1 /* 2 * fs/f2fs/inode.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/writeback.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 19 #include <trace/events/f2fs.h> 20 21 void f2fs_set_inode_flags(struct inode *inode) 22 { 23 unsigned int flags = F2FS_I(inode)->i_flags; 24 unsigned int new_fl = 0; 25 26 if (flags & FS_SYNC_FL) 27 new_fl |= S_SYNC; 28 if (flags & FS_APPEND_FL) 29 new_fl |= S_APPEND; 30 if (flags & FS_IMMUTABLE_FL) 31 new_fl |= S_IMMUTABLE; 32 if (flags & FS_NOATIME_FL) 33 new_fl |= S_NOATIME; 34 if (flags & FS_DIRSYNC_FL) 35 new_fl |= S_DIRSYNC; 36 inode_set_flags(inode, new_fl, 37 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 38 } 39 40 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 41 { 42 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 43 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 44 if (ri->i_addr[0]) 45 inode->i_rdev = 46 old_decode_dev(le32_to_cpu(ri->i_addr[0])); 47 else 48 inode->i_rdev = 49 new_decode_dev(le32_to_cpu(ri->i_addr[1])); 50 } 51 } 52 53 static bool __written_first_block(struct f2fs_inode *ri) 54 { 55 block_t addr = le32_to_cpu(ri->i_addr[0]); 56 57 if (addr != NEW_ADDR && addr != NULL_ADDR) 58 return true; 59 return false; 60 } 61 62 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 63 { 64 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 65 if (old_valid_dev(inode->i_rdev)) { 66 ri->i_addr[0] = 67 cpu_to_le32(old_encode_dev(inode->i_rdev)); 68 ri->i_addr[1] = 0; 69 } else { 70 ri->i_addr[0] = 0; 71 ri->i_addr[1] = 72 cpu_to_le32(new_encode_dev(inode->i_rdev)); 73 ri->i_addr[2] = 0; 74 } 75 } 76 } 77 78 static void __recover_inline_status(struct inode *inode, struct page *ipage) 79 { 80 void *inline_data = inline_data_addr(ipage); 81 __le32 *start = inline_data; 82 __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); 83 84 while (start < end) { 85 if (*start++) { 86 f2fs_wait_on_page_writeback(ipage, NODE); 87 88 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 89 set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage)); 90 set_page_dirty(ipage); 91 return; 92 } 93 } 94 return; 95 } 96 97 static int do_read_inode(struct inode *inode) 98 { 99 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 100 struct f2fs_inode_info *fi = F2FS_I(inode); 101 struct page *node_page; 102 struct f2fs_inode *ri; 103 104 /* Check if ino is within scope */ 105 if (check_nid_range(sbi, inode->i_ino)) { 106 f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", 107 (unsigned long) inode->i_ino); 108 WARN_ON(1); 109 return -EINVAL; 110 } 111 112 node_page = get_node_page(sbi, inode->i_ino); 113 if (IS_ERR(node_page)) 114 return PTR_ERR(node_page); 115 116 ri = F2FS_INODE(node_page); 117 118 inode->i_mode = le16_to_cpu(ri->i_mode); 119 i_uid_write(inode, le32_to_cpu(ri->i_uid)); 120 i_gid_write(inode, le32_to_cpu(ri->i_gid)); 121 set_nlink(inode, le32_to_cpu(ri->i_links)); 122 inode->i_size = le64_to_cpu(ri->i_size); 123 inode->i_blocks = le64_to_cpu(ri->i_blocks); 124 125 inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); 126 inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); 127 inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); 128 inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); 129 inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); 130 inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); 131 inode->i_generation = le32_to_cpu(ri->i_generation); 132 133 fi->i_current_depth = le32_to_cpu(ri->i_current_depth); 134 fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); 135 fi->i_flags = le32_to_cpu(ri->i_flags); 136 fi->flags = 0; 137 fi->i_advise = ri->i_advise; 138 fi->i_pino = le32_to_cpu(ri->i_pino); 139 fi->i_dir_level = ri->i_dir_level; 140 141 f2fs_init_extent_tree(inode, &ri->i_ext); 142 143 get_inline_info(fi, ri); 144 145 /* check data exist */ 146 if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) 147 __recover_inline_status(inode, node_page); 148 149 /* get rdev by using inline_info */ 150 __get_inode_rdev(inode, ri); 151 152 if (__written_first_block(ri)) 153 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 154 155 f2fs_put_page(node_page, 1); 156 157 stat_inc_inline_xattr(inode); 158 stat_inc_inline_inode(inode); 159 stat_inc_inline_dir(inode); 160 161 return 0; 162 } 163 164 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) 165 { 166 struct f2fs_sb_info *sbi = F2FS_SB(sb); 167 struct inode *inode; 168 int ret = 0; 169 170 inode = iget_locked(sb, ino); 171 if (!inode) 172 return ERR_PTR(-ENOMEM); 173 174 if (!(inode->i_state & I_NEW)) { 175 trace_f2fs_iget(inode); 176 return inode; 177 } 178 if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) 179 goto make_now; 180 181 ret = do_read_inode(inode); 182 if (ret) 183 goto bad_inode; 184 make_now: 185 if (ino == F2FS_NODE_INO(sbi)) { 186 inode->i_mapping->a_ops = &f2fs_node_aops; 187 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 188 } else if (ino == F2FS_META_INO(sbi)) { 189 inode->i_mapping->a_ops = &f2fs_meta_aops; 190 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 191 } else if (S_ISREG(inode->i_mode)) { 192 inode->i_op = &f2fs_file_inode_operations; 193 inode->i_fop = &f2fs_file_operations; 194 inode->i_mapping->a_ops = &f2fs_dblock_aops; 195 } else if (S_ISDIR(inode->i_mode)) { 196 inode->i_op = &f2fs_dir_inode_operations; 197 inode->i_fop = &f2fs_dir_operations; 198 inode->i_mapping->a_ops = &f2fs_dblock_aops; 199 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); 200 } else if (S_ISLNK(inode->i_mode)) { 201 if (f2fs_encrypted_inode(inode)) 202 inode->i_op = &f2fs_encrypted_symlink_inode_operations; 203 else 204 inode->i_op = &f2fs_symlink_inode_operations; 205 inode->i_mapping->a_ops = &f2fs_dblock_aops; 206 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 207 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 208 inode->i_op = &f2fs_special_inode_operations; 209 init_special_inode(inode, inode->i_mode, inode->i_rdev); 210 } else { 211 ret = -EIO; 212 goto bad_inode; 213 } 214 unlock_new_inode(inode); 215 trace_f2fs_iget(inode); 216 return inode; 217 218 bad_inode: 219 iget_failed(inode); 220 trace_f2fs_iget_exit(inode, ret); 221 return ERR_PTR(ret); 222 } 223 224 void update_inode(struct inode *inode, struct page *node_page) 225 { 226 struct f2fs_inode *ri; 227 228 f2fs_wait_on_page_writeback(node_page, NODE); 229 230 ri = F2FS_INODE(node_page); 231 232 ri->i_mode = cpu_to_le16(inode->i_mode); 233 ri->i_advise = F2FS_I(inode)->i_advise; 234 ri->i_uid = cpu_to_le32(i_uid_read(inode)); 235 ri->i_gid = cpu_to_le32(i_gid_read(inode)); 236 ri->i_links = cpu_to_le32(inode->i_nlink); 237 ri->i_size = cpu_to_le64(i_size_read(inode)); 238 ri->i_blocks = cpu_to_le64(inode->i_blocks); 239 240 if (F2FS_I(inode)->extent_tree) 241 set_raw_extent(&F2FS_I(inode)->extent_tree->largest, 242 &ri->i_ext); 243 else 244 memset(&ri->i_ext, 0, sizeof(ri->i_ext)); 245 set_raw_inline(F2FS_I(inode), ri); 246 247 ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 248 ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); 249 ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); 250 ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 251 ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 252 ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 253 ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); 254 ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); 255 ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); 256 ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); 257 ri->i_generation = cpu_to_le32(inode->i_generation); 258 ri->i_dir_level = F2FS_I(inode)->i_dir_level; 259 260 __set_inode_rdev(inode, ri); 261 set_cold_node(inode, node_page); 262 set_page_dirty(node_page); 263 264 clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 265 } 266 267 void update_inode_page(struct inode *inode) 268 { 269 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 270 struct page *node_page; 271 retry: 272 node_page = get_node_page(sbi, inode->i_ino); 273 if (IS_ERR(node_page)) { 274 int err = PTR_ERR(node_page); 275 if (err == -ENOMEM) { 276 cond_resched(); 277 goto retry; 278 } else if (err != -ENOENT) { 279 f2fs_stop_checkpoint(sbi); 280 } 281 return; 282 } 283 update_inode(inode, node_page); 284 f2fs_put_page(node_page, 1); 285 } 286 287 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) 288 { 289 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 290 291 if (inode->i_ino == F2FS_NODE_INO(sbi) || 292 inode->i_ino == F2FS_META_INO(sbi)) 293 return 0; 294 295 if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE)) 296 return 0; 297 298 /* 299 * We need to lock here to prevent from producing dirty node pages 300 * during the urgent cleaning time when runing out of free sections. 301 */ 302 f2fs_lock_op(sbi); 303 update_inode_page(inode); 304 f2fs_unlock_op(sbi); 305 306 if (wbc) 307 f2fs_balance_fs(sbi); 308 309 return 0; 310 } 311 312 /* 313 * Called at the last iput() if i_nlink is zero 314 */ 315 void f2fs_evict_inode(struct inode *inode) 316 { 317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 318 struct f2fs_inode_info *fi = F2FS_I(inode); 319 nid_t xnid = fi->i_xattr_nid; 320 int err = 0; 321 322 /* some remained atomic pages should discarded */ 323 if (f2fs_is_atomic_file(inode)) 324 commit_inmem_pages(inode, true); 325 326 trace_f2fs_evict_inode(inode); 327 truncate_inode_pages_final(&inode->i_data); 328 329 if (inode->i_ino == F2FS_NODE_INO(sbi) || 330 inode->i_ino == F2FS_META_INO(sbi)) 331 goto out_clear; 332 333 f2fs_bug_on(sbi, get_dirty_pages(inode)); 334 remove_dirty_dir_inode(inode); 335 336 f2fs_destroy_extent_tree(inode); 337 338 if (inode->i_nlink || is_bad_inode(inode)) 339 goto no_delete; 340 341 sb_start_intwrite(inode->i_sb); 342 set_inode_flag(fi, FI_NO_ALLOC); 343 i_size_write(inode, 0); 344 345 if (F2FS_HAS_BLOCKS(inode)) 346 err = f2fs_truncate(inode, true); 347 348 if (!err) { 349 f2fs_lock_op(sbi); 350 err = remove_inode_page(inode); 351 f2fs_unlock_op(sbi); 352 } 353 354 sb_end_intwrite(inode->i_sb); 355 no_delete: 356 stat_dec_inline_xattr(inode); 357 stat_dec_inline_dir(inode); 358 stat_dec_inline_inode(inode); 359 360 invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); 361 if (xnid) 362 invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); 363 if (is_inode_flag_set(fi, FI_APPEND_WRITE)) 364 add_dirty_inode(sbi, inode->i_ino, APPEND_INO); 365 if (is_inode_flag_set(fi, FI_UPDATE_WRITE)) 366 add_dirty_inode(sbi, inode->i_ino, UPDATE_INO); 367 if (is_inode_flag_set(fi, FI_FREE_NID)) { 368 if (err && err != -ENOENT) 369 alloc_nid_done(sbi, inode->i_ino); 370 else 371 alloc_nid_failed(sbi, inode->i_ino); 372 clear_inode_flag(fi, FI_FREE_NID); 373 } 374 375 if (err && err != -ENOENT) { 376 if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) { 377 /* 378 * get here because we failed to release resource 379 * of inode previously, reminder our user to run fsck 380 * for fixing. 381 */ 382 set_sbi_flag(sbi, SBI_NEED_FSCK); 383 f2fs_msg(sbi->sb, KERN_WARNING, 384 "inode (ino:%lu) resource leak, run fsck " 385 "to fix this issue!", inode->i_ino); 386 } 387 } 388 out_clear: 389 #ifdef CONFIG_F2FS_FS_ENCRYPTION 390 if (fi->i_crypt_info) 391 f2fs_free_encryption_info(inode, fi->i_crypt_info); 392 #endif 393 clear_inode(inode); 394 } 395 396 /* caller should call f2fs_lock_op() */ 397 void handle_failed_inode(struct inode *inode) 398 { 399 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 400 int err = 0; 401 402 clear_nlink(inode); 403 make_bad_inode(inode); 404 unlock_new_inode(inode); 405 406 i_size_write(inode, 0); 407 if (F2FS_HAS_BLOCKS(inode)) 408 err = f2fs_truncate(inode, false); 409 410 if (!err) 411 err = remove_inode_page(inode); 412 413 /* 414 * if we skip truncate_node in remove_inode_page bacause we failed 415 * before, it's better to find another way to release resource of 416 * this inode (e.g. valid block count, node block or nid). Here we 417 * choose to add this inode to orphan list, so that we can call iput 418 * for releasing in orphan recovery flow. 419 * 420 * Note: we should add inode to orphan list before f2fs_unlock_op() 421 * so we can prevent losing this orphan when encoutering checkpoint 422 * and following suddenly power-off. 423 */ 424 if (err && err != -ENOENT) { 425 err = acquire_orphan_inode(sbi); 426 if (!err) 427 add_orphan_inode(sbi, inode->i_ino); 428 } 429 430 set_inode_flag(F2FS_I(inode), FI_FREE_NID); 431 f2fs_unlock_op(sbi); 432 433 /* iput will drop the inode object */ 434 iput(inode); 435 } 436