1 /* 2 * fs/f2fs/inode.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/writeback.h> 15 #include <linux/bitops.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 20 #include <trace/events/f2fs.h> 21 22 void f2fs_set_inode_flags(struct inode *inode) 23 { 24 unsigned int flags = F2FS_I(inode)->i_flags; 25 unsigned int new_fl = 0; 26 27 if (flags & FS_SYNC_FL) 28 new_fl |= S_SYNC; 29 if (flags & FS_APPEND_FL) 30 new_fl |= S_APPEND; 31 if (flags & FS_IMMUTABLE_FL) 32 new_fl |= S_IMMUTABLE; 33 if (flags & FS_NOATIME_FL) 34 new_fl |= S_NOATIME; 35 if (flags & FS_DIRSYNC_FL) 36 new_fl |= S_DIRSYNC; 37 set_mask_bits(&inode->i_flags, 38 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl); 39 } 40 41 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 42 { 43 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 44 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 45 if (ri->i_addr[0]) 46 inode->i_rdev = 47 old_decode_dev(le32_to_cpu(ri->i_addr[0])); 48 else 49 inode->i_rdev = 50 new_decode_dev(le32_to_cpu(ri->i_addr[1])); 51 } 52 } 53 54 static bool __written_first_block(struct f2fs_inode *ri) 55 { 56 block_t addr = le32_to_cpu(ri->i_addr[0]); 57 58 if (addr != NEW_ADDR && addr != NULL_ADDR) 59 return true; 60 return false; 61 } 62 63 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 64 { 65 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 66 if (old_valid_dev(inode->i_rdev)) { 67 ri->i_addr[0] = 68 cpu_to_le32(old_encode_dev(inode->i_rdev)); 69 ri->i_addr[1] = 0; 70 } else { 71 ri->i_addr[0] = 0; 72 ri->i_addr[1] = 73 cpu_to_le32(new_encode_dev(inode->i_rdev)); 74 ri->i_addr[2] = 0; 75 } 76 } 77 } 78 79 static void __recover_inline_status(struct inode *inode, struct page *ipage) 80 { 81 void *inline_data = inline_data_addr(ipage); 82 __le32 *start = inline_data; 83 __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); 84 85 while (start < end) { 86 if (*start++) { 87 f2fs_wait_on_page_writeback(ipage, NODE); 88 89 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 90 set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage)); 91 set_page_dirty(ipage); 92 return; 93 } 94 } 95 return; 96 } 97 98 static int do_read_inode(struct inode *inode) 99 { 100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 101 struct f2fs_inode_info *fi = F2FS_I(inode); 102 struct page *node_page; 103 struct f2fs_inode *ri; 104 105 /* Check if ino is within scope */ 106 if (check_nid_range(sbi, inode->i_ino)) { 107 f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", 108 (unsigned long) inode->i_ino); 109 WARN_ON(1); 110 return -EINVAL; 111 } 112 113 node_page = get_node_page(sbi, inode->i_ino); 114 if (IS_ERR(node_page)) 115 return PTR_ERR(node_page); 116 117 ri = F2FS_INODE(node_page); 118 119 inode->i_mode = le16_to_cpu(ri->i_mode); 120 i_uid_write(inode, le32_to_cpu(ri->i_uid)); 121 i_gid_write(inode, le32_to_cpu(ri->i_gid)); 122 set_nlink(inode, le32_to_cpu(ri->i_links)); 123 inode->i_size = le64_to_cpu(ri->i_size); 124 inode->i_blocks = le64_to_cpu(ri->i_blocks); 125 126 inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); 127 inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); 128 inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); 129 inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); 130 inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); 131 inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); 132 inode->i_generation = le32_to_cpu(ri->i_generation); 133 134 fi->i_current_depth = le32_to_cpu(ri->i_current_depth); 135 fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); 136 fi->i_flags = le32_to_cpu(ri->i_flags); 137 fi->flags = 0; 138 fi->i_advise = ri->i_advise; 139 fi->i_pino = le32_to_cpu(ri->i_pino); 140 fi->i_dir_level = ri->i_dir_level; 141 142 f2fs_init_extent_cache(inode, &ri->i_ext); 143 144 get_inline_info(fi, ri); 145 146 /* check data exist */ 147 if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) 148 __recover_inline_status(inode, node_page); 149 150 /* get rdev by using inline_info */ 151 __get_inode_rdev(inode, ri); 152 153 if (__written_first_block(ri)) 154 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 155 156 f2fs_put_page(node_page, 1); 157 158 stat_inc_inline_inode(inode); 159 stat_inc_inline_dir(inode); 160 161 return 0; 162 } 163 164 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) 165 { 166 struct f2fs_sb_info *sbi = F2FS_SB(sb); 167 struct inode *inode; 168 int ret = 0; 169 170 inode = iget_locked(sb, ino); 171 if (!inode) 172 return ERR_PTR(-ENOMEM); 173 174 if (!(inode->i_state & I_NEW)) { 175 trace_f2fs_iget(inode); 176 return inode; 177 } 178 if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) 179 goto make_now; 180 181 ret = do_read_inode(inode); 182 if (ret) 183 goto bad_inode; 184 make_now: 185 if (ino == F2FS_NODE_INO(sbi)) { 186 inode->i_mapping->a_ops = &f2fs_node_aops; 187 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 188 } else if (ino == F2FS_META_INO(sbi)) { 189 inode->i_mapping->a_ops = &f2fs_meta_aops; 190 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 191 } else if (S_ISREG(inode->i_mode)) { 192 inode->i_op = &f2fs_file_inode_operations; 193 inode->i_fop = &f2fs_file_operations; 194 inode->i_mapping->a_ops = &f2fs_dblock_aops; 195 } else if (S_ISDIR(inode->i_mode)) { 196 inode->i_op = &f2fs_dir_inode_operations; 197 inode->i_fop = &f2fs_dir_operations; 198 inode->i_mapping->a_ops = &f2fs_dblock_aops; 199 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); 200 } else if (S_ISLNK(inode->i_mode)) { 201 if (f2fs_encrypted_inode(inode)) 202 inode->i_op = &f2fs_encrypted_symlink_inode_operations; 203 else 204 inode->i_op = &f2fs_symlink_inode_operations; 205 inode->i_mapping->a_ops = &f2fs_dblock_aops; 206 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 207 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 208 inode->i_op = &f2fs_special_inode_operations; 209 init_special_inode(inode, inode->i_mode, inode->i_rdev); 210 } else { 211 ret = -EIO; 212 goto bad_inode; 213 } 214 unlock_new_inode(inode); 215 trace_f2fs_iget(inode); 216 return inode; 217 218 bad_inode: 219 iget_failed(inode); 220 trace_f2fs_iget_exit(inode, ret); 221 return ERR_PTR(ret); 222 } 223 224 void update_inode(struct inode *inode, struct page *node_page) 225 { 226 struct f2fs_inode *ri; 227 228 f2fs_wait_on_page_writeback(node_page, NODE); 229 230 ri = F2FS_INODE(node_page); 231 232 ri->i_mode = cpu_to_le16(inode->i_mode); 233 ri->i_advise = F2FS_I(inode)->i_advise; 234 ri->i_uid = cpu_to_le32(i_uid_read(inode)); 235 ri->i_gid = cpu_to_le32(i_gid_read(inode)); 236 ri->i_links = cpu_to_le32(inode->i_nlink); 237 ri->i_size = cpu_to_le64(i_size_read(inode)); 238 ri->i_blocks = cpu_to_le64(inode->i_blocks); 239 240 read_lock(&F2FS_I(inode)->ext_lock); 241 set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext); 242 read_unlock(&F2FS_I(inode)->ext_lock); 243 244 set_raw_inline(F2FS_I(inode), ri); 245 246 ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 247 ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); 248 ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); 249 ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 250 ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 251 ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 252 ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); 253 ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); 254 ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); 255 ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); 256 ri->i_generation = cpu_to_le32(inode->i_generation); 257 ri->i_dir_level = F2FS_I(inode)->i_dir_level; 258 259 __set_inode_rdev(inode, ri); 260 set_cold_node(inode, node_page); 261 set_page_dirty(node_page); 262 263 clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 264 } 265 266 void update_inode_page(struct inode *inode) 267 { 268 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 269 struct page *node_page; 270 retry: 271 node_page = get_node_page(sbi, inode->i_ino); 272 if (IS_ERR(node_page)) { 273 int err = PTR_ERR(node_page); 274 if (err == -ENOMEM) { 275 cond_resched(); 276 goto retry; 277 } else if (err != -ENOENT) { 278 f2fs_stop_checkpoint(sbi); 279 } 280 return; 281 } 282 update_inode(inode, node_page); 283 f2fs_put_page(node_page, 1); 284 } 285 286 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) 287 { 288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 289 290 if (inode->i_ino == F2FS_NODE_INO(sbi) || 291 inode->i_ino == F2FS_META_INO(sbi)) 292 return 0; 293 294 if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE)) 295 return 0; 296 297 /* 298 * We need to lock here to prevent from producing dirty node pages 299 * during the urgent cleaning time when runing out of free sections. 300 */ 301 f2fs_lock_op(sbi); 302 update_inode_page(inode); 303 f2fs_unlock_op(sbi); 304 305 if (wbc) 306 f2fs_balance_fs(sbi); 307 308 return 0; 309 } 310 311 /* 312 * Called at the last iput() if i_nlink is zero 313 */ 314 void f2fs_evict_inode(struct inode *inode) 315 { 316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 317 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 318 319 /* some remained atomic pages should discarded */ 320 if (f2fs_is_atomic_file(inode)) 321 commit_inmem_pages(inode, true); 322 323 trace_f2fs_evict_inode(inode); 324 truncate_inode_pages_final(&inode->i_data); 325 326 if (inode->i_ino == F2FS_NODE_INO(sbi) || 327 inode->i_ino == F2FS_META_INO(sbi)) 328 goto out_clear; 329 330 f2fs_bug_on(sbi, get_dirty_pages(inode)); 331 remove_dirty_dir_inode(inode); 332 333 if (inode->i_nlink || is_bad_inode(inode)) 334 goto no_delete; 335 336 sb_start_intwrite(inode->i_sb); 337 set_inode_flag(F2FS_I(inode), FI_NO_ALLOC); 338 i_size_write(inode, 0); 339 340 if (F2FS_HAS_BLOCKS(inode)) 341 f2fs_truncate(inode); 342 343 f2fs_lock_op(sbi); 344 remove_inode_page(inode); 345 f2fs_unlock_op(sbi); 346 347 sb_end_intwrite(inode->i_sb); 348 no_delete: 349 stat_dec_inline_dir(inode); 350 stat_dec_inline_inode(inode); 351 352 /* update extent info in inode */ 353 if (inode->i_nlink) 354 f2fs_preserve_extent_tree(inode); 355 f2fs_destroy_extent_tree(inode); 356 357 invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); 358 if (xnid) 359 invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); 360 if (is_inode_flag_set(F2FS_I(inode), FI_APPEND_WRITE)) 361 add_dirty_inode(sbi, inode->i_ino, APPEND_INO); 362 if (is_inode_flag_set(F2FS_I(inode), FI_UPDATE_WRITE)) 363 add_dirty_inode(sbi, inode->i_ino, UPDATE_INO); 364 out_clear: 365 #ifdef CONFIG_F2FS_FS_ENCRYPTION 366 if (F2FS_I(inode)->i_crypt_info) 367 f2fs_free_encryption_info(inode, F2FS_I(inode)->i_crypt_info); 368 #endif 369 clear_inode(inode); 370 } 371 372 /* caller should call f2fs_lock_op() */ 373 void handle_failed_inode(struct inode *inode) 374 { 375 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 376 377 clear_nlink(inode); 378 make_bad_inode(inode); 379 unlock_new_inode(inode); 380 381 i_size_write(inode, 0); 382 if (F2FS_HAS_BLOCKS(inode)) 383 f2fs_truncate(inode); 384 385 remove_inode_page(inode); 386 387 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 388 clear_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY); 389 alloc_nid_failed(sbi, inode->i_ino); 390 f2fs_unlock_op(sbi); 391 392 /* iput will drop the inode object */ 393 iput(inode); 394 } 395