1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/backing-dev.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_msg(sbi->sb, KERN_WARNING, 38 "%s: out-of-range nid=%x, run fsck to fix.", 39 __func__, nid); 40 return -EINVAL; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct sysinfo val; 49 unsigned long avail_ram; 50 unsigned long mem_size = 0; 51 bool res = false; 52 53 si_meminfo(&val); 54 55 /* only uses low memory */ 56 avail_ram = val.totalram - val.totalhigh; 57 58 /* 59 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 60 */ 61 if (type == FREE_NIDS) { 62 mem_size = (nm_i->nid_cnt[FREE_NID] * 63 sizeof(struct free_nid)) >> PAGE_SHIFT; 64 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 65 } else if (type == NAT_ENTRIES) { 66 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 67 PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 if (excess_cached_nats(sbi)) 70 res = false; 71 } else if (type == DIRTY_DENTS) { 72 if (sbi->sb->s_bdi->wb.dirty_exceeded) 73 return false; 74 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 76 } else if (type == INO_ENTRIES) { 77 int i; 78 79 for (i = 0; i < MAX_INO_ENTRY; i++) 80 mem_size += sbi->im[i].ino_num * 81 sizeof(struct ino_entry); 82 mem_size >>= PAGE_SHIFT; 83 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 84 } else if (type == EXTENT_CACHE) { 85 mem_size = (atomic_read(&sbi->total_ext_tree) * 86 sizeof(struct extent_tree) + 87 atomic_read(&sbi->total_ext_node) * 88 sizeof(struct extent_node)) >> PAGE_SHIFT; 89 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 90 } else if (type == INMEM_PAGES) { 91 /* it allows 20% / total_ram for inmemory pages */ 92 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 93 res = mem_size < (val.totalram / 5); 94 } else { 95 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 96 return true; 97 } 98 return res; 99 } 100 101 static void clear_node_page_dirty(struct page *page) 102 { 103 if (PageDirty(page)) { 104 f2fs_clear_page_cache_dirty_tag(page); 105 clear_page_dirty_for_io(page); 106 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 107 } 108 ClearPageUptodate(page); 109 } 110 111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 112 { 113 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid)); 114 } 115 116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 117 { 118 struct page *src_page; 119 struct page *dst_page; 120 pgoff_t dst_off; 121 void *src_addr; 122 void *dst_addr; 123 struct f2fs_nm_info *nm_i = NM_I(sbi); 124 125 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 126 127 /* get current nat block page with lock */ 128 src_page = get_current_nat_page(sbi, nid); 129 if (IS_ERR(src_page)) 130 return src_page; 131 dst_page = f2fs_grab_meta_page(sbi, dst_off); 132 f2fs_bug_on(sbi, PageDirty(src_page)); 133 134 src_addr = page_address(src_page); 135 dst_addr = page_address(dst_page); 136 memcpy(dst_addr, src_addr, PAGE_SIZE); 137 set_page_dirty(dst_page); 138 f2fs_put_page(src_page, 1); 139 140 set_to_next_nat(nm_i, nid); 141 142 return dst_page; 143 } 144 145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 146 { 147 struct nat_entry *new; 148 149 if (no_fail) 150 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 151 else 152 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 153 if (new) { 154 nat_set_nid(new, nid); 155 nat_reset_flag(new); 156 } 157 return new; 158 } 159 160 static void __free_nat_entry(struct nat_entry *e) 161 { 162 kmem_cache_free(nat_entry_slab, e); 163 } 164 165 /* must be locked by nat_tree_lock */ 166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 167 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 168 { 169 if (no_fail) 170 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 171 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 172 return NULL; 173 174 if (raw_ne) 175 node_info_from_raw_nat(&ne->ni, raw_ne); 176 177 spin_lock(&nm_i->nat_list_lock); 178 list_add_tail(&ne->list, &nm_i->nat_entries); 179 spin_unlock(&nm_i->nat_list_lock); 180 181 nm_i->nat_cnt++; 182 return ne; 183 } 184 185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 186 { 187 struct nat_entry *ne; 188 189 ne = radix_tree_lookup(&nm_i->nat_root, n); 190 191 /* for recent accessed nat entry, move it to tail of lru list */ 192 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 193 spin_lock(&nm_i->nat_list_lock); 194 if (!list_empty(&ne->list)) 195 list_move_tail(&ne->list, &nm_i->nat_entries); 196 spin_unlock(&nm_i->nat_list_lock); 197 } 198 199 return ne; 200 } 201 202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 203 nid_t start, unsigned int nr, struct nat_entry **ep) 204 { 205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 206 } 207 208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 209 { 210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 211 nm_i->nat_cnt--; 212 __free_nat_entry(e); 213 } 214 215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 216 struct nat_entry *ne) 217 { 218 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 219 struct nat_entry_set *head; 220 221 head = radix_tree_lookup(&nm_i->nat_set_root, set); 222 if (!head) { 223 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 224 225 INIT_LIST_HEAD(&head->entry_list); 226 INIT_LIST_HEAD(&head->set_list); 227 head->set = set; 228 head->entry_cnt = 0; 229 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 230 } 231 return head; 232 } 233 234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 235 struct nat_entry *ne) 236 { 237 struct nat_entry_set *head; 238 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 239 240 if (!new_ne) 241 head = __grab_nat_entry_set(nm_i, ne); 242 243 /* 244 * update entry_cnt in below condition: 245 * 1. update NEW_ADDR to valid block address; 246 * 2. update old block address to new one; 247 */ 248 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 249 !get_nat_flag(ne, IS_DIRTY))) 250 head->entry_cnt++; 251 252 set_nat_flag(ne, IS_PREALLOC, new_ne); 253 254 if (get_nat_flag(ne, IS_DIRTY)) 255 goto refresh_list; 256 257 nm_i->dirty_nat_cnt++; 258 set_nat_flag(ne, IS_DIRTY, true); 259 refresh_list: 260 spin_lock(&nm_i->nat_list_lock); 261 if (new_ne) 262 list_del_init(&ne->list); 263 else 264 list_move_tail(&ne->list, &head->entry_list); 265 spin_unlock(&nm_i->nat_list_lock); 266 } 267 268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 269 struct nat_entry_set *set, struct nat_entry *ne) 270 { 271 spin_lock(&nm_i->nat_list_lock); 272 list_move_tail(&ne->list, &nm_i->nat_entries); 273 spin_unlock(&nm_i->nat_list_lock); 274 275 set_nat_flag(ne, IS_DIRTY, false); 276 set->entry_cnt--; 277 nm_i->dirty_nat_cnt--; 278 } 279 280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 281 nid_t start, unsigned int nr, struct nat_entry_set **ep) 282 { 283 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 284 start, nr); 285 } 286 287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 288 { 289 return NODE_MAPPING(sbi) == page->mapping && 290 IS_DNODE(page) && is_cold_node(page); 291 } 292 293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 294 { 295 spin_lock_init(&sbi->fsync_node_lock); 296 INIT_LIST_HEAD(&sbi->fsync_node_list); 297 sbi->fsync_seg_id = 0; 298 sbi->fsync_node_num = 0; 299 } 300 301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 302 struct page *page) 303 { 304 struct fsync_node_entry *fn; 305 unsigned long flags; 306 unsigned int seq_id; 307 308 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); 309 310 get_page(page); 311 fn->page = page; 312 INIT_LIST_HEAD(&fn->list); 313 314 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 315 list_add_tail(&fn->list, &sbi->fsync_node_list); 316 fn->seq_id = sbi->fsync_seg_id++; 317 seq_id = fn->seq_id; 318 sbi->fsync_node_num++; 319 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 320 321 return seq_id; 322 } 323 324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 325 { 326 struct fsync_node_entry *fn; 327 unsigned long flags; 328 329 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 330 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 331 if (fn->page == page) { 332 list_del(&fn->list); 333 sbi->fsync_node_num--; 334 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 335 kmem_cache_free(fsync_node_entry_slab, fn); 336 put_page(page); 337 return; 338 } 339 } 340 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 341 f2fs_bug_on(sbi, 1); 342 } 343 344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 345 { 346 unsigned long flags; 347 348 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 349 sbi->fsync_seg_id = 0; 350 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 351 } 352 353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 354 { 355 struct f2fs_nm_info *nm_i = NM_I(sbi); 356 struct nat_entry *e; 357 bool need = false; 358 359 down_read(&nm_i->nat_tree_lock); 360 e = __lookup_nat_cache(nm_i, nid); 361 if (e) { 362 if (!get_nat_flag(e, IS_CHECKPOINTED) && 363 !get_nat_flag(e, HAS_FSYNCED_INODE)) 364 need = true; 365 } 366 up_read(&nm_i->nat_tree_lock); 367 return need; 368 } 369 370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 371 { 372 struct f2fs_nm_info *nm_i = NM_I(sbi); 373 struct nat_entry *e; 374 bool is_cp = true; 375 376 down_read(&nm_i->nat_tree_lock); 377 e = __lookup_nat_cache(nm_i, nid); 378 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 379 is_cp = false; 380 up_read(&nm_i->nat_tree_lock); 381 return is_cp; 382 } 383 384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 385 { 386 struct f2fs_nm_info *nm_i = NM_I(sbi); 387 struct nat_entry *e; 388 bool need_update = true; 389 390 down_read(&nm_i->nat_tree_lock); 391 e = __lookup_nat_cache(nm_i, ino); 392 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 393 (get_nat_flag(e, IS_CHECKPOINTED) || 394 get_nat_flag(e, HAS_FSYNCED_INODE))) 395 need_update = false; 396 up_read(&nm_i->nat_tree_lock); 397 return need_update; 398 } 399 400 /* must be locked by nat_tree_lock */ 401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 402 struct f2fs_nat_entry *ne) 403 { 404 struct f2fs_nm_info *nm_i = NM_I(sbi); 405 struct nat_entry *new, *e; 406 407 new = __alloc_nat_entry(nid, false); 408 if (!new) 409 return; 410 411 down_write(&nm_i->nat_tree_lock); 412 e = __lookup_nat_cache(nm_i, nid); 413 if (!e) 414 e = __init_nat_entry(nm_i, new, ne, false); 415 else 416 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 417 nat_get_blkaddr(e) != 418 le32_to_cpu(ne->block_addr) || 419 nat_get_version(e) != ne->version); 420 up_write(&nm_i->nat_tree_lock); 421 if (e != new) 422 __free_nat_entry(new); 423 } 424 425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 426 block_t new_blkaddr, bool fsync_done) 427 { 428 struct f2fs_nm_info *nm_i = NM_I(sbi); 429 struct nat_entry *e; 430 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 431 432 down_write(&nm_i->nat_tree_lock); 433 e = __lookup_nat_cache(nm_i, ni->nid); 434 if (!e) { 435 e = __init_nat_entry(nm_i, new, NULL, true); 436 copy_node_info(&e->ni, ni); 437 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 438 } else if (new_blkaddr == NEW_ADDR) { 439 /* 440 * when nid is reallocated, 441 * previous nat entry can be remained in nat cache. 442 * So, reinitialize it with new information. 443 */ 444 copy_node_info(&e->ni, ni); 445 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 446 } 447 /* let's free early to reduce memory consumption */ 448 if (e != new) 449 __free_nat_entry(new); 450 451 /* sanity check */ 452 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 453 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 454 new_blkaddr == NULL_ADDR); 455 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 456 new_blkaddr == NEW_ADDR); 457 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) && 458 new_blkaddr == NEW_ADDR); 459 460 /* increment version no as node is removed */ 461 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 462 unsigned char version = nat_get_version(e); 463 nat_set_version(e, inc_node_version(version)); 464 } 465 466 /* change address */ 467 nat_set_blkaddr(e, new_blkaddr); 468 if (!is_valid_data_blkaddr(sbi, new_blkaddr)) 469 set_nat_flag(e, IS_CHECKPOINTED, false); 470 __set_nat_cache_dirty(nm_i, e); 471 472 /* update fsync_mark if its inode nat entry is still alive */ 473 if (ni->nid != ni->ino) 474 e = __lookup_nat_cache(nm_i, ni->ino); 475 if (e) { 476 if (fsync_done && ni->nid == ni->ino) 477 set_nat_flag(e, HAS_FSYNCED_INODE, true); 478 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 479 } 480 up_write(&nm_i->nat_tree_lock); 481 } 482 483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 484 { 485 struct f2fs_nm_info *nm_i = NM_I(sbi); 486 int nr = nr_shrink; 487 488 if (!down_write_trylock(&nm_i->nat_tree_lock)) 489 return 0; 490 491 spin_lock(&nm_i->nat_list_lock); 492 while (nr_shrink) { 493 struct nat_entry *ne; 494 495 if (list_empty(&nm_i->nat_entries)) 496 break; 497 498 ne = list_first_entry(&nm_i->nat_entries, 499 struct nat_entry, list); 500 list_del(&ne->list); 501 spin_unlock(&nm_i->nat_list_lock); 502 503 __del_from_nat_cache(nm_i, ne); 504 nr_shrink--; 505 506 spin_lock(&nm_i->nat_list_lock); 507 } 508 spin_unlock(&nm_i->nat_list_lock); 509 510 up_write(&nm_i->nat_tree_lock); 511 return nr - nr_shrink; 512 } 513 514 /* 515 * This function always returns success 516 */ 517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 518 struct node_info *ni) 519 { 520 struct f2fs_nm_info *nm_i = NM_I(sbi); 521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 522 struct f2fs_journal *journal = curseg->journal; 523 nid_t start_nid = START_NID(nid); 524 struct f2fs_nat_block *nat_blk; 525 struct page *page = NULL; 526 struct f2fs_nat_entry ne; 527 struct nat_entry *e; 528 pgoff_t index; 529 int i; 530 531 ni->nid = nid; 532 533 /* Check nat cache */ 534 down_read(&nm_i->nat_tree_lock); 535 e = __lookup_nat_cache(nm_i, nid); 536 if (e) { 537 ni->ino = nat_get_ino(e); 538 ni->blk_addr = nat_get_blkaddr(e); 539 ni->version = nat_get_version(e); 540 up_read(&nm_i->nat_tree_lock); 541 return 0; 542 } 543 544 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 545 546 /* Check current segment summary */ 547 down_read(&curseg->journal_rwsem); 548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 549 if (i >= 0) { 550 ne = nat_in_journal(journal, i); 551 node_info_from_raw_nat(ni, &ne); 552 } 553 up_read(&curseg->journal_rwsem); 554 if (i >= 0) { 555 up_read(&nm_i->nat_tree_lock); 556 goto cache; 557 } 558 559 /* Fill node_info from nat page */ 560 index = current_nat_addr(sbi, nid); 561 up_read(&nm_i->nat_tree_lock); 562 563 page = f2fs_get_meta_page(sbi, index); 564 if (IS_ERR(page)) 565 return PTR_ERR(page); 566 567 nat_blk = (struct f2fs_nat_block *)page_address(page); 568 ne = nat_blk->entries[nid - start_nid]; 569 node_info_from_raw_nat(ni, &ne); 570 f2fs_put_page(page, 1); 571 cache: 572 /* cache nat entry */ 573 cache_nat_entry(sbi, nid, &ne); 574 return 0; 575 } 576 577 /* 578 * readahead MAX_RA_NODE number of node pages. 579 */ 580 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 581 { 582 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 583 struct blk_plug plug; 584 int i, end; 585 nid_t nid; 586 587 blk_start_plug(&plug); 588 589 /* Then, try readahead for siblings of the desired node */ 590 end = start + n; 591 end = min(end, NIDS_PER_BLOCK); 592 for (i = start; i < end; i++) { 593 nid = get_nid(parent, i, false); 594 f2fs_ra_node_page(sbi, nid); 595 } 596 597 blk_finish_plug(&plug); 598 } 599 600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 601 { 602 const long direct_index = ADDRS_PER_INODE(dn->inode); 603 const long direct_blks = ADDRS_PER_BLOCK; 604 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 605 unsigned int skipped_unit = ADDRS_PER_BLOCK; 606 int cur_level = dn->cur_level; 607 int max_level = dn->max_level; 608 pgoff_t base = 0; 609 610 if (!dn->max_level) 611 return pgofs + 1; 612 613 while (max_level-- > cur_level) 614 skipped_unit *= NIDS_PER_BLOCK; 615 616 switch (dn->max_level) { 617 case 3: 618 base += 2 * indirect_blks; 619 case 2: 620 base += 2 * direct_blks; 621 case 1: 622 base += direct_index; 623 break; 624 default: 625 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 626 } 627 628 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 629 } 630 631 /* 632 * The maximum depth is four. 633 * Offset[0] will have raw inode offset. 634 */ 635 static int get_node_path(struct inode *inode, long block, 636 int offset[4], unsigned int noffset[4]) 637 { 638 const long direct_index = ADDRS_PER_INODE(inode); 639 const long direct_blks = ADDRS_PER_BLOCK; 640 const long dptrs_per_blk = NIDS_PER_BLOCK; 641 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 642 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 643 int n = 0; 644 int level = 0; 645 646 noffset[0] = 0; 647 648 if (block < direct_index) { 649 offset[n] = block; 650 goto got; 651 } 652 block -= direct_index; 653 if (block < direct_blks) { 654 offset[n++] = NODE_DIR1_BLOCK; 655 noffset[n] = 1; 656 offset[n] = block; 657 level = 1; 658 goto got; 659 } 660 block -= direct_blks; 661 if (block < direct_blks) { 662 offset[n++] = NODE_DIR2_BLOCK; 663 noffset[n] = 2; 664 offset[n] = block; 665 level = 1; 666 goto got; 667 } 668 block -= direct_blks; 669 if (block < indirect_blks) { 670 offset[n++] = NODE_IND1_BLOCK; 671 noffset[n] = 3; 672 offset[n++] = block / direct_blks; 673 noffset[n] = 4 + offset[n - 1]; 674 offset[n] = block % direct_blks; 675 level = 2; 676 goto got; 677 } 678 block -= indirect_blks; 679 if (block < indirect_blks) { 680 offset[n++] = NODE_IND2_BLOCK; 681 noffset[n] = 4 + dptrs_per_blk; 682 offset[n++] = block / direct_blks; 683 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 684 offset[n] = block % direct_blks; 685 level = 2; 686 goto got; 687 } 688 block -= indirect_blks; 689 if (block < dindirect_blks) { 690 offset[n++] = NODE_DIND_BLOCK; 691 noffset[n] = 5 + (dptrs_per_blk * 2); 692 offset[n++] = block / indirect_blks; 693 noffset[n] = 6 + (dptrs_per_blk * 2) + 694 offset[n - 1] * (dptrs_per_blk + 1); 695 offset[n++] = (block / direct_blks) % dptrs_per_blk; 696 noffset[n] = 7 + (dptrs_per_blk * 2) + 697 offset[n - 2] * (dptrs_per_blk + 1) + 698 offset[n - 1]; 699 offset[n] = block % direct_blks; 700 level = 3; 701 goto got; 702 } else { 703 return -E2BIG; 704 } 705 got: 706 return level; 707 } 708 709 /* 710 * Caller should call f2fs_put_dnode(dn). 711 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 712 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 713 * In the case of RDONLY_NODE, we don't need to care about mutex. 714 */ 715 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 716 { 717 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 718 struct page *npage[4]; 719 struct page *parent = NULL; 720 int offset[4]; 721 unsigned int noffset[4]; 722 nid_t nids[4]; 723 int level, i = 0; 724 int err = 0; 725 726 level = get_node_path(dn->inode, index, offset, noffset); 727 if (level < 0) 728 return level; 729 730 nids[0] = dn->inode->i_ino; 731 npage[0] = dn->inode_page; 732 733 if (!npage[0]) { 734 npage[0] = f2fs_get_node_page(sbi, nids[0]); 735 if (IS_ERR(npage[0])) 736 return PTR_ERR(npage[0]); 737 } 738 739 /* if inline_data is set, should not report any block indices */ 740 if (f2fs_has_inline_data(dn->inode) && index) { 741 err = -ENOENT; 742 f2fs_put_page(npage[0], 1); 743 goto release_out; 744 } 745 746 parent = npage[0]; 747 if (level != 0) 748 nids[1] = get_nid(parent, offset[0], true); 749 dn->inode_page = npage[0]; 750 dn->inode_page_locked = true; 751 752 /* get indirect or direct nodes */ 753 for (i = 1; i <= level; i++) { 754 bool done = false; 755 756 if (!nids[i] && mode == ALLOC_NODE) { 757 /* alloc new node */ 758 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 759 err = -ENOSPC; 760 goto release_pages; 761 } 762 763 dn->nid = nids[i]; 764 npage[i] = f2fs_new_node_page(dn, noffset[i]); 765 if (IS_ERR(npage[i])) { 766 f2fs_alloc_nid_failed(sbi, nids[i]); 767 err = PTR_ERR(npage[i]); 768 goto release_pages; 769 } 770 771 set_nid(parent, offset[i - 1], nids[i], i == 1); 772 f2fs_alloc_nid_done(sbi, nids[i]); 773 done = true; 774 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 775 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 776 if (IS_ERR(npage[i])) { 777 err = PTR_ERR(npage[i]); 778 goto release_pages; 779 } 780 done = true; 781 } 782 if (i == 1) { 783 dn->inode_page_locked = false; 784 unlock_page(parent); 785 } else { 786 f2fs_put_page(parent, 1); 787 } 788 789 if (!done) { 790 npage[i] = f2fs_get_node_page(sbi, nids[i]); 791 if (IS_ERR(npage[i])) { 792 err = PTR_ERR(npage[i]); 793 f2fs_put_page(npage[0], 0); 794 goto release_out; 795 } 796 } 797 if (i < level) { 798 parent = npage[i]; 799 nids[i + 1] = get_nid(parent, offset[i], false); 800 } 801 } 802 dn->nid = nids[level]; 803 dn->ofs_in_node = offset[level]; 804 dn->node_page = npage[level]; 805 dn->data_blkaddr = datablock_addr(dn->inode, 806 dn->node_page, dn->ofs_in_node); 807 return 0; 808 809 release_pages: 810 f2fs_put_page(parent, 1); 811 if (i > 1) 812 f2fs_put_page(npage[0], 0); 813 release_out: 814 dn->inode_page = NULL; 815 dn->node_page = NULL; 816 if (err == -ENOENT) { 817 dn->cur_level = i; 818 dn->max_level = level; 819 dn->ofs_in_node = offset[level]; 820 } 821 return err; 822 } 823 824 static int truncate_node(struct dnode_of_data *dn) 825 { 826 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 827 struct node_info ni; 828 int err; 829 830 err = f2fs_get_node_info(sbi, dn->nid, &ni); 831 if (err) 832 return err; 833 834 /* Deallocate node address */ 835 f2fs_invalidate_blocks(sbi, ni.blk_addr); 836 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 837 set_node_addr(sbi, &ni, NULL_ADDR, false); 838 839 if (dn->nid == dn->inode->i_ino) { 840 f2fs_remove_orphan_inode(sbi, dn->nid); 841 dec_valid_inode_count(sbi); 842 f2fs_inode_synced(dn->inode); 843 } 844 845 clear_node_page_dirty(dn->node_page); 846 set_sbi_flag(sbi, SBI_IS_DIRTY); 847 848 f2fs_put_page(dn->node_page, 1); 849 850 invalidate_mapping_pages(NODE_MAPPING(sbi), 851 dn->node_page->index, dn->node_page->index); 852 853 dn->node_page = NULL; 854 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 855 856 return 0; 857 } 858 859 static int truncate_dnode(struct dnode_of_data *dn) 860 { 861 struct page *page; 862 int err; 863 864 if (dn->nid == 0) 865 return 1; 866 867 /* get direct node */ 868 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 869 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 870 return 1; 871 else if (IS_ERR(page)) 872 return PTR_ERR(page); 873 874 /* Make dnode_of_data for parameter */ 875 dn->node_page = page; 876 dn->ofs_in_node = 0; 877 f2fs_truncate_data_blocks(dn); 878 err = truncate_node(dn); 879 if (err) 880 return err; 881 882 return 1; 883 } 884 885 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 886 int ofs, int depth) 887 { 888 struct dnode_of_data rdn = *dn; 889 struct page *page; 890 struct f2fs_node *rn; 891 nid_t child_nid; 892 unsigned int child_nofs; 893 int freed = 0; 894 int i, ret; 895 896 if (dn->nid == 0) 897 return NIDS_PER_BLOCK + 1; 898 899 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 900 901 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 902 if (IS_ERR(page)) { 903 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 904 return PTR_ERR(page); 905 } 906 907 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 908 909 rn = F2FS_NODE(page); 910 if (depth < 3) { 911 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 912 child_nid = le32_to_cpu(rn->in.nid[i]); 913 if (child_nid == 0) 914 continue; 915 rdn.nid = child_nid; 916 ret = truncate_dnode(&rdn); 917 if (ret < 0) 918 goto out_err; 919 if (set_nid(page, i, 0, false)) 920 dn->node_changed = true; 921 } 922 } else { 923 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 924 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 925 child_nid = le32_to_cpu(rn->in.nid[i]); 926 if (child_nid == 0) { 927 child_nofs += NIDS_PER_BLOCK + 1; 928 continue; 929 } 930 rdn.nid = child_nid; 931 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 932 if (ret == (NIDS_PER_BLOCK + 1)) { 933 if (set_nid(page, i, 0, false)) 934 dn->node_changed = true; 935 child_nofs += ret; 936 } else if (ret < 0 && ret != -ENOENT) { 937 goto out_err; 938 } 939 } 940 freed = child_nofs; 941 } 942 943 if (!ofs) { 944 /* remove current indirect node */ 945 dn->node_page = page; 946 ret = truncate_node(dn); 947 if (ret) 948 goto out_err; 949 freed++; 950 } else { 951 f2fs_put_page(page, 1); 952 } 953 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 954 return freed; 955 956 out_err: 957 f2fs_put_page(page, 1); 958 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 959 return ret; 960 } 961 962 static int truncate_partial_nodes(struct dnode_of_data *dn, 963 struct f2fs_inode *ri, int *offset, int depth) 964 { 965 struct page *pages[2]; 966 nid_t nid[3]; 967 nid_t child_nid; 968 int err = 0; 969 int i; 970 int idx = depth - 2; 971 972 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 973 if (!nid[0]) 974 return 0; 975 976 /* get indirect nodes in the path */ 977 for (i = 0; i < idx + 1; i++) { 978 /* reference count'll be increased */ 979 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 980 if (IS_ERR(pages[i])) { 981 err = PTR_ERR(pages[i]); 982 idx = i - 1; 983 goto fail; 984 } 985 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 986 } 987 988 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 989 990 /* free direct nodes linked to a partial indirect node */ 991 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 992 child_nid = get_nid(pages[idx], i, false); 993 if (!child_nid) 994 continue; 995 dn->nid = child_nid; 996 err = truncate_dnode(dn); 997 if (err < 0) 998 goto fail; 999 if (set_nid(pages[idx], i, 0, false)) 1000 dn->node_changed = true; 1001 } 1002 1003 if (offset[idx + 1] == 0) { 1004 dn->node_page = pages[idx]; 1005 dn->nid = nid[idx]; 1006 err = truncate_node(dn); 1007 if (err) 1008 goto fail; 1009 } else { 1010 f2fs_put_page(pages[idx], 1); 1011 } 1012 offset[idx]++; 1013 offset[idx + 1] = 0; 1014 idx--; 1015 fail: 1016 for (i = idx; i >= 0; i--) 1017 f2fs_put_page(pages[i], 1); 1018 1019 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1020 1021 return err; 1022 } 1023 1024 /* 1025 * All the block addresses of data and nodes should be nullified. 1026 */ 1027 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1028 { 1029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1030 int err = 0, cont = 1; 1031 int level, offset[4], noffset[4]; 1032 unsigned int nofs = 0; 1033 struct f2fs_inode *ri; 1034 struct dnode_of_data dn; 1035 struct page *page; 1036 1037 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1038 1039 level = get_node_path(inode, from, offset, noffset); 1040 if (level < 0) 1041 return level; 1042 1043 page = f2fs_get_node_page(sbi, inode->i_ino); 1044 if (IS_ERR(page)) { 1045 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1046 return PTR_ERR(page); 1047 } 1048 1049 set_new_dnode(&dn, inode, page, NULL, 0); 1050 unlock_page(page); 1051 1052 ri = F2FS_INODE(page); 1053 switch (level) { 1054 case 0: 1055 case 1: 1056 nofs = noffset[1]; 1057 break; 1058 case 2: 1059 nofs = noffset[1]; 1060 if (!offset[level - 1]) 1061 goto skip_partial; 1062 err = truncate_partial_nodes(&dn, ri, offset, level); 1063 if (err < 0 && err != -ENOENT) 1064 goto fail; 1065 nofs += 1 + NIDS_PER_BLOCK; 1066 break; 1067 case 3: 1068 nofs = 5 + 2 * NIDS_PER_BLOCK; 1069 if (!offset[level - 1]) 1070 goto skip_partial; 1071 err = truncate_partial_nodes(&dn, ri, offset, level); 1072 if (err < 0 && err != -ENOENT) 1073 goto fail; 1074 break; 1075 default: 1076 BUG(); 1077 } 1078 1079 skip_partial: 1080 while (cont) { 1081 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1082 switch (offset[0]) { 1083 case NODE_DIR1_BLOCK: 1084 case NODE_DIR2_BLOCK: 1085 err = truncate_dnode(&dn); 1086 break; 1087 1088 case NODE_IND1_BLOCK: 1089 case NODE_IND2_BLOCK: 1090 err = truncate_nodes(&dn, nofs, offset[1], 2); 1091 break; 1092 1093 case NODE_DIND_BLOCK: 1094 err = truncate_nodes(&dn, nofs, offset[1], 3); 1095 cont = 0; 1096 break; 1097 1098 default: 1099 BUG(); 1100 } 1101 if (err < 0 && err != -ENOENT) 1102 goto fail; 1103 if (offset[1] == 0 && 1104 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1105 lock_page(page); 1106 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1107 f2fs_wait_on_page_writeback(page, NODE, true); 1108 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1109 set_page_dirty(page); 1110 unlock_page(page); 1111 } 1112 offset[1] = 0; 1113 offset[0]++; 1114 nofs += err; 1115 } 1116 fail: 1117 f2fs_put_page(page, 0); 1118 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1119 return err > 0 ? 0 : err; 1120 } 1121 1122 /* caller must lock inode page */ 1123 int f2fs_truncate_xattr_node(struct inode *inode) 1124 { 1125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1126 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1127 struct dnode_of_data dn; 1128 struct page *npage; 1129 int err; 1130 1131 if (!nid) 1132 return 0; 1133 1134 npage = f2fs_get_node_page(sbi, nid); 1135 if (IS_ERR(npage)) 1136 return PTR_ERR(npage); 1137 1138 set_new_dnode(&dn, inode, NULL, npage, nid); 1139 err = truncate_node(&dn); 1140 if (err) { 1141 f2fs_put_page(npage, 1); 1142 return err; 1143 } 1144 1145 f2fs_i_xnid_write(inode, 0); 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1152 * f2fs_unlock_op(). 1153 */ 1154 int f2fs_remove_inode_page(struct inode *inode) 1155 { 1156 struct dnode_of_data dn; 1157 int err; 1158 1159 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1160 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1161 if (err) 1162 return err; 1163 1164 err = f2fs_truncate_xattr_node(inode); 1165 if (err) { 1166 f2fs_put_dnode(&dn); 1167 return err; 1168 } 1169 1170 /* remove potential inline_data blocks */ 1171 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1172 S_ISLNK(inode->i_mode)) 1173 f2fs_truncate_data_blocks_range(&dn, 1); 1174 1175 /* 0 is possible, after f2fs_new_inode() has failed */ 1176 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1177 f2fs_put_dnode(&dn); 1178 return -EIO; 1179 } 1180 f2fs_bug_on(F2FS_I_SB(inode), 1181 inode->i_blocks != 0 && inode->i_blocks != 8); 1182 1183 /* will put inode & node pages */ 1184 err = truncate_node(&dn); 1185 if (err) { 1186 f2fs_put_dnode(&dn); 1187 return err; 1188 } 1189 return 0; 1190 } 1191 1192 struct page *f2fs_new_inode_page(struct inode *inode) 1193 { 1194 struct dnode_of_data dn; 1195 1196 /* allocate inode page for new inode */ 1197 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1198 1199 /* caller should f2fs_put_page(page, 1); */ 1200 return f2fs_new_node_page(&dn, 0); 1201 } 1202 1203 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1204 { 1205 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1206 struct node_info new_ni; 1207 struct page *page; 1208 int err; 1209 1210 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1211 return ERR_PTR(-EPERM); 1212 1213 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1214 if (!page) 1215 return ERR_PTR(-ENOMEM); 1216 1217 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1218 goto fail; 1219 1220 #ifdef CONFIG_F2FS_CHECK_FS 1221 err = f2fs_get_node_info(sbi, dn->nid, &new_ni); 1222 if (err) { 1223 dec_valid_node_count(sbi, dn->inode, !ofs); 1224 goto fail; 1225 } 1226 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1227 #endif 1228 new_ni.nid = dn->nid; 1229 new_ni.ino = dn->inode->i_ino; 1230 new_ni.blk_addr = NULL_ADDR; 1231 new_ni.flag = 0; 1232 new_ni.version = 0; 1233 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1234 1235 f2fs_wait_on_page_writeback(page, NODE, true); 1236 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1237 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1238 if (!PageUptodate(page)) 1239 SetPageUptodate(page); 1240 if (set_page_dirty(page)) 1241 dn->node_changed = true; 1242 1243 if (f2fs_has_xattr_block(ofs)) 1244 f2fs_i_xnid_write(dn->inode, dn->nid); 1245 1246 if (ofs == 0) 1247 inc_valid_inode_count(sbi); 1248 return page; 1249 1250 fail: 1251 clear_node_page_dirty(page); 1252 f2fs_put_page(page, 1); 1253 return ERR_PTR(err); 1254 } 1255 1256 /* 1257 * Caller should do after getting the following values. 1258 * 0: f2fs_put_page(page, 0) 1259 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1260 */ 1261 static int read_node_page(struct page *page, int op_flags) 1262 { 1263 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1264 struct node_info ni; 1265 struct f2fs_io_info fio = { 1266 .sbi = sbi, 1267 .type = NODE, 1268 .op = REQ_OP_READ, 1269 .op_flags = op_flags, 1270 .page = page, 1271 .encrypted_page = NULL, 1272 }; 1273 int err; 1274 1275 if (PageUptodate(page)) { 1276 #ifdef CONFIG_F2FS_CHECK_FS 1277 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page)); 1278 #endif 1279 return LOCKED_PAGE; 1280 } 1281 1282 err = f2fs_get_node_info(sbi, page->index, &ni); 1283 if (err) 1284 return err; 1285 1286 if (unlikely(ni.blk_addr == NULL_ADDR) || 1287 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1288 ClearPageUptodate(page); 1289 return -ENOENT; 1290 } 1291 1292 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1293 return f2fs_submit_page_bio(&fio); 1294 } 1295 1296 /* 1297 * Readahead a node page 1298 */ 1299 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1300 { 1301 struct page *apage; 1302 int err; 1303 1304 if (!nid) 1305 return; 1306 if (f2fs_check_nid_range(sbi, nid)) 1307 return; 1308 1309 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1310 if (apage) 1311 return; 1312 1313 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1314 if (!apage) 1315 return; 1316 1317 err = read_node_page(apage, REQ_RAHEAD); 1318 f2fs_put_page(apage, err ? 1 : 0); 1319 } 1320 1321 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1322 struct page *parent, int start) 1323 { 1324 struct page *page; 1325 int err; 1326 1327 if (!nid) 1328 return ERR_PTR(-ENOENT); 1329 if (f2fs_check_nid_range(sbi, nid)) 1330 return ERR_PTR(-EINVAL); 1331 repeat: 1332 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1333 if (!page) 1334 return ERR_PTR(-ENOMEM); 1335 1336 err = read_node_page(page, 0); 1337 if (err < 0) { 1338 f2fs_put_page(page, 1); 1339 return ERR_PTR(err); 1340 } else if (err == LOCKED_PAGE) { 1341 err = 0; 1342 goto page_hit; 1343 } 1344 1345 if (parent) 1346 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1347 1348 lock_page(page); 1349 1350 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1351 f2fs_put_page(page, 1); 1352 goto repeat; 1353 } 1354 1355 if (unlikely(!PageUptodate(page))) { 1356 err = -EIO; 1357 goto out_err; 1358 } 1359 1360 if (!f2fs_inode_chksum_verify(sbi, page)) { 1361 err = -EBADMSG; 1362 goto out_err; 1363 } 1364 page_hit: 1365 if(unlikely(nid != nid_of_node(page))) { 1366 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1367 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1368 nid, nid_of_node(page), ino_of_node(page), 1369 ofs_of_node(page), cpver_of_node(page), 1370 next_blkaddr_of_node(page)); 1371 err = -EINVAL; 1372 out_err: 1373 ClearPageUptodate(page); 1374 f2fs_put_page(page, 1); 1375 return ERR_PTR(err); 1376 } 1377 return page; 1378 } 1379 1380 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1381 { 1382 return __get_node_page(sbi, nid, NULL, 0); 1383 } 1384 1385 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1386 { 1387 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1388 nid_t nid = get_nid(parent, start, false); 1389 1390 return __get_node_page(sbi, nid, parent, start); 1391 } 1392 1393 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1394 { 1395 struct inode *inode; 1396 struct page *page; 1397 int ret; 1398 1399 /* should flush inline_data before evict_inode */ 1400 inode = ilookup(sbi->sb, ino); 1401 if (!inode) 1402 return; 1403 1404 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1405 FGP_LOCK|FGP_NOWAIT, 0); 1406 if (!page) 1407 goto iput_out; 1408 1409 if (!PageUptodate(page)) 1410 goto page_out; 1411 1412 if (!PageDirty(page)) 1413 goto page_out; 1414 1415 if (!clear_page_dirty_for_io(page)) 1416 goto page_out; 1417 1418 ret = f2fs_write_inline_data(inode, page); 1419 inode_dec_dirty_pages(inode); 1420 f2fs_remove_dirty_inode(inode); 1421 if (ret) 1422 set_page_dirty(page); 1423 page_out: 1424 f2fs_put_page(page, 1); 1425 iput_out: 1426 iput(inode); 1427 } 1428 1429 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1430 { 1431 pgoff_t index; 1432 struct pagevec pvec; 1433 struct page *last_page = NULL; 1434 int nr_pages; 1435 1436 pagevec_init(&pvec); 1437 index = 0; 1438 1439 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1440 PAGECACHE_TAG_DIRTY))) { 1441 int i; 1442 1443 for (i = 0; i < nr_pages; i++) { 1444 struct page *page = pvec.pages[i]; 1445 1446 if (unlikely(f2fs_cp_error(sbi))) { 1447 f2fs_put_page(last_page, 0); 1448 pagevec_release(&pvec); 1449 return ERR_PTR(-EIO); 1450 } 1451 1452 if (!IS_DNODE(page) || !is_cold_node(page)) 1453 continue; 1454 if (ino_of_node(page) != ino) 1455 continue; 1456 1457 lock_page(page); 1458 1459 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1460 continue_unlock: 1461 unlock_page(page); 1462 continue; 1463 } 1464 if (ino_of_node(page) != ino) 1465 goto continue_unlock; 1466 1467 if (!PageDirty(page)) { 1468 /* someone wrote it for us */ 1469 goto continue_unlock; 1470 } 1471 1472 if (last_page) 1473 f2fs_put_page(last_page, 0); 1474 1475 get_page(page); 1476 last_page = page; 1477 unlock_page(page); 1478 } 1479 pagevec_release(&pvec); 1480 cond_resched(); 1481 } 1482 return last_page; 1483 } 1484 1485 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1486 struct writeback_control *wbc, bool do_balance, 1487 enum iostat_type io_type, unsigned int *seq_id) 1488 { 1489 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1490 nid_t nid; 1491 struct node_info ni; 1492 struct f2fs_io_info fio = { 1493 .sbi = sbi, 1494 .ino = ino_of_node(page), 1495 .type = NODE, 1496 .op = REQ_OP_WRITE, 1497 .op_flags = wbc_to_write_flags(wbc), 1498 .page = page, 1499 .encrypted_page = NULL, 1500 .submitted = false, 1501 .io_type = io_type, 1502 .io_wbc = wbc, 1503 }; 1504 unsigned int seq; 1505 1506 trace_f2fs_writepage(page, NODE); 1507 1508 if (unlikely(f2fs_cp_error(sbi))) 1509 goto redirty_out; 1510 1511 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1512 goto redirty_out; 1513 1514 if (wbc->sync_mode == WB_SYNC_NONE && 1515 IS_DNODE(page) && is_cold_node(page)) 1516 goto redirty_out; 1517 1518 /* get old block addr of this node page */ 1519 nid = nid_of_node(page); 1520 f2fs_bug_on(sbi, page->index != nid); 1521 1522 if (f2fs_get_node_info(sbi, nid, &ni)) 1523 goto redirty_out; 1524 1525 if (wbc->for_reclaim) { 1526 if (!down_read_trylock(&sbi->node_write)) 1527 goto redirty_out; 1528 } else { 1529 down_read(&sbi->node_write); 1530 } 1531 1532 /* This page is already truncated */ 1533 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1534 ClearPageUptodate(page); 1535 dec_page_count(sbi, F2FS_DIRTY_NODES); 1536 up_read(&sbi->node_write); 1537 unlock_page(page); 1538 return 0; 1539 } 1540 1541 if (__is_valid_data_blkaddr(ni.blk_addr) && 1542 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) { 1543 up_read(&sbi->node_write); 1544 goto redirty_out; 1545 } 1546 1547 if (atomic && !test_opt(sbi, NOBARRIER)) 1548 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1549 1550 set_page_writeback(page); 1551 ClearPageError(page); 1552 1553 if (f2fs_in_warm_node_list(sbi, page)) { 1554 seq = f2fs_add_fsync_node_entry(sbi, page); 1555 if (seq_id) 1556 *seq_id = seq; 1557 } 1558 1559 fio.old_blkaddr = ni.blk_addr; 1560 f2fs_do_write_node_page(nid, &fio); 1561 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1562 dec_page_count(sbi, F2FS_DIRTY_NODES); 1563 up_read(&sbi->node_write); 1564 1565 if (wbc->for_reclaim) { 1566 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1567 submitted = NULL; 1568 } 1569 1570 unlock_page(page); 1571 1572 if (unlikely(f2fs_cp_error(sbi))) { 1573 f2fs_submit_merged_write(sbi, NODE); 1574 submitted = NULL; 1575 } 1576 if (submitted) 1577 *submitted = fio.submitted; 1578 1579 if (do_balance) 1580 f2fs_balance_fs(sbi, false); 1581 return 0; 1582 1583 redirty_out: 1584 redirty_page_for_writepage(wbc, page); 1585 return AOP_WRITEPAGE_ACTIVATE; 1586 } 1587 1588 int f2fs_move_node_page(struct page *node_page, int gc_type) 1589 { 1590 int err = 0; 1591 1592 if (gc_type == FG_GC) { 1593 struct writeback_control wbc = { 1594 .sync_mode = WB_SYNC_ALL, 1595 .nr_to_write = 1, 1596 .for_reclaim = 0, 1597 }; 1598 1599 set_page_dirty(node_page); 1600 f2fs_wait_on_page_writeback(node_page, NODE, true); 1601 1602 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page)); 1603 if (!clear_page_dirty_for_io(node_page)) { 1604 err = -EAGAIN; 1605 goto out_page; 1606 } 1607 1608 if (__write_node_page(node_page, false, NULL, 1609 &wbc, false, FS_GC_NODE_IO, NULL)) { 1610 err = -EAGAIN; 1611 unlock_page(node_page); 1612 } 1613 goto release_page; 1614 } else { 1615 /* set page dirty and write it */ 1616 if (!PageWriteback(node_page)) 1617 set_page_dirty(node_page); 1618 } 1619 out_page: 1620 unlock_page(node_page); 1621 release_page: 1622 f2fs_put_page(node_page, 0); 1623 return err; 1624 } 1625 1626 static int f2fs_write_node_page(struct page *page, 1627 struct writeback_control *wbc) 1628 { 1629 return __write_node_page(page, false, NULL, wbc, false, 1630 FS_NODE_IO, NULL); 1631 } 1632 1633 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1634 struct writeback_control *wbc, bool atomic, 1635 unsigned int *seq_id) 1636 { 1637 pgoff_t index; 1638 struct pagevec pvec; 1639 int ret = 0; 1640 struct page *last_page = NULL; 1641 bool marked = false; 1642 nid_t ino = inode->i_ino; 1643 int nr_pages; 1644 int nwritten = 0; 1645 1646 if (atomic) { 1647 last_page = last_fsync_dnode(sbi, ino); 1648 if (IS_ERR_OR_NULL(last_page)) 1649 return PTR_ERR_OR_ZERO(last_page); 1650 } 1651 retry: 1652 pagevec_init(&pvec); 1653 index = 0; 1654 1655 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1656 PAGECACHE_TAG_DIRTY))) { 1657 int i; 1658 1659 for (i = 0; i < nr_pages; i++) { 1660 struct page *page = pvec.pages[i]; 1661 bool submitted = false; 1662 1663 if (unlikely(f2fs_cp_error(sbi))) { 1664 f2fs_put_page(last_page, 0); 1665 pagevec_release(&pvec); 1666 ret = -EIO; 1667 goto out; 1668 } 1669 1670 if (!IS_DNODE(page) || !is_cold_node(page)) 1671 continue; 1672 if (ino_of_node(page) != ino) 1673 continue; 1674 1675 lock_page(page); 1676 1677 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1678 continue_unlock: 1679 unlock_page(page); 1680 continue; 1681 } 1682 if (ino_of_node(page) != ino) 1683 goto continue_unlock; 1684 1685 if (!PageDirty(page) && page != last_page) { 1686 /* someone wrote it for us */ 1687 goto continue_unlock; 1688 } 1689 1690 f2fs_wait_on_page_writeback(page, NODE, true); 1691 BUG_ON(PageWriteback(page)); 1692 1693 set_fsync_mark(page, 0); 1694 set_dentry_mark(page, 0); 1695 1696 if (!atomic || page == last_page) { 1697 set_fsync_mark(page, 1); 1698 if (IS_INODE(page)) { 1699 if (is_inode_flag_set(inode, 1700 FI_DIRTY_INODE)) 1701 f2fs_update_inode(inode, page); 1702 set_dentry_mark(page, 1703 f2fs_need_dentry_mark(sbi, ino)); 1704 } 1705 /* may be written by other thread */ 1706 if (!PageDirty(page)) 1707 set_page_dirty(page); 1708 } 1709 1710 if (!clear_page_dirty_for_io(page)) 1711 goto continue_unlock; 1712 1713 ret = __write_node_page(page, atomic && 1714 page == last_page, 1715 &submitted, wbc, true, 1716 FS_NODE_IO, seq_id); 1717 if (ret) { 1718 unlock_page(page); 1719 f2fs_put_page(last_page, 0); 1720 break; 1721 } else if (submitted) { 1722 nwritten++; 1723 } 1724 1725 if (page == last_page) { 1726 f2fs_put_page(page, 0); 1727 marked = true; 1728 break; 1729 } 1730 } 1731 pagevec_release(&pvec); 1732 cond_resched(); 1733 1734 if (ret || marked) 1735 break; 1736 } 1737 if (!ret && atomic && !marked) { 1738 f2fs_msg(sbi->sb, KERN_DEBUG, 1739 "Retry to write fsync mark: ino=%u, idx=%lx", 1740 ino, last_page->index); 1741 lock_page(last_page); 1742 f2fs_wait_on_page_writeback(last_page, NODE, true); 1743 set_page_dirty(last_page); 1744 unlock_page(last_page); 1745 goto retry; 1746 } 1747 out: 1748 if (nwritten) 1749 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1750 return ret ? -EIO: 0; 1751 } 1752 1753 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1754 struct writeback_control *wbc, 1755 bool do_balance, enum iostat_type io_type) 1756 { 1757 pgoff_t index; 1758 struct pagevec pvec; 1759 int step = 0; 1760 int nwritten = 0; 1761 int ret = 0; 1762 int nr_pages, done = 0; 1763 1764 pagevec_init(&pvec); 1765 1766 next_step: 1767 index = 0; 1768 1769 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1770 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1771 int i; 1772 1773 for (i = 0; i < nr_pages; i++) { 1774 struct page *page = pvec.pages[i]; 1775 bool submitted = false; 1776 1777 /* give a priority to WB_SYNC threads */ 1778 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1779 wbc->sync_mode == WB_SYNC_NONE) { 1780 done = 1; 1781 break; 1782 } 1783 1784 /* 1785 * flushing sequence with step: 1786 * 0. indirect nodes 1787 * 1. dentry dnodes 1788 * 2. file dnodes 1789 */ 1790 if (step == 0 && IS_DNODE(page)) 1791 continue; 1792 if (step == 1 && (!IS_DNODE(page) || 1793 is_cold_node(page))) 1794 continue; 1795 if (step == 2 && (!IS_DNODE(page) || 1796 !is_cold_node(page))) 1797 continue; 1798 lock_node: 1799 if (wbc->sync_mode == WB_SYNC_ALL) 1800 lock_page(page); 1801 else if (!trylock_page(page)) 1802 continue; 1803 1804 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1805 continue_unlock: 1806 unlock_page(page); 1807 continue; 1808 } 1809 1810 if (!PageDirty(page)) { 1811 /* someone wrote it for us */ 1812 goto continue_unlock; 1813 } 1814 1815 /* flush inline_data */ 1816 if (is_inline_node(page)) { 1817 clear_inline_node(page); 1818 unlock_page(page); 1819 flush_inline_data(sbi, ino_of_node(page)); 1820 goto lock_node; 1821 } 1822 1823 f2fs_wait_on_page_writeback(page, NODE, true); 1824 1825 BUG_ON(PageWriteback(page)); 1826 if (!clear_page_dirty_for_io(page)) 1827 goto continue_unlock; 1828 1829 set_fsync_mark(page, 0); 1830 set_dentry_mark(page, 0); 1831 1832 ret = __write_node_page(page, false, &submitted, 1833 wbc, do_balance, io_type, NULL); 1834 if (ret) 1835 unlock_page(page); 1836 else if (submitted) 1837 nwritten++; 1838 1839 if (--wbc->nr_to_write == 0) 1840 break; 1841 } 1842 pagevec_release(&pvec); 1843 cond_resched(); 1844 1845 if (wbc->nr_to_write == 0) { 1846 step = 2; 1847 break; 1848 } 1849 } 1850 1851 if (step < 2) { 1852 if (wbc->sync_mode == WB_SYNC_NONE && step == 1) 1853 goto out; 1854 step++; 1855 goto next_step; 1856 } 1857 out: 1858 if (nwritten) 1859 f2fs_submit_merged_write(sbi, NODE); 1860 1861 if (unlikely(f2fs_cp_error(sbi))) 1862 return -EIO; 1863 return ret; 1864 } 1865 1866 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 1867 unsigned int seq_id) 1868 { 1869 struct fsync_node_entry *fn; 1870 struct page *page; 1871 struct list_head *head = &sbi->fsync_node_list; 1872 unsigned long flags; 1873 unsigned int cur_seq_id = 0; 1874 int ret2, ret = 0; 1875 1876 while (seq_id && cur_seq_id < seq_id) { 1877 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 1878 if (list_empty(head)) { 1879 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1880 break; 1881 } 1882 fn = list_first_entry(head, struct fsync_node_entry, list); 1883 if (fn->seq_id > seq_id) { 1884 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1885 break; 1886 } 1887 cur_seq_id = fn->seq_id; 1888 page = fn->page; 1889 get_page(page); 1890 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1891 1892 f2fs_wait_on_page_writeback(page, NODE, true); 1893 if (TestClearPageError(page)) 1894 ret = -EIO; 1895 1896 put_page(page); 1897 1898 if (ret) 1899 break; 1900 } 1901 1902 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1903 if (!ret) 1904 ret = ret2; 1905 1906 return ret; 1907 } 1908 1909 static int f2fs_write_node_pages(struct address_space *mapping, 1910 struct writeback_control *wbc) 1911 { 1912 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1913 struct blk_plug plug; 1914 long diff; 1915 1916 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1917 goto skip_write; 1918 1919 /* balancing f2fs's metadata in background */ 1920 f2fs_balance_fs_bg(sbi); 1921 1922 /* collect a number of dirty node pages and write together */ 1923 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1924 goto skip_write; 1925 1926 if (wbc->sync_mode == WB_SYNC_ALL) 1927 atomic_inc(&sbi->wb_sync_req[NODE]); 1928 else if (atomic_read(&sbi->wb_sync_req[NODE])) 1929 goto skip_write; 1930 1931 trace_f2fs_writepages(mapping->host, wbc, NODE); 1932 1933 diff = nr_pages_to_write(sbi, NODE, wbc); 1934 blk_start_plug(&plug); 1935 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 1936 blk_finish_plug(&plug); 1937 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1938 1939 if (wbc->sync_mode == WB_SYNC_ALL) 1940 atomic_dec(&sbi->wb_sync_req[NODE]); 1941 return 0; 1942 1943 skip_write: 1944 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1945 trace_f2fs_writepages(mapping->host, wbc, NODE); 1946 return 0; 1947 } 1948 1949 static int f2fs_set_node_page_dirty(struct page *page) 1950 { 1951 trace_f2fs_set_page_dirty(page, NODE); 1952 1953 if (!PageUptodate(page)) 1954 SetPageUptodate(page); 1955 #ifdef CONFIG_F2FS_CHECK_FS 1956 if (IS_INODE(page)) 1957 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 1958 #endif 1959 if (!PageDirty(page)) { 1960 __set_page_dirty_nobuffers(page); 1961 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1962 SetPagePrivate(page); 1963 f2fs_trace_pid(page); 1964 return 1; 1965 } 1966 return 0; 1967 } 1968 1969 /* 1970 * Structure of the f2fs node operations 1971 */ 1972 const struct address_space_operations f2fs_node_aops = { 1973 .writepage = f2fs_write_node_page, 1974 .writepages = f2fs_write_node_pages, 1975 .set_page_dirty = f2fs_set_node_page_dirty, 1976 .invalidatepage = f2fs_invalidate_page, 1977 .releasepage = f2fs_release_page, 1978 #ifdef CONFIG_MIGRATION 1979 .migratepage = f2fs_migrate_page, 1980 #endif 1981 }; 1982 1983 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1984 nid_t n) 1985 { 1986 return radix_tree_lookup(&nm_i->free_nid_root, n); 1987 } 1988 1989 static int __insert_free_nid(struct f2fs_sb_info *sbi, 1990 struct free_nid *i, enum nid_state state) 1991 { 1992 struct f2fs_nm_info *nm_i = NM_I(sbi); 1993 1994 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1995 if (err) 1996 return err; 1997 1998 f2fs_bug_on(sbi, state != i->state); 1999 nm_i->nid_cnt[state]++; 2000 if (state == FREE_NID) 2001 list_add_tail(&i->list, &nm_i->free_nid_list); 2002 return 0; 2003 } 2004 2005 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2006 struct free_nid *i, enum nid_state state) 2007 { 2008 struct f2fs_nm_info *nm_i = NM_I(sbi); 2009 2010 f2fs_bug_on(sbi, state != i->state); 2011 nm_i->nid_cnt[state]--; 2012 if (state == FREE_NID) 2013 list_del(&i->list); 2014 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2015 } 2016 2017 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2018 enum nid_state org_state, enum nid_state dst_state) 2019 { 2020 struct f2fs_nm_info *nm_i = NM_I(sbi); 2021 2022 f2fs_bug_on(sbi, org_state != i->state); 2023 i->state = dst_state; 2024 nm_i->nid_cnt[org_state]--; 2025 nm_i->nid_cnt[dst_state]++; 2026 2027 switch (dst_state) { 2028 case PREALLOC_NID: 2029 list_del(&i->list); 2030 break; 2031 case FREE_NID: 2032 list_add_tail(&i->list, &nm_i->free_nid_list); 2033 break; 2034 default: 2035 BUG_ON(1); 2036 } 2037 } 2038 2039 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2040 bool set, bool build) 2041 { 2042 struct f2fs_nm_info *nm_i = NM_I(sbi); 2043 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2044 unsigned int nid_ofs = nid - START_NID(nid); 2045 2046 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2047 return; 2048 2049 if (set) { 2050 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2051 return; 2052 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2053 nm_i->free_nid_count[nat_ofs]++; 2054 } else { 2055 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2056 return; 2057 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2058 if (!build) 2059 nm_i->free_nid_count[nat_ofs]--; 2060 } 2061 } 2062 2063 /* return if the nid is recognized as free */ 2064 static bool add_free_nid(struct f2fs_sb_info *sbi, 2065 nid_t nid, bool build, bool update) 2066 { 2067 struct f2fs_nm_info *nm_i = NM_I(sbi); 2068 struct free_nid *i, *e; 2069 struct nat_entry *ne; 2070 int err = -EINVAL; 2071 bool ret = false; 2072 2073 /* 0 nid should not be used */ 2074 if (unlikely(nid == 0)) 2075 return false; 2076 2077 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 2078 i->nid = nid; 2079 i->state = FREE_NID; 2080 2081 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2082 2083 spin_lock(&nm_i->nid_list_lock); 2084 2085 if (build) { 2086 /* 2087 * Thread A Thread B 2088 * - f2fs_create 2089 * - f2fs_new_inode 2090 * - f2fs_alloc_nid 2091 * - __insert_nid_to_list(PREALLOC_NID) 2092 * - f2fs_balance_fs_bg 2093 * - f2fs_build_free_nids 2094 * - __f2fs_build_free_nids 2095 * - scan_nat_page 2096 * - add_free_nid 2097 * - __lookup_nat_cache 2098 * - f2fs_add_link 2099 * - f2fs_init_inode_metadata 2100 * - f2fs_new_inode_page 2101 * - f2fs_new_node_page 2102 * - set_node_addr 2103 * - f2fs_alloc_nid_done 2104 * - __remove_nid_from_list(PREALLOC_NID) 2105 * - __insert_nid_to_list(FREE_NID) 2106 */ 2107 ne = __lookup_nat_cache(nm_i, nid); 2108 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2109 nat_get_blkaddr(ne) != NULL_ADDR)) 2110 goto err_out; 2111 2112 e = __lookup_free_nid_list(nm_i, nid); 2113 if (e) { 2114 if (e->state == FREE_NID) 2115 ret = true; 2116 goto err_out; 2117 } 2118 } 2119 ret = true; 2120 err = __insert_free_nid(sbi, i, FREE_NID); 2121 err_out: 2122 if (update) { 2123 update_free_nid_bitmap(sbi, nid, ret, build); 2124 if (!build) 2125 nm_i->available_nids++; 2126 } 2127 spin_unlock(&nm_i->nid_list_lock); 2128 radix_tree_preload_end(); 2129 2130 if (err) 2131 kmem_cache_free(free_nid_slab, i); 2132 return ret; 2133 } 2134 2135 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2136 { 2137 struct f2fs_nm_info *nm_i = NM_I(sbi); 2138 struct free_nid *i; 2139 bool need_free = false; 2140 2141 spin_lock(&nm_i->nid_list_lock); 2142 i = __lookup_free_nid_list(nm_i, nid); 2143 if (i && i->state == FREE_NID) { 2144 __remove_free_nid(sbi, i, FREE_NID); 2145 need_free = true; 2146 } 2147 spin_unlock(&nm_i->nid_list_lock); 2148 2149 if (need_free) 2150 kmem_cache_free(free_nid_slab, i); 2151 } 2152 2153 static int scan_nat_page(struct f2fs_sb_info *sbi, 2154 struct page *nat_page, nid_t start_nid) 2155 { 2156 struct f2fs_nm_info *nm_i = NM_I(sbi); 2157 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2158 block_t blk_addr; 2159 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2160 int i; 2161 2162 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2163 2164 i = start_nid % NAT_ENTRY_PER_BLOCK; 2165 2166 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2167 if (unlikely(start_nid >= nm_i->max_nid)) 2168 break; 2169 2170 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2171 2172 if (blk_addr == NEW_ADDR) 2173 return -EINVAL; 2174 2175 if (blk_addr == NULL_ADDR) { 2176 add_free_nid(sbi, start_nid, true, true); 2177 } else { 2178 spin_lock(&NM_I(sbi)->nid_list_lock); 2179 update_free_nid_bitmap(sbi, start_nid, false, true); 2180 spin_unlock(&NM_I(sbi)->nid_list_lock); 2181 } 2182 } 2183 2184 return 0; 2185 } 2186 2187 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2188 { 2189 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2190 struct f2fs_journal *journal = curseg->journal; 2191 int i; 2192 2193 down_read(&curseg->journal_rwsem); 2194 for (i = 0; i < nats_in_cursum(journal); i++) { 2195 block_t addr; 2196 nid_t nid; 2197 2198 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2199 nid = le32_to_cpu(nid_in_journal(journal, i)); 2200 if (addr == NULL_ADDR) 2201 add_free_nid(sbi, nid, true, false); 2202 else 2203 remove_free_nid(sbi, nid); 2204 } 2205 up_read(&curseg->journal_rwsem); 2206 } 2207 2208 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2209 { 2210 struct f2fs_nm_info *nm_i = NM_I(sbi); 2211 unsigned int i, idx; 2212 nid_t nid; 2213 2214 down_read(&nm_i->nat_tree_lock); 2215 2216 for (i = 0; i < nm_i->nat_blocks; i++) { 2217 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2218 continue; 2219 if (!nm_i->free_nid_count[i]) 2220 continue; 2221 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2222 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2223 NAT_ENTRY_PER_BLOCK, idx); 2224 if (idx >= NAT_ENTRY_PER_BLOCK) 2225 break; 2226 2227 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2228 add_free_nid(sbi, nid, true, false); 2229 2230 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2231 goto out; 2232 } 2233 } 2234 out: 2235 scan_curseg_cache(sbi); 2236 2237 up_read(&nm_i->nat_tree_lock); 2238 } 2239 2240 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2241 bool sync, bool mount) 2242 { 2243 struct f2fs_nm_info *nm_i = NM_I(sbi); 2244 int i = 0, ret; 2245 nid_t nid = nm_i->next_scan_nid; 2246 2247 if (unlikely(nid >= nm_i->max_nid)) 2248 nid = 0; 2249 2250 /* Enough entries */ 2251 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2252 return 0; 2253 2254 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2255 return 0; 2256 2257 if (!mount) { 2258 /* try to find free nids in free_nid_bitmap */ 2259 scan_free_nid_bits(sbi); 2260 2261 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2262 return 0; 2263 } 2264 2265 /* readahead nat pages to be scanned */ 2266 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2267 META_NAT, true); 2268 2269 down_read(&nm_i->nat_tree_lock); 2270 2271 while (1) { 2272 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2273 nm_i->nat_block_bitmap)) { 2274 struct page *page = get_current_nat_page(sbi, nid); 2275 2276 if (IS_ERR(page)) { 2277 ret = PTR_ERR(page); 2278 } else { 2279 ret = scan_nat_page(sbi, page, nid); 2280 f2fs_put_page(page, 1); 2281 } 2282 2283 if (ret) { 2284 up_read(&nm_i->nat_tree_lock); 2285 f2fs_bug_on(sbi, !mount); 2286 f2fs_msg(sbi->sb, KERN_ERR, 2287 "NAT is corrupt, run fsck to fix it"); 2288 return ret; 2289 } 2290 } 2291 2292 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2293 if (unlikely(nid >= nm_i->max_nid)) 2294 nid = 0; 2295 2296 if (++i >= FREE_NID_PAGES) 2297 break; 2298 } 2299 2300 /* go to the next free nat pages to find free nids abundantly */ 2301 nm_i->next_scan_nid = nid; 2302 2303 /* find free nids from current sum_pages */ 2304 scan_curseg_cache(sbi); 2305 2306 up_read(&nm_i->nat_tree_lock); 2307 2308 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2309 nm_i->ra_nid_pages, META_NAT, false); 2310 2311 return 0; 2312 } 2313 2314 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2315 { 2316 int ret; 2317 2318 mutex_lock(&NM_I(sbi)->build_lock); 2319 ret = __f2fs_build_free_nids(sbi, sync, mount); 2320 mutex_unlock(&NM_I(sbi)->build_lock); 2321 2322 return ret; 2323 } 2324 2325 /* 2326 * If this function returns success, caller can obtain a new nid 2327 * from second parameter of this function. 2328 * The returned nid could be used ino as well as nid when inode is created. 2329 */ 2330 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2331 { 2332 struct f2fs_nm_info *nm_i = NM_I(sbi); 2333 struct free_nid *i = NULL; 2334 retry: 2335 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2336 f2fs_show_injection_info(FAULT_ALLOC_NID); 2337 return false; 2338 } 2339 2340 spin_lock(&nm_i->nid_list_lock); 2341 2342 if (unlikely(nm_i->available_nids == 0)) { 2343 spin_unlock(&nm_i->nid_list_lock); 2344 return false; 2345 } 2346 2347 /* We should not use stale free nids created by f2fs_build_free_nids */ 2348 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2349 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2350 i = list_first_entry(&nm_i->free_nid_list, 2351 struct free_nid, list); 2352 *nid = i->nid; 2353 2354 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2355 nm_i->available_nids--; 2356 2357 update_free_nid_bitmap(sbi, *nid, false, false); 2358 2359 spin_unlock(&nm_i->nid_list_lock); 2360 return true; 2361 } 2362 spin_unlock(&nm_i->nid_list_lock); 2363 2364 /* Let's scan nat pages and its caches to get free nids */ 2365 if (!f2fs_build_free_nids(sbi, true, false)) 2366 goto retry; 2367 return false; 2368 } 2369 2370 /* 2371 * f2fs_alloc_nid() should be called prior to this function. 2372 */ 2373 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2374 { 2375 struct f2fs_nm_info *nm_i = NM_I(sbi); 2376 struct free_nid *i; 2377 2378 spin_lock(&nm_i->nid_list_lock); 2379 i = __lookup_free_nid_list(nm_i, nid); 2380 f2fs_bug_on(sbi, !i); 2381 __remove_free_nid(sbi, i, PREALLOC_NID); 2382 spin_unlock(&nm_i->nid_list_lock); 2383 2384 kmem_cache_free(free_nid_slab, i); 2385 } 2386 2387 /* 2388 * f2fs_alloc_nid() should be called prior to this function. 2389 */ 2390 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2391 { 2392 struct f2fs_nm_info *nm_i = NM_I(sbi); 2393 struct free_nid *i; 2394 bool need_free = false; 2395 2396 if (!nid) 2397 return; 2398 2399 spin_lock(&nm_i->nid_list_lock); 2400 i = __lookup_free_nid_list(nm_i, nid); 2401 f2fs_bug_on(sbi, !i); 2402 2403 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2404 __remove_free_nid(sbi, i, PREALLOC_NID); 2405 need_free = true; 2406 } else { 2407 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2408 } 2409 2410 nm_i->available_nids++; 2411 2412 update_free_nid_bitmap(sbi, nid, true, false); 2413 2414 spin_unlock(&nm_i->nid_list_lock); 2415 2416 if (need_free) 2417 kmem_cache_free(free_nid_slab, i); 2418 } 2419 2420 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2421 { 2422 struct f2fs_nm_info *nm_i = NM_I(sbi); 2423 struct free_nid *i, *next; 2424 int nr = nr_shrink; 2425 2426 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2427 return 0; 2428 2429 if (!mutex_trylock(&nm_i->build_lock)) 2430 return 0; 2431 2432 spin_lock(&nm_i->nid_list_lock); 2433 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2434 if (nr_shrink <= 0 || 2435 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2436 break; 2437 2438 __remove_free_nid(sbi, i, FREE_NID); 2439 kmem_cache_free(free_nid_slab, i); 2440 nr_shrink--; 2441 } 2442 spin_unlock(&nm_i->nid_list_lock); 2443 mutex_unlock(&nm_i->build_lock); 2444 2445 return nr - nr_shrink; 2446 } 2447 2448 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2449 { 2450 void *src_addr, *dst_addr; 2451 size_t inline_size; 2452 struct page *ipage; 2453 struct f2fs_inode *ri; 2454 2455 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2456 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2457 2458 ri = F2FS_INODE(page); 2459 if (ri->i_inline & F2FS_INLINE_XATTR) { 2460 set_inode_flag(inode, FI_INLINE_XATTR); 2461 } else { 2462 clear_inode_flag(inode, FI_INLINE_XATTR); 2463 goto update_inode; 2464 } 2465 2466 dst_addr = inline_xattr_addr(inode, ipage); 2467 src_addr = inline_xattr_addr(inode, page); 2468 inline_size = inline_xattr_size(inode); 2469 2470 f2fs_wait_on_page_writeback(ipage, NODE, true); 2471 memcpy(dst_addr, src_addr, inline_size); 2472 update_inode: 2473 f2fs_update_inode(inode, ipage); 2474 f2fs_put_page(ipage, 1); 2475 } 2476 2477 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2478 { 2479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2480 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2481 nid_t new_xnid; 2482 struct dnode_of_data dn; 2483 struct node_info ni; 2484 struct page *xpage; 2485 int err; 2486 2487 if (!prev_xnid) 2488 goto recover_xnid; 2489 2490 /* 1: invalidate the previous xattr nid */ 2491 err = f2fs_get_node_info(sbi, prev_xnid, &ni); 2492 if (err) 2493 return err; 2494 2495 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2496 dec_valid_node_count(sbi, inode, false); 2497 set_node_addr(sbi, &ni, NULL_ADDR, false); 2498 2499 recover_xnid: 2500 /* 2: update xattr nid in inode */ 2501 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2502 return -ENOSPC; 2503 2504 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2505 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2506 if (IS_ERR(xpage)) { 2507 f2fs_alloc_nid_failed(sbi, new_xnid); 2508 return PTR_ERR(xpage); 2509 } 2510 2511 f2fs_alloc_nid_done(sbi, new_xnid); 2512 f2fs_update_inode_page(inode); 2513 2514 /* 3: update and set xattr node page dirty */ 2515 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2516 2517 set_page_dirty(xpage); 2518 f2fs_put_page(xpage, 1); 2519 2520 return 0; 2521 } 2522 2523 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2524 { 2525 struct f2fs_inode *src, *dst; 2526 nid_t ino = ino_of_node(page); 2527 struct node_info old_ni, new_ni; 2528 struct page *ipage; 2529 int err; 2530 2531 err = f2fs_get_node_info(sbi, ino, &old_ni); 2532 if (err) 2533 return err; 2534 2535 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2536 return -EINVAL; 2537 retry: 2538 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2539 if (!ipage) { 2540 congestion_wait(BLK_RW_ASYNC, HZ/50); 2541 goto retry; 2542 } 2543 2544 /* Should not use this inode from free nid list */ 2545 remove_free_nid(sbi, ino); 2546 2547 if (!PageUptodate(ipage)) 2548 SetPageUptodate(ipage); 2549 fill_node_footer(ipage, ino, ino, 0, true); 2550 set_cold_node(ipage, false); 2551 2552 src = F2FS_INODE(page); 2553 dst = F2FS_INODE(ipage); 2554 2555 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2556 dst->i_size = 0; 2557 dst->i_blocks = cpu_to_le64(1); 2558 dst->i_links = cpu_to_le32(1); 2559 dst->i_xattr_nid = 0; 2560 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2561 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2562 dst->i_extra_isize = src->i_extra_isize; 2563 2564 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) && 2565 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2566 i_inline_xattr_size)) 2567 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2568 2569 if (f2fs_sb_has_project_quota(sbi->sb) && 2570 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2571 i_projid)) 2572 dst->i_projid = src->i_projid; 2573 2574 if (f2fs_sb_has_inode_crtime(sbi->sb) && 2575 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2576 i_crtime_nsec)) { 2577 dst->i_crtime = src->i_crtime; 2578 dst->i_crtime_nsec = src->i_crtime_nsec; 2579 } 2580 } 2581 2582 new_ni = old_ni; 2583 new_ni.ino = ino; 2584 2585 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2586 WARN_ON(1); 2587 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2588 inc_valid_inode_count(sbi); 2589 set_page_dirty(ipage); 2590 f2fs_put_page(ipage, 1); 2591 return 0; 2592 } 2593 2594 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2595 unsigned int segno, struct f2fs_summary_block *sum) 2596 { 2597 struct f2fs_node *rn; 2598 struct f2fs_summary *sum_entry; 2599 block_t addr; 2600 int i, idx, last_offset, nrpages; 2601 2602 /* scan the node segment */ 2603 last_offset = sbi->blocks_per_seg; 2604 addr = START_BLOCK(sbi, segno); 2605 sum_entry = &sum->entries[0]; 2606 2607 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2608 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2609 2610 /* readahead node pages */ 2611 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2612 2613 for (idx = addr; idx < addr + nrpages; idx++) { 2614 struct page *page = f2fs_get_tmp_page(sbi, idx); 2615 2616 if (IS_ERR(page)) 2617 return PTR_ERR(page); 2618 2619 rn = F2FS_NODE(page); 2620 sum_entry->nid = rn->footer.nid; 2621 sum_entry->version = 0; 2622 sum_entry->ofs_in_node = 0; 2623 sum_entry++; 2624 f2fs_put_page(page, 1); 2625 } 2626 2627 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2628 addr + nrpages); 2629 } 2630 return 0; 2631 } 2632 2633 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2634 { 2635 struct f2fs_nm_info *nm_i = NM_I(sbi); 2636 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2637 struct f2fs_journal *journal = curseg->journal; 2638 int i; 2639 2640 down_write(&curseg->journal_rwsem); 2641 for (i = 0; i < nats_in_cursum(journal); i++) { 2642 struct nat_entry *ne; 2643 struct f2fs_nat_entry raw_ne; 2644 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2645 2646 raw_ne = nat_in_journal(journal, i); 2647 2648 ne = __lookup_nat_cache(nm_i, nid); 2649 if (!ne) { 2650 ne = __alloc_nat_entry(nid, true); 2651 __init_nat_entry(nm_i, ne, &raw_ne, true); 2652 } 2653 2654 /* 2655 * if a free nat in journal has not been used after last 2656 * checkpoint, we should remove it from available nids, 2657 * since later we will add it again. 2658 */ 2659 if (!get_nat_flag(ne, IS_DIRTY) && 2660 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2661 spin_lock(&nm_i->nid_list_lock); 2662 nm_i->available_nids--; 2663 spin_unlock(&nm_i->nid_list_lock); 2664 } 2665 2666 __set_nat_cache_dirty(nm_i, ne); 2667 } 2668 update_nats_in_cursum(journal, -i); 2669 up_write(&curseg->journal_rwsem); 2670 } 2671 2672 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2673 struct list_head *head, int max) 2674 { 2675 struct nat_entry_set *cur; 2676 2677 if (nes->entry_cnt >= max) 2678 goto add_out; 2679 2680 list_for_each_entry(cur, head, set_list) { 2681 if (cur->entry_cnt >= nes->entry_cnt) { 2682 list_add(&nes->set_list, cur->set_list.prev); 2683 return; 2684 } 2685 } 2686 add_out: 2687 list_add_tail(&nes->set_list, head); 2688 } 2689 2690 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2691 struct page *page) 2692 { 2693 struct f2fs_nm_info *nm_i = NM_I(sbi); 2694 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2695 struct f2fs_nat_block *nat_blk = page_address(page); 2696 int valid = 0; 2697 int i = 0; 2698 2699 if (!enabled_nat_bits(sbi, NULL)) 2700 return; 2701 2702 if (nat_index == 0) { 2703 valid = 1; 2704 i = 1; 2705 } 2706 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2707 if (nat_blk->entries[i].block_addr != NULL_ADDR) 2708 valid++; 2709 } 2710 if (valid == 0) { 2711 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2712 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2713 return; 2714 } 2715 2716 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2717 if (valid == NAT_ENTRY_PER_BLOCK) 2718 __set_bit_le(nat_index, nm_i->full_nat_bits); 2719 else 2720 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2721 } 2722 2723 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2724 struct nat_entry_set *set, struct cp_control *cpc) 2725 { 2726 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2727 struct f2fs_journal *journal = curseg->journal; 2728 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2729 bool to_journal = true; 2730 struct f2fs_nat_block *nat_blk; 2731 struct nat_entry *ne, *cur; 2732 struct page *page = NULL; 2733 2734 /* 2735 * there are two steps to flush nat entries: 2736 * #1, flush nat entries to journal in current hot data summary block. 2737 * #2, flush nat entries to nat page. 2738 */ 2739 if (enabled_nat_bits(sbi, cpc) || 2740 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2741 to_journal = false; 2742 2743 if (to_journal) { 2744 down_write(&curseg->journal_rwsem); 2745 } else { 2746 page = get_next_nat_page(sbi, start_nid); 2747 if (IS_ERR(page)) 2748 return PTR_ERR(page); 2749 2750 nat_blk = page_address(page); 2751 f2fs_bug_on(sbi, !nat_blk); 2752 } 2753 2754 /* flush dirty nats in nat entry set */ 2755 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2756 struct f2fs_nat_entry *raw_ne; 2757 nid_t nid = nat_get_nid(ne); 2758 int offset; 2759 2760 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2761 2762 if (to_journal) { 2763 offset = f2fs_lookup_journal_in_cursum(journal, 2764 NAT_JOURNAL, nid, 1); 2765 f2fs_bug_on(sbi, offset < 0); 2766 raw_ne = &nat_in_journal(journal, offset); 2767 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2768 } else { 2769 raw_ne = &nat_blk->entries[nid - start_nid]; 2770 } 2771 raw_nat_from_node_info(raw_ne, &ne->ni); 2772 nat_reset_flag(ne); 2773 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2774 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2775 add_free_nid(sbi, nid, false, true); 2776 } else { 2777 spin_lock(&NM_I(sbi)->nid_list_lock); 2778 update_free_nid_bitmap(sbi, nid, false, false); 2779 spin_unlock(&NM_I(sbi)->nid_list_lock); 2780 } 2781 } 2782 2783 if (to_journal) { 2784 up_write(&curseg->journal_rwsem); 2785 } else { 2786 __update_nat_bits(sbi, start_nid, page); 2787 f2fs_put_page(page, 1); 2788 } 2789 2790 /* Allow dirty nats by node block allocation in write_begin */ 2791 if (!set->entry_cnt) { 2792 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2793 kmem_cache_free(nat_entry_set_slab, set); 2794 } 2795 return 0; 2796 } 2797 2798 /* 2799 * This function is called during the checkpointing process. 2800 */ 2801 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2802 { 2803 struct f2fs_nm_info *nm_i = NM_I(sbi); 2804 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2805 struct f2fs_journal *journal = curseg->journal; 2806 struct nat_entry_set *setvec[SETVEC_SIZE]; 2807 struct nat_entry_set *set, *tmp; 2808 unsigned int found; 2809 nid_t set_idx = 0; 2810 LIST_HEAD(sets); 2811 int err = 0; 2812 2813 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */ 2814 if (enabled_nat_bits(sbi, cpc)) { 2815 down_write(&nm_i->nat_tree_lock); 2816 remove_nats_in_journal(sbi); 2817 up_write(&nm_i->nat_tree_lock); 2818 } 2819 2820 if (!nm_i->dirty_nat_cnt) 2821 return 0; 2822 2823 down_write(&nm_i->nat_tree_lock); 2824 2825 /* 2826 * if there are no enough space in journal to store dirty nat 2827 * entries, remove all entries from journal and merge them 2828 * into nat entry set. 2829 */ 2830 if (enabled_nat_bits(sbi, cpc) || 2831 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2832 remove_nats_in_journal(sbi); 2833 2834 while ((found = __gang_lookup_nat_set(nm_i, 2835 set_idx, SETVEC_SIZE, setvec))) { 2836 unsigned idx; 2837 set_idx = setvec[found - 1]->set + 1; 2838 for (idx = 0; idx < found; idx++) 2839 __adjust_nat_entry_set(setvec[idx], &sets, 2840 MAX_NAT_JENTRIES(journal)); 2841 } 2842 2843 /* flush dirty nats in nat entry set */ 2844 list_for_each_entry_safe(set, tmp, &sets, set_list) { 2845 err = __flush_nat_entry_set(sbi, set, cpc); 2846 if (err) 2847 break; 2848 } 2849 2850 up_write(&nm_i->nat_tree_lock); 2851 /* Allow dirty nats by node block allocation in write_begin */ 2852 2853 return err; 2854 } 2855 2856 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2857 { 2858 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2859 struct f2fs_nm_info *nm_i = NM_I(sbi); 2860 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2861 unsigned int i; 2862 __u64 cp_ver = cur_cp_version(ckpt); 2863 block_t nat_bits_addr; 2864 2865 if (!enabled_nat_bits(sbi, NULL)) 2866 return 0; 2867 2868 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 2869 nm_i->nat_bits = f2fs_kzalloc(sbi, 2870 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 2871 if (!nm_i->nat_bits) 2872 return -ENOMEM; 2873 2874 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2875 nm_i->nat_bits_blocks; 2876 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2877 struct page *page; 2878 2879 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 2880 if (IS_ERR(page)) 2881 return PTR_ERR(page); 2882 2883 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2884 page_address(page), F2FS_BLKSIZE); 2885 f2fs_put_page(page, 1); 2886 } 2887 2888 cp_ver |= (cur_cp_crc(ckpt) << 32); 2889 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2890 disable_nat_bits(sbi, true); 2891 return 0; 2892 } 2893 2894 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2895 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2896 2897 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2898 return 0; 2899 } 2900 2901 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2902 { 2903 struct f2fs_nm_info *nm_i = NM_I(sbi); 2904 unsigned int i = 0; 2905 nid_t nid, last_nid; 2906 2907 if (!enabled_nat_bits(sbi, NULL)) 2908 return; 2909 2910 for (i = 0; i < nm_i->nat_blocks; i++) { 2911 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2912 if (i >= nm_i->nat_blocks) 2913 break; 2914 2915 __set_bit_le(i, nm_i->nat_block_bitmap); 2916 2917 nid = i * NAT_ENTRY_PER_BLOCK; 2918 last_nid = nid + NAT_ENTRY_PER_BLOCK; 2919 2920 spin_lock(&NM_I(sbi)->nid_list_lock); 2921 for (; nid < last_nid; nid++) 2922 update_free_nid_bitmap(sbi, nid, true, true); 2923 spin_unlock(&NM_I(sbi)->nid_list_lock); 2924 } 2925 2926 for (i = 0; i < nm_i->nat_blocks; i++) { 2927 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2928 if (i >= nm_i->nat_blocks) 2929 break; 2930 2931 __set_bit_le(i, nm_i->nat_block_bitmap); 2932 } 2933 } 2934 2935 static int init_node_manager(struct f2fs_sb_info *sbi) 2936 { 2937 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2938 struct f2fs_nm_info *nm_i = NM_I(sbi); 2939 unsigned char *version_bitmap; 2940 unsigned int nat_segs; 2941 int err; 2942 2943 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2944 2945 /* segment_count_nat includes pair segment so divide to 2. */ 2946 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2947 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2948 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2949 2950 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2951 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2952 sbi->nquota_files - F2FS_RESERVED_NODE_NUM; 2953 nm_i->nid_cnt[FREE_NID] = 0; 2954 nm_i->nid_cnt[PREALLOC_NID] = 0; 2955 nm_i->nat_cnt = 0; 2956 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2957 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2958 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2959 2960 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2961 INIT_LIST_HEAD(&nm_i->free_nid_list); 2962 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2963 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2964 INIT_LIST_HEAD(&nm_i->nat_entries); 2965 spin_lock_init(&nm_i->nat_list_lock); 2966 2967 mutex_init(&nm_i->build_lock); 2968 spin_lock_init(&nm_i->nid_list_lock); 2969 init_rwsem(&nm_i->nat_tree_lock); 2970 2971 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2972 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2973 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2974 if (!version_bitmap) 2975 return -EFAULT; 2976 2977 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2978 GFP_KERNEL); 2979 if (!nm_i->nat_bitmap) 2980 return -ENOMEM; 2981 2982 err = __get_nat_bitmaps(sbi); 2983 if (err) 2984 return err; 2985 2986 #ifdef CONFIG_F2FS_CHECK_FS 2987 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2988 GFP_KERNEL); 2989 if (!nm_i->nat_bitmap_mir) 2990 return -ENOMEM; 2991 #endif 2992 2993 return 0; 2994 } 2995 2996 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2997 { 2998 struct f2fs_nm_info *nm_i = NM_I(sbi); 2999 int i; 3000 3001 nm_i->free_nid_bitmap = 3002 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *), 3003 nm_i->nat_blocks), 3004 GFP_KERNEL); 3005 if (!nm_i->free_nid_bitmap) 3006 return -ENOMEM; 3007 3008 for (i = 0; i < nm_i->nat_blocks; i++) { 3009 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3010 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3011 if (!nm_i->free_nid_bitmap[i]) 3012 return -ENOMEM; 3013 } 3014 3015 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3016 GFP_KERNEL); 3017 if (!nm_i->nat_block_bitmap) 3018 return -ENOMEM; 3019 3020 nm_i->free_nid_count = 3021 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3022 nm_i->nat_blocks), 3023 GFP_KERNEL); 3024 if (!nm_i->free_nid_count) 3025 return -ENOMEM; 3026 return 0; 3027 } 3028 3029 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3030 { 3031 int err; 3032 3033 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3034 GFP_KERNEL); 3035 if (!sbi->nm_info) 3036 return -ENOMEM; 3037 3038 err = init_node_manager(sbi); 3039 if (err) 3040 return err; 3041 3042 err = init_free_nid_cache(sbi); 3043 if (err) 3044 return err; 3045 3046 /* load free nid status from nat_bits table */ 3047 load_free_nid_bitmap(sbi); 3048 3049 return f2fs_build_free_nids(sbi, true, true); 3050 } 3051 3052 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3053 { 3054 struct f2fs_nm_info *nm_i = NM_I(sbi); 3055 struct free_nid *i, *next_i; 3056 struct nat_entry *natvec[NATVEC_SIZE]; 3057 struct nat_entry_set *setvec[SETVEC_SIZE]; 3058 nid_t nid = 0; 3059 unsigned int found; 3060 3061 if (!nm_i) 3062 return; 3063 3064 /* destroy free nid list */ 3065 spin_lock(&nm_i->nid_list_lock); 3066 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3067 __remove_free_nid(sbi, i, FREE_NID); 3068 spin_unlock(&nm_i->nid_list_lock); 3069 kmem_cache_free(free_nid_slab, i); 3070 spin_lock(&nm_i->nid_list_lock); 3071 } 3072 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3073 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3074 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3075 spin_unlock(&nm_i->nid_list_lock); 3076 3077 /* destroy nat cache */ 3078 down_write(&nm_i->nat_tree_lock); 3079 while ((found = __gang_lookup_nat_cache(nm_i, 3080 nid, NATVEC_SIZE, natvec))) { 3081 unsigned idx; 3082 3083 nid = nat_get_nid(natvec[found - 1]) + 1; 3084 for (idx = 0; idx < found; idx++) { 3085 spin_lock(&nm_i->nat_list_lock); 3086 list_del(&natvec[idx]->list); 3087 spin_unlock(&nm_i->nat_list_lock); 3088 3089 __del_from_nat_cache(nm_i, natvec[idx]); 3090 } 3091 } 3092 f2fs_bug_on(sbi, nm_i->nat_cnt); 3093 3094 /* destroy nat set cache */ 3095 nid = 0; 3096 while ((found = __gang_lookup_nat_set(nm_i, 3097 nid, SETVEC_SIZE, setvec))) { 3098 unsigned idx; 3099 3100 nid = setvec[found - 1]->set + 1; 3101 for (idx = 0; idx < found; idx++) { 3102 /* entry_cnt is not zero, when cp_error was occurred */ 3103 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3104 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3105 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3106 } 3107 } 3108 up_write(&nm_i->nat_tree_lock); 3109 3110 kvfree(nm_i->nat_block_bitmap); 3111 if (nm_i->free_nid_bitmap) { 3112 int i; 3113 3114 for (i = 0; i < nm_i->nat_blocks; i++) 3115 kvfree(nm_i->free_nid_bitmap[i]); 3116 kfree(nm_i->free_nid_bitmap); 3117 } 3118 kvfree(nm_i->free_nid_count); 3119 3120 kfree(nm_i->nat_bitmap); 3121 kfree(nm_i->nat_bits); 3122 #ifdef CONFIG_F2FS_CHECK_FS 3123 kfree(nm_i->nat_bitmap_mir); 3124 #endif 3125 sbi->nm_info = NULL; 3126 kfree(nm_i); 3127 } 3128 3129 int __init f2fs_create_node_manager_caches(void) 3130 { 3131 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 3132 sizeof(struct nat_entry)); 3133 if (!nat_entry_slab) 3134 goto fail; 3135 3136 free_nid_slab = f2fs_kmem_cache_create("free_nid", 3137 sizeof(struct free_nid)); 3138 if (!free_nid_slab) 3139 goto destroy_nat_entry; 3140 3141 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 3142 sizeof(struct nat_entry_set)); 3143 if (!nat_entry_set_slab) 3144 goto destroy_free_nid; 3145 3146 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry", 3147 sizeof(struct fsync_node_entry)); 3148 if (!fsync_node_entry_slab) 3149 goto destroy_nat_entry_set; 3150 return 0; 3151 3152 destroy_nat_entry_set: 3153 kmem_cache_destroy(nat_entry_set_slab); 3154 destroy_free_nid: 3155 kmem_cache_destroy(free_nid_slab); 3156 destroy_nat_entry: 3157 kmem_cache_destroy(nat_entry_slab); 3158 fail: 3159 return -ENOMEM; 3160 } 3161 3162 void f2fs_destroy_node_manager_caches(void) 3163 { 3164 kmem_cache_destroy(fsync_node_entry_slab); 3165 kmem_cache_destroy(nat_entry_set_slab); 3166 kmem_cache_destroy(free_nid_slab); 3167 kmem_cache_destroy(nat_entry_slab); 3168 } 3169