xref: /openbmc/linux/fs/f2fs/inode.c (revision 56d06fa2)
1 /*
2  * fs/f2fs/inode.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/writeback.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 
19 #include <trace/events/f2fs.h>
20 
21 void f2fs_set_inode_flags(struct inode *inode)
22 {
23 	unsigned int flags = F2FS_I(inode)->i_flags;
24 	unsigned int new_fl = 0;
25 
26 	if (flags & FS_SYNC_FL)
27 		new_fl |= S_SYNC;
28 	if (flags & FS_APPEND_FL)
29 		new_fl |= S_APPEND;
30 	if (flags & FS_IMMUTABLE_FL)
31 		new_fl |= S_IMMUTABLE;
32 	if (flags & FS_NOATIME_FL)
33 		new_fl |= S_NOATIME;
34 	if (flags & FS_DIRSYNC_FL)
35 		new_fl |= S_DIRSYNC;
36 	inode_set_flags(inode, new_fl,
37 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
38 }
39 
40 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
41 {
42 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
43 			S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
44 		if (ri->i_addr[0])
45 			inode->i_rdev =
46 				old_decode_dev(le32_to_cpu(ri->i_addr[0]));
47 		else
48 			inode->i_rdev =
49 				new_decode_dev(le32_to_cpu(ri->i_addr[1]));
50 	}
51 }
52 
53 static bool __written_first_block(struct f2fs_inode *ri)
54 {
55 	block_t addr = le32_to_cpu(ri->i_addr[0]);
56 
57 	if (addr != NEW_ADDR && addr != NULL_ADDR)
58 		return true;
59 	return false;
60 }
61 
62 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
63 {
64 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
65 		if (old_valid_dev(inode->i_rdev)) {
66 			ri->i_addr[0] =
67 				cpu_to_le32(old_encode_dev(inode->i_rdev));
68 			ri->i_addr[1] = 0;
69 		} else {
70 			ri->i_addr[0] = 0;
71 			ri->i_addr[1] =
72 				cpu_to_le32(new_encode_dev(inode->i_rdev));
73 			ri->i_addr[2] = 0;
74 		}
75 	}
76 }
77 
78 static void __recover_inline_status(struct inode *inode, struct page *ipage)
79 {
80 	void *inline_data = inline_data_addr(ipage);
81 	__le32 *start = inline_data;
82 	__le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
83 
84 	while (start < end) {
85 		if (*start++) {
86 			f2fs_wait_on_page_writeback(ipage, NODE, true);
87 
88 			set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
89 			set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage));
90 			set_page_dirty(ipage);
91 			return;
92 		}
93 	}
94 	return;
95 }
96 
97 static int do_read_inode(struct inode *inode)
98 {
99 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
100 	struct f2fs_inode_info *fi = F2FS_I(inode);
101 	struct page *node_page;
102 	struct f2fs_inode *ri;
103 
104 	/* Check if ino is within scope */
105 	if (check_nid_range(sbi, inode->i_ino)) {
106 		f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
107 			 (unsigned long) inode->i_ino);
108 		WARN_ON(1);
109 		return -EINVAL;
110 	}
111 
112 	node_page = get_node_page(sbi, inode->i_ino);
113 	if (IS_ERR(node_page))
114 		return PTR_ERR(node_page);
115 
116 	ri = F2FS_INODE(node_page);
117 
118 	inode->i_mode = le16_to_cpu(ri->i_mode);
119 	i_uid_write(inode, le32_to_cpu(ri->i_uid));
120 	i_gid_write(inode, le32_to_cpu(ri->i_gid));
121 	set_nlink(inode, le32_to_cpu(ri->i_links));
122 	inode->i_size = le64_to_cpu(ri->i_size);
123 	inode->i_blocks = le64_to_cpu(ri->i_blocks);
124 
125 	inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
126 	inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
127 	inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
129 	inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
131 	inode->i_generation = le32_to_cpu(ri->i_generation);
132 
133 	fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
134 	fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
135 	fi->i_flags = le32_to_cpu(ri->i_flags);
136 	fi->flags = 0;
137 	fi->i_advise = ri->i_advise;
138 	fi->i_pino = le32_to_cpu(ri->i_pino);
139 	fi->i_dir_level = ri->i_dir_level;
140 
141 	if (f2fs_init_extent_tree(inode, &ri->i_ext))
142 		set_page_dirty(node_page);
143 
144 	get_inline_info(fi, ri);
145 
146 	/* check data exist */
147 	if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
148 		__recover_inline_status(inode, node_page);
149 
150 	/* get rdev by using inline_info */
151 	__get_inode_rdev(inode, ri);
152 
153 	if (__written_first_block(ri))
154 		set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
155 
156 	f2fs_put_page(node_page, 1);
157 
158 	stat_inc_inline_xattr(inode);
159 	stat_inc_inline_inode(inode);
160 	stat_inc_inline_dir(inode);
161 
162 	return 0;
163 }
164 
165 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
166 {
167 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
168 	struct inode *inode;
169 	int ret = 0;
170 
171 	inode = iget_locked(sb, ino);
172 	if (!inode)
173 		return ERR_PTR(-ENOMEM);
174 
175 	if (!(inode->i_state & I_NEW)) {
176 		trace_f2fs_iget(inode);
177 		return inode;
178 	}
179 	if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
180 		goto make_now;
181 
182 	ret = do_read_inode(inode);
183 	if (ret)
184 		goto bad_inode;
185 make_now:
186 	if (ino == F2FS_NODE_INO(sbi)) {
187 		inode->i_mapping->a_ops = &f2fs_node_aops;
188 		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
189 	} else if (ino == F2FS_META_INO(sbi)) {
190 		inode->i_mapping->a_ops = &f2fs_meta_aops;
191 		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
192 	} else if (S_ISREG(inode->i_mode)) {
193 		inode->i_op = &f2fs_file_inode_operations;
194 		inode->i_fop = &f2fs_file_operations;
195 		inode->i_mapping->a_ops = &f2fs_dblock_aops;
196 	} else if (S_ISDIR(inode->i_mode)) {
197 		inode->i_op = &f2fs_dir_inode_operations;
198 		inode->i_fop = &f2fs_dir_operations;
199 		inode->i_mapping->a_ops = &f2fs_dblock_aops;
200 		mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
201 	} else if (S_ISLNK(inode->i_mode)) {
202 		if (f2fs_encrypted_inode(inode))
203 			inode->i_op = &f2fs_encrypted_symlink_inode_operations;
204 		else
205 			inode->i_op = &f2fs_symlink_inode_operations;
206 		inode_nohighmem(inode);
207 		inode->i_mapping->a_ops = &f2fs_dblock_aops;
208 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
209 			S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
210 		inode->i_op = &f2fs_special_inode_operations;
211 		init_special_inode(inode, inode->i_mode, inode->i_rdev);
212 	} else {
213 		ret = -EIO;
214 		goto bad_inode;
215 	}
216 	unlock_new_inode(inode);
217 	trace_f2fs_iget(inode);
218 	return inode;
219 
220 bad_inode:
221 	iget_failed(inode);
222 	trace_f2fs_iget_exit(inode, ret);
223 	return ERR_PTR(ret);
224 }
225 
226 int update_inode(struct inode *inode, struct page *node_page)
227 {
228 	struct f2fs_inode *ri;
229 
230 	f2fs_wait_on_page_writeback(node_page, NODE, true);
231 
232 	ri = F2FS_INODE(node_page);
233 
234 	ri->i_mode = cpu_to_le16(inode->i_mode);
235 	ri->i_advise = F2FS_I(inode)->i_advise;
236 	ri->i_uid = cpu_to_le32(i_uid_read(inode));
237 	ri->i_gid = cpu_to_le32(i_gid_read(inode));
238 	ri->i_links = cpu_to_le32(inode->i_nlink);
239 	ri->i_size = cpu_to_le64(i_size_read(inode));
240 	ri->i_blocks = cpu_to_le64(inode->i_blocks);
241 
242 	if (F2FS_I(inode)->extent_tree)
243 		set_raw_extent(&F2FS_I(inode)->extent_tree->largest,
244 							&ri->i_ext);
245 	else
246 		memset(&ri->i_ext, 0, sizeof(ri->i_ext));
247 	set_raw_inline(F2FS_I(inode), ri);
248 
249 	ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
250 	ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
251 	ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
252 	ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
253 	ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
254 	ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
255 	ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
256 	ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
257 	ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
258 	ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
259 	ri->i_generation = cpu_to_le32(inode->i_generation);
260 	ri->i_dir_level = F2FS_I(inode)->i_dir_level;
261 
262 	__set_inode_rdev(inode, ri);
263 	set_cold_node(inode, node_page);
264 	clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
265 
266 	/* deleted inode */
267 	if (inode->i_nlink == 0)
268 		clear_inline_node(node_page);
269 
270 	return set_page_dirty(node_page);
271 }
272 
273 int update_inode_page(struct inode *inode)
274 {
275 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
276 	struct page *node_page;
277 	int ret = 0;
278 retry:
279 	node_page = get_node_page(sbi, inode->i_ino);
280 	if (IS_ERR(node_page)) {
281 		int err = PTR_ERR(node_page);
282 		if (err == -ENOMEM) {
283 			cond_resched();
284 			goto retry;
285 		} else if (err != -ENOENT) {
286 			f2fs_stop_checkpoint(sbi);
287 		}
288 		return 0;
289 	}
290 	ret = update_inode(inode, node_page);
291 	f2fs_put_page(node_page, 1);
292 	return ret;
293 }
294 
295 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
296 {
297 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
298 
299 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
300 			inode->i_ino == F2FS_META_INO(sbi))
301 		return 0;
302 
303 	if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
304 		return 0;
305 
306 	/*
307 	 * We need to balance fs here to prevent from producing dirty node pages
308 	 * during the urgent cleaning time when runing out of free sections.
309 	 */
310 	if (update_inode_page(inode))
311 		f2fs_balance_fs(sbi, true);
312 	return 0;
313 }
314 
315 /*
316  * Called at the last iput() if i_nlink is zero
317  */
318 void f2fs_evict_inode(struct inode *inode)
319 {
320 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
321 	struct f2fs_inode_info *fi = F2FS_I(inode);
322 	nid_t xnid = fi->i_xattr_nid;
323 	int err = 0;
324 
325 	/* some remained atomic pages should discarded */
326 	if (f2fs_is_atomic_file(inode))
327 		drop_inmem_pages(inode);
328 
329 	trace_f2fs_evict_inode(inode);
330 	truncate_inode_pages_final(&inode->i_data);
331 
332 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
333 			inode->i_ino == F2FS_META_INO(sbi))
334 		goto out_clear;
335 
336 	f2fs_bug_on(sbi, get_dirty_pages(inode));
337 	remove_dirty_inode(inode);
338 
339 	f2fs_destroy_extent_tree(inode);
340 
341 	if (inode->i_nlink || is_bad_inode(inode))
342 		goto no_delete;
343 
344 	sb_start_intwrite(inode->i_sb);
345 	set_inode_flag(fi, FI_NO_ALLOC);
346 	i_size_write(inode, 0);
347 
348 	if (F2FS_HAS_BLOCKS(inode))
349 		err = f2fs_truncate(inode, true);
350 
351 	if (!err) {
352 		f2fs_lock_op(sbi);
353 		err = remove_inode_page(inode);
354 		f2fs_unlock_op(sbi);
355 	}
356 
357 	sb_end_intwrite(inode->i_sb);
358 no_delete:
359 	stat_dec_inline_xattr(inode);
360 	stat_dec_inline_dir(inode);
361 	stat_dec_inline_inode(inode);
362 
363 	invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
364 	if (xnid)
365 		invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
366 	if (is_inode_flag_set(fi, FI_APPEND_WRITE))
367 		add_ino_entry(sbi, inode->i_ino, APPEND_INO);
368 	if (is_inode_flag_set(fi, FI_UPDATE_WRITE))
369 		add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
370 	if (is_inode_flag_set(fi, FI_FREE_NID)) {
371 		if (err && err != -ENOENT)
372 			alloc_nid_done(sbi, inode->i_ino);
373 		else
374 			alloc_nid_failed(sbi, inode->i_ino);
375 		clear_inode_flag(fi, FI_FREE_NID);
376 	}
377 
378 	if (err && err != -ENOENT) {
379 		if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) {
380 			/*
381 			 * get here because we failed to release resource
382 			 * of inode previously, reminder our user to run fsck
383 			 * for fixing.
384 			 */
385 			set_sbi_flag(sbi, SBI_NEED_FSCK);
386 			f2fs_msg(sbi->sb, KERN_WARNING,
387 				"inode (ino:%lu) resource leak, run fsck "
388 				"to fix this issue!", inode->i_ino);
389 		}
390 	}
391 out_clear:
392 	fscrypt_put_encryption_info(inode, NULL);
393 	clear_inode(inode);
394 }
395 
396 /* caller should call f2fs_lock_op() */
397 void handle_failed_inode(struct inode *inode)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
400 	int err = 0;
401 
402 	clear_nlink(inode);
403 	make_bad_inode(inode);
404 	unlock_new_inode(inode);
405 
406 	i_size_write(inode, 0);
407 	if (F2FS_HAS_BLOCKS(inode))
408 		err = f2fs_truncate(inode, false);
409 
410 	if (!err)
411 		err = remove_inode_page(inode);
412 
413 	/*
414 	 * if we skip truncate_node in remove_inode_page bacause we failed
415 	 * before, it's better to find another way to release resource of
416 	 * this inode (e.g. valid block count, node block or nid). Here we
417 	 * choose to add this inode to orphan list, so that we can call iput
418 	 * for releasing in orphan recovery flow.
419 	 *
420 	 * Note: we should add inode to orphan list before f2fs_unlock_op()
421 	 * so we can prevent losing this orphan when encoutering checkpoint
422 	 * and following suddenly power-off.
423 	 */
424 	if (err && err != -ENOENT) {
425 		err = acquire_orphan_inode(sbi);
426 		if (!err)
427 			add_orphan_inode(sbi, inode->i_ino);
428 	}
429 
430 	set_inode_flag(F2FS_I(inode), FI_FREE_NID);
431 	f2fs_unlock_op(sbi);
432 
433 	/* iput will drop the inode object */
434 	iput(inode);
435 }
436