1 /* 2 * fs/f2fs/inode.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/backing-dev.h> 15 #include <linux/writeback.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 21 #include <trace/events/f2fs.h> 22 23 void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync) 24 { 25 if (f2fs_inode_dirtied(inode, sync)) 26 return; 27 28 mark_inode_dirty_sync(inode); 29 } 30 31 void f2fs_set_inode_flags(struct inode *inode) 32 { 33 unsigned int flags = F2FS_I(inode)->i_flags; 34 unsigned int new_fl = 0; 35 36 if (flags & FS_SYNC_FL) 37 new_fl |= S_SYNC; 38 if (flags & FS_APPEND_FL) 39 new_fl |= S_APPEND; 40 if (flags & FS_IMMUTABLE_FL) 41 new_fl |= S_IMMUTABLE; 42 if (flags & FS_NOATIME_FL) 43 new_fl |= S_NOATIME; 44 if (flags & FS_DIRSYNC_FL) 45 new_fl |= S_DIRSYNC; 46 inode_set_flags(inode, new_fl, 47 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 48 } 49 50 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 51 { 52 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 53 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 54 if (ri->i_addr[0]) 55 inode->i_rdev = 56 old_decode_dev(le32_to_cpu(ri->i_addr[0])); 57 else 58 inode->i_rdev = 59 new_decode_dev(le32_to_cpu(ri->i_addr[1])); 60 } 61 } 62 63 static bool __written_first_block(struct f2fs_inode *ri) 64 { 65 block_t addr = le32_to_cpu(ri->i_addr[0]); 66 67 if (addr != NEW_ADDR && addr != NULL_ADDR) 68 return true; 69 return false; 70 } 71 72 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 73 { 74 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 75 if (old_valid_dev(inode->i_rdev)) { 76 ri->i_addr[0] = 77 cpu_to_le32(old_encode_dev(inode->i_rdev)); 78 ri->i_addr[1] = 0; 79 } else { 80 ri->i_addr[0] = 0; 81 ri->i_addr[1] = 82 cpu_to_le32(new_encode_dev(inode->i_rdev)); 83 ri->i_addr[2] = 0; 84 } 85 } 86 } 87 88 static void __recover_inline_status(struct inode *inode, struct page *ipage) 89 { 90 void *inline_data = inline_data_addr(ipage); 91 __le32 *start = inline_data; 92 __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); 93 94 while (start < end) { 95 if (*start++) { 96 f2fs_wait_on_page_writeback(ipage, NODE, true); 97 98 set_inode_flag(inode, FI_DATA_EXIST); 99 set_raw_inline(inode, F2FS_INODE(ipage)); 100 set_page_dirty(ipage); 101 return; 102 } 103 } 104 return; 105 } 106 107 static int do_read_inode(struct inode *inode) 108 { 109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 110 struct f2fs_inode_info *fi = F2FS_I(inode); 111 struct page *node_page; 112 struct f2fs_inode *ri; 113 114 /* Check if ino is within scope */ 115 if (check_nid_range(sbi, inode->i_ino)) { 116 f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", 117 (unsigned long) inode->i_ino); 118 WARN_ON(1); 119 return -EINVAL; 120 } 121 122 node_page = get_node_page(sbi, inode->i_ino); 123 if (IS_ERR(node_page)) 124 return PTR_ERR(node_page); 125 126 ri = F2FS_INODE(node_page); 127 128 inode->i_mode = le16_to_cpu(ri->i_mode); 129 i_uid_write(inode, le32_to_cpu(ri->i_uid)); 130 i_gid_write(inode, le32_to_cpu(ri->i_gid)); 131 set_nlink(inode, le32_to_cpu(ri->i_links)); 132 inode->i_size = le64_to_cpu(ri->i_size); 133 inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1); 134 135 inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); 136 inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); 137 inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); 138 inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); 139 inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); 140 inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); 141 inode->i_generation = le32_to_cpu(ri->i_generation); 142 143 fi->i_current_depth = le32_to_cpu(ri->i_current_depth); 144 fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); 145 fi->i_flags = le32_to_cpu(ri->i_flags); 146 fi->flags = 0; 147 fi->i_advise = ri->i_advise; 148 fi->i_pino = le32_to_cpu(ri->i_pino); 149 fi->i_dir_level = ri->i_dir_level; 150 151 if (f2fs_init_extent_tree(inode, &ri->i_ext)) 152 set_page_dirty(node_page); 153 154 get_inline_info(inode, ri); 155 156 /* check data exist */ 157 if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) 158 __recover_inline_status(inode, node_page); 159 160 /* get rdev by using inline_info */ 161 __get_inode_rdev(inode, ri); 162 163 if (__written_first_block(ri)) 164 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 165 166 if (!need_inode_block_update(sbi, inode->i_ino)) 167 fi->last_disk_size = inode->i_size; 168 169 f2fs_put_page(node_page, 1); 170 171 stat_inc_inline_xattr(inode); 172 stat_inc_inline_inode(inode); 173 stat_inc_inline_dir(inode); 174 175 return 0; 176 } 177 178 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) 179 { 180 struct f2fs_sb_info *sbi = F2FS_SB(sb); 181 struct inode *inode; 182 int ret = 0; 183 184 inode = iget_locked(sb, ino); 185 if (!inode) 186 return ERR_PTR(-ENOMEM); 187 188 if (!(inode->i_state & I_NEW)) { 189 trace_f2fs_iget(inode); 190 return inode; 191 } 192 if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) 193 goto make_now; 194 195 ret = do_read_inode(inode); 196 if (ret) 197 goto bad_inode; 198 make_now: 199 if (ino == F2FS_NODE_INO(sbi)) { 200 inode->i_mapping->a_ops = &f2fs_node_aops; 201 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 202 } else if (ino == F2FS_META_INO(sbi)) { 203 inode->i_mapping->a_ops = &f2fs_meta_aops; 204 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 205 } else if (S_ISREG(inode->i_mode)) { 206 inode->i_op = &f2fs_file_inode_operations; 207 inode->i_fop = &f2fs_file_operations; 208 inode->i_mapping->a_ops = &f2fs_dblock_aops; 209 } else if (S_ISDIR(inode->i_mode)) { 210 inode->i_op = &f2fs_dir_inode_operations; 211 inode->i_fop = &f2fs_dir_operations; 212 inode->i_mapping->a_ops = &f2fs_dblock_aops; 213 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); 214 } else if (S_ISLNK(inode->i_mode)) { 215 if (f2fs_encrypted_inode(inode)) 216 inode->i_op = &f2fs_encrypted_symlink_inode_operations; 217 else 218 inode->i_op = &f2fs_symlink_inode_operations; 219 inode_nohighmem(inode); 220 inode->i_mapping->a_ops = &f2fs_dblock_aops; 221 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 222 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 223 inode->i_op = &f2fs_special_inode_operations; 224 init_special_inode(inode, inode->i_mode, inode->i_rdev); 225 } else { 226 ret = -EIO; 227 goto bad_inode; 228 } 229 f2fs_set_inode_flags(inode); 230 unlock_new_inode(inode); 231 trace_f2fs_iget(inode); 232 return inode; 233 234 bad_inode: 235 iget_failed(inode); 236 trace_f2fs_iget_exit(inode, ret); 237 return ERR_PTR(ret); 238 } 239 240 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino) 241 { 242 struct inode *inode; 243 retry: 244 inode = f2fs_iget(sb, ino); 245 if (IS_ERR(inode)) { 246 if (PTR_ERR(inode) == -ENOMEM) { 247 congestion_wait(BLK_RW_ASYNC, HZ/50); 248 goto retry; 249 } 250 } 251 return inode; 252 } 253 254 int update_inode(struct inode *inode, struct page *node_page) 255 { 256 struct f2fs_inode *ri; 257 struct extent_tree *et = F2FS_I(inode)->extent_tree; 258 259 f2fs_inode_synced(inode); 260 261 f2fs_wait_on_page_writeback(node_page, NODE, true); 262 263 ri = F2FS_INODE(node_page); 264 265 ri->i_mode = cpu_to_le16(inode->i_mode); 266 ri->i_advise = F2FS_I(inode)->i_advise; 267 ri->i_uid = cpu_to_le32(i_uid_read(inode)); 268 ri->i_gid = cpu_to_le32(i_gid_read(inode)); 269 ri->i_links = cpu_to_le32(inode->i_nlink); 270 ri->i_size = cpu_to_le64(i_size_read(inode)); 271 ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1); 272 273 if (et) { 274 read_lock(&et->lock); 275 set_raw_extent(&et->largest, &ri->i_ext); 276 read_unlock(&et->lock); 277 } else { 278 memset(&ri->i_ext, 0, sizeof(ri->i_ext)); 279 } 280 set_raw_inline(inode, ri); 281 282 ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 283 ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); 284 ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); 285 ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 286 ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 287 ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 288 ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); 289 ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); 290 ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); 291 ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); 292 ri->i_generation = cpu_to_le32(inode->i_generation); 293 ri->i_dir_level = F2FS_I(inode)->i_dir_level; 294 295 __set_inode_rdev(inode, ri); 296 set_cold_node(inode, node_page); 297 298 /* deleted inode */ 299 if (inode->i_nlink == 0) 300 clear_inline_node(node_page); 301 302 return set_page_dirty(node_page); 303 } 304 305 int update_inode_page(struct inode *inode) 306 { 307 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 308 struct page *node_page; 309 int ret = 0; 310 retry: 311 node_page = get_node_page(sbi, inode->i_ino); 312 if (IS_ERR(node_page)) { 313 int err = PTR_ERR(node_page); 314 if (err == -ENOMEM) { 315 cond_resched(); 316 goto retry; 317 } else if (err != -ENOENT) { 318 f2fs_stop_checkpoint(sbi, false); 319 } 320 return 0; 321 } 322 ret = update_inode(inode, node_page); 323 f2fs_put_page(node_page, 1); 324 return ret; 325 } 326 327 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) 328 { 329 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 330 331 if (inode->i_ino == F2FS_NODE_INO(sbi) || 332 inode->i_ino == F2FS_META_INO(sbi)) 333 return 0; 334 335 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 336 return 0; 337 338 /* 339 * We need to balance fs here to prevent from producing dirty node pages 340 * during the urgent cleaning time when runing out of free sections. 341 */ 342 update_inode_page(inode); 343 if (wbc && wbc->nr_to_write) 344 f2fs_balance_fs(sbi, true); 345 return 0; 346 } 347 348 /* 349 * Called at the last iput() if i_nlink is zero 350 */ 351 void f2fs_evict_inode(struct inode *inode) 352 { 353 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 354 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 355 int err = 0; 356 357 /* some remained atomic pages should discarded */ 358 if (f2fs_is_atomic_file(inode)) 359 drop_inmem_pages(inode); 360 361 trace_f2fs_evict_inode(inode); 362 truncate_inode_pages_final(&inode->i_data); 363 364 if (inode->i_ino == F2FS_NODE_INO(sbi) || 365 inode->i_ino == F2FS_META_INO(sbi)) 366 goto out_clear; 367 368 f2fs_bug_on(sbi, get_dirty_pages(inode)); 369 remove_dirty_inode(inode); 370 371 f2fs_destroy_extent_tree(inode); 372 373 if (inode->i_nlink || is_bad_inode(inode)) 374 goto no_delete; 375 376 dquot_initialize(inode); 377 378 remove_ino_entry(sbi, inode->i_ino, APPEND_INO); 379 remove_ino_entry(sbi, inode->i_ino, UPDATE_INO); 380 381 sb_start_intwrite(inode->i_sb); 382 set_inode_flag(inode, FI_NO_ALLOC); 383 i_size_write(inode, 0); 384 retry: 385 if (F2FS_HAS_BLOCKS(inode)) 386 err = f2fs_truncate(inode); 387 388 #ifdef CONFIG_F2FS_FAULT_INJECTION 389 if (time_to_inject(sbi, FAULT_EVICT_INODE)) { 390 f2fs_show_injection_info(FAULT_EVICT_INODE); 391 err = -EIO; 392 } 393 #endif 394 if (!err) { 395 f2fs_lock_op(sbi); 396 err = remove_inode_page(inode); 397 f2fs_unlock_op(sbi); 398 if (err == -ENOENT) 399 err = 0; 400 } 401 402 /* give more chances, if ENOMEM case */ 403 if (err == -ENOMEM) { 404 err = 0; 405 goto retry; 406 } 407 408 if (err) 409 update_inode_page(inode); 410 dquot_free_inode(inode); 411 sb_end_intwrite(inode->i_sb); 412 no_delete: 413 dquot_drop(inode); 414 415 stat_dec_inline_xattr(inode); 416 stat_dec_inline_dir(inode); 417 stat_dec_inline_inode(inode); 418 419 /* ino == 0, if f2fs_new_inode() was failed t*/ 420 if (inode->i_ino) 421 invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, 422 inode->i_ino); 423 if (xnid) 424 invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); 425 if (inode->i_nlink) { 426 if (is_inode_flag_set(inode, FI_APPEND_WRITE)) 427 add_ino_entry(sbi, inode->i_ino, APPEND_INO); 428 if (is_inode_flag_set(inode, FI_UPDATE_WRITE)) 429 add_ino_entry(sbi, inode->i_ino, UPDATE_INO); 430 } 431 if (is_inode_flag_set(inode, FI_FREE_NID)) { 432 alloc_nid_failed(sbi, inode->i_ino); 433 clear_inode_flag(inode, FI_FREE_NID); 434 } else { 435 f2fs_bug_on(sbi, err && 436 !exist_written_data(sbi, inode->i_ino, ORPHAN_INO)); 437 } 438 out_clear: 439 fscrypt_put_encryption_info(inode, NULL); 440 clear_inode(inode); 441 } 442 443 /* caller should call f2fs_lock_op() */ 444 void handle_failed_inode(struct inode *inode) 445 { 446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 447 struct node_info ni; 448 449 /* 450 * clear nlink of inode in order to release resource of inode 451 * immediately. 452 */ 453 clear_nlink(inode); 454 455 /* 456 * we must call this to avoid inode being remained as dirty, resulting 457 * in a panic when flushing dirty inodes in gdirty_list. 458 */ 459 update_inode_page(inode); 460 f2fs_inode_synced(inode); 461 462 /* don't make bad inode, since it becomes a regular file. */ 463 unlock_new_inode(inode); 464 465 /* 466 * Note: we should add inode to orphan list before f2fs_unlock_op() 467 * so we can prevent losing this orphan when encoutering checkpoint 468 * and following suddenly power-off. 469 */ 470 get_node_info(sbi, inode->i_ino, &ni); 471 472 if (ni.blk_addr != NULL_ADDR) { 473 int err = acquire_orphan_inode(sbi); 474 if (err) { 475 set_sbi_flag(sbi, SBI_NEED_FSCK); 476 f2fs_msg(sbi->sb, KERN_WARNING, 477 "Too many orphan inodes, run fsck to fix."); 478 } else { 479 add_orphan_inode(inode); 480 } 481 alloc_nid_done(sbi, inode->i_ino); 482 } else { 483 set_inode_flag(inode, FI_FREE_NID); 484 } 485 486 f2fs_unlock_op(sbi); 487 488 /* iput will drop the inode object */ 489 iput(inode); 490 } 491