1 /* 2 * fs/f2fs/inode.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/backing-dev.h> 15 #include <linux/writeback.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 20 #include <trace/events/f2fs.h> 21 22 void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync) 23 { 24 if (f2fs_inode_dirtied(inode, sync)) 25 return; 26 27 mark_inode_dirty_sync(inode); 28 } 29 30 void f2fs_set_inode_flags(struct inode *inode) 31 { 32 unsigned int flags = F2FS_I(inode)->i_flags; 33 unsigned int new_fl = 0; 34 35 if (flags & FS_SYNC_FL) 36 new_fl |= S_SYNC; 37 if (flags & FS_APPEND_FL) 38 new_fl |= S_APPEND; 39 if (flags & FS_IMMUTABLE_FL) 40 new_fl |= S_IMMUTABLE; 41 if (flags & FS_NOATIME_FL) 42 new_fl |= S_NOATIME; 43 if (flags & FS_DIRSYNC_FL) 44 new_fl |= S_DIRSYNC; 45 inode_set_flags(inode, new_fl, 46 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 47 f2fs_mark_inode_dirty_sync(inode, false); 48 } 49 50 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 51 { 52 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 53 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 54 if (ri->i_addr[0]) 55 inode->i_rdev = 56 old_decode_dev(le32_to_cpu(ri->i_addr[0])); 57 else 58 inode->i_rdev = 59 new_decode_dev(le32_to_cpu(ri->i_addr[1])); 60 } 61 } 62 63 static bool __written_first_block(struct f2fs_inode *ri) 64 { 65 block_t addr = le32_to_cpu(ri->i_addr[0]); 66 67 if (addr != NEW_ADDR && addr != NULL_ADDR) 68 return true; 69 return false; 70 } 71 72 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 73 { 74 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 75 if (old_valid_dev(inode->i_rdev)) { 76 ri->i_addr[0] = 77 cpu_to_le32(old_encode_dev(inode->i_rdev)); 78 ri->i_addr[1] = 0; 79 } else { 80 ri->i_addr[0] = 0; 81 ri->i_addr[1] = 82 cpu_to_le32(new_encode_dev(inode->i_rdev)); 83 ri->i_addr[2] = 0; 84 } 85 } 86 } 87 88 static void __recover_inline_status(struct inode *inode, struct page *ipage) 89 { 90 void *inline_data = inline_data_addr(ipage); 91 __le32 *start = inline_data; 92 __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); 93 94 while (start < end) { 95 if (*start++) { 96 f2fs_wait_on_page_writeback(ipage, NODE, true); 97 98 set_inode_flag(inode, FI_DATA_EXIST); 99 set_raw_inline(inode, F2FS_INODE(ipage)); 100 set_page_dirty(ipage); 101 return; 102 } 103 } 104 return; 105 } 106 107 static int do_read_inode(struct inode *inode) 108 { 109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 110 struct f2fs_inode_info *fi = F2FS_I(inode); 111 struct page *node_page; 112 struct f2fs_inode *ri; 113 114 /* Check if ino is within scope */ 115 if (check_nid_range(sbi, inode->i_ino)) { 116 f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", 117 (unsigned long) inode->i_ino); 118 WARN_ON(1); 119 return -EINVAL; 120 } 121 122 node_page = get_node_page(sbi, inode->i_ino); 123 if (IS_ERR(node_page)) 124 return PTR_ERR(node_page); 125 126 ri = F2FS_INODE(node_page); 127 128 inode->i_mode = le16_to_cpu(ri->i_mode); 129 i_uid_write(inode, le32_to_cpu(ri->i_uid)); 130 i_gid_write(inode, le32_to_cpu(ri->i_gid)); 131 set_nlink(inode, le32_to_cpu(ri->i_links)); 132 inode->i_size = le64_to_cpu(ri->i_size); 133 inode->i_blocks = le64_to_cpu(ri->i_blocks); 134 135 inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); 136 inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); 137 inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); 138 inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); 139 inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); 140 inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); 141 inode->i_generation = le32_to_cpu(ri->i_generation); 142 143 fi->i_current_depth = le32_to_cpu(ri->i_current_depth); 144 fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); 145 fi->i_flags = le32_to_cpu(ri->i_flags); 146 fi->flags = 0; 147 fi->i_advise = ri->i_advise; 148 fi->i_pino = le32_to_cpu(ri->i_pino); 149 fi->i_dir_level = ri->i_dir_level; 150 151 if (f2fs_init_extent_tree(inode, &ri->i_ext)) 152 set_page_dirty(node_page); 153 154 get_inline_info(inode, ri); 155 156 /* check data exist */ 157 if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) 158 __recover_inline_status(inode, node_page); 159 160 /* get rdev by using inline_info */ 161 __get_inode_rdev(inode, ri); 162 163 if (__written_first_block(ri)) 164 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 165 166 if (!need_inode_block_update(sbi, inode->i_ino)) 167 fi->last_disk_size = inode->i_size; 168 169 f2fs_put_page(node_page, 1); 170 171 stat_inc_inline_xattr(inode); 172 stat_inc_inline_inode(inode); 173 stat_inc_inline_dir(inode); 174 175 return 0; 176 } 177 178 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) 179 { 180 struct f2fs_sb_info *sbi = F2FS_SB(sb); 181 struct inode *inode; 182 int ret = 0; 183 184 inode = iget_locked(sb, ino); 185 if (!inode) 186 return ERR_PTR(-ENOMEM); 187 188 if (!(inode->i_state & I_NEW)) { 189 trace_f2fs_iget(inode); 190 return inode; 191 } 192 if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) 193 goto make_now; 194 195 ret = do_read_inode(inode); 196 if (ret) 197 goto bad_inode; 198 make_now: 199 if (ino == F2FS_NODE_INO(sbi)) { 200 inode->i_mapping->a_ops = &f2fs_node_aops; 201 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 202 } else if (ino == F2FS_META_INO(sbi)) { 203 inode->i_mapping->a_ops = &f2fs_meta_aops; 204 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 205 } else if (S_ISREG(inode->i_mode)) { 206 inode->i_op = &f2fs_file_inode_operations; 207 inode->i_fop = &f2fs_file_operations; 208 inode->i_mapping->a_ops = &f2fs_dblock_aops; 209 } else if (S_ISDIR(inode->i_mode)) { 210 inode->i_op = &f2fs_dir_inode_operations; 211 inode->i_fop = &f2fs_dir_operations; 212 inode->i_mapping->a_ops = &f2fs_dblock_aops; 213 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); 214 } else if (S_ISLNK(inode->i_mode)) { 215 if (f2fs_encrypted_inode(inode)) 216 inode->i_op = &f2fs_encrypted_symlink_inode_operations; 217 else 218 inode->i_op = &f2fs_symlink_inode_operations; 219 inode_nohighmem(inode); 220 inode->i_mapping->a_ops = &f2fs_dblock_aops; 221 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 222 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 223 inode->i_op = &f2fs_special_inode_operations; 224 init_special_inode(inode, inode->i_mode, inode->i_rdev); 225 } else { 226 ret = -EIO; 227 goto bad_inode; 228 } 229 unlock_new_inode(inode); 230 trace_f2fs_iget(inode); 231 return inode; 232 233 bad_inode: 234 iget_failed(inode); 235 trace_f2fs_iget_exit(inode, ret); 236 return ERR_PTR(ret); 237 } 238 239 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino) 240 { 241 struct inode *inode; 242 retry: 243 inode = f2fs_iget(sb, ino); 244 if (IS_ERR(inode)) { 245 if (PTR_ERR(inode) == -ENOMEM) { 246 congestion_wait(BLK_RW_ASYNC, HZ/50); 247 goto retry; 248 } 249 } 250 return inode; 251 } 252 253 int update_inode(struct inode *inode, struct page *node_page) 254 { 255 struct f2fs_inode *ri; 256 struct extent_tree *et = F2FS_I(inode)->extent_tree; 257 258 f2fs_inode_synced(inode); 259 260 f2fs_wait_on_page_writeback(node_page, NODE, true); 261 262 ri = F2FS_INODE(node_page); 263 264 ri->i_mode = cpu_to_le16(inode->i_mode); 265 ri->i_advise = F2FS_I(inode)->i_advise; 266 ri->i_uid = cpu_to_le32(i_uid_read(inode)); 267 ri->i_gid = cpu_to_le32(i_gid_read(inode)); 268 ri->i_links = cpu_to_le32(inode->i_nlink); 269 ri->i_size = cpu_to_le64(i_size_read(inode)); 270 ri->i_blocks = cpu_to_le64(inode->i_blocks); 271 272 if (et) { 273 read_lock(&et->lock); 274 set_raw_extent(&et->largest, &ri->i_ext); 275 read_unlock(&et->lock); 276 } else { 277 memset(&ri->i_ext, 0, sizeof(ri->i_ext)); 278 } 279 set_raw_inline(inode, ri); 280 281 ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 282 ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); 283 ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); 284 ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 285 ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 286 ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 287 ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); 288 ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); 289 ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); 290 ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); 291 ri->i_generation = cpu_to_le32(inode->i_generation); 292 ri->i_dir_level = F2FS_I(inode)->i_dir_level; 293 294 __set_inode_rdev(inode, ri); 295 set_cold_node(inode, node_page); 296 297 /* deleted inode */ 298 if (inode->i_nlink == 0) 299 clear_inline_node(node_page); 300 301 return set_page_dirty(node_page); 302 } 303 304 int update_inode_page(struct inode *inode) 305 { 306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 307 struct page *node_page; 308 int ret = 0; 309 retry: 310 node_page = get_node_page(sbi, inode->i_ino); 311 if (IS_ERR(node_page)) { 312 int err = PTR_ERR(node_page); 313 if (err == -ENOMEM) { 314 cond_resched(); 315 goto retry; 316 } else if (err != -ENOENT) { 317 f2fs_stop_checkpoint(sbi, false); 318 } 319 f2fs_inode_synced(inode); 320 return 0; 321 } 322 ret = update_inode(inode, node_page); 323 f2fs_put_page(node_page, 1); 324 return ret; 325 } 326 327 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) 328 { 329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 330 331 if (inode->i_ino == F2FS_NODE_INO(sbi) || 332 inode->i_ino == F2FS_META_INO(sbi)) 333 return 0; 334 335 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 336 return 0; 337 338 /* 339 * We need to balance fs here to prevent from producing dirty node pages 340 * during the urgent cleaning time when runing out of free sections. 341 */ 342 if (update_inode_page(inode) && wbc && wbc->nr_to_write) 343 f2fs_balance_fs(sbi, true); 344 return 0; 345 } 346 347 /* 348 * Called at the last iput() if i_nlink is zero 349 */ 350 void f2fs_evict_inode(struct inode *inode) 351 { 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 354 int err = 0; 355 356 /* some remained atomic pages should discarded */ 357 if (f2fs_is_atomic_file(inode)) 358 drop_inmem_pages(inode); 359 360 trace_f2fs_evict_inode(inode); 361 truncate_inode_pages_final(&inode->i_data); 362 363 if (inode->i_ino == F2FS_NODE_INO(sbi) || 364 inode->i_ino == F2FS_META_INO(sbi)) 365 goto out_clear; 366 367 f2fs_bug_on(sbi, get_dirty_pages(inode)); 368 remove_dirty_inode(inode); 369 370 f2fs_destroy_extent_tree(inode); 371 372 if (inode->i_nlink || is_bad_inode(inode)) 373 goto no_delete; 374 375 #ifdef CONFIG_F2FS_FAULT_INJECTION 376 if (time_to_inject(sbi, FAULT_EVICT_INODE)) 377 goto no_delete; 378 #endif 379 380 remove_ino_entry(sbi, inode->i_ino, APPEND_INO); 381 remove_ino_entry(sbi, inode->i_ino, UPDATE_INO); 382 383 sb_start_intwrite(inode->i_sb); 384 set_inode_flag(inode, FI_NO_ALLOC); 385 i_size_write(inode, 0); 386 retry: 387 if (F2FS_HAS_BLOCKS(inode)) 388 err = f2fs_truncate(inode); 389 390 if (!err) { 391 f2fs_lock_op(sbi); 392 err = remove_inode_page(inode); 393 f2fs_unlock_op(sbi); 394 if (err == -ENOENT) 395 err = 0; 396 } 397 398 /* give more chances, if ENOMEM case */ 399 if (err == -ENOMEM) { 400 err = 0; 401 goto retry; 402 } 403 404 if (err) 405 update_inode_page(inode); 406 sb_end_intwrite(inode->i_sb); 407 no_delete: 408 stat_dec_inline_xattr(inode); 409 stat_dec_inline_dir(inode); 410 stat_dec_inline_inode(inode); 411 412 invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); 413 if (xnid) 414 invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); 415 if (inode->i_nlink) { 416 if (is_inode_flag_set(inode, FI_APPEND_WRITE)) 417 add_ino_entry(sbi, inode->i_ino, APPEND_INO); 418 if (is_inode_flag_set(inode, FI_UPDATE_WRITE)) 419 add_ino_entry(sbi, inode->i_ino, UPDATE_INO); 420 } 421 if (is_inode_flag_set(inode, FI_FREE_NID)) { 422 alloc_nid_failed(sbi, inode->i_ino); 423 clear_inode_flag(inode, FI_FREE_NID); 424 } 425 f2fs_bug_on(sbi, err && 426 !exist_written_data(sbi, inode->i_ino, ORPHAN_INO)); 427 out_clear: 428 fscrypt_put_encryption_info(inode, NULL); 429 clear_inode(inode); 430 } 431 432 /* caller should call f2fs_lock_op() */ 433 void handle_failed_inode(struct inode *inode) 434 { 435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 436 struct node_info ni; 437 438 /* 439 * clear nlink of inode in order to release resource of inode 440 * immediately. 441 */ 442 clear_nlink(inode); 443 444 /* 445 * we must call this to avoid inode being remained as dirty, resulting 446 * in a panic when flushing dirty inodes in gdirty_list. 447 */ 448 update_inode_page(inode); 449 450 /* don't make bad inode, since it becomes a regular file. */ 451 unlock_new_inode(inode); 452 453 /* 454 * Note: we should add inode to orphan list before f2fs_unlock_op() 455 * so we can prevent losing this orphan when encoutering checkpoint 456 * and following suddenly power-off. 457 */ 458 get_node_info(sbi, inode->i_ino, &ni); 459 460 if (ni.blk_addr != NULL_ADDR) { 461 int err = acquire_orphan_inode(sbi); 462 if (err) { 463 set_sbi_flag(sbi, SBI_NEED_FSCK); 464 f2fs_msg(sbi->sb, KERN_WARNING, 465 "Too many orphan inodes, run fsck to fix."); 466 } else { 467 add_orphan_inode(inode); 468 } 469 alloc_nid_done(sbi, inode->i_ino); 470 } else { 471 set_inode_flag(inode, FI_FREE_NID); 472 } 473 474 f2fs_unlock_op(sbi); 475 476 /* iput will drop the inode object */ 477 iput(inode); 478 } 479