find_next_zero_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 1942 if (i >= nm_i->nat_blocks) { 1943 disable_nat_bits(sbi, true); 1944 up_read(&nm_i->nat_tree_lock); 1945 return -EINVAL; 1946 } 1947 1948 nid = i * NAT_ENTRY_PER_BLOCK; 1949 page = get_current_nat_page(sbi, nid); 1950 scan_nat_page(sbi, page, nid); 1951 f2fs_put_page(page, 1); 1952 1953 if (nm_i->nid_cnt[FREE_NID_LIST] < MAX_FREE_NIDS) { 1954 i++; 1955 goto check_partial; 1956 } 1957 out: 1958 up_read(&nm_i->nat_tree_lock); 1959 return 0; 1960 } 1961 1962 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 1963 { 1964 struct f2fs_nm_info *nm_i = NM_I(sbi); 1965 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1966 struct f2fs_journal *journal = curseg->journal; 1967 int i = 0; 1968 nid_t nid = nm_i->next_scan_nid; 1969 1970 /* Enough entries */ 1971 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK) 1972 return; 1973 1974 if (!sync && !available_free_memory(sbi, FREE_NIDS)) 1975 return; 1976 1977 if (!mount) { 1978 /* try to find free nids in free_nid_bitmap */ 1979 scan_free_nid_bits(sbi); 1980 1981 if (nm_i->nid_cnt[FREE_NID_LIST]) 1982 return; 1983 1984 /* try to find free nids with nat_bits */ 1985 if (!scan_nat_bits(sbi) && nm_i->nid_cnt[FREE_NID_LIST]) 1986 return; 1987 } 1988 1989 /* find next valid candidate */ 1990 if (enabled_nat_bits(sbi, NULL)) { 1991 int idx = find_next_zero_bit_le(nm_i->full_nat_bits, 1992 nm_i->nat_blocks, 0); 1993 1994 if (idx >= nm_i->nat_blocks) 1995 set_sbi_flag(sbi, SBI_NEED_FSCK); 1996 else 1997 nid = idx * NAT_ENTRY_PER_BLOCK; 1998 } 1999 2000 /* readahead nat pages to be scanned */ 2001 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2002 META_NAT, true); 2003 2004 down_read(&nm_i->nat_tree_lock); 2005 2006 while (1) { 2007 struct page *page = get_current_nat_page(sbi, nid); 2008 2009 scan_nat_page(sbi, page, nid); 2010 f2fs_put_page(page, 1); 2011 2012 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2013 if (unlikely(nid >= nm_i->max_nid)) 2014 nid = 0; 2015 2016 if (++i >= FREE_NID_PAGES) 2017 break; 2018 } 2019 2020 /* go to the next free nat pages to find free nids abundantly */ 2021 nm_i->next_scan_nid = nid; 2022 2023 /* find free nids from current sum_pages */ 2024 down_read(&curseg->journal_rwsem); 2025 for (i = 0; i < nats_in_cursum(journal); i++) { 2026 block_t addr; 2027 2028 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2029 nid = le32_to_cpu(nid_in_journal(journal, i)); 2030 if (addr == NULL_ADDR) 2031 add_free_nid(sbi, nid, true); 2032 else 2033 remove_free_nid(sbi, nid); 2034 } 2035 up_read(&curseg->journal_rwsem); 2036 up_read(&nm_i->nat_tree_lock); 2037 2038 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2039 nm_i->ra_nid_pages, META_NAT, false); 2040 } 2041 2042 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2043 { 2044 mutex_lock(&NM_I(sbi)->build_lock); 2045 __build_free_nids(sbi, sync, mount); 2046 mutex_unlock(&NM_I(sbi)->build_lock); 2047 } 2048 2049 /* 2050 * If this function returns success, caller can obtain a new nid 2051 * from second parameter of this function. 2052 * The returned nid could be used ino as well as nid when inode is created. 2053 */ 2054 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2055 { 2056 struct f2fs_nm_info *nm_i = NM_I(sbi); 2057 struct free_nid *i = NULL; 2058 retry: 2059 #ifdef CONFIG_F2FS_FAULT_INJECTION 2060 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2061 f2fs_show_injection_info(FAULT_ALLOC_NID); 2062 return false; 2063 } 2064 #endif 2065 spin_lock(&nm_i->nid_list_lock); 2066 2067 if (unlikely(nm_i->available_nids == 0)) { 2068 spin_unlock(&nm_i->nid_list_lock); 2069 return false; 2070 } 2071 2072 /* We should not use stale free nids created by build_free_nids */ 2073 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) { 2074 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST])); 2075 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 2076 struct free_nid, list); 2077 *nid = i->nid; 2078 2079 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true); 2080 i->state = NID_ALLOC; 2081 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false); 2082 nm_i->available_nids--; 2083 2084 update_free_nid_bitmap(sbi, *nid, false); 2085 2086 spin_unlock(&nm_i->nid_list_lock); 2087 return true; 2088 } 2089 spin_unlock(&nm_i->nid_list_lock); 2090 2091 /* Let's scan nat pages and its caches to get free nids */ 2092 build_free_nids(sbi, true, false); 2093 goto retry; 2094 } 2095 2096 /* 2097 * alloc_nid() should be called prior to this function. 2098 */ 2099 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2100 { 2101 struct f2fs_nm_info *nm_i = NM_I(sbi); 2102 struct free_nid *i; 2103 2104 spin_lock(&nm_i->nid_list_lock); 2105 i = __lookup_free_nid_list(nm_i, nid); 2106 f2fs_bug_on(sbi, !i); 2107 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2108 spin_unlock(&nm_i->nid_list_lock); 2109 2110 kmem_cache_free(free_nid_slab, i); 2111 } 2112 2113 /* 2114 * alloc_nid() should be called prior to this function. 2115 */ 2116 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2117 { 2118 struct f2fs_nm_info *nm_i = NM_I(sbi); 2119 struct free_nid *i; 2120 bool need_free = false; 2121 2122 if (!nid) 2123 return; 2124 2125 spin_lock(&nm_i->nid_list_lock); 2126 i = __lookup_free_nid_list(nm_i, nid); 2127 f2fs_bug_on(sbi, !i); 2128 2129 if (!available_free_memory(sbi, FREE_NIDS)) { 2130 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false); 2131 need_free = true; 2132 } else { 2133 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true); 2134 i->state = NID_NEW; 2135 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false); 2136 } 2137 2138 nm_i->available_nids++; 2139 2140 update_free_nid_bitmap(sbi, nid, true); 2141 2142 spin_unlock(&nm_i->nid_list_lock); 2143 2144 if (need_free) 2145 kmem_cache_free(free_nid_slab, i); 2146 } 2147 2148 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2149 { 2150 struct f2fs_nm_info *nm_i = NM_I(sbi); 2151 struct free_nid *i, *next; 2152 int nr = nr_shrink; 2153 2154 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2155 return 0; 2156 2157 if (!mutex_trylock(&nm_i->build_lock)) 2158 return 0; 2159 2160 spin_lock(&nm_i->nid_list_lock); 2161 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST], 2162 list) { 2163 if (nr_shrink <= 0 || 2164 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS) 2165 break; 2166 2167 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2168 kmem_cache_free(free_nid_slab, i); 2169 nr_shrink--; 2170 } 2171 spin_unlock(&nm_i->nid_list_lock); 2172 mutex_unlock(&nm_i->build_lock); 2173 2174 return nr - nr_shrink; 2175 } 2176 2177 void recover_inline_xattr(struct inode *inode, struct page *page) 2178 { 2179 void *src_addr, *dst_addr; 2180 size_t inline_size; 2181 struct page *ipage; 2182 struct f2fs_inode *ri; 2183 2184 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 2185 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2186 2187 ri = F2FS_INODE(page); 2188 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 2189 clear_inode_flag(inode, FI_INLINE_XATTR); 2190 goto update_inode; 2191 } 2192 2193 dst_addr = inline_xattr_addr(ipage); 2194 src_addr = inline_xattr_addr(page); 2195 inline_size = inline_xattr_size(inode); 2196 2197 f2fs_wait_on_page_writeback(ipage, NODE, true); 2198 memcpy(dst_addr, src_addr, inline_size); 2199 update_inode: 2200 update_inode(inode, ipage); 2201 f2fs_put_page(ipage, 1); 2202 } 2203 2204 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 2205 { 2206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2207 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2208 nid_t new_xnid = nid_of_node(page); 2209 struct node_info ni; 2210 struct page *xpage; 2211 2212 if (!prev_xnid) 2213 goto recover_xnid; 2214 2215 /* 1: invalidate the previous xattr nid */ 2216 get_node_info(sbi, prev_xnid, &ni); 2217 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 2218 invalidate_blocks(sbi, ni.blk_addr); 2219 dec_valid_node_count(sbi, inode); 2220 set_node_addr(sbi, &ni, NULL_ADDR, false); 2221 2222 recover_xnid: 2223 /* 2: update xattr nid in inode */ 2224 remove_free_nid(sbi, new_xnid); 2225 f2fs_i_xnid_write(inode, new_xnid); 2226 if (unlikely(!inc_valid_node_count(sbi, inode))) 2227 f2fs_bug_on(sbi, 1); 2228 update_inode_page(inode); 2229 2230 /* 3: update and set xattr node page dirty */ 2231 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid); 2232 if (!xpage) 2233 return -ENOMEM; 2234 2235 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE); 2236 2237 get_node_info(sbi, new_xnid, &ni); 2238 ni.ino = inode->i_ino; 2239 set_node_addr(sbi, &ni, NEW_ADDR, false); 2240 set_page_dirty(xpage); 2241 f2fs_put_page(xpage, 1); 2242 2243 return 0; 2244 } 2245 2246 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2247 { 2248 struct f2fs_inode *src, *dst; 2249 nid_t ino = ino_of_node(page); 2250 struct node_info old_ni, new_ni; 2251 struct page *ipage; 2252 2253 get_node_info(sbi, ino, &old_ni); 2254 2255 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2256 return -EINVAL; 2257 retry: 2258 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2259 if (!ipage) { 2260 congestion_wait(BLK_RW_ASYNC, HZ/50); 2261 goto retry; 2262 } 2263 2264 /* Should not use this inode from free nid list */ 2265 remove_free_nid(sbi, ino); 2266 2267 if (!PageUptodate(ipage)) 2268 SetPageUptodate(ipage); 2269 fill_node_footer(ipage, ino, ino, 0, true); 2270 2271 src = F2FS_INODE(page); 2272 dst = F2FS_INODE(ipage); 2273 2274 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2275 dst->i_size = 0; 2276 dst->i_blocks = cpu_to_le64(1); 2277 dst->i_links = cpu_to_le32(1); 2278 dst->i_xattr_nid = 0; 2279 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 2280 2281 new_ni = old_ni; 2282 new_ni.ino = ino; 2283 2284 if (unlikely(!inc_valid_node_count(sbi, NULL))) 2285 WARN_ON(1); 2286 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2287 inc_valid_inode_count(sbi); 2288 set_page_dirty(ipage); 2289 f2fs_put_page(ipage, 1); 2290 return 0; 2291 } 2292 2293 int restore_node_summary(struct f2fs_sb_info *sbi, 2294 unsigned int segno, struct f2fs_summary_block *sum) 2295 { 2296 struct f2fs_node *rn; 2297 struct f2fs_summary *sum_entry; 2298 block_t addr; 2299 int i, idx, last_offset, nrpages; 2300 2301 /* scan the node segment */ 2302 last_offset = sbi->blocks_per_seg; 2303 addr = START_BLOCK(sbi, segno); 2304 sum_entry = &sum->entries[0]; 2305 2306 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2307 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2308 2309 /* readahead node pages */ 2310 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2311 2312 for (idx = addr; idx < addr + nrpages; idx++) { 2313 struct page *page = get_tmp_page(sbi, idx); 2314 2315 rn = F2FS_NODE(page); 2316 sum_entry->nid = rn->footer.nid; 2317 sum_entry->version = 0; 2318 sum_entry->ofs_in_node = 0; 2319 sum_entry++; 2320 f2fs_put_page(page, 1); 2321 } 2322 2323 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2324 addr + nrpages); 2325 } 2326 return 0; 2327 } 2328 2329 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2330 { 2331 struct f2fs_nm_info *nm_i = NM_I(sbi); 2332 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2333 struct f2fs_journal *journal = curseg->journal; 2334 int i; 2335 2336 down_write(&curseg->journal_rwsem); 2337 for (i = 0; i < nats_in_cursum(journal); i++) { 2338 struct nat_entry *ne; 2339 struct f2fs_nat_entry raw_ne; 2340 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2341 2342 raw_ne = nat_in_journal(journal, i); 2343 2344 ne = __lookup_nat_cache(nm_i, nid); 2345 if (!ne) { 2346 ne = grab_nat_entry(nm_i, nid, true); 2347 node_info_from_raw_nat(&ne->ni, &raw_ne); 2348 } 2349 2350 /* 2351 * if a free nat in journal has not been used after last 2352 * checkpoint, we should remove it from available nids, 2353 * since later we will add it again. 2354 */ 2355 if (!get_nat_flag(ne, IS_DIRTY) && 2356 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2357 spin_lock(&nm_i->nid_list_lock); 2358 nm_i->available_nids--; 2359 spin_unlock(&nm_i->nid_list_lock); 2360 } 2361 2362 __set_nat_cache_dirty(nm_i, ne); 2363 } 2364 update_nats_in_cursum(journal, -i); 2365 up_write(&curseg->journal_rwsem); 2366 } 2367 2368 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2369 struct list_head *head, int max) 2370 { 2371 struct nat_entry_set *cur; 2372 2373 if (nes->entry_cnt >= max) 2374 goto add_out; 2375 2376 list_for_each_entry(cur, head, set_list) { 2377 if (cur->entry_cnt >= nes->entry_cnt) { 2378 list_add(&nes->set_list, cur->set_list.prev); 2379 return; 2380 } 2381 } 2382 add_out: 2383 list_add_tail(&nes->set_list, head); 2384 } 2385 2386 void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2387 struct page *page) 2388 { 2389 struct f2fs_nm_info *nm_i = NM_I(sbi); 2390 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2391 struct f2fs_nat_block *nat_blk = page_address(page); 2392 int valid = 0; 2393 int i; 2394 2395 if (!enabled_nat_bits(sbi, NULL)) 2396 return; 2397 2398 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) { 2399 if (start_nid == 0 && i == 0) 2400 valid++; 2401 if (nat_blk->entries[i].block_addr) 2402 valid++; 2403 } 2404 if (valid == 0) { 2405 set_bit_le(nat_index, nm_i->empty_nat_bits); 2406 clear_bit_le(nat_index, nm_i->full_nat_bits); 2407 return; 2408 } 2409 2410 clear_bit_le(nat_index, nm_i->empty_nat_bits); 2411 if (valid == NAT_ENTRY_PER_BLOCK) 2412 set_bit_le(nat_index, nm_i->full_nat_bits); 2413 else 2414 clear_bit_le(nat_index, nm_i->full_nat_bits); 2415 } 2416 2417 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2418 struct nat_entry_set *set, struct cp_control *cpc) 2419 { 2420 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2421 struct f2fs_journal *journal = curseg->journal; 2422 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2423 bool to_journal = true; 2424 struct f2fs_nat_block *nat_blk; 2425 struct nat_entry *ne, *cur; 2426 struct page *page = NULL; 2427 2428 /* 2429 * there are two steps to flush nat entries: 2430 * #1, flush nat entries to journal in current hot data summary block. 2431 * #2, flush nat entries to nat page. 2432 */ 2433 if (enabled_nat_bits(sbi, cpc) || 2434 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2435 to_journal = false; 2436 2437 if (to_journal) { 2438 down_write(&curseg->journal_rwsem); 2439 } else { 2440 page = get_next_nat_page(sbi, start_nid); 2441 nat_blk = page_address(page); 2442 f2fs_bug_on(sbi, !nat_blk); 2443 } 2444 2445 /* flush dirty nats in nat entry set */ 2446 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2447 struct f2fs_nat_entry *raw_ne; 2448 nid_t nid = nat_get_nid(ne); 2449 int offset; 2450 2451 if (nat_get_blkaddr(ne) == NEW_ADDR) 2452 continue; 2453 2454 if (to_journal) { 2455 offset = lookup_journal_in_cursum(journal, 2456 NAT_JOURNAL, nid, 1); 2457 f2fs_bug_on(sbi, offset < 0); 2458 raw_ne = &nat_in_journal(journal, offset); 2459 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2460 } else { 2461 raw_ne = &nat_blk->entries[nid - start_nid]; 2462 } 2463 raw_nat_from_node_info(raw_ne, &ne->ni); 2464 nat_reset_flag(ne); 2465 __clear_nat_cache_dirty(NM_I(sbi), ne); 2466 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2467 add_free_nid(sbi, nid, false); 2468 spin_lock(&NM_I(sbi)->nid_list_lock); 2469 NM_I(sbi)->available_nids++; 2470 update_free_nid_bitmap(sbi, nid, true); 2471 spin_unlock(&NM_I(sbi)->nid_list_lock); 2472 } else { 2473 spin_lock(&NM_I(sbi)->nid_list_lock); 2474 update_free_nid_bitmap(sbi, nid, false); 2475 spin_unlock(&NM_I(sbi)->nid_list_lock); 2476 } 2477 } 2478 2479 if (to_journal) { 2480 up_write(&curseg->journal_rwsem); 2481 } else { 2482 __update_nat_bits(sbi, start_nid, page); 2483 f2fs_put_page(page, 1); 2484 } 2485 2486 f2fs_bug_on(sbi, set->entry_cnt); 2487 2488 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2489 kmem_cache_free(nat_entry_set_slab, set); 2490 } 2491 2492 /* 2493 * This function is called during the checkpointing process. 2494 */ 2495 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2496 { 2497 struct f2fs_nm_info *nm_i = NM_I(sbi); 2498 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2499 struct f2fs_journal *journal = curseg->journal; 2500 struct nat_entry_set *setvec[SETVEC_SIZE]; 2501 struct nat_entry_set *set, *tmp; 2502 unsigned int found; 2503 nid_t set_idx = 0; 2504 LIST_HEAD(sets); 2505 2506 if (!nm_i->dirty_nat_cnt) 2507 return; 2508 2509 down_write(&nm_i->nat_tree_lock); 2510 2511 /* 2512 * if there are no enough space in journal to store dirty nat 2513 * entries, remove all entries from journal and merge them 2514 * into nat entry set. 2515 */ 2516 if (enabled_nat_bits(sbi, cpc) || 2517 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2518 remove_nats_in_journal(sbi); 2519 2520 while ((found = __gang_lookup_nat_set(nm_i, 2521 set_idx, SETVEC_SIZE, setvec))) { 2522 unsigned idx; 2523 set_idx = setvec[found - 1]->set + 1; 2524 for (idx = 0; idx < found; idx++) 2525 __adjust_nat_entry_set(setvec[idx], &sets, 2526 MAX_NAT_JENTRIES(journal)); 2527 } 2528 2529 /* flush dirty nats in nat entry set */ 2530 list_for_each_entry_safe(set, tmp, &sets, set_list) 2531 __flush_nat_entry_set(sbi, set, cpc); 2532 2533 up_write(&nm_i->nat_tree_lock); 2534 2535 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 2536 } 2537 2538 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2539 { 2540 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2541 struct f2fs_nm_info *nm_i = NM_I(sbi); 2542 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2543 unsigned int i; 2544 __u64 cp_ver = cur_cp_version(ckpt); 2545 block_t nat_bits_addr; 2546 2547 if (!enabled_nat_bits(sbi, NULL)) 2548 return 0; 2549 2550 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + 2551 F2FS_BLKSIZE - 1); 2552 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, 2553 GFP_KERNEL); 2554 if (!nm_i->nat_bits) 2555 return -ENOMEM; 2556 2557 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2558 nm_i->nat_bits_blocks; 2559 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2560 struct page *page = get_meta_page(sbi, nat_bits_addr++); 2561 2562 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2563 page_address(page), F2FS_BLKSIZE); 2564 f2fs_put_page(page, 1); 2565 } 2566 2567 cp_ver |= (cur_cp_crc(ckpt) << 32); 2568 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2569 disable_nat_bits(sbi, true); 2570 return 0; 2571 } 2572 2573 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2574 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2575 2576 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2577 return 0; 2578 } 2579 2580 static int init_node_manager(struct f2fs_sb_info *sbi) 2581 { 2582 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2583 struct f2fs_nm_info *nm_i = NM_I(sbi); 2584 unsigned char *version_bitmap; 2585 unsigned int nat_segs; 2586 int err; 2587 2588 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2589 2590 /* segment_count_nat includes pair segment so divide to 2. */ 2591 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2592 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2593 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2594 2595 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2596 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2597 F2FS_RESERVED_NODE_NUM; 2598 nm_i->nid_cnt[FREE_NID_LIST] = 0; 2599 nm_i->nid_cnt[ALLOC_NID_LIST] = 0; 2600 nm_i->nat_cnt = 0; 2601 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2602 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2603 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2604 2605 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2606 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]); 2607 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]); 2608 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2609 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2610 INIT_LIST_HEAD(&nm_i->nat_entries); 2611 2612 mutex_init(&nm_i->build_lock); 2613 spin_lock_init(&nm_i->nid_list_lock); 2614 init_rwsem(&nm_i->nat_tree_lock); 2615 2616 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2617 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2618 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2619 if (!version_bitmap) 2620 return -EFAULT; 2621 2622 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2623 GFP_KERNEL); 2624 if (!nm_i->nat_bitmap) 2625 return -ENOMEM; 2626 2627 err = __get_nat_bitmaps(sbi); 2628 if (err) 2629 return err; 2630 2631 #ifdef CONFIG_F2FS_CHECK_FS 2632 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2633 GFP_KERNEL); 2634 if (!nm_i->nat_bitmap_mir) 2635 return -ENOMEM; 2636 #endif 2637 2638 return 0; 2639 } 2640 2641 int init_free_nid_cache(struct f2fs_sb_info *sbi) 2642 { 2643 struct f2fs_nm_info *nm_i = NM_I(sbi); 2644 2645 nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks * 2646 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL); 2647 if (!nm_i->free_nid_bitmap) 2648 return -ENOMEM; 2649 2650 nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8, 2651 GFP_KERNEL); 2652 if (!nm_i->nat_block_bitmap) 2653 return -ENOMEM; 2654 return 0; 2655 } 2656 2657 int build_node_manager(struct f2fs_sb_info *sbi) 2658 { 2659 int err; 2660 2661 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2662 if (!sbi->nm_info) 2663 return -ENOMEM; 2664 2665 err = init_node_manager(sbi); 2666 if (err) 2667 return err; 2668 2669 err = init_free_nid_cache(sbi); 2670 if (err) 2671 return err; 2672 2673 build_free_nids(sbi, true, true); 2674 return 0; 2675 } 2676 2677 void destroy_node_manager(struct f2fs_sb_info *sbi) 2678 { 2679 struct f2fs_nm_info *nm_i = NM_I(sbi); 2680 struct free_nid *i, *next_i; 2681 struct nat_entry *natvec[NATVEC_SIZE]; 2682 struct nat_entry_set *setvec[SETVEC_SIZE]; 2683 nid_t nid = 0; 2684 unsigned int found; 2685 2686 if (!nm_i) 2687 return; 2688 2689 /* destroy free nid list */ 2690 spin_lock(&nm_i->nid_list_lock); 2691 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST], 2692 list) { 2693 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false); 2694 spin_unlock(&nm_i->nid_list_lock); 2695 kmem_cache_free(free_nid_slab, i); 2696 spin_lock(&nm_i->nid_list_lock); 2697 } 2698 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]); 2699 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]); 2700 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST])); 2701 spin_unlock(&nm_i->nid_list_lock); 2702 2703 /* destroy nat cache */ 2704 down_write(&nm_i->nat_tree_lock); 2705 while ((found = __gang_lookup_nat_cache(nm_i, 2706 nid, NATVEC_SIZE, natvec))) { 2707 unsigned idx; 2708 2709 nid = nat_get_nid(natvec[found - 1]) + 1; 2710 for (idx = 0; idx < found; idx++) 2711 __del_from_nat_cache(nm_i, natvec[idx]); 2712 } 2713 f2fs_bug_on(sbi, nm_i->nat_cnt); 2714 2715 /* destroy nat set cache */ 2716 nid = 0; 2717 while ((found = __gang_lookup_nat_set(nm_i, 2718 nid, SETVEC_SIZE, setvec))) { 2719 unsigned idx; 2720 2721 nid = setvec[found - 1]->set + 1; 2722 for (idx = 0; idx < found; idx++) { 2723 /* entry_cnt is not zero, when cp_error was occurred */ 2724 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2725 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2726 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2727 } 2728 } 2729 up_write(&nm_i->nat_tree_lock); 2730 2731 kvfree(nm_i->nat_block_bitmap); 2732 kvfree(nm_i->free_nid_bitmap); 2733 2734 kfree(nm_i->nat_bitmap); 2735 kfree(nm_i->nat_bits); 2736 #ifdef CONFIG_F2FS_CHECK_FS 2737 kfree(nm_i->nat_bitmap_mir); 2738 #endif 2739 sbi->nm_info = NULL; 2740 kfree(nm_i); 2741 } 2742 2743 int __init create_node_manager_caches(void) 2744 { 2745 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2746 sizeof(struct nat_entry)); 2747 if (!nat_entry_slab) 2748 goto fail; 2749 2750 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2751 sizeof(struct free_nid)); 2752 if (!free_nid_slab) 2753 goto destroy_nat_entry; 2754 2755 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2756 sizeof(struct nat_entry_set)); 2757 if (!nat_entry_set_slab) 2758 goto destroy_free_nid; 2759 return 0; 2760 2761 destroy_free_nid: 2762 kmem_cache_destroy(free_nid_slab); 2763 destroy_nat_entry: 2764 kmem_cache_destroy(nat_entry_slab); 2765 fail: 2766 return -ENOMEM; 2767 } 2768 2769 void destroy_node_manager_caches(void) 2770 { 2771 kmem_cache_destroy(nat_entry_set_slab); 2772 kmem_cache_destroy(free_nid_slab); 2773 kmem_cache_destroy(nat_entry_slab); 2774 } 2775