xref: /openbmc/linux/fs/f2fs/inode.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2  * fs/f2fs/inode.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/writeback.h>
15 #include <linux/bitops.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 
20 #include <trace/events/f2fs.h>
21 
22 void f2fs_set_inode_flags(struct inode *inode)
23 {
24 	unsigned int flags = F2FS_I(inode)->i_flags;
25 	unsigned int new_fl = 0;
26 
27 	if (flags & FS_SYNC_FL)
28 		new_fl |= S_SYNC;
29 	if (flags & FS_APPEND_FL)
30 		new_fl |= S_APPEND;
31 	if (flags & FS_IMMUTABLE_FL)
32 		new_fl |= S_IMMUTABLE;
33 	if (flags & FS_NOATIME_FL)
34 		new_fl |= S_NOATIME;
35 	if (flags & FS_DIRSYNC_FL)
36 		new_fl |= S_DIRSYNC;
37 	set_mask_bits(&inode->i_flags,
38 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
39 }
40 
41 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
42 {
43 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
44 			S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
45 		if (ri->i_addr[0])
46 			inode->i_rdev =
47 				old_decode_dev(le32_to_cpu(ri->i_addr[0]));
48 		else
49 			inode->i_rdev =
50 				new_decode_dev(le32_to_cpu(ri->i_addr[1]));
51 	}
52 }
53 
54 static bool __written_first_block(struct f2fs_inode *ri)
55 {
56 	block_t addr = le32_to_cpu(ri->i_addr[0]);
57 
58 	if (addr != NEW_ADDR && addr != NULL_ADDR)
59 		return true;
60 	return false;
61 }
62 
63 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
64 {
65 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
66 		if (old_valid_dev(inode->i_rdev)) {
67 			ri->i_addr[0] =
68 				cpu_to_le32(old_encode_dev(inode->i_rdev));
69 			ri->i_addr[1] = 0;
70 		} else {
71 			ri->i_addr[0] = 0;
72 			ri->i_addr[1] =
73 				cpu_to_le32(new_encode_dev(inode->i_rdev));
74 			ri->i_addr[2] = 0;
75 		}
76 	}
77 }
78 
79 static void __recover_inline_status(struct inode *inode, struct page *ipage)
80 {
81 	void *inline_data = inline_data_addr(ipage);
82 	__le32 *start = inline_data;
83 	__le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
84 
85 	while (start < end) {
86 		if (*start++) {
87 			f2fs_wait_on_page_writeback(ipage, NODE);
88 
89 			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
90 			set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage));
91 			set_page_dirty(ipage);
92 			return;
93 		}
94 	}
95 	return;
96 }
97 
98 static int do_read_inode(struct inode *inode)
99 {
100 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
101 	struct f2fs_inode_info *fi = F2FS_I(inode);
102 	struct page *node_page;
103 	struct f2fs_inode *ri;
104 
105 	/* Check if ino is within scope */
106 	if (check_nid_range(sbi, inode->i_ino)) {
107 		f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
108 			 (unsigned long) inode->i_ino);
109 		WARN_ON(1);
110 		return -EINVAL;
111 	}
112 
113 	node_page = get_node_page(sbi, inode->i_ino);
114 	if (IS_ERR(node_page))
115 		return PTR_ERR(node_page);
116 
117 	ri = F2FS_INODE(node_page);
118 
119 	inode->i_mode = le16_to_cpu(ri->i_mode);
120 	i_uid_write(inode, le32_to_cpu(ri->i_uid));
121 	i_gid_write(inode, le32_to_cpu(ri->i_gid));
122 	set_nlink(inode, le32_to_cpu(ri->i_links));
123 	inode->i_size = le64_to_cpu(ri->i_size);
124 	inode->i_blocks = le64_to_cpu(ri->i_blocks);
125 
126 	inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
127 	inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
128 	inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
129 	inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
130 	inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
131 	inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
132 	inode->i_generation = le32_to_cpu(ri->i_generation);
133 
134 	fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
135 	fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
136 	fi->i_flags = le32_to_cpu(ri->i_flags);
137 	fi->flags = 0;
138 	fi->i_advise = ri->i_advise;
139 	fi->i_pino = le32_to_cpu(ri->i_pino);
140 	fi->i_dir_level = ri->i_dir_level;
141 
142 	f2fs_init_extent_cache(inode, &ri->i_ext);
143 
144 	get_inline_info(fi, ri);
145 
146 	/* check data exist */
147 	if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
148 		__recover_inline_status(inode, node_page);
149 
150 	/* get rdev by using inline_info */
151 	__get_inode_rdev(inode, ri);
152 
153 	if (__written_first_block(ri))
154 		set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
155 
156 	f2fs_put_page(node_page, 1);
157 
158 	stat_inc_inline_inode(inode);
159 	stat_inc_inline_dir(inode);
160 
161 	return 0;
162 }
163 
164 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
165 {
166 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
167 	struct inode *inode;
168 	int ret = 0;
169 
170 	inode = iget_locked(sb, ino);
171 	if (!inode)
172 		return ERR_PTR(-ENOMEM);
173 
174 	if (!(inode->i_state & I_NEW)) {
175 		trace_f2fs_iget(inode);
176 		return inode;
177 	}
178 	if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
179 		goto make_now;
180 
181 	ret = do_read_inode(inode);
182 	if (ret)
183 		goto bad_inode;
184 make_now:
185 	if (ino == F2FS_NODE_INO(sbi)) {
186 		inode->i_mapping->a_ops = &f2fs_node_aops;
187 		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
188 	} else if (ino == F2FS_META_INO(sbi)) {
189 		inode->i_mapping->a_ops = &f2fs_meta_aops;
190 		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
191 	} else if (S_ISREG(inode->i_mode)) {
192 		inode->i_op = &f2fs_file_inode_operations;
193 		inode->i_fop = &f2fs_file_operations;
194 		inode->i_mapping->a_ops = &f2fs_dblock_aops;
195 	} else if (S_ISDIR(inode->i_mode)) {
196 		inode->i_op = &f2fs_dir_inode_operations;
197 		inode->i_fop = &f2fs_dir_operations;
198 		inode->i_mapping->a_ops = &f2fs_dblock_aops;
199 		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
200 	} else if (S_ISLNK(inode->i_mode)) {
201 		inode->i_op = &f2fs_symlink_inode_operations;
202 		inode->i_mapping->a_ops = &f2fs_dblock_aops;
203 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
204 			S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
205 		inode->i_op = &f2fs_special_inode_operations;
206 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
207 	} else {
208 		ret = -EIO;
209 		goto bad_inode;
210 	}
211 	unlock_new_inode(inode);
212 	trace_f2fs_iget(inode);
213 	return inode;
214 
215 bad_inode:
216 	iget_failed(inode);
217 	trace_f2fs_iget_exit(inode, ret);
218 	return ERR_PTR(ret);
219 }
220 
221 void update_inode(struct inode *inode, struct page *node_page)
222 {
223 	struct f2fs_inode *ri;
224 
225 	f2fs_wait_on_page_writeback(node_page, NODE);
226 
227 	ri = F2FS_INODE(node_page);
228 
229 	ri->i_mode = cpu_to_le16(inode->i_mode);
230 	ri->i_advise = F2FS_I(inode)->i_advise;
231 	ri->i_uid = cpu_to_le32(i_uid_read(inode));
232 	ri->i_gid = cpu_to_le32(i_gid_read(inode));
233 	ri->i_links = cpu_to_le32(inode->i_nlink);
234 	ri->i_size = cpu_to_le64(i_size_read(inode));
235 	ri->i_blocks = cpu_to_le64(inode->i_blocks);
236 
237 	read_lock(&F2FS_I(inode)->ext_lock);
238 	set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
239 	read_unlock(&F2FS_I(inode)->ext_lock);
240 
241 	set_raw_inline(F2FS_I(inode), ri);
242 
243 	ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
244 	ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
245 	ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
246 	ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
247 	ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
248 	ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
249 	ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
250 	ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
251 	ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
252 	ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
253 	ri->i_generation = cpu_to_le32(inode->i_generation);
254 	ri->i_dir_level = F2FS_I(inode)->i_dir_level;
255 
256 	__set_inode_rdev(inode, ri);
257 	set_cold_node(inode, node_page);
258 	set_page_dirty(node_page);
259 
260 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
261 }
262 
263 void update_inode_page(struct inode *inode)
264 {
265 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
266 	struct page *node_page;
267 retry:
268 	node_page = get_node_page(sbi, inode->i_ino);
269 	if (IS_ERR(node_page)) {
270 		int err = PTR_ERR(node_page);
271 		if (err == -ENOMEM) {
272 			cond_resched();
273 			goto retry;
274 		} else if (err != -ENOENT) {
275 			f2fs_stop_checkpoint(sbi);
276 		}
277 		return;
278 	}
279 	update_inode(inode, node_page);
280 	f2fs_put_page(node_page, 1);
281 }
282 
283 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
284 {
285 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
286 
287 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
288 			inode->i_ino == F2FS_META_INO(sbi))
289 		return 0;
290 
291 	if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
292 		return 0;
293 
294 	/*
295 	 * We need to lock here to prevent from producing dirty node pages
296 	 * during the urgent cleaning time when runing out of free sections.
297 	 */
298 	f2fs_lock_op(sbi);
299 	update_inode_page(inode);
300 	f2fs_unlock_op(sbi);
301 
302 	if (wbc)
303 		f2fs_balance_fs(sbi);
304 
305 	return 0;
306 }
307 
308 /*
309  * Called at the last iput() if i_nlink is zero
310  */
311 void f2fs_evict_inode(struct inode *inode)
312 {
313 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
314 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
315 
316 	/* some remained atomic pages should discarded */
317 	if (f2fs_is_atomic_file(inode))
318 		commit_inmem_pages(inode, true);
319 
320 	trace_f2fs_evict_inode(inode);
321 	truncate_inode_pages_final(&inode->i_data);
322 
323 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
324 			inode->i_ino == F2FS_META_INO(sbi))
325 		goto out_clear;
326 
327 	f2fs_bug_on(sbi, get_dirty_pages(inode));
328 	remove_dirty_dir_inode(inode);
329 
330 	if (inode->i_nlink || is_bad_inode(inode))
331 		goto no_delete;
332 
333 	sb_start_intwrite(inode->i_sb);
334 	set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
335 	i_size_write(inode, 0);
336 
337 	if (F2FS_HAS_BLOCKS(inode))
338 		f2fs_truncate(inode);
339 
340 	f2fs_lock_op(sbi);
341 	remove_inode_page(inode);
342 	f2fs_unlock_op(sbi);
343 
344 	sb_end_intwrite(inode->i_sb);
345 no_delete:
346 	stat_dec_inline_dir(inode);
347 	stat_dec_inline_inode(inode);
348 
349 	/* update extent info in inode */
350 	if (inode->i_nlink)
351 		f2fs_preserve_extent_tree(inode);
352 	f2fs_destroy_extent_tree(inode);
353 
354 	invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
355 	if (xnid)
356 		invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
357 	if (is_inode_flag_set(F2FS_I(inode), FI_APPEND_WRITE))
358 		add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
359 	if (is_inode_flag_set(F2FS_I(inode), FI_UPDATE_WRITE))
360 		add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
361 out_clear:
362 	clear_inode(inode);
363 }
364 
365 /* caller should call f2fs_lock_op() */
366 void handle_failed_inode(struct inode *inode)
367 {
368 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
369 
370 	clear_nlink(inode);
371 	make_bad_inode(inode);
372 	unlock_new_inode(inode);
373 
374 	i_size_write(inode, 0);
375 	if (F2FS_HAS_BLOCKS(inode))
376 		f2fs_truncate(inode);
377 
378 	remove_inode_page(inode);
379 
380 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
381 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);
382 	alloc_nid_failed(sbi, inode->i_ino);
383 	f2fs_unlock_op(sbi);
384 
385 	/* iput will drop the inode object */
386 	iput(inode);
387 }
388