xref: /openbmc/linux/fs/f2fs/node.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27 
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31 
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34 	struct f2fs_nm_info *nm_i = NM_I(sbi);
35 	struct sysinfo val;
36 	unsigned long avail_ram;
37 	unsigned long mem_size = 0;
38 	bool res = false;
39 
40 	si_meminfo(&val);
41 
42 	/* only uses low memory */
43 	avail_ram = val.totalram - val.totalhigh;
44 
45 	/*
46 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 	 */
48 	if (type == FREE_NIDS) {
49 		mem_size = (nm_i->nid_cnt[FREE_NID] *
50 				sizeof(struct free_nid)) >> PAGE_SHIFT;
51 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 	} else if (type == NAT_ENTRIES) {
53 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 							PAGE_SHIFT;
55 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 		if (excess_cached_nats(sbi))
57 			res = false;
58 	} else if (type == DIRTY_DENTS) {
59 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 			return false;
61 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 	} else if (type == INO_ENTRIES) {
64 		int i;
65 
66 		for (i = 0; i < MAX_INO_ENTRY; i++)
67 			mem_size += sbi->im[i].ino_num *
68 						sizeof(struct ino_entry);
69 		mem_size >>= PAGE_SHIFT;
70 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 	} else if (type == EXTENT_CACHE) {
72 		mem_size = (atomic_read(&sbi->total_ext_tree) *
73 				sizeof(struct extent_tree) +
74 				atomic_read(&sbi->total_ext_node) *
75 				sizeof(struct extent_node)) >> PAGE_SHIFT;
76 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 	} else if (type == INMEM_PAGES) {
78 		/* it allows 20% / total_ram for inmemory pages */
79 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80 		res = mem_size < (val.totalram / 5);
81 	} else {
82 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83 			return true;
84 	}
85 	return res;
86 }
87 
88 static void clear_node_page_dirty(struct page *page)
89 {
90 	struct address_space *mapping = page->mapping;
91 	unsigned int long flags;
92 
93 	if (PageDirty(page)) {
94 		spin_lock_irqsave(&mapping->tree_lock, flags);
95 		radix_tree_tag_clear(&mapping->page_tree,
96 				page_index(page),
97 				PAGECACHE_TAG_DIRTY);
98 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
99 
100 		clear_page_dirty_for_io(page);
101 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102 	}
103 	ClearPageUptodate(page);
104 }
105 
106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 	pgoff_t index = current_nat_addr(sbi, nid);
109 	return get_meta_page(sbi, index);
110 }
111 
112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114 	struct page *src_page;
115 	struct page *dst_page;
116 	pgoff_t src_off;
117 	pgoff_t dst_off;
118 	void *src_addr;
119 	void *dst_addr;
120 	struct f2fs_nm_info *nm_i = NM_I(sbi);
121 
122 	src_off = current_nat_addr(sbi, nid);
123 	dst_off = next_nat_addr(sbi, src_off);
124 
125 	/* get current nat block page with lock */
126 	src_page = get_meta_page(sbi, src_off);
127 	dst_page = grab_meta_page(sbi, dst_off);
128 	f2fs_bug_on(sbi, PageDirty(src_page));
129 
130 	src_addr = page_address(src_page);
131 	dst_addr = page_address(dst_page);
132 	memcpy(dst_addr, src_addr, PAGE_SIZE);
133 	set_page_dirty(dst_page);
134 	f2fs_put_page(src_page, 1);
135 
136 	set_to_next_nat(nm_i, nid);
137 
138 	return dst_page;
139 }
140 
141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142 {
143 	struct nat_entry *new;
144 
145 	if (no_fail)
146 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
147 	else
148 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149 	if (new) {
150 		nat_set_nid(new, nid);
151 		nat_reset_flag(new);
152 	}
153 	return new;
154 }
155 
156 static void __free_nat_entry(struct nat_entry *e)
157 {
158 	kmem_cache_free(nat_entry_slab, e);
159 }
160 
161 /* must be locked by nat_tree_lock */
162 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
163 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
164 {
165 	if (no_fail)
166 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
167 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
168 		return NULL;
169 
170 	if (raw_ne)
171 		node_info_from_raw_nat(&ne->ni, raw_ne);
172 	list_add_tail(&ne->list, &nm_i->nat_entries);
173 	nm_i->nat_cnt++;
174 	return ne;
175 }
176 
177 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
178 {
179 	return radix_tree_lookup(&nm_i->nat_root, n);
180 }
181 
182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
183 		nid_t start, unsigned int nr, struct nat_entry **ep)
184 {
185 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
186 }
187 
188 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
189 {
190 	list_del(&e->list);
191 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
192 	nm_i->nat_cnt--;
193 	__free_nat_entry(e);
194 }
195 
196 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
197 						struct nat_entry *ne)
198 {
199 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
200 	struct nat_entry_set *head;
201 
202 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
203 	if (!head) {
204 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
205 
206 		INIT_LIST_HEAD(&head->entry_list);
207 		INIT_LIST_HEAD(&head->set_list);
208 		head->set = set;
209 		head->entry_cnt = 0;
210 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
211 	}
212 
213 	if (get_nat_flag(ne, IS_DIRTY))
214 		goto refresh_list;
215 
216 	nm_i->dirty_nat_cnt++;
217 	head->entry_cnt++;
218 	set_nat_flag(ne, IS_DIRTY, true);
219 refresh_list:
220 	if (nat_get_blkaddr(ne) == NEW_ADDR)
221 		list_del_init(&ne->list);
222 	else
223 		list_move_tail(&ne->list, &head->entry_list);
224 }
225 
226 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
227 		struct nat_entry_set *set, struct nat_entry *ne)
228 {
229 	list_move_tail(&ne->list, &nm_i->nat_entries);
230 	set_nat_flag(ne, IS_DIRTY, false);
231 	set->entry_cnt--;
232 	nm_i->dirty_nat_cnt--;
233 }
234 
235 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
236 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
237 {
238 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
239 							start, nr);
240 }
241 
242 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
243 {
244 	struct f2fs_nm_info *nm_i = NM_I(sbi);
245 	struct nat_entry *e;
246 	bool need = false;
247 
248 	down_read(&nm_i->nat_tree_lock);
249 	e = __lookup_nat_cache(nm_i, nid);
250 	if (e) {
251 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
252 				!get_nat_flag(e, HAS_FSYNCED_INODE))
253 			need = true;
254 	}
255 	up_read(&nm_i->nat_tree_lock);
256 	return need;
257 }
258 
259 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
260 {
261 	struct f2fs_nm_info *nm_i = NM_I(sbi);
262 	struct nat_entry *e;
263 	bool is_cp = true;
264 
265 	down_read(&nm_i->nat_tree_lock);
266 	e = __lookup_nat_cache(nm_i, nid);
267 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
268 		is_cp = false;
269 	up_read(&nm_i->nat_tree_lock);
270 	return is_cp;
271 }
272 
273 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
274 {
275 	struct f2fs_nm_info *nm_i = NM_I(sbi);
276 	struct nat_entry *e;
277 	bool need_update = true;
278 
279 	down_read(&nm_i->nat_tree_lock);
280 	e = __lookup_nat_cache(nm_i, ino);
281 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
282 			(get_nat_flag(e, IS_CHECKPOINTED) ||
283 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
284 		need_update = false;
285 	up_read(&nm_i->nat_tree_lock);
286 	return need_update;
287 }
288 
289 /* must be locked by nat_tree_lock */
290 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
291 						struct f2fs_nat_entry *ne)
292 {
293 	struct f2fs_nm_info *nm_i = NM_I(sbi);
294 	struct nat_entry *new, *e;
295 
296 	new = __alloc_nat_entry(nid, false);
297 	if (!new)
298 		return;
299 
300 	down_write(&nm_i->nat_tree_lock);
301 	e = __lookup_nat_cache(nm_i, nid);
302 	if (!e)
303 		e = __init_nat_entry(nm_i, new, ne, false);
304 	else
305 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
306 				nat_get_blkaddr(e) !=
307 					le32_to_cpu(ne->block_addr) ||
308 				nat_get_version(e) != ne->version);
309 	up_write(&nm_i->nat_tree_lock);
310 	if (e != new)
311 		__free_nat_entry(new);
312 }
313 
314 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
315 			block_t new_blkaddr, bool fsync_done)
316 {
317 	struct f2fs_nm_info *nm_i = NM_I(sbi);
318 	struct nat_entry *e;
319 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
320 
321 	down_write(&nm_i->nat_tree_lock);
322 	e = __lookup_nat_cache(nm_i, ni->nid);
323 	if (!e) {
324 		e = __init_nat_entry(nm_i, new, NULL, true);
325 		copy_node_info(&e->ni, ni);
326 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
327 	} else if (new_blkaddr == NEW_ADDR) {
328 		/*
329 		 * when nid is reallocated,
330 		 * previous nat entry can be remained in nat cache.
331 		 * So, reinitialize it with new information.
332 		 */
333 		copy_node_info(&e->ni, ni);
334 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
335 	}
336 	/* let's free early to reduce memory consumption */
337 	if (e != new)
338 		__free_nat_entry(new);
339 
340 	/* sanity check */
341 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
342 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
343 			new_blkaddr == NULL_ADDR);
344 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
345 			new_blkaddr == NEW_ADDR);
346 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
347 			nat_get_blkaddr(e) != NULL_ADDR &&
348 			new_blkaddr == NEW_ADDR);
349 
350 	/* increment version no as node is removed */
351 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
352 		unsigned char version = nat_get_version(e);
353 		nat_set_version(e, inc_node_version(version));
354 	}
355 
356 	/* change address */
357 	nat_set_blkaddr(e, new_blkaddr);
358 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
359 		set_nat_flag(e, IS_CHECKPOINTED, false);
360 	__set_nat_cache_dirty(nm_i, e);
361 
362 	/* update fsync_mark if its inode nat entry is still alive */
363 	if (ni->nid != ni->ino)
364 		e = __lookup_nat_cache(nm_i, ni->ino);
365 	if (e) {
366 		if (fsync_done && ni->nid == ni->ino)
367 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
368 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
369 	}
370 	up_write(&nm_i->nat_tree_lock);
371 }
372 
373 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
374 {
375 	struct f2fs_nm_info *nm_i = NM_I(sbi);
376 	int nr = nr_shrink;
377 
378 	if (!down_write_trylock(&nm_i->nat_tree_lock))
379 		return 0;
380 
381 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
382 		struct nat_entry *ne;
383 		ne = list_first_entry(&nm_i->nat_entries,
384 					struct nat_entry, list);
385 		__del_from_nat_cache(nm_i, ne);
386 		nr_shrink--;
387 	}
388 	up_write(&nm_i->nat_tree_lock);
389 	return nr - nr_shrink;
390 }
391 
392 /*
393  * This function always returns success
394  */
395 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
396 {
397 	struct f2fs_nm_info *nm_i = NM_I(sbi);
398 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
399 	struct f2fs_journal *journal = curseg->journal;
400 	nid_t start_nid = START_NID(nid);
401 	struct f2fs_nat_block *nat_blk;
402 	struct page *page = NULL;
403 	struct f2fs_nat_entry ne;
404 	struct nat_entry *e;
405 	pgoff_t index;
406 	int i;
407 
408 	ni->nid = nid;
409 
410 	/* Check nat cache */
411 	down_read(&nm_i->nat_tree_lock);
412 	e = __lookup_nat_cache(nm_i, nid);
413 	if (e) {
414 		ni->ino = nat_get_ino(e);
415 		ni->blk_addr = nat_get_blkaddr(e);
416 		ni->version = nat_get_version(e);
417 		up_read(&nm_i->nat_tree_lock);
418 		return;
419 	}
420 
421 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
422 
423 	/* Check current segment summary */
424 	down_read(&curseg->journal_rwsem);
425 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
426 	if (i >= 0) {
427 		ne = nat_in_journal(journal, i);
428 		node_info_from_raw_nat(ni, &ne);
429 	}
430 	up_read(&curseg->journal_rwsem);
431 	if (i >= 0) {
432 		up_read(&nm_i->nat_tree_lock);
433 		goto cache;
434 	}
435 
436 	/* Fill node_info from nat page */
437 	index = current_nat_addr(sbi, nid);
438 	up_read(&nm_i->nat_tree_lock);
439 
440 	page = get_meta_page(sbi, index);
441 	nat_blk = (struct f2fs_nat_block *)page_address(page);
442 	ne = nat_blk->entries[nid - start_nid];
443 	node_info_from_raw_nat(ni, &ne);
444 	f2fs_put_page(page, 1);
445 cache:
446 	/* cache nat entry */
447 	cache_nat_entry(sbi, nid, &ne);
448 }
449 
450 /*
451  * readahead MAX_RA_NODE number of node pages.
452  */
453 static void ra_node_pages(struct page *parent, int start, int n)
454 {
455 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
456 	struct blk_plug plug;
457 	int i, end;
458 	nid_t nid;
459 
460 	blk_start_plug(&plug);
461 
462 	/* Then, try readahead for siblings of the desired node */
463 	end = start + n;
464 	end = min(end, NIDS_PER_BLOCK);
465 	for (i = start; i < end; i++) {
466 		nid = get_nid(parent, i, false);
467 		ra_node_page(sbi, nid);
468 	}
469 
470 	blk_finish_plug(&plug);
471 }
472 
473 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
474 {
475 	const long direct_index = ADDRS_PER_INODE(dn->inode);
476 	const long direct_blks = ADDRS_PER_BLOCK;
477 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
479 	int cur_level = dn->cur_level;
480 	int max_level = dn->max_level;
481 	pgoff_t base = 0;
482 
483 	if (!dn->max_level)
484 		return pgofs + 1;
485 
486 	while (max_level-- > cur_level)
487 		skipped_unit *= NIDS_PER_BLOCK;
488 
489 	switch (dn->max_level) {
490 	case 3:
491 		base += 2 * indirect_blks;
492 	case 2:
493 		base += 2 * direct_blks;
494 	case 1:
495 		base += direct_index;
496 		break;
497 	default:
498 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
499 	}
500 
501 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
502 }
503 
504 /*
505  * The maximum depth is four.
506  * Offset[0] will have raw inode offset.
507  */
508 static int get_node_path(struct inode *inode, long block,
509 				int offset[4], unsigned int noffset[4])
510 {
511 	const long direct_index = ADDRS_PER_INODE(inode);
512 	const long direct_blks = ADDRS_PER_BLOCK;
513 	const long dptrs_per_blk = NIDS_PER_BLOCK;
514 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
515 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
516 	int n = 0;
517 	int level = 0;
518 
519 	noffset[0] = 0;
520 
521 	if (block < direct_index) {
522 		offset[n] = block;
523 		goto got;
524 	}
525 	block -= direct_index;
526 	if (block < direct_blks) {
527 		offset[n++] = NODE_DIR1_BLOCK;
528 		noffset[n] = 1;
529 		offset[n] = block;
530 		level = 1;
531 		goto got;
532 	}
533 	block -= direct_blks;
534 	if (block < direct_blks) {
535 		offset[n++] = NODE_DIR2_BLOCK;
536 		noffset[n] = 2;
537 		offset[n] = block;
538 		level = 1;
539 		goto got;
540 	}
541 	block -= direct_blks;
542 	if (block < indirect_blks) {
543 		offset[n++] = NODE_IND1_BLOCK;
544 		noffset[n] = 3;
545 		offset[n++] = block / direct_blks;
546 		noffset[n] = 4 + offset[n - 1];
547 		offset[n] = block % direct_blks;
548 		level = 2;
549 		goto got;
550 	}
551 	block -= indirect_blks;
552 	if (block < indirect_blks) {
553 		offset[n++] = NODE_IND2_BLOCK;
554 		noffset[n] = 4 + dptrs_per_blk;
555 		offset[n++] = block / direct_blks;
556 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
557 		offset[n] = block % direct_blks;
558 		level = 2;
559 		goto got;
560 	}
561 	block -= indirect_blks;
562 	if (block < dindirect_blks) {
563 		offset[n++] = NODE_DIND_BLOCK;
564 		noffset[n] = 5 + (dptrs_per_blk * 2);
565 		offset[n++] = block / indirect_blks;
566 		noffset[n] = 6 + (dptrs_per_blk * 2) +
567 			      offset[n - 1] * (dptrs_per_blk + 1);
568 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
569 		noffset[n] = 7 + (dptrs_per_blk * 2) +
570 			      offset[n - 2] * (dptrs_per_blk + 1) +
571 			      offset[n - 1];
572 		offset[n] = block % direct_blks;
573 		level = 3;
574 		goto got;
575 	} else {
576 		return -E2BIG;
577 	}
578 got:
579 	return level;
580 }
581 
582 /*
583  * Caller should call f2fs_put_dnode(dn).
584  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
585  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
586  * In the case of RDONLY_NODE, we don't need to care about mutex.
587  */
588 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
589 {
590 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
591 	struct page *npage[4];
592 	struct page *parent = NULL;
593 	int offset[4];
594 	unsigned int noffset[4];
595 	nid_t nids[4];
596 	int level, i = 0;
597 	int err = 0;
598 
599 	level = get_node_path(dn->inode, index, offset, noffset);
600 	if (level < 0)
601 		return level;
602 
603 	nids[0] = dn->inode->i_ino;
604 	npage[0] = dn->inode_page;
605 
606 	if (!npage[0]) {
607 		npage[0] = get_node_page(sbi, nids[0]);
608 		if (IS_ERR(npage[0]))
609 			return PTR_ERR(npage[0]);
610 	}
611 
612 	/* if inline_data is set, should not report any block indices */
613 	if (f2fs_has_inline_data(dn->inode) && index) {
614 		err = -ENOENT;
615 		f2fs_put_page(npage[0], 1);
616 		goto release_out;
617 	}
618 
619 	parent = npage[0];
620 	if (level != 0)
621 		nids[1] = get_nid(parent, offset[0], true);
622 	dn->inode_page = npage[0];
623 	dn->inode_page_locked = true;
624 
625 	/* get indirect or direct nodes */
626 	for (i = 1; i <= level; i++) {
627 		bool done = false;
628 
629 		if (!nids[i] && mode == ALLOC_NODE) {
630 			/* alloc new node */
631 			if (!alloc_nid(sbi, &(nids[i]))) {
632 				err = -ENOSPC;
633 				goto release_pages;
634 			}
635 
636 			dn->nid = nids[i];
637 			npage[i] = new_node_page(dn, noffset[i]);
638 			if (IS_ERR(npage[i])) {
639 				alloc_nid_failed(sbi, nids[i]);
640 				err = PTR_ERR(npage[i]);
641 				goto release_pages;
642 			}
643 
644 			set_nid(parent, offset[i - 1], nids[i], i == 1);
645 			alloc_nid_done(sbi, nids[i]);
646 			done = true;
647 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
648 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
649 			if (IS_ERR(npage[i])) {
650 				err = PTR_ERR(npage[i]);
651 				goto release_pages;
652 			}
653 			done = true;
654 		}
655 		if (i == 1) {
656 			dn->inode_page_locked = false;
657 			unlock_page(parent);
658 		} else {
659 			f2fs_put_page(parent, 1);
660 		}
661 
662 		if (!done) {
663 			npage[i] = get_node_page(sbi, nids[i]);
664 			if (IS_ERR(npage[i])) {
665 				err = PTR_ERR(npage[i]);
666 				f2fs_put_page(npage[0], 0);
667 				goto release_out;
668 			}
669 		}
670 		if (i < level) {
671 			parent = npage[i];
672 			nids[i + 1] = get_nid(parent, offset[i], false);
673 		}
674 	}
675 	dn->nid = nids[level];
676 	dn->ofs_in_node = offset[level];
677 	dn->node_page = npage[level];
678 	dn->data_blkaddr = datablock_addr(dn->inode,
679 				dn->node_page, dn->ofs_in_node);
680 	return 0;
681 
682 release_pages:
683 	f2fs_put_page(parent, 1);
684 	if (i > 1)
685 		f2fs_put_page(npage[0], 0);
686 release_out:
687 	dn->inode_page = NULL;
688 	dn->node_page = NULL;
689 	if (err == -ENOENT) {
690 		dn->cur_level = i;
691 		dn->max_level = level;
692 		dn->ofs_in_node = offset[level];
693 	}
694 	return err;
695 }
696 
697 static void truncate_node(struct dnode_of_data *dn)
698 {
699 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
700 	struct node_info ni;
701 
702 	get_node_info(sbi, dn->nid, &ni);
703 
704 	/* Deallocate node address */
705 	invalidate_blocks(sbi, ni.blk_addr);
706 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
707 	set_node_addr(sbi, &ni, NULL_ADDR, false);
708 
709 	if (dn->nid == dn->inode->i_ino) {
710 		remove_orphan_inode(sbi, dn->nid);
711 		dec_valid_inode_count(sbi);
712 		f2fs_inode_synced(dn->inode);
713 	}
714 
715 	clear_node_page_dirty(dn->node_page);
716 	set_sbi_flag(sbi, SBI_IS_DIRTY);
717 
718 	f2fs_put_page(dn->node_page, 1);
719 
720 	invalidate_mapping_pages(NODE_MAPPING(sbi),
721 			dn->node_page->index, dn->node_page->index);
722 
723 	dn->node_page = NULL;
724 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
725 }
726 
727 static int truncate_dnode(struct dnode_of_data *dn)
728 {
729 	struct page *page;
730 
731 	if (dn->nid == 0)
732 		return 1;
733 
734 	/* get direct node */
735 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
736 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
737 		return 1;
738 	else if (IS_ERR(page))
739 		return PTR_ERR(page);
740 
741 	/* Make dnode_of_data for parameter */
742 	dn->node_page = page;
743 	dn->ofs_in_node = 0;
744 	truncate_data_blocks(dn);
745 	truncate_node(dn);
746 	return 1;
747 }
748 
749 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
750 						int ofs, int depth)
751 {
752 	struct dnode_of_data rdn = *dn;
753 	struct page *page;
754 	struct f2fs_node *rn;
755 	nid_t child_nid;
756 	unsigned int child_nofs;
757 	int freed = 0;
758 	int i, ret;
759 
760 	if (dn->nid == 0)
761 		return NIDS_PER_BLOCK + 1;
762 
763 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
764 
765 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
766 	if (IS_ERR(page)) {
767 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
768 		return PTR_ERR(page);
769 	}
770 
771 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
772 
773 	rn = F2FS_NODE(page);
774 	if (depth < 3) {
775 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
776 			child_nid = le32_to_cpu(rn->in.nid[i]);
777 			if (child_nid == 0)
778 				continue;
779 			rdn.nid = child_nid;
780 			ret = truncate_dnode(&rdn);
781 			if (ret < 0)
782 				goto out_err;
783 			if (set_nid(page, i, 0, false))
784 				dn->node_changed = true;
785 		}
786 	} else {
787 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
788 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
789 			child_nid = le32_to_cpu(rn->in.nid[i]);
790 			if (child_nid == 0) {
791 				child_nofs += NIDS_PER_BLOCK + 1;
792 				continue;
793 			}
794 			rdn.nid = child_nid;
795 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
796 			if (ret == (NIDS_PER_BLOCK + 1)) {
797 				if (set_nid(page, i, 0, false))
798 					dn->node_changed = true;
799 				child_nofs += ret;
800 			} else if (ret < 0 && ret != -ENOENT) {
801 				goto out_err;
802 			}
803 		}
804 		freed = child_nofs;
805 	}
806 
807 	if (!ofs) {
808 		/* remove current indirect node */
809 		dn->node_page = page;
810 		truncate_node(dn);
811 		freed++;
812 	} else {
813 		f2fs_put_page(page, 1);
814 	}
815 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
816 	return freed;
817 
818 out_err:
819 	f2fs_put_page(page, 1);
820 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
821 	return ret;
822 }
823 
824 static int truncate_partial_nodes(struct dnode_of_data *dn,
825 			struct f2fs_inode *ri, int *offset, int depth)
826 {
827 	struct page *pages[2];
828 	nid_t nid[3];
829 	nid_t child_nid;
830 	int err = 0;
831 	int i;
832 	int idx = depth - 2;
833 
834 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
835 	if (!nid[0])
836 		return 0;
837 
838 	/* get indirect nodes in the path */
839 	for (i = 0; i < idx + 1; i++) {
840 		/* reference count'll be increased */
841 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
842 		if (IS_ERR(pages[i])) {
843 			err = PTR_ERR(pages[i]);
844 			idx = i - 1;
845 			goto fail;
846 		}
847 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
848 	}
849 
850 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
851 
852 	/* free direct nodes linked to a partial indirect node */
853 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
854 		child_nid = get_nid(pages[idx], i, false);
855 		if (!child_nid)
856 			continue;
857 		dn->nid = child_nid;
858 		err = truncate_dnode(dn);
859 		if (err < 0)
860 			goto fail;
861 		if (set_nid(pages[idx], i, 0, false))
862 			dn->node_changed = true;
863 	}
864 
865 	if (offset[idx + 1] == 0) {
866 		dn->node_page = pages[idx];
867 		dn->nid = nid[idx];
868 		truncate_node(dn);
869 	} else {
870 		f2fs_put_page(pages[idx], 1);
871 	}
872 	offset[idx]++;
873 	offset[idx + 1] = 0;
874 	idx--;
875 fail:
876 	for (i = idx; i >= 0; i--)
877 		f2fs_put_page(pages[i], 1);
878 
879 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
880 
881 	return err;
882 }
883 
884 /*
885  * All the block addresses of data and nodes should be nullified.
886  */
887 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
888 {
889 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
890 	int err = 0, cont = 1;
891 	int level, offset[4], noffset[4];
892 	unsigned int nofs = 0;
893 	struct f2fs_inode *ri;
894 	struct dnode_of_data dn;
895 	struct page *page;
896 
897 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
898 
899 	level = get_node_path(inode, from, offset, noffset);
900 	if (level < 0)
901 		return level;
902 
903 	page = get_node_page(sbi, inode->i_ino);
904 	if (IS_ERR(page)) {
905 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
906 		return PTR_ERR(page);
907 	}
908 
909 	set_new_dnode(&dn, inode, page, NULL, 0);
910 	unlock_page(page);
911 
912 	ri = F2FS_INODE(page);
913 	switch (level) {
914 	case 0:
915 	case 1:
916 		nofs = noffset[1];
917 		break;
918 	case 2:
919 		nofs = noffset[1];
920 		if (!offset[level - 1])
921 			goto skip_partial;
922 		err = truncate_partial_nodes(&dn, ri, offset, level);
923 		if (err < 0 && err != -ENOENT)
924 			goto fail;
925 		nofs += 1 + NIDS_PER_BLOCK;
926 		break;
927 	case 3:
928 		nofs = 5 + 2 * NIDS_PER_BLOCK;
929 		if (!offset[level - 1])
930 			goto skip_partial;
931 		err = truncate_partial_nodes(&dn, ri, offset, level);
932 		if (err < 0 && err != -ENOENT)
933 			goto fail;
934 		break;
935 	default:
936 		BUG();
937 	}
938 
939 skip_partial:
940 	while (cont) {
941 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
942 		switch (offset[0]) {
943 		case NODE_DIR1_BLOCK:
944 		case NODE_DIR2_BLOCK:
945 			err = truncate_dnode(&dn);
946 			break;
947 
948 		case NODE_IND1_BLOCK:
949 		case NODE_IND2_BLOCK:
950 			err = truncate_nodes(&dn, nofs, offset[1], 2);
951 			break;
952 
953 		case NODE_DIND_BLOCK:
954 			err = truncate_nodes(&dn, nofs, offset[1], 3);
955 			cont = 0;
956 			break;
957 
958 		default:
959 			BUG();
960 		}
961 		if (err < 0 && err != -ENOENT)
962 			goto fail;
963 		if (offset[1] == 0 &&
964 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
965 			lock_page(page);
966 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
967 			f2fs_wait_on_page_writeback(page, NODE, true);
968 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
969 			set_page_dirty(page);
970 			unlock_page(page);
971 		}
972 		offset[1] = 0;
973 		offset[0]++;
974 		nofs += err;
975 	}
976 fail:
977 	f2fs_put_page(page, 0);
978 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
979 	return err > 0 ? 0 : err;
980 }
981 
982 /* caller must lock inode page */
983 int truncate_xattr_node(struct inode *inode)
984 {
985 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
986 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
987 	struct dnode_of_data dn;
988 	struct page *npage;
989 
990 	if (!nid)
991 		return 0;
992 
993 	npage = get_node_page(sbi, nid);
994 	if (IS_ERR(npage))
995 		return PTR_ERR(npage);
996 
997 	f2fs_i_xnid_write(inode, 0);
998 
999 	set_new_dnode(&dn, inode, NULL, npage, nid);
1000 	truncate_node(&dn);
1001 	return 0;
1002 }
1003 
1004 /*
1005  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1006  * f2fs_unlock_op().
1007  */
1008 int remove_inode_page(struct inode *inode)
1009 {
1010 	struct dnode_of_data dn;
1011 	int err;
1012 
1013 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1014 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1015 	if (err)
1016 		return err;
1017 
1018 	err = truncate_xattr_node(inode);
1019 	if (err) {
1020 		f2fs_put_dnode(&dn);
1021 		return err;
1022 	}
1023 
1024 	/* remove potential inline_data blocks */
1025 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1026 				S_ISLNK(inode->i_mode))
1027 		truncate_data_blocks_range(&dn, 1);
1028 
1029 	/* 0 is possible, after f2fs_new_inode() has failed */
1030 	f2fs_bug_on(F2FS_I_SB(inode),
1031 			inode->i_blocks != 0 && inode->i_blocks != 8);
1032 
1033 	/* will put inode & node pages */
1034 	truncate_node(&dn);
1035 	return 0;
1036 }
1037 
1038 struct page *new_inode_page(struct inode *inode)
1039 {
1040 	struct dnode_of_data dn;
1041 
1042 	/* allocate inode page for new inode */
1043 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1044 
1045 	/* caller should f2fs_put_page(page, 1); */
1046 	return new_node_page(&dn, 0);
1047 }
1048 
1049 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1050 {
1051 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1052 	struct node_info new_ni;
1053 	struct page *page;
1054 	int err;
1055 
1056 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1057 		return ERR_PTR(-EPERM);
1058 
1059 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1060 	if (!page)
1061 		return ERR_PTR(-ENOMEM);
1062 
1063 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1064 		goto fail;
1065 
1066 #ifdef CONFIG_F2FS_CHECK_FS
1067 	get_node_info(sbi, dn->nid, &new_ni);
1068 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1069 #endif
1070 	new_ni.nid = dn->nid;
1071 	new_ni.ino = dn->inode->i_ino;
1072 	new_ni.blk_addr = NULL_ADDR;
1073 	new_ni.flag = 0;
1074 	new_ni.version = 0;
1075 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1076 
1077 	f2fs_wait_on_page_writeback(page, NODE, true);
1078 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1079 	set_cold_node(dn->inode, page);
1080 	if (!PageUptodate(page))
1081 		SetPageUptodate(page);
1082 	if (set_page_dirty(page))
1083 		dn->node_changed = true;
1084 
1085 	if (f2fs_has_xattr_block(ofs))
1086 		f2fs_i_xnid_write(dn->inode, dn->nid);
1087 
1088 	if (ofs == 0)
1089 		inc_valid_inode_count(sbi);
1090 	return page;
1091 
1092 fail:
1093 	clear_node_page_dirty(page);
1094 	f2fs_put_page(page, 1);
1095 	return ERR_PTR(err);
1096 }
1097 
1098 /*
1099  * Caller should do after getting the following values.
1100  * 0: f2fs_put_page(page, 0)
1101  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1102  */
1103 static int read_node_page(struct page *page, int op_flags)
1104 {
1105 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1106 	struct node_info ni;
1107 	struct f2fs_io_info fio = {
1108 		.sbi = sbi,
1109 		.type = NODE,
1110 		.op = REQ_OP_READ,
1111 		.op_flags = op_flags,
1112 		.page = page,
1113 		.encrypted_page = NULL,
1114 	};
1115 
1116 	if (PageUptodate(page))
1117 		return LOCKED_PAGE;
1118 
1119 	get_node_info(sbi, page->index, &ni);
1120 
1121 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1122 		ClearPageUptodate(page);
1123 		return -ENOENT;
1124 	}
1125 
1126 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1127 	return f2fs_submit_page_bio(&fio);
1128 }
1129 
1130 /*
1131  * Readahead a node page
1132  */
1133 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1134 {
1135 	struct page *apage;
1136 	int err;
1137 
1138 	if (!nid)
1139 		return;
1140 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1141 
1142 	rcu_read_lock();
1143 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1144 	rcu_read_unlock();
1145 	if (apage)
1146 		return;
1147 
1148 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1149 	if (!apage)
1150 		return;
1151 
1152 	err = read_node_page(apage, REQ_RAHEAD);
1153 	f2fs_put_page(apage, err ? 1 : 0);
1154 }
1155 
1156 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1157 					struct page *parent, int start)
1158 {
1159 	struct page *page;
1160 	int err;
1161 
1162 	if (!nid)
1163 		return ERR_PTR(-ENOENT);
1164 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1165 repeat:
1166 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1167 	if (!page)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	err = read_node_page(page, 0);
1171 	if (err < 0) {
1172 		f2fs_put_page(page, 1);
1173 		return ERR_PTR(err);
1174 	} else if (err == LOCKED_PAGE) {
1175 		err = 0;
1176 		goto page_hit;
1177 	}
1178 
1179 	if (parent)
1180 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1181 
1182 	lock_page(page);
1183 
1184 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1185 		f2fs_put_page(page, 1);
1186 		goto repeat;
1187 	}
1188 
1189 	if (unlikely(!PageUptodate(page))) {
1190 		err = -EIO;
1191 		goto out_err;
1192 	}
1193 
1194 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1195 		err = -EBADMSG;
1196 		goto out_err;
1197 	}
1198 page_hit:
1199 	if(unlikely(nid != nid_of_node(page))) {
1200 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1201 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1202 			nid, nid_of_node(page), ino_of_node(page),
1203 			ofs_of_node(page), cpver_of_node(page),
1204 			next_blkaddr_of_node(page));
1205 		err = -EINVAL;
1206 out_err:
1207 		ClearPageUptodate(page);
1208 		f2fs_put_page(page, 1);
1209 		return ERR_PTR(err);
1210 	}
1211 	return page;
1212 }
1213 
1214 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1215 {
1216 	return __get_node_page(sbi, nid, NULL, 0);
1217 }
1218 
1219 struct page *get_node_page_ra(struct page *parent, int start)
1220 {
1221 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1222 	nid_t nid = get_nid(parent, start, false);
1223 
1224 	return __get_node_page(sbi, nid, parent, start);
1225 }
1226 
1227 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1228 {
1229 	struct inode *inode;
1230 	struct page *page;
1231 	int ret;
1232 
1233 	/* should flush inline_data before evict_inode */
1234 	inode = ilookup(sbi->sb, ino);
1235 	if (!inode)
1236 		return;
1237 
1238 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1239 					FGP_LOCK|FGP_NOWAIT, 0);
1240 	if (!page)
1241 		goto iput_out;
1242 
1243 	if (!PageUptodate(page))
1244 		goto page_out;
1245 
1246 	if (!PageDirty(page))
1247 		goto page_out;
1248 
1249 	if (!clear_page_dirty_for_io(page))
1250 		goto page_out;
1251 
1252 	ret = f2fs_write_inline_data(inode, page);
1253 	inode_dec_dirty_pages(inode);
1254 	remove_dirty_inode(inode);
1255 	if (ret)
1256 		set_page_dirty(page);
1257 page_out:
1258 	f2fs_put_page(page, 1);
1259 iput_out:
1260 	iput(inode);
1261 }
1262 
1263 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1264 {
1265 	pgoff_t index;
1266 	struct pagevec pvec;
1267 	struct page *last_page = NULL;
1268 	int nr_pages;
1269 
1270 	pagevec_init(&pvec);
1271 	index = 0;
1272 
1273 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1274 				PAGECACHE_TAG_DIRTY))) {
1275 		int i;
1276 
1277 		for (i = 0; i < nr_pages; i++) {
1278 			struct page *page = pvec.pages[i];
1279 
1280 			if (unlikely(f2fs_cp_error(sbi))) {
1281 				f2fs_put_page(last_page, 0);
1282 				pagevec_release(&pvec);
1283 				return ERR_PTR(-EIO);
1284 			}
1285 
1286 			if (!IS_DNODE(page) || !is_cold_node(page))
1287 				continue;
1288 			if (ino_of_node(page) != ino)
1289 				continue;
1290 
1291 			lock_page(page);
1292 
1293 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1294 continue_unlock:
1295 				unlock_page(page);
1296 				continue;
1297 			}
1298 			if (ino_of_node(page) != ino)
1299 				goto continue_unlock;
1300 
1301 			if (!PageDirty(page)) {
1302 				/* someone wrote it for us */
1303 				goto continue_unlock;
1304 			}
1305 
1306 			if (last_page)
1307 				f2fs_put_page(last_page, 0);
1308 
1309 			get_page(page);
1310 			last_page = page;
1311 			unlock_page(page);
1312 		}
1313 		pagevec_release(&pvec);
1314 		cond_resched();
1315 	}
1316 	return last_page;
1317 }
1318 
1319 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1320 				struct writeback_control *wbc, bool do_balance,
1321 				enum iostat_type io_type)
1322 {
1323 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1324 	nid_t nid;
1325 	struct node_info ni;
1326 	struct f2fs_io_info fio = {
1327 		.sbi = sbi,
1328 		.ino = ino_of_node(page),
1329 		.type = NODE,
1330 		.op = REQ_OP_WRITE,
1331 		.op_flags = wbc_to_write_flags(wbc),
1332 		.page = page,
1333 		.encrypted_page = NULL,
1334 		.submitted = false,
1335 		.io_type = io_type,
1336 		.io_wbc = wbc,
1337 	};
1338 
1339 	trace_f2fs_writepage(page, NODE);
1340 
1341 	if (unlikely(f2fs_cp_error(sbi))) {
1342 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1343 		unlock_page(page);
1344 		return 0;
1345 	}
1346 
1347 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1348 		goto redirty_out;
1349 
1350 	/* get old block addr of this node page */
1351 	nid = nid_of_node(page);
1352 	f2fs_bug_on(sbi, page->index != nid);
1353 
1354 	if (wbc->for_reclaim) {
1355 		if (!down_read_trylock(&sbi->node_write))
1356 			goto redirty_out;
1357 	} else {
1358 		down_read(&sbi->node_write);
1359 	}
1360 
1361 	get_node_info(sbi, nid, &ni);
1362 
1363 	/* This page is already truncated */
1364 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1365 		ClearPageUptodate(page);
1366 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1367 		up_read(&sbi->node_write);
1368 		unlock_page(page);
1369 		return 0;
1370 	}
1371 
1372 	if (atomic && !test_opt(sbi, NOBARRIER))
1373 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1374 
1375 	set_page_writeback(page);
1376 	fio.old_blkaddr = ni.blk_addr;
1377 	write_node_page(nid, &fio);
1378 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1379 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1380 	up_read(&sbi->node_write);
1381 
1382 	if (wbc->for_reclaim) {
1383 		f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1384 						page->index, NODE);
1385 		submitted = NULL;
1386 	}
1387 
1388 	unlock_page(page);
1389 
1390 	if (unlikely(f2fs_cp_error(sbi))) {
1391 		f2fs_submit_merged_write(sbi, NODE);
1392 		submitted = NULL;
1393 	}
1394 	if (submitted)
1395 		*submitted = fio.submitted;
1396 
1397 	if (do_balance)
1398 		f2fs_balance_fs(sbi, false);
1399 	return 0;
1400 
1401 redirty_out:
1402 	redirty_page_for_writepage(wbc, page);
1403 	return AOP_WRITEPAGE_ACTIVATE;
1404 }
1405 
1406 void move_node_page(struct page *node_page, int gc_type)
1407 {
1408 	if (gc_type == FG_GC) {
1409 		struct writeback_control wbc = {
1410 			.sync_mode = WB_SYNC_ALL,
1411 			.nr_to_write = 1,
1412 			.for_reclaim = 0,
1413 		};
1414 
1415 		set_page_dirty(node_page);
1416 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1417 
1418 		f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1419 		if (!clear_page_dirty_for_io(node_page))
1420 			goto out_page;
1421 
1422 		if (__write_node_page(node_page, false, NULL,
1423 					&wbc, false, FS_GC_NODE_IO))
1424 			unlock_page(node_page);
1425 		goto release_page;
1426 	} else {
1427 		/* set page dirty and write it */
1428 		if (!PageWriteback(node_page))
1429 			set_page_dirty(node_page);
1430 	}
1431 out_page:
1432 	unlock_page(node_page);
1433 release_page:
1434 	f2fs_put_page(node_page, 0);
1435 }
1436 
1437 static int f2fs_write_node_page(struct page *page,
1438 				struct writeback_control *wbc)
1439 {
1440 	return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1441 }
1442 
1443 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1444 			struct writeback_control *wbc, bool atomic)
1445 {
1446 	pgoff_t index;
1447 	pgoff_t last_idx = ULONG_MAX;
1448 	struct pagevec pvec;
1449 	int ret = 0;
1450 	struct page *last_page = NULL;
1451 	bool marked = false;
1452 	nid_t ino = inode->i_ino;
1453 	int nr_pages;
1454 
1455 	if (atomic) {
1456 		last_page = last_fsync_dnode(sbi, ino);
1457 		if (IS_ERR_OR_NULL(last_page))
1458 			return PTR_ERR_OR_ZERO(last_page);
1459 	}
1460 retry:
1461 	pagevec_init(&pvec);
1462 	index = 0;
1463 
1464 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1465 				PAGECACHE_TAG_DIRTY))) {
1466 		int i;
1467 
1468 		for (i = 0; i < nr_pages; i++) {
1469 			struct page *page = pvec.pages[i];
1470 			bool submitted = false;
1471 
1472 			if (unlikely(f2fs_cp_error(sbi))) {
1473 				f2fs_put_page(last_page, 0);
1474 				pagevec_release(&pvec);
1475 				ret = -EIO;
1476 				goto out;
1477 			}
1478 
1479 			if (!IS_DNODE(page) || !is_cold_node(page))
1480 				continue;
1481 			if (ino_of_node(page) != ino)
1482 				continue;
1483 
1484 			lock_page(page);
1485 
1486 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1487 continue_unlock:
1488 				unlock_page(page);
1489 				continue;
1490 			}
1491 			if (ino_of_node(page) != ino)
1492 				goto continue_unlock;
1493 
1494 			if (!PageDirty(page) && page != last_page) {
1495 				/* someone wrote it for us */
1496 				goto continue_unlock;
1497 			}
1498 
1499 			f2fs_wait_on_page_writeback(page, NODE, true);
1500 			BUG_ON(PageWriteback(page));
1501 
1502 			set_fsync_mark(page, 0);
1503 			set_dentry_mark(page, 0);
1504 
1505 			if (!atomic || page == last_page) {
1506 				set_fsync_mark(page, 1);
1507 				if (IS_INODE(page)) {
1508 					if (is_inode_flag_set(inode,
1509 								FI_DIRTY_INODE))
1510 						update_inode(inode, page);
1511 					set_dentry_mark(page,
1512 						need_dentry_mark(sbi, ino));
1513 				}
1514 				/*  may be written by other thread */
1515 				if (!PageDirty(page))
1516 					set_page_dirty(page);
1517 			}
1518 
1519 			if (!clear_page_dirty_for_io(page))
1520 				goto continue_unlock;
1521 
1522 			ret = __write_node_page(page, atomic &&
1523 						page == last_page,
1524 						&submitted, wbc, true,
1525 						FS_NODE_IO);
1526 			if (ret) {
1527 				unlock_page(page);
1528 				f2fs_put_page(last_page, 0);
1529 				break;
1530 			} else if (submitted) {
1531 				last_idx = page->index;
1532 			}
1533 
1534 			if (page == last_page) {
1535 				f2fs_put_page(page, 0);
1536 				marked = true;
1537 				break;
1538 			}
1539 		}
1540 		pagevec_release(&pvec);
1541 		cond_resched();
1542 
1543 		if (ret || marked)
1544 			break;
1545 	}
1546 	if (!ret && atomic && !marked) {
1547 		f2fs_msg(sbi->sb, KERN_DEBUG,
1548 			"Retry to write fsync mark: ino=%u, idx=%lx",
1549 					ino, last_page->index);
1550 		lock_page(last_page);
1551 		f2fs_wait_on_page_writeback(last_page, NODE, true);
1552 		set_page_dirty(last_page);
1553 		unlock_page(last_page);
1554 		goto retry;
1555 	}
1556 out:
1557 	if (last_idx != ULONG_MAX)
1558 		f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1559 	return ret ? -EIO: 0;
1560 }
1561 
1562 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1563 				bool do_balance, enum iostat_type io_type)
1564 {
1565 	pgoff_t index;
1566 	struct pagevec pvec;
1567 	int step = 0;
1568 	int nwritten = 0;
1569 	int ret = 0;
1570 	int nr_pages;
1571 
1572 	pagevec_init(&pvec);
1573 
1574 next_step:
1575 	index = 0;
1576 
1577 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1578 				PAGECACHE_TAG_DIRTY))) {
1579 		int i;
1580 
1581 		for (i = 0; i < nr_pages; i++) {
1582 			struct page *page = pvec.pages[i];
1583 			bool submitted = false;
1584 
1585 			/*
1586 			 * flushing sequence with step:
1587 			 * 0. indirect nodes
1588 			 * 1. dentry dnodes
1589 			 * 2. file dnodes
1590 			 */
1591 			if (step == 0 && IS_DNODE(page))
1592 				continue;
1593 			if (step == 1 && (!IS_DNODE(page) ||
1594 						is_cold_node(page)))
1595 				continue;
1596 			if (step == 2 && (!IS_DNODE(page) ||
1597 						!is_cold_node(page)))
1598 				continue;
1599 lock_node:
1600 			if (!trylock_page(page))
1601 				continue;
1602 
1603 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1604 continue_unlock:
1605 				unlock_page(page);
1606 				continue;
1607 			}
1608 
1609 			if (!PageDirty(page)) {
1610 				/* someone wrote it for us */
1611 				goto continue_unlock;
1612 			}
1613 
1614 			/* flush inline_data */
1615 			if (is_inline_node(page)) {
1616 				clear_inline_node(page);
1617 				unlock_page(page);
1618 				flush_inline_data(sbi, ino_of_node(page));
1619 				goto lock_node;
1620 			}
1621 
1622 			f2fs_wait_on_page_writeback(page, NODE, true);
1623 
1624 			BUG_ON(PageWriteback(page));
1625 			if (!clear_page_dirty_for_io(page))
1626 				goto continue_unlock;
1627 
1628 			set_fsync_mark(page, 0);
1629 			set_dentry_mark(page, 0);
1630 
1631 			ret = __write_node_page(page, false, &submitted,
1632 						wbc, do_balance, io_type);
1633 			if (ret)
1634 				unlock_page(page);
1635 			else if (submitted)
1636 				nwritten++;
1637 
1638 			if (--wbc->nr_to_write == 0)
1639 				break;
1640 		}
1641 		pagevec_release(&pvec);
1642 		cond_resched();
1643 
1644 		if (wbc->nr_to_write == 0) {
1645 			step = 2;
1646 			break;
1647 		}
1648 	}
1649 
1650 	if (step < 2) {
1651 		step++;
1652 		goto next_step;
1653 	}
1654 
1655 	if (nwritten)
1656 		f2fs_submit_merged_write(sbi, NODE);
1657 
1658 	if (unlikely(f2fs_cp_error(sbi)))
1659 		return -EIO;
1660 	return ret;
1661 }
1662 
1663 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1664 {
1665 	pgoff_t index = 0;
1666 	struct pagevec pvec;
1667 	int ret2, ret = 0;
1668 	int nr_pages;
1669 
1670 	pagevec_init(&pvec);
1671 
1672 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1673 				PAGECACHE_TAG_WRITEBACK))) {
1674 		int i;
1675 
1676 		for (i = 0; i < nr_pages; i++) {
1677 			struct page *page = pvec.pages[i];
1678 
1679 			if (ino && ino_of_node(page) == ino) {
1680 				f2fs_wait_on_page_writeback(page, NODE, true);
1681 				if (TestClearPageError(page))
1682 					ret = -EIO;
1683 			}
1684 		}
1685 		pagevec_release(&pvec);
1686 		cond_resched();
1687 	}
1688 
1689 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1690 	if (!ret)
1691 		ret = ret2;
1692 	return ret;
1693 }
1694 
1695 static int f2fs_write_node_pages(struct address_space *mapping,
1696 			    struct writeback_control *wbc)
1697 {
1698 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1699 	struct blk_plug plug;
1700 	long diff;
1701 
1702 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1703 		goto skip_write;
1704 
1705 	/* balancing f2fs's metadata in background */
1706 	f2fs_balance_fs_bg(sbi);
1707 
1708 	/* collect a number of dirty node pages and write together */
1709 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1710 		goto skip_write;
1711 
1712 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1713 
1714 	diff = nr_pages_to_write(sbi, NODE, wbc);
1715 	wbc->sync_mode = WB_SYNC_NONE;
1716 	blk_start_plug(&plug);
1717 	sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1718 	blk_finish_plug(&plug);
1719 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1720 	return 0;
1721 
1722 skip_write:
1723 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1724 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1725 	return 0;
1726 }
1727 
1728 static int f2fs_set_node_page_dirty(struct page *page)
1729 {
1730 	trace_f2fs_set_page_dirty(page, NODE);
1731 
1732 	if (!PageUptodate(page))
1733 		SetPageUptodate(page);
1734 	if (!PageDirty(page)) {
1735 		f2fs_set_page_dirty_nobuffers(page);
1736 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1737 		SetPagePrivate(page);
1738 		f2fs_trace_pid(page);
1739 		return 1;
1740 	}
1741 	return 0;
1742 }
1743 
1744 /*
1745  * Structure of the f2fs node operations
1746  */
1747 const struct address_space_operations f2fs_node_aops = {
1748 	.writepage	= f2fs_write_node_page,
1749 	.writepages	= f2fs_write_node_pages,
1750 	.set_page_dirty	= f2fs_set_node_page_dirty,
1751 	.invalidatepage	= f2fs_invalidate_page,
1752 	.releasepage	= f2fs_release_page,
1753 #ifdef CONFIG_MIGRATION
1754 	.migratepage    = f2fs_migrate_page,
1755 #endif
1756 };
1757 
1758 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1759 						nid_t n)
1760 {
1761 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1762 }
1763 
1764 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1765 			struct free_nid *i, enum nid_state state)
1766 {
1767 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1768 
1769 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1770 	if (err)
1771 		return err;
1772 
1773 	f2fs_bug_on(sbi, state != i->state);
1774 	nm_i->nid_cnt[state]++;
1775 	if (state == FREE_NID)
1776 		list_add_tail(&i->list, &nm_i->free_nid_list);
1777 	return 0;
1778 }
1779 
1780 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1781 			struct free_nid *i, enum nid_state state)
1782 {
1783 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1784 
1785 	f2fs_bug_on(sbi, state != i->state);
1786 	nm_i->nid_cnt[state]--;
1787 	if (state == FREE_NID)
1788 		list_del(&i->list);
1789 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1790 }
1791 
1792 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1793 			enum nid_state org_state, enum nid_state dst_state)
1794 {
1795 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1796 
1797 	f2fs_bug_on(sbi, org_state != i->state);
1798 	i->state = dst_state;
1799 	nm_i->nid_cnt[org_state]--;
1800 	nm_i->nid_cnt[dst_state]++;
1801 
1802 	switch (dst_state) {
1803 	case PREALLOC_NID:
1804 		list_del(&i->list);
1805 		break;
1806 	case FREE_NID:
1807 		list_add_tail(&i->list, &nm_i->free_nid_list);
1808 		break;
1809 	default:
1810 		BUG_ON(1);
1811 	}
1812 }
1813 
1814 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1815 							bool set, bool build)
1816 {
1817 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1818 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1819 	unsigned int nid_ofs = nid - START_NID(nid);
1820 
1821 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1822 		return;
1823 
1824 	if (set) {
1825 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1826 			return;
1827 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1828 		nm_i->free_nid_count[nat_ofs]++;
1829 	} else {
1830 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1831 			return;
1832 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1833 		if (!build)
1834 			nm_i->free_nid_count[nat_ofs]--;
1835 	}
1836 }
1837 
1838 /* return if the nid is recognized as free */
1839 static bool add_free_nid(struct f2fs_sb_info *sbi,
1840 				nid_t nid, bool build, bool update)
1841 {
1842 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1843 	struct free_nid *i, *e;
1844 	struct nat_entry *ne;
1845 	int err = -EINVAL;
1846 	bool ret = false;
1847 
1848 	/* 0 nid should not be used */
1849 	if (unlikely(nid == 0))
1850 		return false;
1851 
1852 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1853 	i->nid = nid;
1854 	i->state = FREE_NID;
1855 
1856 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1857 
1858 	spin_lock(&nm_i->nid_list_lock);
1859 
1860 	if (build) {
1861 		/*
1862 		 *   Thread A             Thread B
1863 		 *  - f2fs_create
1864 		 *   - f2fs_new_inode
1865 		 *    - alloc_nid
1866 		 *     - __insert_nid_to_list(PREALLOC_NID)
1867 		 *                     - f2fs_balance_fs_bg
1868 		 *                      - build_free_nids
1869 		 *                       - __build_free_nids
1870 		 *                        - scan_nat_page
1871 		 *                         - add_free_nid
1872 		 *                          - __lookup_nat_cache
1873 		 *  - f2fs_add_link
1874 		 *   - init_inode_metadata
1875 		 *    - new_inode_page
1876 		 *     - new_node_page
1877 		 *      - set_node_addr
1878 		 *  - alloc_nid_done
1879 		 *   - __remove_nid_from_list(PREALLOC_NID)
1880 		 *                         - __insert_nid_to_list(FREE_NID)
1881 		 */
1882 		ne = __lookup_nat_cache(nm_i, nid);
1883 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1884 				nat_get_blkaddr(ne) != NULL_ADDR))
1885 			goto err_out;
1886 
1887 		e = __lookup_free_nid_list(nm_i, nid);
1888 		if (e) {
1889 			if (e->state == FREE_NID)
1890 				ret = true;
1891 			goto err_out;
1892 		}
1893 	}
1894 	ret = true;
1895 	err = __insert_free_nid(sbi, i, FREE_NID);
1896 err_out:
1897 	if (update) {
1898 		update_free_nid_bitmap(sbi, nid, ret, build);
1899 		if (!build)
1900 			nm_i->available_nids++;
1901 	}
1902 	spin_unlock(&nm_i->nid_list_lock);
1903 	radix_tree_preload_end();
1904 
1905 	if (err)
1906 		kmem_cache_free(free_nid_slab, i);
1907 	return ret;
1908 }
1909 
1910 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1911 {
1912 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1913 	struct free_nid *i;
1914 	bool need_free = false;
1915 
1916 	spin_lock(&nm_i->nid_list_lock);
1917 	i = __lookup_free_nid_list(nm_i, nid);
1918 	if (i && i->state == FREE_NID) {
1919 		__remove_free_nid(sbi, i, FREE_NID);
1920 		need_free = true;
1921 	}
1922 	spin_unlock(&nm_i->nid_list_lock);
1923 
1924 	if (need_free)
1925 		kmem_cache_free(free_nid_slab, i);
1926 }
1927 
1928 static void scan_nat_page(struct f2fs_sb_info *sbi,
1929 			struct page *nat_page, nid_t start_nid)
1930 {
1931 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1932 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1933 	block_t blk_addr;
1934 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1935 	int i;
1936 
1937 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1938 
1939 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1940 
1941 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1942 		if (unlikely(start_nid >= nm_i->max_nid))
1943 			break;
1944 
1945 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1946 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1947 		if (blk_addr == NULL_ADDR) {
1948 			add_free_nid(sbi, start_nid, true, true);
1949 		} else {
1950 			spin_lock(&NM_I(sbi)->nid_list_lock);
1951 			update_free_nid_bitmap(sbi, start_nid, false, true);
1952 			spin_unlock(&NM_I(sbi)->nid_list_lock);
1953 		}
1954 	}
1955 }
1956 
1957 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1958 {
1959 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1960 	struct f2fs_journal *journal = curseg->journal;
1961 	int i;
1962 
1963 	down_read(&curseg->journal_rwsem);
1964 	for (i = 0; i < nats_in_cursum(journal); i++) {
1965 		block_t addr;
1966 		nid_t nid;
1967 
1968 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1969 		nid = le32_to_cpu(nid_in_journal(journal, i));
1970 		if (addr == NULL_ADDR)
1971 			add_free_nid(sbi, nid, true, false);
1972 		else
1973 			remove_free_nid(sbi, nid);
1974 	}
1975 	up_read(&curseg->journal_rwsem);
1976 }
1977 
1978 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1979 {
1980 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1981 	unsigned int i, idx;
1982 	nid_t nid;
1983 
1984 	down_read(&nm_i->nat_tree_lock);
1985 
1986 	for (i = 0; i < nm_i->nat_blocks; i++) {
1987 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
1988 			continue;
1989 		if (!nm_i->free_nid_count[i])
1990 			continue;
1991 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1992 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
1993 						NAT_ENTRY_PER_BLOCK, idx);
1994 			if (idx >= NAT_ENTRY_PER_BLOCK)
1995 				break;
1996 
1997 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
1998 			add_free_nid(sbi, nid, true, false);
1999 
2000 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2001 				goto out;
2002 		}
2003 	}
2004 out:
2005 	scan_curseg_cache(sbi);
2006 
2007 	up_read(&nm_i->nat_tree_lock);
2008 }
2009 
2010 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2011 {
2012 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2013 	int i = 0;
2014 	nid_t nid = nm_i->next_scan_nid;
2015 
2016 	if (unlikely(nid >= nm_i->max_nid))
2017 		nid = 0;
2018 
2019 	/* Enough entries */
2020 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2021 		return;
2022 
2023 	if (!sync && !available_free_memory(sbi, FREE_NIDS))
2024 		return;
2025 
2026 	if (!mount) {
2027 		/* try to find free nids in free_nid_bitmap */
2028 		scan_free_nid_bits(sbi);
2029 
2030 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2031 			return;
2032 	}
2033 
2034 	/* readahead nat pages to be scanned */
2035 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2036 							META_NAT, true);
2037 
2038 	down_read(&nm_i->nat_tree_lock);
2039 
2040 	while (1) {
2041 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2042 						nm_i->nat_block_bitmap)) {
2043 			struct page *page = get_current_nat_page(sbi, nid);
2044 
2045 			scan_nat_page(sbi, page, nid);
2046 			f2fs_put_page(page, 1);
2047 		}
2048 
2049 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2050 		if (unlikely(nid >= nm_i->max_nid))
2051 			nid = 0;
2052 
2053 		if (++i >= FREE_NID_PAGES)
2054 			break;
2055 	}
2056 
2057 	/* go to the next free nat pages to find free nids abundantly */
2058 	nm_i->next_scan_nid = nid;
2059 
2060 	/* find free nids from current sum_pages */
2061 	scan_curseg_cache(sbi);
2062 
2063 	up_read(&nm_i->nat_tree_lock);
2064 
2065 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2066 					nm_i->ra_nid_pages, META_NAT, false);
2067 }
2068 
2069 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2070 {
2071 	mutex_lock(&NM_I(sbi)->build_lock);
2072 	__build_free_nids(sbi, sync, mount);
2073 	mutex_unlock(&NM_I(sbi)->build_lock);
2074 }
2075 
2076 /*
2077  * If this function returns success, caller can obtain a new nid
2078  * from second parameter of this function.
2079  * The returned nid could be used ino as well as nid when inode is created.
2080  */
2081 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2082 {
2083 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2084 	struct free_nid *i = NULL;
2085 retry:
2086 #ifdef CONFIG_F2FS_FAULT_INJECTION
2087 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2088 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2089 		return false;
2090 	}
2091 #endif
2092 	spin_lock(&nm_i->nid_list_lock);
2093 
2094 	if (unlikely(nm_i->available_nids == 0)) {
2095 		spin_unlock(&nm_i->nid_list_lock);
2096 		return false;
2097 	}
2098 
2099 	/* We should not use stale free nids created by build_free_nids */
2100 	if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2101 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2102 		i = list_first_entry(&nm_i->free_nid_list,
2103 					struct free_nid, list);
2104 		*nid = i->nid;
2105 
2106 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2107 		nm_i->available_nids--;
2108 
2109 		update_free_nid_bitmap(sbi, *nid, false, false);
2110 
2111 		spin_unlock(&nm_i->nid_list_lock);
2112 		return true;
2113 	}
2114 	spin_unlock(&nm_i->nid_list_lock);
2115 
2116 	/* Let's scan nat pages and its caches to get free nids */
2117 	build_free_nids(sbi, true, false);
2118 	goto retry;
2119 }
2120 
2121 /*
2122  * alloc_nid() should be called prior to this function.
2123  */
2124 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2125 {
2126 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2127 	struct free_nid *i;
2128 
2129 	spin_lock(&nm_i->nid_list_lock);
2130 	i = __lookup_free_nid_list(nm_i, nid);
2131 	f2fs_bug_on(sbi, !i);
2132 	__remove_free_nid(sbi, i, PREALLOC_NID);
2133 	spin_unlock(&nm_i->nid_list_lock);
2134 
2135 	kmem_cache_free(free_nid_slab, i);
2136 }
2137 
2138 /*
2139  * alloc_nid() should be called prior to this function.
2140  */
2141 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2142 {
2143 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2144 	struct free_nid *i;
2145 	bool need_free = false;
2146 
2147 	if (!nid)
2148 		return;
2149 
2150 	spin_lock(&nm_i->nid_list_lock);
2151 	i = __lookup_free_nid_list(nm_i, nid);
2152 	f2fs_bug_on(sbi, !i);
2153 
2154 	if (!available_free_memory(sbi, FREE_NIDS)) {
2155 		__remove_free_nid(sbi, i, PREALLOC_NID);
2156 		need_free = true;
2157 	} else {
2158 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2159 	}
2160 
2161 	nm_i->available_nids++;
2162 
2163 	update_free_nid_bitmap(sbi, nid, true, false);
2164 
2165 	spin_unlock(&nm_i->nid_list_lock);
2166 
2167 	if (need_free)
2168 		kmem_cache_free(free_nid_slab, i);
2169 }
2170 
2171 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2172 {
2173 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2174 	struct free_nid *i, *next;
2175 	int nr = nr_shrink;
2176 
2177 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2178 		return 0;
2179 
2180 	if (!mutex_trylock(&nm_i->build_lock))
2181 		return 0;
2182 
2183 	spin_lock(&nm_i->nid_list_lock);
2184 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2185 		if (nr_shrink <= 0 ||
2186 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2187 			break;
2188 
2189 		__remove_free_nid(sbi, i, FREE_NID);
2190 		kmem_cache_free(free_nid_slab, i);
2191 		nr_shrink--;
2192 	}
2193 	spin_unlock(&nm_i->nid_list_lock);
2194 	mutex_unlock(&nm_i->build_lock);
2195 
2196 	return nr - nr_shrink;
2197 }
2198 
2199 void recover_inline_xattr(struct inode *inode, struct page *page)
2200 {
2201 	void *src_addr, *dst_addr;
2202 	size_t inline_size;
2203 	struct page *ipage;
2204 	struct f2fs_inode *ri;
2205 
2206 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2207 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2208 
2209 	ri = F2FS_INODE(page);
2210 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2211 		set_inode_flag(inode, FI_INLINE_XATTR);
2212 	} else {
2213 		clear_inode_flag(inode, FI_INLINE_XATTR);
2214 		goto update_inode;
2215 	}
2216 
2217 	dst_addr = inline_xattr_addr(inode, ipage);
2218 	src_addr = inline_xattr_addr(inode, page);
2219 	inline_size = inline_xattr_size(inode);
2220 
2221 	f2fs_wait_on_page_writeback(ipage, NODE, true);
2222 	memcpy(dst_addr, src_addr, inline_size);
2223 update_inode:
2224 	update_inode(inode, ipage);
2225 	f2fs_put_page(ipage, 1);
2226 }
2227 
2228 int recover_xattr_data(struct inode *inode, struct page *page)
2229 {
2230 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2231 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2232 	nid_t new_xnid;
2233 	struct dnode_of_data dn;
2234 	struct node_info ni;
2235 	struct page *xpage;
2236 
2237 	if (!prev_xnid)
2238 		goto recover_xnid;
2239 
2240 	/* 1: invalidate the previous xattr nid */
2241 	get_node_info(sbi, prev_xnid, &ni);
2242 	invalidate_blocks(sbi, ni.blk_addr);
2243 	dec_valid_node_count(sbi, inode, false);
2244 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2245 
2246 recover_xnid:
2247 	/* 2: update xattr nid in inode */
2248 	if (!alloc_nid(sbi, &new_xnid))
2249 		return -ENOSPC;
2250 
2251 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2252 	xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2253 	if (IS_ERR(xpage)) {
2254 		alloc_nid_failed(sbi, new_xnid);
2255 		return PTR_ERR(xpage);
2256 	}
2257 
2258 	alloc_nid_done(sbi, new_xnid);
2259 	update_inode_page(inode);
2260 
2261 	/* 3: update and set xattr node page dirty */
2262 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2263 
2264 	set_page_dirty(xpage);
2265 	f2fs_put_page(xpage, 1);
2266 
2267 	return 0;
2268 }
2269 
2270 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2271 {
2272 	struct f2fs_inode *src, *dst;
2273 	nid_t ino = ino_of_node(page);
2274 	struct node_info old_ni, new_ni;
2275 	struct page *ipage;
2276 
2277 	get_node_info(sbi, ino, &old_ni);
2278 
2279 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2280 		return -EINVAL;
2281 retry:
2282 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2283 	if (!ipage) {
2284 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2285 		goto retry;
2286 	}
2287 
2288 	/* Should not use this inode from free nid list */
2289 	remove_free_nid(sbi, ino);
2290 
2291 	if (!PageUptodate(ipage))
2292 		SetPageUptodate(ipage);
2293 	fill_node_footer(ipage, ino, ino, 0, true);
2294 
2295 	src = F2FS_INODE(page);
2296 	dst = F2FS_INODE(ipage);
2297 
2298 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2299 	dst->i_size = 0;
2300 	dst->i_blocks = cpu_to_le64(1);
2301 	dst->i_links = cpu_to_le32(1);
2302 	dst->i_xattr_nid = 0;
2303 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2304 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2305 		dst->i_extra_isize = src->i_extra_isize;
2306 
2307 		if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2308 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2309 							i_inline_xattr_size))
2310 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2311 
2312 		if (f2fs_sb_has_project_quota(sbi->sb) &&
2313 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2314 								i_projid))
2315 			dst->i_projid = src->i_projid;
2316 	}
2317 
2318 	new_ni = old_ni;
2319 	new_ni.ino = ino;
2320 
2321 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2322 		WARN_ON(1);
2323 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2324 	inc_valid_inode_count(sbi);
2325 	set_page_dirty(ipage);
2326 	f2fs_put_page(ipage, 1);
2327 	return 0;
2328 }
2329 
2330 void restore_node_summary(struct f2fs_sb_info *sbi,
2331 			unsigned int segno, struct f2fs_summary_block *sum)
2332 {
2333 	struct f2fs_node *rn;
2334 	struct f2fs_summary *sum_entry;
2335 	block_t addr;
2336 	int i, idx, last_offset, nrpages;
2337 
2338 	/* scan the node segment */
2339 	last_offset = sbi->blocks_per_seg;
2340 	addr = START_BLOCK(sbi, segno);
2341 	sum_entry = &sum->entries[0];
2342 
2343 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2344 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2345 
2346 		/* readahead node pages */
2347 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2348 
2349 		for (idx = addr; idx < addr + nrpages; idx++) {
2350 			struct page *page = get_tmp_page(sbi, idx);
2351 
2352 			rn = F2FS_NODE(page);
2353 			sum_entry->nid = rn->footer.nid;
2354 			sum_entry->version = 0;
2355 			sum_entry->ofs_in_node = 0;
2356 			sum_entry++;
2357 			f2fs_put_page(page, 1);
2358 		}
2359 
2360 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2361 							addr + nrpages);
2362 	}
2363 }
2364 
2365 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2366 {
2367 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2369 	struct f2fs_journal *journal = curseg->journal;
2370 	int i;
2371 
2372 	down_write(&curseg->journal_rwsem);
2373 	for (i = 0; i < nats_in_cursum(journal); i++) {
2374 		struct nat_entry *ne;
2375 		struct f2fs_nat_entry raw_ne;
2376 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2377 
2378 		raw_ne = nat_in_journal(journal, i);
2379 
2380 		ne = __lookup_nat_cache(nm_i, nid);
2381 		if (!ne) {
2382 			ne = __alloc_nat_entry(nid, true);
2383 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2384 		}
2385 
2386 		/*
2387 		 * if a free nat in journal has not been used after last
2388 		 * checkpoint, we should remove it from available nids,
2389 		 * since later we will add it again.
2390 		 */
2391 		if (!get_nat_flag(ne, IS_DIRTY) &&
2392 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2393 			spin_lock(&nm_i->nid_list_lock);
2394 			nm_i->available_nids--;
2395 			spin_unlock(&nm_i->nid_list_lock);
2396 		}
2397 
2398 		__set_nat_cache_dirty(nm_i, ne);
2399 	}
2400 	update_nats_in_cursum(journal, -i);
2401 	up_write(&curseg->journal_rwsem);
2402 }
2403 
2404 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2405 						struct list_head *head, int max)
2406 {
2407 	struct nat_entry_set *cur;
2408 
2409 	if (nes->entry_cnt >= max)
2410 		goto add_out;
2411 
2412 	list_for_each_entry(cur, head, set_list) {
2413 		if (cur->entry_cnt >= nes->entry_cnt) {
2414 			list_add(&nes->set_list, cur->set_list.prev);
2415 			return;
2416 		}
2417 	}
2418 add_out:
2419 	list_add_tail(&nes->set_list, head);
2420 }
2421 
2422 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2423 						struct page *page)
2424 {
2425 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2426 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2427 	struct f2fs_nat_block *nat_blk = page_address(page);
2428 	int valid = 0;
2429 	int i = 0;
2430 
2431 	if (!enabled_nat_bits(sbi, NULL))
2432 		return;
2433 
2434 	if (nat_index == 0) {
2435 		valid = 1;
2436 		i = 1;
2437 	}
2438 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2439 		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2440 			valid++;
2441 	}
2442 	if (valid == 0) {
2443 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2444 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2445 		return;
2446 	}
2447 
2448 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2449 	if (valid == NAT_ENTRY_PER_BLOCK)
2450 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2451 	else
2452 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2453 }
2454 
2455 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2456 		struct nat_entry_set *set, struct cp_control *cpc)
2457 {
2458 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2459 	struct f2fs_journal *journal = curseg->journal;
2460 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2461 	bool to_journal = true;
2462 	struct f2fs_nat_block *nat_blk;
2463 	struct nat_entry *ne, *cur;
2464 	struct page *page = NULL;
2465 
2466 	/*
2467 	 * there are two steps to flush nat entries:
2468 	 * #1, flush nat entries to journal in current hot data summary block.
2469 	 * #2, flush nat entries to nat page.
2470 	 */
2471 	if (enabled_nat_bits(sbi, cpc) ||
2472 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2473 		to_journal = false;
2474 
2475 	if (to_journal) {
2476 		down_write(&curseg->journal_rwsem);
2477 	} else {
2478 		page = get_next_nat_page(sbi, start_nid);
2479 		nat_blk = page_address(page);
2480 		f2fs_bug_on(sbi, !nat_blk);
2481 	}
2482 
2483 	/* flush dirty nats in nat entry set */
2484 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2485 		struct f2fs_nat_entry *raw_ne;
2486 		nid_t nid = nat_get_nid(ne);
2487 		int offset;
2488 
2489 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2490 
2491 		if (to_journal) {
2492 			offset = lookup_journal_in_cursum(journal,
2493 							NAT_JOURNAL, nid, 1);
2494 			f2fs_bug_on(sbi, offset < 0);
2495 			raw_ne = &nat_in_journal(journal, offset);
2496 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2497 		} else {
2498 			raw_ne = &nat_blk->entries[nid - start_nid];
2499 		}
2500 		raw_nat_from_node_info(raw_ne, &ne->ni);
2501 		nat_reset_flag(ne);
2502 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2503 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2504 			add_free_nid(sbi, nid, false, true);
2505 		} else {
2506 			spin_lock(&NM_I(sbi)->nid_list_lock);
2507 			update_free_nid_bitmap(sbi, nid, false, false);
2508 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2509 		}
2510 	}
2511 
2512 	if (to_journal) {
2513 		up_write(&curseg->journal_rwsem);
2514 	} else {
2515 		__update_nat_bits(sbi, start_nid, page);
2516 		f2fs_put_page(page, 1);
2517 	}
2518 
2519 	/* Allow dirty nats by node block allocation in write_begin */
2520 	if (!set->entry_cnt) {
2521 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2522 		kmem_cache_free(nat_entry_set_slab, set);
2523 	}
2524 }
2525 
2526 /*
2527  * This function is called during the checkpointing process.
2528  */
2529 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2530 {
2531 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2532 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2533 	struct f2fs_journal *journal = curseg->journal;
2534 	struct nat_entry_set *setvec[SETVEC_SIZE];
2535 	struct nat_entry_set *set, *tmp;
2536 	unsigned int found;
2537 	nid_t set_idx = 0;
2538 	LIST_HEAD(sets);
2539 
2540 	if (!nm_i->dirty_nat_cnt)
2541 		return;
2542 
2543 	down_write(&nm_i->nat_tree_lock);
2544 
2545 	/*
2546 	 * if there are no enough space in journal to store dirty nat
2547 	 * entries, remove all entries from journal and merge them
2548 	 * into nat entry set.
2549 	 */
2550 	if (enabled_nat_bits(sbi, cpc) ||
2551 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2552 		remove_nats_in_journal(sbi);
2553 
2554 	while ((found = __gang_lookup_nat_set(nm_i,
2555 					set_idx, SETVEC_SIZE, setvec))) {
2556 		unsigned idx;
2557 		set_idx = setvec[found - 1]->set + 1;
2558 		for (idx = 0; idx < found; idx++)
2559 			__adjust_nat_entry_set(setvec[idx], &sets,
2560 						MAX_NAT_JENTRIES(journal));
2561 	}
2562 
2563 	/* flush dirty nats in nat entry set */
2564 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2565 		__flush_nat_entry_set(sbi, set, cpc);
2566 
2567 	up_write(&nm_i->nat_tree_lock);
2568 	/* Allow dirty nats by node block allocation in write_begin */
2569 }
2570 
2571 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2572 {
2573 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2574 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2575 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2576 	unsigned int i;
2577 	__u64 cp_ver = cur_cp_version(ckpt);
2578 	block_t nat_bits_addr;
2579 
2580 	if (!enabled_nat_bits(sbi, NULL))
2581 		return 0;
2582 
2583 	nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2584 						F2FS_BLKSIZE - 1);
2585 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2586 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2587 	if (!nm_i->nat_bits)
2588 		return -ENOMEM;
2589 
2590 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2591 						nm_i->nat_bits_blocks;
2592 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2593 		struct page *page = get_meta_page(sbi, nat_bits_addr++);
2594 
2595 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2596 					page_address(page), F2FS_BLKSIZE);
2597 		f2fs_put_page(page, 1);
2598 	}
2599 
2600 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2601 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2602 		disable_nat_bits(sbi, true);
2603 		return 0;
2604 	}
2605 
2606 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2607 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2608 
2609 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2610 	return 0;
2611 }
2612 
2613 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2614 {
2615 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2616 	unsigned int i = 0;
2617 	nid_t nid, last_nid;
2618 
2619 	if (!enabled_nat_bits(sbi, NULL))
2620 		return;
2621 
2622 	for (i = 0; i < nm_i->nat_blocks; i++) {
2623 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2624 		if (i >= nm_i->nat_blocks)
2625 			break;
2626 
2627 		__set_bit_le(i, nm_i->nat_block_bitmap);
2628 
2629 		nid = i * NAT_ENTRY_PER_BLOCK;
2630 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2631 
2632 		spin_lock(&NM_I(sbi)->nid_list_lock);
2633 		for (; nid < last_nid; nid++)
2634 			update_free_nid_bitmap(sbi, nid, true, true);
2635 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2636 	}
2637 
2638 	for (i = 0; i < nm_i->nat_blocks; i++) {
2639 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2640 		if (i >= nm_i->nat_blocks)
2641 			break;
2642 
2643 		__set_bit_le(i, nm_i->nat_block_bitmap);
2644 	}
2645 }
2646 
2647 static int init_node_manager(struct f2fs_sb_info *sbi)
2648 {
2649 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2650 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2651 	unsigned char *version_bitmap;
2652 	unsigned int nat_segs;
2653 	int err;
2654 
2655 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2656 
2657 	/* segment_count_nat includes pair segment so divide to 2. */
2658 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2659 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2660 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2661 
2662 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2663 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2664 				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2665 	nm_i->nid_cnt[FREE_NID] = 0;
2666 	nm_i->nid_cnt[PREALLOC_NID] = 0;
2667 	nm_i->nat_cnt = 0;
2668 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2669 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2670 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2671 
2672 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2673 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2674 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2675 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2676 	INIT_LIST_HEAD(&nm_i->nat_entries);
2677 
2678 	mutex_init(&nm_i->build_lock);
2679 	spin_lock_init(&nm_i->nid_list_lock);
2680 	init_rwsem(&nm_i->nat_tree_lock);
2681 
2682 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2683 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2684 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2685 	if (!version_bitmap)
2686 		return -EFAULT;
2687 
2688 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2689 					GFP_KERNEL);
2690 	if (!nm_i->nat_bitmap)
2691 		return -ENOMEM;
2692 
2693 	err = __get_nat_bitmaps(sbi);
2694 	if (err)
2695 		return err;
2696 
2697 #ifdef CONFIG_F2FS_CHECK_FS
2698 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2699 					GFP_KERNEL);
2700 	if (!nm_i->nat_bitmap_mir)
2701 		return -ENOMEM;
2702 #endif
2703 
2704 	return 0;
2705 }
2706 
2707 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2708 {
2709 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2710 
2711 	nm_i->free_nid_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2712 					NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2713 	if (!nm_i->free_nid_bitmap)
2714 		return -ENOMEM;
2715 
2716 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2717 								GFP_KERNEL);
2718 	if (!nm_i->nat_block_bitmap)
2719 		return -ENOMEM;
2720 
2721 	nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2722 					sizeof(unsigned short), GFP_KERNEL);
2723 	if (!nm_i->free_nid_count)
2724 		return -ENOMEM;
2725 	return 0;
2726 }
2727 
2728 int build_node_manager(struct f2fs_sb_info *sbi)
2729 {
2730 	int err;
2731 
2732 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2733 							GFP_KERNEL);
2734 	if (!sbi->nm_info)
2735 		return -ENOMEM;
2736 
2737 	err = init_node_manager(sbi);
2738 	if (err)
2739 		return err;
2740 
2741 	err = init_free_nid_cache(sbi);
2742 	if (err)
2743 		return err;
2744 
2745 	/* load free nid status from nat_bits table */
2746 	load_free_nid_bitmap(sbi);
2747 
2748 	build_free_nids(sbi, true, true);
2749 	return 0;
2750 }
2751 
2752 void destroy_node_manager(struct f2fs_sb_info *sbi)
2753 {
2754 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2755 	struct free_nid *i, *next_i;
2756 	struct nat_entry *natvec[NATVEC_SIZE];
2757 	struct nat_entry_set *setvec[SETVEC_SIZE];
2758 	nid_t nid = 0;
2759 	unsigned int found;
2760 
2761 	if (!nm_i)
2762 		return;
2763 
2764 	/* destroy free nid list */
2765 	spin_lock(&nm_i->nid_list_lock);
2766 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2767 		__remove_free_nid(sbi, i, FREE_NID);
2768 		spin_unlock(&nm_i->nid_list_lock);
2769 		kmem_cache_free(free_nid_slab, i);
2770 		spin_lock(&nm_i->nid_list_lock);
2771 	}
2772 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2773 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2774 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2775 	spin_unlock(&nm_i->nid_list_lock);
2776 
2777 	/* destroy nat cache */
2778 	down_write(&nm_i->nat_tree_lock);
2779 	while ((found = __gang_lookup_nat_cache(nm_i,
2780 					nid, NATVEC_SIZE, natvec))) {
2781 		unsigned idx;
2782 
2783 		nid = nat_get_nid(natvec[found - 1]) + 1;
2784 		for (idx = 0; idx < found; idx++)
2785 			__del_from_nat_cache(nm_i, natvec[idx]);
2786 	}
2787 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2788 
2789 	/* destroy nat set cache */
2790 	nid = 0;
2791 	while ((found = __gang_lookup_nat_set(nm_i,
2792 					nid, SETVEC_SIZE, setvec))) {
2793 		unsigned idx;
2794 
2795 		nid = setvec[found - 1]->set + 1;
2796 		for (idx = 0; idx < found; idx++) {
2797 			/* entry_cnt is not zero, when cp_error was occurred */
2798 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2799 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2800 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2801 		}
2802 	}
2803 	up_write(&nm_i->nat_tree_lock);
2804 
2805 	kvfree(nm_i->nat_block_bitmap);
2806 	kvfree(nm_i->free_nid_bitmap);
2807 	kvfree(nm_i->free_nid_count);
2808 
2809 	kfree(nm_i->nat_bitmap);
2810 	kfree(nm_i->nat_bits);
2811 #ifdef CONFIG_F2FS_CHECK_FS
2812 	kfree(nm_i->nat_bitmap_mir);
2813 #endif
2814 	sbi->nm_info = NULL;
2815 	kfree(nm_i);
2816 }
2817 
2818 int __init create_node_manager_caches(void)
2819 {
2820 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2821 			sizeof(struct nat_entry));
2822 	if (!nat_entry_slab)
2823 		goto fail;
2824 
2825 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2826 			sizeof(struct free_nid));
2827 	if (!free_nid_slab)
2828 		goto destroy_nat_entry;
2829 
2830 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2831 			sizeof(struct nat_entry_set));
2832 	if (!nat_entry_set_slab)
2833 		goto destroy_free_nid;
2834 	return 0;
2835 
2836 destroy_free_nid:
2837 	kmem_cache_destroy(free_nid_slab);
2838 destroy_nat_entry:
2839 	kmem_cache_destroy(nat_entry_slab);
2840 fail:
2841 	return -ENOMEM;
2842 }
2843 
2844 void destroy_node_manager_caches(void)
2845 {
2846 	kmem_cache_destroy(nat_entry_set_slab);
2847 	kmem_cache_destroy(free_nid_slab);
2848 	kmem_cache_destroy(nat_entry_slab);
2849 }
2850