xref: /openbmc/linux/fs/f2fs/node.c (revision 11dc486ed5d4626e6b92a23b67ed76cb6c48bfc9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 		return -EFSCORRUPTED;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 	struct sysinfo val;
50 	unsigned long avail_ram;
51 	unsigned long mem_size = 0;
52 	bool res = false;
53 
54 	if (!nm_i)
55 		return true;
56 
57 	si_meminfo(&val);
58 
59 	/* only uses low memory */
60 	avail_ram = val.totalram - val.totalhigh;
61 
62 	/*
63 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 	 */
65 	if (type == FREE_NIDS) {
66 		mem_size = (nm_i->nid_cnt[FREE_NID] *
67 				sizeof(struct free_nid)) >> PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 	} else if (type == NAT_ENTRIES) {
70 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 		if (excess_cached_nats(sbi))
74 			res = false;
75 	} else if (type == DIRTY_DENTS) {
76 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 			return false;
78 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 	} else if (type == INO_ENTRIES) {
81 		int i;
82 
83 		for (i = 0; i < MAX_INO_ENTRY; i++)
84 			mem_size += sbi->im[i].ino_num *
85 						sizeof(struct ino_entry);
86 		mem_size >>= PAGE_SHIFT;
87 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 		enum extent_type etype = type == READ_EXTENT_CACHE ?
90 						EX_READ : EX_BLOCK_AGE;
91 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
92 
93 		mem_size = (atomic_read(&eti->total_ext_tree) *
94 				sizeof(struct extent_tree) +
95 				atomic_read(&eti->total_ext_node) *
96 				sizeof(struct extent_node)) >> PAGE_SHIFT;
97 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 	} else if (type == DISCARD_CACHE) {
99 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 	} else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 		unsigned long free_ram = val.freeram;
105 
106 		/*
107 		 * free memory is lower than watermark or cached page count
108 		 * exceed threshold, deny caching compress page.
109 		 */
110 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 			(COMPRESS_MAPPING(sbi)->nrpages <
112 			 free_ram * sbi->compress_percent / 100);
113 #else
114 		res = false;
115 #endif
116 	} else {
117 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 			return true;
119 	}
120 	return res;
121 }
122 
123 static void clear_node_page_dirty(struct page *page)
124 {
125 	if (PageDirty(page)) {
126 		f2fs_clear_page_cache_dirty_tag(page);
127 		clear_page_dirty_for_io(page);
128 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 	}
130 	ClearPageUptodate(page);
131 }
132 
133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137 
138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 	struct page *src_page;
141 	struct page *dst_page;
142 	pgoff_t dst_off;
143 	void *src_addr;
144 	void *dst_addr;
145 	struct f2fs_nm_info *nm_i = NM_I(sbi);
146 
147 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148 
149 	/* get current nat block page with lock */
150 	src_page = get_current_nat_page(sbi, nid);
151 	if (IS_ERR(src_page))
152 		return src_page;
153 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 	f2fs_bug_on(sbi, PageDirty(src_page));
155 
156 	src_addr = page_address(src_page);
157 	dst_addr = page_address(dst_page);
158 	memcpy(dst_addr, src_addr, PAGE_SIZE);
159 	set_page_dirty(dst_page);
160 	f2fs_put_page(src_page, 1);
161 
162 	set_to_next_nat(nm_i, nid);
163 
164 	return dst_page;
165 }
166 
167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 						nid_t nid, bool no_fail)
169 {
170 	struct nat_entry *new;
171 
172 	new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 					GFP_F2FS_ZERO, no_fail, sbi);
174 	if (new) {
175 		nat_set_nid(new, nid);
176 		nat_reset_flag(new);
177 	}
178 	return new;
179 }
180 
181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 	kmem_cache_free(nat_entry_slab, e);
184 }
185 
186 /* must be locked by nat_tree_lock */
187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 	if (no_fail)
191 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 		return NULL;
194 
195 	if (raw_ne)
196 		node_info_from_raw_nat(&ne->ni, raw_ne);
197 
198 	spin_lock(&nm_i->nat_list_lock);
199 	list_add_tail(&ne->list, &nm_i->nat_entries);
200 	spin_unlock(&nm_i->nat_list_lock);
201 
202 	nm_i->nat_cnt[TOTAL_NAT]++;
203 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 	return ne;
205 }
206 
207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 	struct nat_entry *ne;
210 
211 	ne = radix_tree_lookup(&nm_i->nat_root, n);
212 
213 	/* for recent accessed nat entry, move it to tail of lru list */
214 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 		spin_lock(&nm_i->nat_list_lock);
216 		if (!list_empty(&ne->list))
217 			list_move_tail(&ne->list, &nm_i->nat_entries);
218 		spin_unlock(&nm_i->nat_list_lock);
219 	}
220 
221 	return ne;
222 }
223 
224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 		nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229 
230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 	nm_i->nat_cnt[TOTAL_NAT]--;
234 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 	__free_nat_entry(e);
236 }
237 
238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 							struct nat_entry *ne)
240 {
241 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 	struct nat_entry_set *head;
243 
244 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 	if (!head) {
246 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 						GFP_NOFS, true, NULL);
248 
249 		INIT_LIST_HEAD(&head->entry_list);
250 		INIT_LIST_HEAD(&head->set_list);
251 		head->set = set;
252 		head->entry_cnt = 0;
253 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 	}
255 	return head;
256 }
257 
258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 						struct nat_entry *ne)
260 {
261 	struct nat_entry_set *head;
262 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263 
264 	if (!new_ne)
265 		head = __grab_nat_entry_set(nm_i, ne);
266 
267 	/*
268 	 * update entry_cnt in below condition:
269 	 * 1. update NEW_ADDR to valid block address;
270 	 * 2. update old block address to new one;
271 	 */
272 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 				!get_nat_flag(ne, IS_DIRTY)))
274 		head->entry_cnt++;
275 
276 	set_nat_flag(ne, IS_PREALLOC, new_ne);
277 
278 	if (get_nat_flag(ne, IS_DIRTY))
279 		goto refresh_list;
280 
281 	nm_i->nat_cnt[DIRTY_NAT]++;
282 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 	set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 	spin_lock(&nm_i->nat_list_lock);
286 	if (new_ne)
287 		list_del_init(&ne->list);
288 	else
289 		list_move_tail(&ne->list, &head->entry_list);
290 	spin_unlock(&nm_i->nat_list_lock);
291 }
292 
293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 		struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 	spin_lock(&nm_i->nat_list_lock);
297 	list_move_tail(&ne->list, &nm_i->nat_entries);
298 	spin_unlock(&nm_i->nat_list_lock);
299 
300 	set_nat_flag(ne, IS_DIRTY, false);
301 	set->entry_cnt--;
302 	nm_i->nat_cnt[DIRTY_NAT]--;
303 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305 
306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 							start, nr);
311 }
312 
313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 	return NODE_MAPPING(sbi) == page->mapping &&
316 			IS_DNODE(page) && is_cold_node(page);
317 }
318 
319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 	spin_lock_init(&sbi->fsync_node_lock);
322 	INIT_LIST_HEAD(&sbi->fsync_node_list);
323 	sbi->fsync_seg_id = 0;
324 	sbi->fsync_node_num = 0;
325 }
326 
327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 							struct page *page)
329 {
330 	struct fsync_node_entry *fn;
331 	unsigned long flags;
332 	unsigned int seq_id;
333 
334 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 					GFP_NOFS, true, NULL);
336 
337 	get_page(page);
338 	fn->page = page;
339 	INIT_LIST_HEAD(&fn->list);
340 
341 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 	list_add_tail(&fn->list, &sbi->fsync_node_list);
343 	fn->seq_id = sbi->fsync_seg_id++;
344 	seq_id = fn->seq_id;
345 	sbi->fsync_node_num++;
346 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347 
348 	return seq_id;
349 }
350 
351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 	struct fsync_node_entry *fn;
354 	unsigned long flags;
355 
356 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 		if (fn->page == page) {
359 			list_del(&fn->list);
360 			sbi->fsync_node_num--;
361 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 			kmem_cache_free(fsync_node_entry_slab, fn);
363 			put_page(page);
364 			return;
365 		}
366 	}
367 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 	f2fs_bug_on(sbi, 1);
369 }
370 
371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 	sbi->fsync_seg_id = 0;
377 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379 
380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 	struct f2fs_nm_info *nm_i = NM_I(sbi);
383 	struct nat_entry *e;
384 	bool need = false;
385 
386 	f2fs_down_read(&nm_i->nat_tree_lock);
387 	e = __lookup_nat_cache(nm_i, nid);
388 	if (e) {
389 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 				!get_nat_flag(e, HAS_FSYNCED_INODE))
391 			need = true;
392 	}
393 	f2fs_up_read(&nm_i->nat_tree_lock);
394 	return need;
395 }
396 
397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
400 	struct nat_entry *e;
401 	bool is_cp = true;
402 
403 	f2fs_down_read(&nm_i->nat_tree_lock);
404 	e = __lookup_nat_cache(nm_i, nid);
405 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 		is_cp = false;
407 	f2fs_up_read(&nm_i->nat_tree_lock);
408 	return is_cp;
409 }
410 
411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
414 	struct nat_entry *e;
415 	bool need_update = true;
416 
417 	f2fs_down_read(&nm_i->nat_tree_lock);
418 	e = __lookup_nat_cache(nm_i, ino);
419 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 			(get_nat_flag(e, IS_CHECKPOINTED) ||
421 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 		need_update = false;
423 	f2fs_up_read(&nm_i->nat_tree_lock);
424 	return need_update;
425 }
426 
427 /* must be locked by nat_tree_lock */
428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 						struct f2fs_nat_entry *ne)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *new, *e;
433 
434 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 		return;
437 
438 	new = __alloc_nat_entry(sbi, nid, false);
439 	if (!new)
440 		return;
441 
442 	f2fs_down_write(&nm_i->nat_tree_lock);
443 	e = __lookup_nat_cache(nm_i, nid);
444 	if (!e)
445 		e = __init_nat_entry(nm_i, new, ne, false);
446 	else
447 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 				nat_get_blkaddr(e) !=
449 					le32_to_cpu(ne->block_addr) ||
450 				nat_get_version(e) != ne->version);
451 	f2fs_up_write(&nm_i->nat_tree_lock);
452 	if (e != new)
453 		__free_nat_entry(new);
454 }
455 
456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 			block_t new_blkaddr, bool fsync_done)
458 {
459 	struct f2fs_nm_info *nm_i = NM_I(sbi);
460 	struct nat_entry *e;
461 	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462 
463 	f2fs_down_write(&nm_i->nat_tree_lock);
464 	e = __lookup_nat_cache(nm_i, ni->nid);
465 	if (!e) {
466 		e = __init_nat_entry(nm_i, new, NULL, true);
467 		copy_node_info(&e->ni, ni);
468 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 	} else if (new_blkaddr == NEW_ADDR) {
470 		/*
471 		 * when nid is reallocated,
472 		 * previous nat entry can be remained in nat cache.
473 		 * So, reinitialize it with new information.
474 		 */
475 		copy_node_info(&e->ni, ni);
476 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 	}
478 	/* let's free early to reduce memory consumption */
479 	if (e != new)
480 		__free_nat_entry(new);
481 
482 	/* sanity check */
483 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 			new_blkaddr == NULL_ADDR);
486 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 			new_blkaddr == NEW_ADDR);
488 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 			new_blkaddr == NEW_ADDR);
490 
491 	/* increment version no as node is removed */
492 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 		unsigned char version = nat_get_version(e);
494 
495 		nat_set_version(e, inc_node_version(version));
496 	}
497 
498 	/* change address */
499 	nat_set_blkaddr(e, new_blkaddr);
500 	if (!__is_valid_data_blkaddr(new_blkaddr))
501 		set_nat_flag(e, IS_CHECKPOINTED, false);
502 	__set_nat_cache_dirty(nm_i, e);
503 
504 	/* update fsync_mark if its inode nat entry is still alive */
505 	if (ni->nid != ni->ino)
506 		e = __lookup_nat_cache(nm_i, ni->ino);
507 	if (e) {
508 		if (fsync_done && ni->nid == ni->ino)
509 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 	}
512 	f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514 
515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 	struct f2fs_nm_info *nm_i = NM_I(sbi);
518 	int nr = nr_shrink;
519 
520 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 		return 0;
522 
523 	spin_lock(&nm_i->nat_list_lock);
524 	while (nr_shrink) {
525 		struct nat_entry *ne;
526 
527 		if (list_empty(&nm_i->nat_entries))
528 			break;
529 
530 		ne = list_first_entry(&nm_i->nat_entries,
531 					struct nat_entry, list);
532 		list_del(&ne->list);
533 		spin_unlock(&nm_i->nat_list_lock);
534 
535 		__del_from_nat_cache(nm_i, ne);
536 		nr_shrink--;
537 
538 		spin_lock(&nm_i->nat_list_lock);
539 	}
540 	spin_unlock(&nm_i->nat_list_lock);
541 
542 	f2fs_up_write(&nm_i->nat_tree_lock);
543 	return nr - nr_shrink;
544 }
545 
546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 				struct node_info *ni, bool checkpoint_context)
548 {
549 	struct f2fs_nm_info *nm_i = NM_I(sbi);
550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 	struct f2fs_journal *journal = curseg->journal;
552 	nid_t start_nid = START_NID(nid);
553 	struct f2fs_nat_block *nat_blk;
554 	struct page *page = NULL;
555 	struct f2fs_nat_entry ne;
556 	struct nat_entry *e;
557 	pgoff_t index;
558 	block_t blkaddr;
559 	int i;
560 
561 	ni->nid = nid;
562 retry:
563 	/* Check nat cache */
564 	f2fs_down_read(&nm_i->nat_tree_lock);
565 	e = __lookup_nat_cache(nm_i, nid);
566 	if (e) {
567 		ni->ino = nat_get_ino(e);
568 		ni->blk_addr = nat_get_blkaddr(e);
569 		ni->version = nat_get_version(e);
570 		f2fs_up_read(&nm_i->nat_tree_lock);
571 		return 0;
572 	}
573 
574 	/*
575 	 * Check current segment summary by trying to grab journal_rwsem first.
576 	 * This sem is on the critical path on the checkpoint requiring the above
577 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 	 * while not bothering checkpoint.
579 	 */
580 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 		down_read(&curseg->journal_rwsem);
582 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 				!down_read_trylock(&curseg->journal_rwsem)) {
584 		f2fs_up_read(&nm_i->nat_tree_lock);
585 		goto retry;
586 	}
587 
588 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 	if (i >= 0) {
590 		ne = nat_in_journal(journal, i);
591 		node_info_from_raw_nat(ni, &ne);
592 	}
593 	up_read(&curseg->journal_rwsem);
594 	if (i >= 0) {
595 		f2fs_up_read(&nm_i->nat_tree_lock);
596 		goto cache;
597 	}
598 
599 	/* Fill node_info from nat page */
600 	index = current_nat_addr(sbi, nid);
601 	f2fs_up_read(&nm_i->nat_tree_lock);
602 
603 	page = f2fs_get_meta_page(sbi, index);
604 	if (IS_ERR(page))
605 		return PTR_ERR(page);
606 
607 	nat_blk = (struct f2fs_nat_block *)page_address(page);
608 	ne = nat_blk->entries[nid - start_nid];
609 	node_info_from_raw_nat(ni, &ne);
610 	f2fs_put_page(page, 1);
611 cache:
612 	blkaddr = le32_to_cpu(ne.block_addr);
613 	if (__is_valid_data_blkaddr(blkaddr) &&
614 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 		return -EFAULT;
616 
617 	/* cache nat entry */
618 	cache_nat_entry(sbi, nid, &ne);
619 	return 0;
620 }
621 
622 /*
623  * readahead MAX_RA_NODE number of node pages.
624  */
625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 	struct blk_plug plug;
629 	int i, end;
630 	nid_t nid;
631 
632 	blk_start_plug(&plug);
633 
634 	/* Then, try readahead for siblings of the desired node */
635 	end = start + n;
636 	end = min(end, NIDS_PER_BLOCK);
637 	for (i = start; i < end; i++) {
638 		nid = get_nid(parent, i, false);
639 		f2fs_ra_node_page(sbi, nid);
640 	}
641 
642 	blk_finish_plug(&plug);
643 }
644 
645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 	const long direct_index = ADDRS_PER_INODE(dn->inode);
648 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 	int cur_level = dn->cur_level;
652 	int max_level = dn->max_level;
653 	pgoff_t base = 0;
654 
655 	if (!dn->max_level)
656 		return pgofs + 1;
657 
658 	while (max_level-- > cur_level)
659 		skipped_unit *= NIDS_PER_BLOCK;
660 
661 	switch (dn->max_level) {
662 	case 3:
663 		base += 2 * indirect_blks;
664 		fallthrough;
665 	case 2:
666 		base += 2 * direct_blks;
667 		fallthrough;
668 	case 1:
669 		base += direct_index;
670 		break;
671 	default:
672 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 	}
674 
675 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677 
678 /*
679  * The maximum depth is four.
680  * Offset[0] will have raw inode offset.
681  */
682 static int get_node_path(struct inode *inode, long block,
683 				int offset[4], unsigned int noffset[4])
684 {
685 	const long direct_index = ADDRS_PER_INODE(inode);
686 	const long direct_blks = ADDRS_PER_BLOCK(inode);
687 	const long dptrs_per_blk = NIDS_PER_BLOCK;
688 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 	int n = 0;
691 	int level = 0;
692 
693 	noffset[0] = 0;
694 
695 	if (block < direct_index) {
696 		offset[n] = block;
697 		goto got;
698 	}
699 	block -= direct_index;
700 	if (block < direct_blks) {
701 		offset[n++] = NODE_DIR1_BLOCK;
702 		noffset[n] = 1;
703 		offset[n] = block;
704 		level = 1;
705 		goto got;
706 	}
707 	block -= direct_blks;
708 	if (block < direct_blks) {
709 		offset[n++] = NODE_DIR2_BLOCK;
710 		noffset[n] = 2;
711 		offset[n] = block;
712 		level = 1;
713 		goto got;
714 	}
715 	block -= direct_blks;
716 	if (block < indirect_blks) {
717 		offset[n++] = NODE_IND1_BLOCK;
718 		noffset[n] = 3;
719 		offset[n++] = block / direct_blks;
720 		noffset[n] = 4 + offset[n - 1];
721 		offset[n] = block % direct_blks;
722 		level = 2;
723 		goto got;
724 	}
725 	block -= indirect_blks;
726 	if (block < indirect_blks) {
727 		offset[n++] = NODE_IND2_BLOCK;
728 		noffset[n] = 4 + dptrs_per_blk;
729 		offset[n++] = block / direct_blks;
730 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 		offset[n] = block % direct_blks;
732 		level = 2;
733 		goto got;
734 	}
735 	block -= indirect_blks;
736 	if (block < dindirect_blks) {
737 		offset[n++] = NODE_DIND_BLOCK;
738 		noffset[n] = 5 + (dptrs_per_blk * 2);
739 		offset[n++] = block / indirect_blks;
740 		noffset[n] = 6 + (dptrs_per_blk * 2) +
741 			      offset[n - 1] * (dptrs_per_blk + 1);
742 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 		noffset[n] = 7 + (dptrs_per_blk * 2) +
744 			      offset[n - 2] * (dptrs_per_blk + 1) +
745 			      offset[n - 1];
746 		offset[n] = block % direct_blks;
747 		level = 3;
748 		goto got;
749 	} else {
750 		return -E2BIG;
751 	}
752 got:
753 	return level;
754 }
755 
756 /*
757  * Caller should call f2fs_put_dnode(dn).
758  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760  */
761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 	struct page *npage[4];
765 	struct page *parent = NULL;
766 	int offset[4];
767 	unsigned int noffset[4];
768 	nid_t nids[4];
769 	int level, i = 0;
770 	int err = 0;
771 
772 	level = get_node_path(dn->inode, index, offset, noffset);
773 	if (level < 0)
774 		return level;
775 
776 	nids[0] = dn->inode->i_ino;
777 	npage[0] = dn->inode_page;
778 
779 	if (!npage[0]) {
780 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 		if (IS_ERR(npage[0]))
782 			return PTR_ERR(npage[0]);
783 	}
784 
785 	/* if inline_data is set, should not report any block indices */
786 	if (f2fs_has_inline_data(dn->inode) && index) {
787 		err = -ENOENT;
788 		f2fs_put_page(npage[0], 1);
789 		goto release_out;
790 	}
791 
792 	parent = npage[0];
793 	if (level != 0)
794 		nids[1] = get_nid(parent, offset[0], true);
795 	dn->inode_page = npage[0];
796 	dn->inode_page_locked = true;
797 
798 	/* get indirect or direct nodes */
799 	for (i = 1; i <= level; i++) {
800 		bool done = false;
801 
802 		if (!nids[i] && mode == ALLOC_NODE) {
803 			/* alloc new node */
804 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 				err = -ENOSPC;
806 				goto release_pages;
807 			}
808 
809 			dn->nid = nids[i];
810 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 			if (IS_ERR(npage[i])) {
812 				f2fs_alloc_nid_failed(sbi, nids[i]);
813 				err = PTR_ERR(npage[i]);
814 				goto release_pages;
815 			}
816 
817 			set_nid(parent, offset[i - 1], nids[i], i == 1);
818 			f2fs_alloc_nid_done(sbi, nids[i]);
819 			done = true;
820 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 			if (IS_ERR(npage[i])) {
823 				err = PTR_ERR(npage[i]);
824 				goto release_pages;
825 			}
826 			done = true;
827 		}
828 		if (i == 1) {
829 			dn->inode_page_locked = false;
830 			unlock_page(parent);
831 		} else {
832 			f2fs_put_page(parent, 1);
833 		}
834 
835 		if (!done) {
836 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 			if (IS_ERR(npage[i])) {
838 				err = PTR_ERR(npage[i]);
839 				f2fs_put_page(npage[0], 0);
840 				goto release_out;
841 			}
842 		}
843 		if (i < level) {
844 			parent = npage[i];
845 			nids[i + 1] = get_nid(parent, offset[i], false);
846 		}
847 	}
848 	dn->nid = nids[level];
849 	dn->ofs_in_node = offset[level];
850 	dn->node_page = npage[level];
851 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
852 
853 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 					f2fs_sb_has_readonly(sbi)) {
855 		unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 		unsigned int ofs_in_node = dn->ofs_in_node;
857 		pgoff_t fofs = index;
858 		unsigned int c_len;
859 		block_t blkaddr;
860 
861 		/* should align fofs and ofs_in_node to cluster_size */
862 		if (fofs % cluster_size) {
863 			fofs = round_down(fofs, cluster_size);
864 			ofs_in_node = round_down(ofs_in_node, cluster_size);
865 		}
866 
867 		c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 		if (!c_len)
869 			goto out;
870 
871 		blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 		if (blkaddr == COMPRESS_ADDR)
873 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 						ofs_in_node + 1);
875 
876 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 					fofs, blkaddr, cluster_size, c_len);
878 	}
879 out:
880 	return 0;
881 
882 release_pages:
883 	f2fs_put_page(parent, 1);
884 	if (i > 1)
885 		f2fs_put_page(npage[0], 0);
886 release_out:
887 	dn->inode_page = NULL;
888 	dn->node_page = NULL;
889 	if (err == -ENOENT) {
890 		dn->cur_level = i;
891 		dn->max_level = level;
892 		dn->ofs_in_node = offset[level];
893 	}
894 	return err;
895 }
896 
897 static int truncate_node(struct dnode_of_data *dn)
898 {
899 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 	struct node_info ni;
901 	int err;
902 	pgoff_t index;
903 
904 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 	if (err)
906 		return err;
907 
908 	if (ni.blk_addr != NEW_ADDR &&
909 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
910 		f2fs_err_ratelimited(sbi,
911 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
912 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
913 		set_sbi_flag(sbi, SBI_NEED_FSCK);
914 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
915 		return -EFSCORRUPTED;
916 	}
917 
918 	/* Deallocate node address */
919 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
920 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
921 	set_node_addr(sbi, &ni, NULL_ADDR, false);
922 
923 	if (dn->nid == dn->inode->i_ino) {
924 		f2fs_remove_orphan_inode(sbi, dn->nid);
925 		dec_valid_inode_count(sbi);
926 		f2fs_inode_synced(dn->inode);
927 	}
928 
929 	clear_node_page_dirty(dn->node_page);
930 	set_sbi_flag(sbi, SBI_IS_DIRTY);
931 
932 	index = dn->node_page->index;
933 	f2fs_put_page(dn->node_page, 1);
934 
935 	invalidate_mapping_pages(NODE_MAPPING(sbi),
936 			index, index);
937 
938 	dn->node_page = NULL;
939 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
940 
941 	return 0;
942 }
943 
944 static int truncate_dnode(struct dnode_of_data *dn)
945 {
946 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
947 	struct page *page;
948 	int err;
949 
950 	if (dn->nid == 0)
951 		return 1;
952 
953 	/* get direct node */
954 	page = f2fs_get_node_page(sbi, dn->nid);
955 	if (PTR_ERR(page) == -ENOENT)
956 		return 1;
957 	else if (IS_ERR(page))
958 		return PTR_ERR(page);
959 
960 	if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
961 		f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
962 				dn->inode->i_ino, dn->nid, ino_of_node(page));
963 		set_sbi_flag(sbi, SBI_NEED_FSCK);
964 		f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
965 		f2fs_put_page(page, 1);
966 		return -EFSCORRUPTED;
967 	}
968 
969 	/* Make dnode_of_data for parameter */
970 	dn->node_page = page;
971 	dn->ofs_in_node = 0;
972 	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
973 	err = truncate_node(dn);
974 	if (err) {
975 		f2fs_put_page(page, 1);
976 		return err;
977 	}
978 
979 	return 1;
980 }
981 
982 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
983 						int ofs, int depth)
984 {
985 	struct dnode_of_data rdn = *dn;
986 	struct page *page;
987 	struct f2fs_node *rn;
988 	nid_t child_nid;
989 	unsigned int child_nofs;
990 	int freed = 0;
991 	int i, ret;
992 
993 	if (dn->nid == 0)
994 		return NIDS_PER_BLOCK + 1;
995 
996 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
997 
998 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
999 	if (IS_ERR(page)) {
1000 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
1001 		return PTR_ERR(page);
1002 	}
1003 
1004 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
1005 
1006 	rn = F2FS_NODE(page);
1007 	if (depth < 3) {
1008 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
1009 			child_nid = le32_to_cpu(rn->in.nid[i]);
1010 			if (child_nid == 0)
1011 				continue;
1012 			rdn.nid = child_nid;
1013 			ret = truncate_dnode(&rdn);
1014 			if (ret < 0)
1015 				goto out_err;
1016 			if (set_nid(page, i, 0, false))
1017 				dn->node_changed = true;
1018 		}
1019 	} else {
1020 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1021 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1022 			child_nid = le32_to_cpu(rn->in.nid[i]);
1023 			if (child_nid == 0) {
1024 				child_nofs += NIDS_PER_BLOCK + 1;
1025 				continue;
1026 			}
1027 			rdn.nid = child_nid;
1028 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1029 			if (ret == (NIDS_PER_BLOCK + 1)) {
1030 				if (set_nid(page, i, 0, false))
1031 					dn->node_changed = true;
1032 				child_nofs += ret;
1033 			} else if (ret < 0 && ret != -ENOENT) {
1034 				goto out_err;
1035 			}
1036 		}
1037 		freed = child_nofs;
1038 	}
1039 
1040 	if (!ofs) {
1041 		/* remove current indirect node */
1042 		dn->node_page = page;
1043 		ret = truncate_node(dn);
1044 		if (ret)
1045 			goto out_err;
1046 		freed++;
1047 	} else {
1048 		f2fs_put_page(page, 1);
1049 	}
1050 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1051 	return freed;
1052 
1053 out_err:
1054 	f2fs_put_page(page, 1);
1055 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1056 	return ret;
1057 }
1058 
1059 static int truncate_partial_nodes(struct dnode_of_data *dn,
1060 			struct f2fs_inode *ri, int *offset, int depth)
1061 {
1062 	struct page *pages[2];
1063 	nid_t nid[3];
1064 	nid_t child_nid;
1065 	int err = 0;
1066 	int i;
1067 	int idx = depth - 2;
1068 
1069 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1070 	if (!nid[0])
1071 		return 0;
1072 
1073 	/* get indirect nodes in the path */
1074 	for (i = 0; i < idx + 1; i++) {
1075 		/* reference count'll be increased */
1076 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1077 		if (IS_ERR(pages[i])) {
1078 			err = PTR_ERR(pages[i]);
1079 			idx = i - 1;
1080 			goto fail;
1081 		}
1082 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1083 	}
1084 
1085 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1086 
1087 	/* free direct nodes linked to a partial indirect node */
1088 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1089 		child_nid = get_nid(pages[idx], i, false);
1090 		if (!child_nid)
1091 			continue;
1092 		dn->nid = child_nid;
1093 		err = truncate_dnode(dn);
1094 		if (err < 0)
1095 			goto fail;
1096 		if (set_nid(pages[idx], i, 0, false))
1097 			dn->node_changed = true;
1098 	}
1099 
1100 	if (offset[idx + 1] == 0) {
1101 		dn->node_page = pages[idx];
1102 		dn->nid = nid[idx];
1103 		err = truncate_node(dn);
1104 		if (err)
1105 			goto fail;
1106 	} else {
1107 		f2fs_put_page(pages[idx], 1);
1108 	}
1109 	offset[idx]++;
1110 	offset[idx + 1] = 0;
1111 	idx--;
1112 fail:
1113 	for (i = idx; i >= 0; i--)
1114 		f2fs_put_page(pages[i], 1);
1115 
1116 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1117 
1118 	return err;
1119 }
1120 
1121 /*
1122  * All the block addresses of data and nodes should be nullified.
1123  */
1124 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1125 {
1126 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 	int err = 0, cont = 1;
1128 	int level, offset[4], noffset[4];
1129 	unsigned int nofs = 0;
1130 	struct f2fs_inode *ri;
1131 	struct dnode_of_data dn;
1132 	struct page *page;
1133 
1134 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1135 
1136 	level = get_node_path(inode, from, offset, noffset);
1137 	if (level < 0) {
1138 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1139 		return level;
1140 	}
1141 
1142 	page = f2fs_get_node_page(sbi, inode->i_ino);
1143 	if (IS_ERR(page)) {
1144 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1145 		return PTR_ERR(page);
1146 	}
1147 
1148 	set_new_dnode(&dn, inode, page, NULL, 0);
1149 	unlock_page(page);
1150 
1151 	ri = F2FS_INODE(page);
1152 	switch (level) {
1153 	case 0:
1154 	case 1:
1155 		nofs = noffset[1];
1156 		break;
1157 	case 2:
1158 		nofs = noffset[1];
1159 		if (!offset[level - 1])
1160 			goto skip_partial;
1161 		err = truncate_partial_nodes(&dn, ri, offset, level);
1162 		if (err < 0 && err != -ENOENT)
1163 			goto fail;
1164 		nofs += 1 + NIDS_PER_BLOCK;
1165 		break;
1166 	case 3:
1167 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1168 		if (!offset[level - 1])
1169 			goto skip_partial;
1170 		err = truncate_partial_nodes(&dn, ri, offset, level);
1171 		if (err < 0 && err != -ENOENT)
1172 			goto fail;
1173 		break;
1174 	default:
1175 		BUG();
1176 	}
1177 
1178 skip_partial:
1179 	while (cont) {
1180 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1181 		switch (offset[0]) {
1182 		case NODE_DIR1_BLOCK:
1183 		case NODE_DIR2_BLOCK:
1184 			err = truncate_dnode(&dn);
1185 			break;
1186 
1187 		case NODE_IND1_BLOCK:
1188 		case NODE_IND2_BLOCK:
1189 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1190 			break;
1191 
1192 		case NODE_DIND_BLOCK:
1193 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1194 			cont = 0;
1195 			break;
1196 
1197 		default:
1198 			BUG();
1199 		}
1200 		if (err < 0 && err != -ENOENT)
1201 			goto fail;
1202 		if (offset[1] == 0 &&
1203 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1204 			lock_page(page);
1205 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1206 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1207 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1208 			set_page_dirty(page);
1209 			unlock_page(page);
1210 		}
1211 		offset[1] = 0;
1212 		offset[0]++;
1213 		nofs += err;
1214 	}
1215 fail:
1216 	f2fs_put_page(page, 0);
1217 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1218 	return err > 0 ? 0 : err;
1219 }
1220 
1221 /* caller must lock inode page */
1222 int f2fs_truncate_xattr_node(struct inode *inode)
1223 {
1224 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1225 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1226 	struct dnode_of_data dn;
1227 	struct page *npage;
1228 	int err;
1229 
1230 	if (!nid)
1231 		return 0;
1232 
1233 	npage = f2fs_get_node_page(sbi, nid);
1234 	if (IS_ERR(npage))
1235 		return PTR_ERR(npage);
1236 
1237 	set_new_dnode(&dn, inode, NULL, npage, nid);
1238 	err = truncate_node(&dn);
1239 	if (err) {
1240 		f2fs_put_page(npage, 1);
1241 		return err;
1242 	}
1243 
1244 	f2fs_i_xnid_write(inode, 0);
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1251  * f2fs_unlock_op().
1252  */
1253 int f2fs_remove_inode_page(struct inode *inode)
1254 {
1255 	struct dnode_of_data dn;
1256 	int err;
1257 
1258 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1259 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1260 	if (err)
1261 		return err;
1262 
1263 	err = f2fs_truncate_xattr_node(inode);
1264 	if (err) {
1265 		f2fs_put_dnode(&dn);
1266 		return err;
1267 	}
1268 
1269 	/* remove potential inline_data blocks */
1270 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1271 				S_ISLNK(inode->i_mode))
1272 		f2fs_truncate_data_blocks_range(&dn, 1);
1273 
1274 	/* 0 is possible, after f2fs_new_inode() has failed */
1275 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1276 		f2fs_put_dnode(&dn);
1277 		return -EIO;
1278 	}
1279 
1280 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1281 		f2fs_warn(F2FS_I_SB(inode),
1282 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1283 			inode->i_ino, (unsigned long long)inode->i_blocks);
1284 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1285 	}
1286 
1287 	/* will put inode & node pages */
1288 	err = truncate_node(&dn);
1289 	if (err) {
1290 		f2fs_put_dnode(&dn);
1291 		return err;
1292 	}
1293 	return 0;
1294 }
1295 
1296 struct page *f2fs_new_inode_page(struct inode *inode)
1297 {
1298 	struct dnode_of_data dn;
1299 
1300 	/* allocate inode page for new inode */
1301 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1302 
1303 	/* caller should f2fs_put_page(page, 1); */
1304 	return f2fs_new_node_page(&dn, 0);
1305 }
1306 
1307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1308 {
1309 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1310 	struct node_info new_ni;
1311 	struct page *page;
1312 	int err;
1313 
1314 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1315 		return ERR_PTR(-EPERM);
1316 
1317 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1318 	if (!page)
1319 		return ERR_PTR(-ENOMEM);
1320 
1321 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1322 		goto fail;
1323 
1324 #ifdef CONFIG_F2FS_CHECK_FS
1325 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1326 	if (err) {
1327 		dec_valid_node_count(sbi, dn->inode, !ofs);
1328 		goto fail;
1329 	}
1330 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1331 		err = -EFSCORRUPTED;
1332 		dec_valid_node_count(sbi, dn->inode, !ofs);
1333 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1334 		f2fs_warn_ratelimited(sbi,
1335 			"f2fs_new_node_page: inconsistent nat entry, "
1336 			"ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u",
1337 			new_ni.ino, new_ni.nid, new_ni.blk_addr,
1338 			new_ni.version, new_ni.flag);
1339 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT);
1340 		goto fail;
1341 	}
1342 #endif
1343 	new_ni.nid = dn->nid;
1344 	new_ni.ino = dn->inode->i_ino;
1345 	new_ni.blk_addr = NULL_ADDR;
1346 	new_ni.flag = 0;
1347 	new_ni.version = 0;
1348 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1349 
1350 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1351 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1352 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1353 	if (!PageUptodate(page))
1354 		SetPageUptodate(page);
1355 	if (set_page_dirty(page))
1356 		dn->node_changed = true;
1357 
1358 	if (f2fs_has_xattr_block(ofs))
1359 		f2fs_i_xnid_write(dn->inode, dn->nid);
1360 
1361 	if (ofs == 0)
1362 		inc_valid_inode_count(sbi);
1363 	return page;
1364 fail:
1365 	clear_node_page_dirty(page);
1366 	f2fs_put_page(page, 1);
1367 	return ERR_PTR(err);
1368 }
1369 
1370 /*
1371  * Caller should do after getting the following values.
1372  * 0: f2fs_put_page(page, 0)
1373  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1374  */
1375 static int read_node_page(struct page *page, blk_opf_t op_flags)
1376 {
1377 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1378 	struct node_info ni;
1379 	struct f2fs_io_info fio = {
1380 		.sbi = sbi,
1381 		.type = NODE,
1382 		.op = REQ_OP_READ,
1383 		.op_flags = op_flags,
1384 		.page = page,
1385 		.encrypted_page = NULL,
1386 	};
1387 	int err;
1388 
1389 	if (PageUptodate(page)) {
1390 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1391 			ClearPageUptodate(page);
1392 			return -EFSBADCRC;
1393 		}
1394 		return LOCKED_PAGE;
1395 	}
1396 
1397 	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1398 	if (err)
1399 		return err;
1400 
1401 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1402 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1403 		ClearPageUptodate(page);
1404 		return -ENOENT;
1405 	}
1406 
1407 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1408 
1409 	err = f2fs_submit_page_bio(&fio);
1410 
1411 	if (!err)
1412 		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1413 
1414 	return err;
1415 }
1416 
1417 /*
1418  * Readahead a node page
1419  */
1420 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1421 {
1422 	struct page *apage;
1423 	int err;
1424 
1425 	if (!nid)
1426 		return;
1427 	if (f2fs_check_nid_range(sbi, nid))
1428 		return;
1429 
1430 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1431 	if (apage)
1432 		return;
1433 
1434 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1435 	if (!apage)
1436 		return;
1437 
1438 	err = read_node_page(apage, REQ_RAHEAD);
1439 	f2fs_put_page(apage, err ? 1 : 0);
1440 }
1441 
1442 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1443 					struct page *parent, int start)
1444 {
1445 	struct page *page;
1446 	int err;
1447 
1448 	if (!nid)
1449 		return ERR_PTR(-ENOENT);
1450 	if (f2fs_check_nid_range(sbi, nid))
1451 		return ERR_PTR(-EINVAL);
1452 repeat:
1453 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1454 	if (!page)
1455 		return ERR_PTR(-ENOMEM);
1456 
1457 	err = read_node_page(page, 0);
1458 	if (err < 0) {
1459 		goto out_put_err;
1460 	} else if (err == LOCKED_PAGE) {
1461 		err = 0;
1462 		goto page_hit;
1463 	}
1464 
1465 	if (parent)
1466 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1467 
1468 	lock_page(page);
1469 
1470 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1471 		f2fs_put_page(page, 1);
1472 		goto repeat;
1473 	}
1474 
1475 	if (unlikely(!PageUptodate(page))) {
1476 		err = -EIO;
1477 		goto out_err;
1478 	}
1479 
1480 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1481 		err = -EFSBADCRC;
1482 		goto out_err;
1483 	}
1484 page_hit:
1485 	if (likely(nid == nid_of_node(page)))
1486 		return page;
1487 
1488 	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1489 			  nid, nid_of_node(page), ino_of_node(page),
1490 			  ofs_of_node(page), cpver_of_node(page),
1491 			  next_blkaddr_of_node(page));
1492 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1493 	f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1494 	err = -EFSCORRUPTED;
1495 out_err:
1496 	ClearPageUptodate(page);
1497 out_put_err:
1498 	/* ENOENT comes from read_node_page which is not an error. */
1499 	if (err != -ENOENT)
1500 		f2fs_handle_page_eio(sbi, page->index, NODE);
1501 	f2fs_put_page(page, 1);
1502 	return ERR_PTR(err);
1503 }
1504 
1505 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1506 {
1507 	return __get_node_page(sbi, nid, NULL, 0);
1508 }
1509 
1510 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1511 {
1512 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1513 	nid_t nid = get_nid(parent, start, false);
1514 
1515 	return __get_node_page(sbi, nid, parent, start);
1516 }
1517 
1518 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1519 {
1520 	struct inode *inode;
1521 	struct page *page;
1522 	int ret;
1523 
1524 	/* should flush inline_data before evict_inode */
1525 	inode = ilookup(sbi->sb, ino);
1526 	if (!inode)
1527 		return;
1528 
1529 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1530 					FGP_LOCK|FGP_NOWAIT, 0);
1531 	if (!page)
1532 		goto iput_out;
1533 
1534 	if (!PageUptodate(page))
1535 		goto page_out;
1536 
1537 	if (!PageDirty(page))
1538 		goto page_out;
1539 
1540 	if (!clear_page_dirty_for_io(page))
1541 		goto page_out;
1542 
1543 	ret = f2fs_write_inline_data(inode, page);
1544 	inode_dec_dirty_pages(inode);
1545 	f2fs_remove_dirty_inode(inode);
1546 	if (ret)
1547 		set_page_dirty(page);
1548 page_out:
1549 	f2fs_put_page(page, 1);
1550 iput_out:
1551 	iput(inode);
1552 }
1553 
1554 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1555 {
1556 	pgoff_t index;
1557 	struct folio_batch fbatch;
1558 	struct page *last_page = NULL;
1559 	int nr_folios;
1560 
1561 	folio_batch_init(&fbatch);
1562 	index = 0;
1563 
1564 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1565 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1566 					&fbatch))) {
1567 		int i;
1568 
1569 		for (i = 0; i < nr_folios; i++) {
1570 			struct page *page = &fbatch.folios[i]->page;
1571 
1572 			if (unlikely(f2fs_cp_error(sbi))) {
1573 				f2fs_put_page(last_page, 0);
1574 				folio_batch_release(&fbatch);
1575 				return ERR_PTR(-EIO);
1576 			}
1577 
1578 			if (!IS_DNODE(page) || !is_cold_node(page))
1579 				continue;
1580 			if (ino_of_node(page) != ino)
1581 				continue;
1582 
1583 			lock_page(page);
1584 
1585 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1586 continue_unlock:
1587 				unlock_page(page);
1588 				continue;
1589 			}
1590 			if (ino_of_node(page) != ino)
1591 				goto continue_unlock;
1592 
1593 			if (!PageDirty(page)) {
1594 				/* someone wrote it for us */
1595 				goto continue_unlock;
1596 			}
1597 
1598 			if (last_page)
1599 				f2fs_put_page(last_page, 0);
1600 
1601 			get_page(page);
1602 			last_page = page;
1603 			unlock_page(page);
1604 		}
1605 		folio_batch_release(&fbatch);
1606 		cond_resched();
1607 	}
1608 	return last_page;
1609 }
1610 
1611 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1612 				struct writeback_control *wbc, bool do_balance,
1613 				enum iostat_type io_type, unsigned int *seq_id)
1614 {
1615 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1616 	nid_t nid;
1617 	struct node_info ni;
1618 	struct f2fs_io_info fio = {
1619 		.sbi = sbi,
1620 		.ino = ino_of_node(page),
1621 		.type = NODE,
1622 		.op = REQ_OP_WRITE,
1623 		.op_flags = wbc_to_write_flags(wbc),
1624 		.page = page,
1625 		.encrypted_page = NULL,
1626 		.submitted = 0,
1627 		.io_type = io_type,
1628 		.io_wbc = wbc,
1629 	};
1630 	unsigned int seq;
1631 
1632 	trace_f2fs_writepage(page, NODE);
1633 
1634 	if (unlikely(f2fs_cp_error(sbi))) {
1635 		/* keep node pages in remount-ro mode */
1636 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1637 			goto redirty_out;
1638 		ClearPageUptodate(page);
1639 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1640 		unlock_page(page);
1641 		return 0;
1642 	}
1643 
1644 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1645 		goto redirty_out;
1646 
1647 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1648 			wbc->sync_mode == WB_SYNC_NONE &&
1649 			IS_DNODE(page) && is_cold_node(page))
1650 		goto redirty_out;
1651 
1652 	/* get old block addr of this node page */
1653 	nid = nid_of_node(page);
1654 	f2fs_bug_on(sbi, page->index != nid);
1655 
1656 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1657 		goto redirty_out;
1658 
1659 	if (wbc->for_reclaim) {
1660 		if (!f2fs_down_read_trylock(&sbi->node_write))
1661 			goto redirty_out;
1662 	} else {
1663 		f2fs_down_read(&sbi->node_write);
1664 	}
1665 
1666 	/* This page is already truncated */
1667 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1668 		ClearPageUptodate(page);
1669 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1670 		f2fs_up_read(&sbi->node_write);
1671 		unlock_page(page);
1672 		return 0;
1673 	}
1674 
1675 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1676 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1677 					DATA_GENERIC_ENHANCE)) {
1678 		f2fs_up_read(&sbi->node_write);
1679 		goto redirty_out;
1680 	}
1681 
1682 	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1683 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1684 
1685 	/* should add to global list before clearing PAGECACHE status */
1686 	if (f2fs_in_warm_node_list(sbi, page)) {
1687 		seq = f2fs_add_fsync_node_entry(sbi, page);
1688 		if (seq_id)
1689 			*seq_id = seq;
1690 	}
1691 
1692 	set_page_writeback(page);
1693 
1694 	fio.old_blkaddr = ni.blk_addr;
1695 	f2fs_do_write_node_page(nid, &fio);
1696 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1697 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1698 	f2fs_up_read(&sbi->node_write);
1699 
1700 	if (wbc->for_reclaim) {
1701 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1702 		submitted = NULL;
1703 	}
1704 
1705 	unlock_page(page);
1706 
1707 	if (unlikely(f2fs_cp_error(sbi))) {
1708 		f2fs_submit_merged_write(sbi, NODE);
1709 		submitted = NULL;
1710 	}
1711 	if (submitted)
1712 		*submitted = fio.submitted;
1713 
1714 	if (do_balance)
1715 		f2fs_balance_fs(sbi, false);
1716 	return 0;
1717 
1718 redirty_out:
1719 	redirty_page_for_writepage(wbc, page);
1720 	return AOP_WRITEPAGE_ACTIVATE;
1721 }
1722 
1723 int f2fs_move_node_page(struct page *node_page, int gc_type)
1724 {
1725 	int err = 0;
1726 
1727 	if (gc_type == FG_GC) {
1728 		struct writeback_control wbc = {
1729 			.sync_mode = WB_SYNC_ALL,
1730 			.nr_to_write = 1,
1731 			.for_reclaim = 0,
1732 		};
1733 
1734 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1735 
1736 		set_page_dirty(node_page);
1737 
1738 		if (!clear_page_dirty_for_io(node_page)) {
1739 			err = -EAGAIN;
1740 			goto out_page;
1741 		}
1742 
1743 		if (__write_node_page(node_page, false, NULL,
1744 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1745 			err = -EAGAIN;
1746 			unlock_page(node_page);
1747 		}
1748 		goto release_page;
1749 	} else {
1750 		/* set page dirty and write it */
1751 		if (!PageWriteback(node_page))
1752 			set_page_dirty(node_page);
1753 	}
1754 out_page:
1755 	unlock_page(node_page);
1756 release_page:
1757 	f2fs_put_page(node_page, 0);
1758 	return err;
1759 }
1760 
1761 static int f2fs_write_node_page(struct page *page,
1762 				struct writeback_control *wbc)
1763 {
1764 	return __write_node_page(page, false, NULL, wbc, false,
1765 						FS_NODE_IO, NULL);
1766 }
1767 
1768 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1769 			struct writeback_control *wbc, bool atomic,
1770 			unsigned int *seq_id)
1771 {
1772 	pgoff_t index;
1773 	struct folio_batch fbatch;
1774 	int ret = 0;
1775 	struct page *last_page = NULL;
1776 	bool marked = false;
1777 	nid_t ino = inode->i_ino;
1778 	int nr_folios;
1779 	int nwritten = 0;
1780 
1781 	if (atomic) {
1782 		last_page = last_fsync_dnode(sbi, ino);
1783 		if (IS_ERR_OR_NULL(last_page))
1784 			return PTR_ERR_OR_ZERO(last_page);
1785 	}
1786 retry:
1787 	folio_batch_init(&fbatch);
1788 	index = 0;
1789 
1790 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1791 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1792 					&fbatch))) {
1793 		int i;
1794 
1795 		for (i = 0; i < nr_folios; i++) {
1796 			struct page *page = &fbatch.folios[i]->page;
1797 			bool submitted = false;
1798 
1799 			if (unlikely(f2fs_cp_error(sbi))) {
1800 				f2fs_put_page(last_page, 0);
1801 				folio_batch_release(&fbatch);
1802 				ret = -EIO;
1803 				goto out;
1804 			}
1805 
1806 			if (!IS_DNODE(page) || !is_cold_node(page))
1807 				continue;
1808 			if (ino_of_node(page) != ino)
1809 				continue;
1810 
1811 			lock_page(page);
1812 
1813 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1814 continue_unlock:
1815 				unlock_page(page);
1816 				continue;
1817 			}
1818 			if (ino_of_node(page) != ino)
1819 				goto continue_unlock;
1820 
1821 			if (!PageDirty(page) && page != last_page) {
1822 				/* someone wrote it for us */
1823 				goto continue_unlock;
1824 			}
1825 
1826 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1827 
1828 			set_fsync_mark(page, 0);
1829 			set_dentry_mark(page, 0);
1830 
1831 			if (!atomic || page == last_page) {
1832 				set_fsync_mark(page, 1);
1833 				percpu_counter_inc(&sbi->rf_node_block_count);
1834 				if (IS_INODE(page)) {
1835 					if (is_inode_flag_set(inode,
1836 								FI_DIRTY_INODE))
1837 						f2fs_update_inode(inode, page);
1838 					set_dentry_mark(page,
1839 						f2fs_need_dentry_mark(sbi, ino));
1840 				}
1841 				/* may be written by other thread */
1842 				if (!PageDirty(page))
1843 					set_page_dirty(page);
1844 			}
1845 
1846 			if (!clear_page_dirty_for_io(page))
1847 				goto continue_unlock;
1848 
1849 			ret = __write_node_page(page, atomic &&
1850 						page == last_page,
1851 						&submitted, wbc, true,
1852 						FS_NODE_IO, seq_id);
1853 			if (ret) {
1854 				unlock_page(page);
1855 				f2fs_put_page(last_page, 0);
1856 				break;
1857 			} else if (submitted) {
1858 				nwritten++;
1859 			}
1860 
1861 			if (page == last_page) {
1862 				f2fs_put_page(page, 0);
1863 				marked = true;
1864 				break;
1865 			}
1866 		}
1867 		folio_batch_release(&fbatch);
1868 		cond_resched();
1869 
1870 		if (ret || marked)
1871 			break;
1872 	}
1873 	if (!ret && atomic && !marked) {
1874 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1875 			   ino, last_page->index);
1876 		lock_page(last_page);
1877 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1878 		set_page_dirty(last_page);
1879 		unlock_page(last_page);
1880 		goto retry;
1881 	}
1882 out:
1883 	if (nwritten)
1884 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1885 	return ret ? -EIO : 0;
1886 }
1887 
1888 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1889 {
1890 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1891 	bool clean;
1892 
1893 	if (inode->i_ino != ino)
1894 		return 0;
1895 
1896 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1897 		return 0;
1898 
1899 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1900 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1901 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1902 
1903 	if (clean)
1904 		return 0;
1905 
1906 	inode = igrab(inode);
1907 	if (!inode)
1908 		return 0;
1909 	return 1;
1910 }
1911 
1912 static bool flush_dirty_inode(struct page *page)
1913 {
1914 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1915 	struct inode *inode;
1916 	nid_t ino = ino_of_node(page);
1917 
1918 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1919 	if (!inode)
1920 		return false;
1921 
1922 	f2fs_update_inode(inode, page);
1923 	unlock_page(page);
1924 
1925 	iput(inode);
1926 	return true;
1927 }
1928 
1929 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1930 {
1931 	pgoff_t index = 0;
1932 	struct folio_batch fbatch;
1933 	int nr_folios;
1934 
1935 	folio_batch_init(&fbatch);
1936 
1937 	while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1938 					(pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1939 					&fbatch))) {
1940 		int i;
1941 
1942 		for (i = 0; i < nr_folios; i++) {
1943 			struct page *page = &fbatch.folios[i]->page;
1944 
1945 			if (!IS_DNODE(page))
1946 				continue;
1947 
1948 			lock_page(page);
1949 
1950 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1951 continue_unlock:
1952 				unlock_page(page);
1953 				continue;
1954 			}
1955 
1956 			if (!PageDirty(page)) {
1957 				/* someone wrote it for us */
1958 				goto continue_unlock;
1959 			}
1960 
1961 			/* flush inline_data, if it's async context. */
1962 			if (page_private_inline(page)) {
1963 				clear_page_private_inline(page);
1964 				unlock_page(page);
1965 				flush_inline_data(sbi, ino_of_node(page));
1966 				continue;
1967 			}
1968 			unlock_page(page);
1969 		}
1970 		folio_batch_release(&fbatch);
1971 		cond_resched();
1972 	}
1973 }
1974 
1975 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1976 				struct writeback_control *wbc,
1977 				bool do_balance, enum iostat_type io_type)
1978 {
1979 	pgoff_t index;
1980 	struct folio_batch fbatch;
1981 	int step = 0;
1982 	int nwritten = 0;
1983 	int ret = 0;
1984 	int nr_folios, done = 0;
1985 
1986 	folio_batch_init(&fbatch);
1987 
1988 next_step:
1989 	index = 0;
1990 
1991 	while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1992 				&index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1993 				&fbatch))) {
1994 		int i;
1995 
1996 		for (i = 0; i < nr_folios; i++) {
1997 			struct page *page = &fbatch.folios[i]->page;
1998 			bool submitted = false;
1999 
2000 			/* give a priority to WB_SYNC threads */
2001 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
2002 					wbc->sync_mode == WB_SYNC_NONE) {
2003 				done = 1;
2004 				break;
2005 			}
2006 
2007 			/*
2008 			 * flushing sequence with step:
2009 			 * 0. indirect nodes
2010 			 * 1. dentry dnodes
2011 			 * 2. file dnodes
2012 			 */
2013 			if (step == 0 && IS_DNODE(page))
2014 				continue;
2015 			if (step == 1 && (!IS_DNODE(page) ||
2016 						is_cold_node(page)))
2017 				continue;
2018 			if (step == 2 && (!IS_DNODE(page) ||
2019 						!is_cold_node(page)))
2020 				continue;
2021 lock_node:
2022 			if (wbc->sync_mode == WB_SYNC_ALL)
2023 				lock_page(page);
2024 			else if (!trylock_page(page))
2025 				continue;
2026 
2027 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2028 continue_unlock:
2029 				unlock_page(page);
2030 				continue;
2031 			}
2032 
2033 			if (!PageDirty(page)) {
2034 				/* someone wrote it for us */
2035 				goto continue_unlock;
2036 			}
2037 
2038 			/* flush inline_data/inode, if it's async context. */
2039 			if (!do_balance)
2040 				goto write_node;
2041 
2042 			/* flush inline_data */
2043 			if (page_private_inline(page)) {
2044 				clear_page_private_inline(page);
2045 				unlock_page(page);
2046 				flush_inline_data(sbi, ino_of_node(page));
2047 				goto lock_node;
2048 			}
2049 
2050 			/* flush dirty inode */
2051 			if (IS_INODE(page) && flush_dirty_inode(page))
2052 				goto lock_node;
2053 write_node:
2054 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2055 
2056 			if (!clear_page_dirty_for_io(page))
2057 				goto continue_unlock;
2058 
2059 			set_fsync_mark(page, 0);
2060 			set_dentry_mark(page, 0);
2061 
2062 			ret = __write_node_page(page, false, &submitted,
2063 						wbc, do_balance, io_type, NULL);
2064 			if (ret)
2065 				unlock_page(page);
2066 			else if (submitted)
2067 				nwritten++;
2068 
2069 			if (--wbc->nr_to_write == 0)
2070 				break;
2071 		}
2072 		folio_batch_release(&fbatch);
2073 		cond_resched();
2074 
2075 		if (wbc->nr_to_write == 0) {
2076 			step = 2;
2077 			break;
2078 		}
2079 	}
2080 
2081 	if (step < 2) {
2082 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2083 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2084 			goto out;
2085 		step++;
2086 		goto next_step;
2087 	}
2088 out:
2089 	if (nwritten)
2090 		f2fs_submit_merged_write(sbi, NODE);
2091 
2092 	if (unlikely(f2fs_cp_error(sbi)))
2093 		return -EIO;
2094 	return ret;
2095 }
2096 
2097 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2098 						unsigned int seq_id)
2099 {
2100 	struct fsync_node_entry *fn;
2101 	struct page *page;
2102 	struct list_head *head = &sbi->fsync_node_list;
2103 	unsigned long flags;
2104 	unsigned int cur_seq_id = 0;
2105 
2106 	while (seq_id && cur_seq_id < seq_id) {
2107 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2108 		if (list_empty(head)) {
2109 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2110 			break;
2111 		}
2112 		fn = list_first_entry(head, struct fsync_node_entry, list);
2113 		if (fn->seq_id > seq_id) {
2114 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2115 			break;
2116 		}
2117 		cur_seq_id = fn->seq_id;
2118 		page = fn->page;
2119 		get_page(page);
2120 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2121 
2122 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2123 
2124 		put_page(page);
2125 	}
2126 
2127 	return filemap_check_errors(NODE_MAPPING(sbi));
2128 }
2129 
2130 static int f2fs_write_node_pages(struct address_space *mapping,
2131 			    struct writeback_control *wbc)
2132 {
2133 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2134 	struct blk_plug plug;
2135 	long diff;
2136 
2137 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2138 		goto skip_write;
2139 
2140 	/* balancing f2fs's metadata in background */
2141 	f2fs_balance_fs_bg(sbi, true);
2142 
2143 	/* collect a number of dirty node pages and write together */
2144 	if (wbc->sync_mode != WB_SYNC_ALL &&
2145 			get_pages(sbi, F2FS_DIRTY_NODES) <
2146 					nr_pages_to_skip(sbi, NODE))
2147 		goto skip_write;
2148 
2149 	if (wbc->sync_mode == WB_SYNC_ALL)
2150 		atomic_inc(&sbi->wb_sync_req[NODE]);
2151 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2152 		/* to avoid potential deadlock */
2153 		if (current->plug)
2154 			blk_finish_plug(current->plug);
2155 		goto skip_write;
2156 	}
2157 
2158 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2159 
2160 	diff = nr_pages_to_write(sbi, NODE, wbc);
2161 	blk_start_plug(&plug);
2162 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2163 	blk_finish_plug(&plug);
2164 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2165 
2166 	if (wbc->sync_mode == WB_SYNC_ALL)
2167 		atomic_dec(&sbi->wb_sync_req[NODE]);
2168 	return 0;
2169 
2170 skip_write:
2171 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2172 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2173 	return 0;
2174 }
2175 
2176 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2177 		struct folio *folio)
2178 {
2179 	trace_f2fs_set_page_dirty(&folio->page, NODE);
2180 
2181 	if (!folio_test_uptodate(folio))
2182 		folio_mark_uptodate(folio);
2183 #ifdef CONFIG_F2FS_CHECK_FS
2184 	if (IS_INODE(&folio->page))
2185 		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2186 #endif
2187 	if (filemap_dirty_folio(mapping, folio)) {
2188 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2189 		set_page_private_reference(&folio->page);
2190 		return true;
2191 	}
2192 	return false;
2193 }
2194 
2195 /*
2196  * Structure of the f2fs node operations
2197  */
2198 const struct address_space_operations f2fs_node_aops = {
2199 	.writepage	= f2fs_write_node_page,
2200 	.writepages	= f2fs_write_node_pages,
2201 	.dirty_folio	= f2fs_dirty_node_folio,
2202 	.invalidate_folio = f2fs_invalidate_folio,
2203 	.release_folio	= f2fs_release_folio,
2204 	.migrate_folio	= filemap_migrate_folio,
2205 };
2206 
2207 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2208 						nid_t n)
2209 {
2210 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2211 }
2212 
2213 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2214 				struct free_nid *i)
2215 {
2216 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2217 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2218 
2219 	if (err)
2220 		return err;
2221 
2222 	nm_i->nid_cnt[FREE_NID]++;
2223 	list_add_tail(&i->list, &nm_i->free_nid_list);
2224 	return 0;
2225 }
2226 
2227 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2228 			struct free_nid *i, enum nid_state state)
2229 {
2230 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2231 
2232 	f2fs_bug_on(sbi, state != i->state);
2233 	nm_i->nid_cnt[state]--;
2234 	if (state == FREE_NID)
2235 		list_del(&i->list);
2236 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2237 }
2238 
2239 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2240 			enum nid_state org_state, enum nid_state dst_state)
2241 {
2242 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2243 
2244 	f2fs_bug_on(sbi, org_state != i->state);
2245 	i->state = dst_state;
2246 	nm_i->nid_cnt[org_state]--;
2247 	nm_i->nid_cnt[dst_state]++;
2248 
2249 	switch (dst_state) {
2250 	case PREALLOC_NID:
2251 		list_del(&i->list);
2252 		break;
2253 	case FREE_NID:
2254 		list_add_tail(&i->list, &nm_i->free_nid_list);
2255 		break;
2256 	default:
2257 		BUG_ON(1);
2258 	}
2259 }
2260 
2261 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2262 {
2263 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2264 	unsigned int i;
2265 	bool ret = true;
2266 
2267 	f2fs_down_read(&nm_i->nat_tree_lock);
2268 	for (i = 0; i < nm_i->nat_blocks; i++) {
2269 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2270 			ret = false;
2271 			break;
2272 		}
2273 	}
2274 	f2fs_up_read(&nm_i->nat_tree_lock);
2275 
2276 	return ret;
2277 }
2278 
2279 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2280 							bool set, bool build)
2281 {
2282 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2283 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2284 	unsigned int nid_ofs = nid - START_NID(nid);
2285 
2286 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2287 		return;
2288 
2289 	if (set) {
2290 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2291 			return;
2292 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2293 		nm_i->free_nid_count[nat_ofs]++;
2294 	} else {
2295 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2296 			return;
2297 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2298 		if (!build)
2299 			nm_i->free_nid_count[nat_ofs]--;
2300 	}
2301 }
2302 
2303 /* return if the nid is recognized as free */
2304 static bool add_free_nid(struct f2fs_sb_info *sbi,
2305 				nid_t nid, bool build, bool update)
2306 {
2307 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2308 	struct free_nid *i, *e;
2309 	struct nat_entry *ne;
2310 	int err = -EINVAL;
2311 	bool ret = false;
2312 
2313 	/* 0 nid should not be used */
2314 	if (unlikely(nid == 0))
2315 		return false;
2316 
2317 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2318 		return false;
2319 
2320 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2321 	i->nid = nid;
2322 	i->state = FREE_NID;
2323 
2324 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2325 
2326 	spin_lock(&nm_i->nid_list_lock);
2327 
2328 	if (build) {
2329 		/*
2330 		 *   Thread A             Thread B
2331 		 *  - f2fs_create
2332 		 *   - f2fs_new_inode
2333 		 *    - f2fs_alloc_nid
2334 		 *     - __insert_nid_to_list(PREALLOC_NID)
2335 		 *                     - f2fs_balance_fs_bg
2336 		 *                      - f2fs_build_free_nids
2337 		 *                       - __f2fs_build_free_nids
2338 		 *                        - scan_nat_page
2339 		 *                         - add_free_nid
2340 		 *                          - __lookup_nat_cache
2341 		 *  - f2fs_add_link
2342 		 *   - f2fs_init_inode_metadata
2343 		 *    - f2fs_new_inode_page
2344 		 *     - f2fs_new_node_page
2345 		 *      - set_node_addr
2346 		 *  - f2fs_alloc_nid_done
2347 		 *   - __remove_nid_from_list(PREALLOC_NID)
2348 		 *                         - __insert_nid_to_list(FREE_NID)
2349 		 */
2350 		ne = __lookup_nat_cache(nm_i, nid);
2351 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2352 				nat_get_blkaddr(ne) != NULL_ADDR))
2353 			goto err_out;
2354 
2355 		e = __lookup_free_nid_list(nm_i, nid);
2356 		if (e) {
2357 			if (e->state == FREE_NID)
2358 				ret = true;
2359 			goto err_out;
2360 		}
2361 	}
2362 	ret = true;
2363 	err = __insert_free_nid(sbi, i);
2364 err_out:
2365 	if (update) {
2366 		update_free_nid_bitmap(sbi, nid, ret, build);
2367 		if (!build)
2368 			nm_i->available_nids++;
2369 	}
2370 	spin_unlock(&nm_i->nid_list_lock);
2371 	radix_tree_preload_end();
2372 
2373 	if (err)
2374 		kmem_cache_free(free_nid_slab, i);
2375 	return ret;
2376 }
2377 
2378 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2379 {
2380 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2381 	struct free_nid *i;
2382 	bool need_free = false;
2383 
2384 	spin_lock(&nm_i->nid_list_lock);
2385 	i = __lookup_free_nid_list(nm_i, nid);
2386 	if (i && i->state == FREE_NID) {
2387 		__remove_free_nid(sbi, i, FREE_NID);
2388 		need_free = true;
2389 	}
2390 	spin_unlock(&nm_i->nid_list_lock);
2391 
2392 	if (need_free)
2393 		kmem_cache_free(free_nid_slab, i);
2394 }
2395 
2396 static int scan_nat_page(struct f2fs_sb_info *sbi,
2397 			struct page *nat_page, nid_t start_nid)
2398 {
2399 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2400 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2401 	block_t blk_addr;
2402 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2403 	int i;
2404 
2405 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2406 
2407 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2408 
2409 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2410 		if (unlikely(start_nid >= nm_i->max_nid))
2411 			break;
2412 
2413 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2414 
2415 		if (blk_addr == NEW_ADDR)
2416 			return -EFSCORRUPTED;
2417 
2418 		if (blk_addr == NULL_ADDR) {
2419 			add_free_nid(sbi, start_nid, true, true);
2420 		} else {
2421 			spin_lock(&NM_I(sbi)->nid_list_lock);
2422 			update_free_nid_bitmap(sbi, start_nid, false, true);
2423 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2424 		}
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2431 {
2432 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2433 	struct f2fs_journal *journal = curseg->journal;
2434 	int i;
2435 
2436 	down_read(&curseg->journal_rwsem);
2437 	for (i = 0; i < nats_in_cursum(journal); i++) {
2438 		block_t addr;
2439 		nid_t nid;
2440 
2441 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2442 		nid = le32_to_cpu(nid_in_journal(journal, i));
2443 		if (addr == NULL_ADDR)
2444 			add_free_nid(sbi, nid, true, false);
2445 		else
2446 			remove_free_nid(sbi, nid);
2447 	}
2448 	up_read(&curseg->journal_rwsem);
2449 }
2450 
2451 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2452 {
2453 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2454 	unsigned int i, idx;
2455 	nid_t nid;
2456 
2457 	f2fs_down_read(&nm_i->nat_tree_lock);
2458 
2459 	for (i = 0; i < nm_i->nat_blocks; i++) {
2460 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2461 			continue;
2462 		if (!nm_i->free_nid_count[i])
2463 			continue;
2464 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2465 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2466 						NAT_ENTRY_PER_BLOCK, idx);
2467 			if (idx >= NAT_ENTRY_PER_BLOCK)
2468 				break;
2469 
2470 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2471 			add_free_nid(sbi, nid, true, false);
2472 
2473 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2474 				goto out;
2475 		}
2476 	}
2477 out:
2478 	scan_curseg_cache(sbi);
2479 
2480 	f2fs_up_read(&nm_i->nat_tree_lock);
2481 }
2482 
2483 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2484 						bool sync, bool mount)
2485 {
2486 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2487 	int i = 0, ret;
2488 	nid_t nid = nm_i->next_scan_nid;
2489 
2490 	if (unlikely(nid >= nm_i->max_nid))
2491 		nid = 0;
2492 
2493 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2494 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2495 
2496 	/* Enough entries */
2497 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2498 		return 0;
2499 
2500 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2501 		return 0;
2502 
2503 	if (!mount) {
2504 		/* try to find free nids in free_nid_bitmap */
2505 		scan_free_nid_bits(sbi);
2506 
2507 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2508 			return 0;
2509 	}
2510 
2511 	/* readahead nat pages to be scanned */
2512 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2513 							META_NAT, true);
2514 
2515 	f2fs_down_read(&nm_i->nat_tree_lock);
2516 
2517 	while (1) {
2518 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2519 						nm_i->nat_block_bitmap)) {
2520 			struct page *page = get_current_nat_page(sbi, nid);
2521 
2522 			if (IS_ERR(page)) {
2523 				ret = PTR_ERR(page);
2524 			} else {
2525 				ret = scan_nat_page(sbi, page, nid);
2526 				f2fs_put_page(page, 1);
2527 			}
2528 
2529 			if (ret) {
2530 				f2fs_up_read(&nm_i->nat_tree_lock);
2531 
2532 				if (ret == -EFSCORRUPTED) {
2533 					f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2534 					set_sbi_flag(sbi, SBI_NEED_FSCK);
2535 					f2fs_handle_error(sbi,
2536 						ERROR_INCONSISTENT_NAT);
2537 				}
2538 
2539 				return ret;
2540 			}
2541 		}
2542 
2543 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2544 		if (unlikely(nid >= nm_i->max_nid))
2545 			nid = 0;
2546 
2547 		if (++i >= FREE_NID_PAGES)
2548 			break;
2549 	}
2550 
2551 	/* go to the next free nat pages to find free nids abundantly */
2552 	nm_i->next_scan_nid = nid;
2553 
2554 	/* find free nids from current sum_pages */
2555 	scan_curseg_cache(sbi);
2556 
2557 	f2fs_up_read(&nm_i->nat_tree_lock);
2558 
2559 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2560 					nm_i->ra_nid_pages, META_NAT, false);
2561 
2562 	return 0;
2563 }
2564 
2565 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2566 {
2567 	int ret;
2568 
2569 	mutex_lock(&NM_I(sbi)->build_lock);
2570 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2571 	mutex_unlock(&NM_I(sbi)->build_lock);
2572 
2573 	return ret;
2574 }
2575 
2576 /*
2577  * If this function returns success, caller can obtain a new nid
2578  * from second parameter of this function.
2579  * The returned nid could be used ino as well as nid when inode is created.
2580  */
2581 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2582 {
2583 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 	struct free_nid *i = NULL;
2585 retry:
2586 	if (time_to_inject(sbi, FAULT_ALLOC_NID))
2587 		return false;
2588 
2589 	spin_lock(&nm_i->nid_list_lock);
2590 
2591 	if (unlikely(nm_i->available_nids == 0)) {
2592 		spin_unlock(&nm_i->nid_list_lock);
2593 		return false;
2594 	}
2595 
2596 	/* We should not use stale free nids created by f2fs_build_free_nids */
2597 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2598 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2599 		i = list_first_entry(&nm_i->free_nid_list,
2600 					struct free_nid, list);
2601 		*nid = i->nid;
2602 
2603 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2604 		nm_i->available_nids--;
2605 
2606 		update_free_nid_bitmap(sbi, *nid, false, false);
2607 
2608 		spin_unlock(&nm_i->nid_list_lock);
2609 		return true;
2610 	}
2611 	spin_unlock(&nm_i->nid_list_lock);
2612 
2613 	/* Let's scan nat pages and its caches to get free nids */
2614 	if (!f2fs_build_free_nids(sbi, true, false))
2615 		goto retry;
2616 	return false;
2617 }
2618 
2619 /*
2620  * f2fs_alloc_nid() should be called prior to this function.
2621  */
2622 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2623 {
2624 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2625 	struct free_nid *i;
2626 
2627 	spin_lock(&nm_i->nid_list_lock);
2628 	i = __lookup_free_nid_list(nm_i, nid);
2629 	f2fs_bug_on(sbi, !i);
2630 	__remove_free_nid(sbi, i, PREALLOC_NID);
2631 	spin_unlock(&nm_i->nid_list_lock);
2632 
2633 	kmem_cache_free(free_nid_slab, i);
2634 }
2635 
2636 /*
2637  * f2fs_alloc_nid() should be called prior to this function.
2638  */
2639 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2640 {
2641 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2642 	struct free_nid *i;
2643 	bool need_free = false;
2644 
2645 	if (!nid)
2646 		return;
2647 
2648 	spin_lock(&nm_i->nid_list_lock);
2649 	i = __lookup_free_nid_list(nm_i, nid);
2650 	f2fs_bug_on(sbi, !i);
2651 
2652 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2653 		__remove_free_nid(sbi, i, PREALLOC_NID);
2654 		need_free = true;
2655 	} else {
2656 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2657 	}
2658 
2659 	nm_i->available_nids++;
2660 
2661 	update_free_nid_bitmap(sbi, nid, true, false);
2662 
2663 	spin_unlock(&nm_i->nid_list_lock);
2664 
2665 	if (need_free)
2666 		kmem_cache_free(free_nid_slab, i);
2667 }
2668 
2669 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2670 {
2671 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2672 	int nr = nr_shrink;
2673 
2674 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2675 		return 0;
2676 
2677 	if (!mutex_trylock(&nm_i->build_lock))
2678 		return 0;
2679 
2680 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2681 		struct free_nid *i, *next;
2682 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2683 
2684 		spin_lock(&nm_i->nid_list_lock);
2685 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2686 			if (!nr_shrink || !batch ||
2687 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2688 				break;
2689 			__remove_free_nid(sbi, i, FREE_NID);
2690 			kmem_cache_free(free_nid_slab, i);
2691 			nr_shrink--;
2692 			batch--;
2693 		}
2694 		spin_unlock(&nm_i->nid_list_lock);
2695 	}
2696 
2697 	mutex_unlock(&nm_i->build_lock);
2698 
2699 	return nr - nr_shrink;
2700 }
2701 
2702 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2703 {
2704 	void *src_addr, *dst_addr;
2705 	size_t inline_size;
2706 	struct page *ipage;
2707 	struct f2fs_inode *ri;
2708 
2709 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2710 	if (IS_ERR(ipage))
2711 		return PTR_ERR(ipage);
2712 
2713 	ri = F2FS_INODE(page);
2714 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2715 		if (!f2fs_has_inline_xattr(inode)) {
2716 			set_inode_flag(inode, FI_INLINE_XATTR);
2717 			stat_inc_inline_xattr(inode);
2718 		}
2719 	} else {
2720 		if (f2fs_has_inline_xattr(inode)) {
2721 			stat_dec_inline_xattr(inode);
2722 			clear_inode_flag(inode, FI_INLINE_XATTR);
2723 		}
2724 		goto update_inode;
2725 	}
2726 
2727 	dst_addr = inline_xattr_addr(inode, ipage);
2728 	src_addr = inline_xattr_addr(inode, page);
2729 	inline_size = inline_xattr_size(inode);
2730 
2731 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2732 	memcpy(dst_addr, src_addr, inline_size);
2733 update_inode:
2734 	f2fs_update_inode(inode, ipage);
2735 	f2fs_put_page(ipage, 1);
2736 	return 0;
2737 }
2738 
2739 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2740 {
2741 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2743 	nid_t new_xnid;
2744 	struct dnode_of_data dn;
2745 	struct node_info ni;
2746 	struct page *xpage;
2747 	int err;
2748 
2749 	if (!prev_xnid)
2750 		goto recover_xnid;
2751 
2752 	/* 1: invalidate the previous xattr nid */
2753 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2754 	if (err)
2755 		return err;
2756 
2757 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2758 	dec_valid_node_count(sbi, inode, false);
2759 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2760 
2761 recover_xnid:
2762 	/* 2: update xattr nid in inode */
2763 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2764 		return -ENOSPC;
2765 
2766 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2767 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2768 	if (IS_ERR(xpage)) {
2769 		f2fs_alloc_nid_failed(sbi, new_xnid);
2770 		return PTR_ERR(xpage);
2771 	}
2772 
2773 	f2fs_alloc_nid_done(sbi, new_xnid);
2774 	f2fs_update_inode_page(inode);
2775 
2776 	/* 3: update and set xattr node page dirty */
2777 	if (page) {
2778 		memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2779 				VALID_XATTR_BLOCK_SIZE);
2780 		set_page_dirty(xpage);
2781 	}
2782 	f2fs_put_page(xpage, 1);
2783 
2784 	return 0;
2785 }
2786 
2787 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2788 {
2789 	struct f2fs_inode *src, *dst;
2790 	nid_t ino = ino_of_node(page);
2791 	struct node_info old_ni, new_ni;
2792 	struct page *ipage;
2793 	int err;
2794 
2795 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2796 	if (err)
2797 		return err;
2798 
2799 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2800 		return -EINVAL;
2801 retry:
2802 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2803 	if (!ipage) {
2804 		memalloc_retry_wait(GFP_NOFS);
2805 		goto retry;
2806 	}
2807 
2808 	/* Should not use this inode from free nid list */
2809 	remove_free_nid(sbi, ino);
2810 
2811 	if (!PageUptodate(ipage))
2812 		SetPageUptodate(ipage);
2813 	fill_node_footer(ipage, ino, ino, 0, true);
2814 	set_cold_node(ipage, false);
2815 
2816 	src = F2FS_INODE(page);
2817 	dst = F2FS_INODE(ipage);
2818 
2819 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2820 	dst->i_size = 0;
2821 	dst->i_blocks = cpu_to_le64(1);
2822 	dst->i_links = cpu_to_le32(1);
2823 	dst->i_xattr_nid = 0;
2824 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2825 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2826 		dst->i_extra_isize = src->i_extra_isize;
2827 
2828 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2829 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2830 							i_inline_xattr_size))
2831 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2832 
2833 		if (f2fs_sb_has_project_quota(sbi) &&
2834 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2835 								i_projid))
2836 			dst->i_projid = src->i_projid;
2837 
2838 		if (f2fs_sb_has_inode_crtime(sbi) &&
2839 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2840 							i_crtime_nsec)) {
2841 			dst->i_crtime = src->i_crtime;
2842 			dst->i_crtime_nsec = src->i_crtime_nsec;
2843 		}
2844 	}
2845 
2846 	new_ni = old_ni;
2847 	new_ni.ino = ino;
2848 
2849 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2850 		WARN_ON(1);
2851 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2852 	inc_valid_inode_count(sbi);
2853 	set_page_dirty(ipage);
2854 	f2fs_put_page(ipage, 1);
2855 	return 0;
2856 }
2857 
2858 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2859 			unsigned int segno, struct f2fs_summary_block *sum)
2860 {
2861 	struct f2fs_node *rn;
2862 	struct f2fs_summary *sum_entry;
2863 	block_t addr;
2864 	int i, idx, last_offset, nrpages;
2865 
2866 	/* scan the node segment */
2867 	last_offset = BLKS_PER_SEG(sbi);
2868 	addr = START_BLOCK(sbi, segno);
2869 	sum_entry = &sum->entries[0];
2870 
2871 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2872 		nrpages = bio_max_segs(last_offset - i);
2873 
2874 		/* readahead node pages */
2875 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2876 
2877 		for (idx = addr; idx < addr + nrpages; idx++) {
2878 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2879 
2880 			if (IS_ERR(page))
2881 				return PTR_ERR(page);
2882 
2883 			rn = F2FS_NODE(page);
2884 			sum_entry->nid = rn->footer.nid;
2885 			sum_entry->version = 0;
2886 			sum_entry->ofs_in_node = 0;
2887 			sum_entry++;
2888 			f2fs_put_page(page, 1);
2889 		}
2890 
2891 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2892 							addr + nrpages);
2893 	}
2894 	return 0;
2895 }
2896 
2897 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2898 {
2899 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2900 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2901 	struct f2fs_journal *journal = curseg->journal;
2902 	int i;
2903 
2904 	down_write(&curseg->journal_rwsem);
2905 	for (i = 0; i < nats_in_cursum(journal); i++) {
2906 		struct nat_entry *ne;
2907 		struct f2fs_nat_entry raw_ne;
2908 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2909 
2910 		if (f2fs_check_nid_range(sbi, nid))
2911 			continue;
2912 
2913 		raw_ne = nat_in_journal(journal, i);
2914 
2915 		ne = __lookup_nat_cache(nm_i, nid);
2916 		if (!ne) {
2917 			ne = __alloc_nat_entry(sbi, nid, true);
2918 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2919 		}
2920 
2921 		/*
2922 		 * if a free nat in journal has not been used after last
2923 		 * checkpoint, we should remove it from available nids,
2924 		 * since later we will add it again.
2925 		 */
2926 		if (!get_nat_flag(ne, IS_DIRTY) &&
2927 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2928 			spin_lock(&nm_i->nid_list_lock);
2929 			nm_i->available_nids--;
2930 			spin_unlock(&nm_i->nid_list_lock);
2931 		}
2932 
2933 		__set_nat_cache_dirty(nm_i, ne);
2934 	}
2935 	update_nats_in_cursum(journal, -i);
2936 	up_write(&curseg->journal_rwsem);
2937 }
2938 
2939 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2940 						struct list_head *head, int max)
2941 {
2942 	struct nat_entry_set *cur;
2943 
2944 	if (nes->entry_cnt >= max)
2945 		goto add_out;
2946 
2947 	list_for_each_entry(cur, head, set_list) {
2948 		if (cur->entry_cnt >= nes->entry_cnt) {
2949 			list_add(&nes->set_list, cur->set_list.prev);
2950 			return;
2951 		}
2952 	}
2953 add_out:
2954 	list_add_tail(&nes->set_list, head);
2955 }
2956 
2957 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2958 							unsigned int valid)
2959 {
2960 	if (valid == 0) {
2961 		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2962 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2963 		return;
2964 	}
2965 
2966 	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2967 	if (valid == NAT_ENTRY_PER_BLOCK)
2968 		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2969 	else
2970 		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2971 }
2972 
2973 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2974 						struct page *page)
2975 {
2976 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2977 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2978 	struct f2fs_nat_block *nat_blk = page_address(page);
2979 	int valid = 0;
2980 	int i = 0;
2981 
2982 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2983 		return;
2984 
2985 	if (nat_index == 0) {
2986 		valid = 1;
2987 		i = 1;
2988 	}
2989 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2990 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2991 			valid++;
2992 	}
2993 
2994 	__update_nat_bits(nm_i, nat_index, valid);
2995 }
2996 
2997 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2998 {
2999 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3000 	unsigned int nat_ofs;
3001 
3002 	f2fs_down_read(&nm_i->nat_tree_lock);
3003 
3004 	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
3005 		unsigned int valid = 0, nid_ofs = 0;
3006 
3007 		/* handle nid zero due to it should never be used */
3008 		if (unlikely(nat_ofs == 0)) {
3009 			valid = 1;
3010 			nid_ofs = 1;
3011 		}
3012 
3013 		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
3014 			if (!test_bit_le(nid_ofs,
3015 					nm_i->free_nid_bitmap[nat_ofs]))
3016 				valid++;
3017 		}
3018 
3019 		__update_nat_bits(nm_i, nat_ofs, valid);
3020 	}
3021 
3022 	f2fs_up_read(&nm_i->nat_tree_lock);
3023 }
3024 
3025 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3026 		struct nat_entry_set *set, struct cp_control *cpc)
3027 {
3028 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3029 	struct f2fs_journal *journal = curseg->journal;
3030 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3031 	bool to_journal = true;
3032 	struct f2fs_nat_block *nat_blk;
3033 	struct nat_entry *ne, *cur;
3034 	struct page *page = NULL;
3035 
3036 	/*
3037 	 * there are two steps to flush nat entries:
3038 	 * #1, flush nat entries to journal in current hot data summary block.
3039 	 * #2, flush nat entries to nat page.
3040 	 */
3041 	if ((cpc->reason & CP_UMOUNT) ||
3042 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3043 		to_journal = false;
3044 
3045 	if (to_journal) {
3046 		down_write(&curseg->journal_rwsem);
3047 	} else {
3048 		page = get_next_nat_page(sbi, start_nid);
3049 		if (IS_ERR(page))
3050 			return PTR_ERR(page);
3051 
3052 		nat_blk = page_address(page);
3053 		f2fs_bug_on(sbi, !nat_blk);
3054 	}
3055 
3056 	/* flush dirty nats in nat entry set */
3057 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3058 		struct f2fs_nat_entry *raw_ne;
3059 		nid_t nid = nat_get_nid(ne);
3060 		int offset;
3061 
3062 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3063 
3064 		if (to_journal) {
3065 			offset = f2fs_lookup_journal_in_cursum(journal,
3066 							NAT_JOURNAL, nid, 1);
3067 			f2fs_bug_on(sbi, offset < 0);
3068 			raw_ne = &nat_in_journal(journal, offset);
3069 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3070 		} else {
3071 			raw_ne = &nat_blk->entries[nid - start_nid];
3072 		}
3073 		raw_nat_from_node_info(raw_ne, &ne->ni);
3074 		nat_reset_flag(ne);
3075 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3076 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3077 			add_free_nid(sbi, nid, false, true);
3078 		} else {
3079 			spin_lock(&NM_I(sbi)->nid_list_lock);
3080 			update_free_nid_bitmap(sbi, nid, false, false);
3081 			spin_unlock(&NM_I(sbi)->nid_list_lock);
3082 		}
3083 	}
3084 
3085 	if (to_journal) {
3086 		up_write(&curseg->journal_rwsem);
3087 	} else {
3088 		update_nat_bits(sbi, start_nid, page);
3089 		f2fs_put_page(page, 1);
3090 	}
3091 
3092 	/* Allow dirty nats by node block allocation in write_begin */
3093 	if (!set->entry_cnt) {
3094 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3095 		kmem_cache_free(nat_entry_set_slab, set);
3096 	}
3097 	return 0;
3098 }
3099 
3100 /*
3101  * This function is called during the checkpointing process.
3102  */
3103 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3104 {
3105 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3106 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3107 	struct f2fs_journal *journal = curseg->journal;
3108 	struct nat_entry_set *setvec[NAT_VEC_SIZE];
3109 	struct nat_entry_set *set, *tmp;
3110 	unsigned int found;
3111 	nid_t set_idx = 0;
3112 	LIST_HEAD(sets);
3113 	int err = 0;
3114 
3115 	/*
3116 	 * during unmount, let's flush nat_bits before checking
3117 	 * nat_cnt[DIRTY_NAT].
3118 	 */
3119 	if (cpc->reason & CP_UMOUNT) {
3120 		f2fs_down_write(&nm_i->nat_tree_lock);
3121 		remove_nats_in_journal(sbi);
3122 		f2fs_up_write(&nm_i->nat_tree_lock);
3123 	}
3124 
3125 	if (!nm_i->nat_cnt[DIRTY_NAT])
3126 		return 0;
3127 
3128 	f2fs_down_write(&nm_i->nat_tree_lock);
3129 
3130 	/*
3131 	 * if there are no enough space in journal to store dirty nat
3132 	 * entries, remove all entries from journal and merge them
3133 	 * into nat entry set.
3134 	 */
3135 	if (cpc->reason & CP_UMOUNT ||
3136 		!__has_cursum_space(journal,
3137 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3138 		remove_nats_in_journal(sbi);
3139 
3140 	while ((found = __gang_lookup_nat_set(nm_i,
3141 					set_idx, NAT_VEC_SIZE, setvec))) {
3142 		unsigned idx;
3143 
3144 		set_idx = setvec[found - 1]->set + 1;
3145 		for (idx = 0; idx < found; idx++)
3146 			__adjust_nat_entry_set(setvec[idx], &sets,
3147 						MAX_NAT_JENTRIES(journal));
3148 	}
3149 
3150 	/* flush dirty nats in nat entry set */
3151 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3152 		err = __flush_nat_entry_set(sbi, set, cpc);
3153 		if (err)
3154 			break;
3155 	}
3156 
3157 	f2fs_up_write(&nm_i->nat_tree_lock);
3158 	/* Allow dirty nats by node block allocation in write_begin */
3159 
3160 	return err;
3161 }
3162 
3163 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3164 {
3165 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3166 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3167 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3168 	unsigned int i;
3169 	__u64 cp_ver = cur_cp_version(ckpt);
3170 	block_t nat_bits_addr;
3171 
3172 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3173 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3174 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3175 	if (!nm_i->nat_bits)
3176 		return -ENOMEM;
3177 
3178 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3179 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3180 
3181 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3182 		return 0;
3183 
3184 	nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3185 						nm_i->nat_bits_blocks;
3186 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3187 		struct page *page;
3188 
3189 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3190 		if (IS_ERR(page))
3191 			return PTR_ERR(page);
3192 
3193 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3194 					page_address(page), F2FS_BLKSIZE);
3195 		f2fs_put_page(page, 1);
3196 	}
3197 
3198 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3199 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3200 		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3201 		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3202 			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3203 		return 0;
3204 	}
3205 
3206 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3207 	return 0;
3208 }
3209 
3210 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3211 {
3212 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3213 	unsigned int i = 0;
3214 	nid_t nid, last_nid;
3215 
3216 	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3217 		return;
3218 
3219 	for (i = 0; i < nm_i->nat_blocks; i++) {
3220 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3221 		if (i >= nm_i->nat_blocks)
3222 			break;
3223 
3224 		__set_bit_le(i, nm_i->nat_block_bitmap);
3225 
3226 		nid = i * NAT_ENTRY_PER_BLOCK;
3227 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3228 
3229 		spin_lock(&NM_I(sbi)->nid_list_lock);
3230 		for (; nid < last_nid; nid++)
3231 			update_free_nid_bitmap(sbi, nid, true, true);
3232 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3233 	}
3234 
3235 	for (i = 0; i < nm_i->nat_blocks; i++) {
3236 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3237 		if (i >= nm_i->nat_blocks)
3238 			break;
3239 
3240 		__set_bit_le(i, nm_i->nat_block_bitmap);
3241 	}
3242 }
3243 
3244 static int init_node_manager(struct f2fs_sb_info *sbi)
3245 {
3246 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3247 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3248 	unsigned char *version_bitmap;
3249 	unsigned int nat_segs;
3250 	int err;
3251 
3252 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3253 
3254 	/* segment_count_nat includes pair segment so divide to 2. */
3255 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3256 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3257 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3258 
3259 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3260 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3261 						F2FS_RESERVED_NODE_NUM;
3262 	nm_i->nid_cnt[FREE_NID] = 0;
3263 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3264 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3265 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3266 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3267 	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3268 
3269 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3270 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3271 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3272 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3273 	INIT_LIST_HEAD(&nm_i->nat_entries);
3274 	spin_lock_init(&nm_i->nat_list_lock);
3275 
3276 	mutex_init(&nm_i->build_lock);
3277 	spin_lock_init(&nm_i->nid_list_lock);
3278 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3279 
3280 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3281 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3282 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3283 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3284 					GFP_KERNEL);
3285 	if (!nm_i->nat_bitmap)
3286 		return -ENOMEM;
3287 
3288 	err = __get_nat_bitmaps(sbi);
3289 	if (err)
3290 		return err;
3291 
3292 #ifdef CONFIG_F2FS_CHECK_FS
3293 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3294 					GFP_KERNEL);
3295 	if (!nm_i->nat_bitmap_mir)
3296 		return -ENOMEM;
3297 #endif
3298 
3299 	return 0;
3300 }
3301 
3302 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3303 {
3304 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3305 	int i;
3306 
3307 	nm_i->free_nid_bitmap =
3308 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3309 					      nm_i->nat_blocks),
3310 			      GFP_KERNEL);
3311 	if (!nm_i->free_nid_bitmap)
3312 		return -ENOMEM;
3313 
3314 	for (i = 0; i < nm_i->nat_blocks; i++) {
3315 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3316 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3317 		if (!nm_i->free_nid_bitmap[i])
3318 			return -ENOMEM;
3319 	}
3320 
3321 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3322 								GFP_KERNEL);
3323 	if (!nm_i->nat_block_bitmap)
3324 		return -ENOMEM;
3325 
3326 	nm_i->free_nid_count =
3327 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3328 					      nm_i->nat_blocks),
3329 			      GFP_KERNEL);
3330 	if (!nm_i->free_nid_count)
3331 		return -ENOMEM;
3332 	return 0;
3333 }
3334 
3335 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3336 {
3337 	int err;
3338 
3339 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3340 							GFP_KERNEL);
3341 	if (!sbi->nm_info)
3342 		return -ENOMEM;
3343 
3344 	err = init_node_manager(sbi);
3345 	if (err)
3346 		return err;
3347 
3348 	err = init_free_nid_cache(sbi);
3349 	if (err)
3350 		return err;
3351 
3352 	/* load free nid status from nat_bits table */
3353 	load_free_nid_bitmap(sbi);
3354 
3355 	return f2fs_build_free_nids(sbi, true, true);
3356 }
3357 
3358 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3359 {
3360 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3361 	struct free_nid *i, *next_i;
3362 	void *vec[NAT_VEC_SIZE];
3363 	struct nat_entry **natvec = (struct nat_entry **)vec;
3364 	struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3365 	nid_t nid = 0;
3366 	unsigned int found;
3367 
3368 	if (!nm_i)
3369 		return;
3370 
3371 	/* destroy free nid list */
3372 	spin_lock(&nm_i->nid_list_lock);
3373 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3374 		__remove_free_nid(sbi, i, FREE_NID);
3375 		spin_unlock(&nm_i->nid_list_lock);
3376 		kmem_cache_free(free_nid_slab, i);
3377 		spin_lock(&nm_i->nid_list_lock);
3378 	}
3379 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3380 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3381 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3382 	spin_unlock(&nm_i->nid_list_lock);
3383 
3384 	/* destroy nat cache */
3385 	f2fs_down_write(&nm_i->nat_tree_lock);
3386 	while ((found = __gang_lookup_nat_cache(nm_i,
3387 					nid, NAT_VEC_SIZE, natvec))) {
3388 		unsigned idx;
3389 
3390 		nid = nat_get_nid(natvec[found - 1]) + 1;
3391 		for (idx = 0; idx < found; idx++) {
3392 			spin_lock(&nm_i->nat_list_lock);
3393 			list_del(&natvec[idx]->list);
3394 			spin_unlock(&nm_i->nat_list_lock);
3395 
3396 			__del_from_nat_cache(nm_i, natvec[idx]);
3397 		}
3398 	}
3399 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3400 
3401 	/* destroy nat set cache */
3402 	nid = 0;
3403 	memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3404 	while ((found = __gang_lookup_nat_set(nm_i,
3405 					nid, NAT_VEC_SIZE, setvec))) {
3406 		unsigned idx;
3407 
3408 		nid = setvec[found - 1]->set + 1;
3409 		for (idx = 0; idx < found; idx++) {
3410 			/* entry_cnt is not zero, when cp_error was occurred */
3411 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3412 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3413 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3414 		}
3415 	}
3416 	f2fs_up_write(&nm_i->nat_tree_lock);
3417 
3418 	kvfree(nm_i->nat_block_bitmap);
3419 	if (nm_i->free_nid_bitmap) {
3420 		int i;
3421 
3422 		for (i = 0; i < nm_i->nat_blocks; i++)
3423 			kvfree(nm_i->free_nid_bitmap[i]);
3424 		kvfree(nm_i->free_nid_bitmap);
3425 	}
3426 	kvfree(nm_i->free_nid_count);
3427 
3428 	kvfree(nm_i->nat_bitmap);
3429 	kvfree(nm_i->nat_bits);
3430 #ifdef CONFIG_F2FS_CHECK_FS
3431 	kvfree(nm_i->nat_bitmap_mir);
3432 #endif
3433 	sbi->nm_info = NULL;
3434 	kfree(nm_i);
3435 }
3436 
3437 int __init f2fs_create_node_manager_caches(void)
3438 {
3439 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3440 			sizeof(struct nat_entry));
3441 	if (!nat_entry_slab)
3442 		goto fail;
3443 
3444 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3445 			sizeof(struct free_nid));
3446 	if (!free_nid_slab)
3447 		goto destroy_nat_entry;
3448 
3449 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3450 			sizeof(struct nat_entry_set));
3451 	if (!nat_entry_set_slab)
3452 		goto destroy_free_nid;
3453 
3454 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3455 			sizeof(struct fsync_node_entry));
3456 	if (!fsync_node_entry_slab)
3457 		goto destroy_nat_entry_set;
3458 	return 0;
3459 
3460 destroy_nat_entry_set:
3461 	kmem_cache_destroy(nat_entry_set_slab);
3462 destroy_free_nid:
3463 	kmem_cache_destroy(free_nid_slab);
3464 destroy_nat_entry:
3465 	kmem_cache_destroy(nat_entry_slab);
3466 fail:
3467 	return -ENOMEM;
3468 }
3469 
3470 void f2fs_destroy_node_manager_caches(void)
3471 {
3472 	kmem_cache_destroy(fsync_node_entry_slab);
3473 	kmem_cache_destroy(nat_entry_set_slab);
3474 	kmem_cache_destroy(free_nid_slab);
3475 	kmem_cache_destroy(nat_entry_slab);
3476 }
3477