1 /* 2 * fs/f2fs/inode.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/writeback.h> 15 #include <linux/bitops.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 20 #include <trace/events/f2fs.h> 21 22 void f2fs_set_inode_flags(struct inode *inode) 23 { 24 unsigned int flags = F2FS_I(inode)->i_flags; 25 unsigned int new_fl = 0; 26 27 if (flags & FS_SYNC_FL) 28 new_fl |= S_SYNC; 29 if (flags & FS_APPEND_FL) 30 new_fl |= S_APPEND; 31 if (flags & FS_IMMUTABLE_FL) 32 new_fl |= S_IMMUTABLE; 33 if (flags & FS_NOATIME_FL) 34 new_fl |= S_NOATIME; 35 if (flags & FS_DIRSYNC_FL) 36 new_fl |= S_DIRSYNC; 37 set_mask_bits(&inode->i_flags, 38 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl); 39 } 40 41 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 42 { 43 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 44 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 45 if (ri->i_addr[0]) 46 inode->i_rdev = 47 old_decode_dev(le32_to_cpu(ri->i_addr[0])); 48 else 49 inode->i_rdev = 50 new_decode_dev(le32_to_cpu(ri->i_addr[1])); 51 } 52 } 53 54 static bool __written_first_block(struct f2fs_inode *ri) 55 { 56 block_t addr = le32_to_cpu(ri->i_addr[0]); 57 58 if (addr != NEW_ADDR && addr != NULL_ADDR) 59 return true; 60 return false; 61 } 62 63 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) 64 { 65 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 66 if (old_valid_dev(inode->i_rdev)) { 67 ri->i_addr[0] = 68 cpu_to_le32(old_encode_dev(inode->i_rdev)); 69 ri->i_addr[1] = 0; 70 } else { 71 ri->i_addr[0] = 0; 72 ri->i_addr[1] = 73 cpu_to_le32(new_encode_dev(inode->i_rdev)); 74 ri->i_addr[2] = 0; 75 } 76 } 77 } 78 79 static void __recover_inline_status(struct inode *inode, struct page *ipage) 80 { 81 void *inline_data = inline_data_addr(ipage); 82 __le32 *start = inline_data; 83 __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); 84 85 while (start < end) { 86 if (*start++) { 87 f2fs_wait_on_page_writeback(ipage, NODE); 88 89 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 90 set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage)); 91 set_page_dirty(ipage); 92 return; 93 } 94 } 95 return; 96 } 97 98 static int do_read_inode(struct inode *inode) 99 { 100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 101 struct f2fs_inode_info *fi = F2FS_I(inode); 102 struct page *node_page; 103 struct f2fs_inode *ri; 104 105 /* Check if ino is within scope */ 106 if (check_nid_range(sbi, inode->i_ino)) { 107 f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", 108 (unsigned long) inode->i_ino); 109 WARN_ON(1); 110 return -EINVAL; 111 } 112 113 node_page = get_node_page(sbi, inode->i_ino); 114 if (IS_ERR(node_page)) 115 return PTR_ERR(node_page); 116 117 ri = F2FS_INODE(node_page); 118 119 inode->i_mode = le16_to_cpu(ri->i_mode); 120 i_uid_write(inode, le32_to_cpu(ri->i_uid)); 121 i_gid_write(inode, le32_to_cpu(ri->i_gid)); 122 set_nlink(inode, le32_to_cpu(ri->i_links)); 123 inode->i_size = le64_to_cpu(ri->i_size); 124 inode->i_blocks = le64_to_cpu(ri->i_blocks); 125 126 inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); 127 inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); 128 inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); 129 inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); 130 inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); 131 inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); 132 inode->i_generation = le32_to_cpu(ri->i_generation); 133 134 fi->i_current_depth = le32_to_cpu(ri->i_current_depth); 135 fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); 136 fi->i_flags = le32_to_cpu(ri->i_flags); 137 fi->flags = 0; 138 fi->i_advise = ri->i_advise; 139 fi->i_pino = le32_to_cpu(ri->i_pino); 140 fi->i_dir_level = ri->i_dir_level; 141 142 f2fs_init_extent_cache(inode, &ri->i_ext); 143 144 get_inline_info(fi, ri); 145 146 /* check data exist */ 147 if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) 148 __recover_inline_status(inode, node_page); 149 150 /* get rdev by using inline_info */ 151 __get_inode_rdev(inode, ri); 152 153 if (__written_first_block(ri)) 154 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 155 156 f2fs_put_page(node_page, 1); 157 158 stat_inc_inline_inode(inode); 159 stat_inc_inline_dir(inode); 160 161 return 0; 162 } 163 164 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) 165 { 166 struct f2fs_sb_info *sbi = F2FS_SB(sb); 167 struct inode *inode; 168 int ret = 0; 169 170 inode = iget_locked(sb, ino); 171 if (!inode) 172 return ERR_PTR(-ENOMEM); 173 174 if (!(inode->i_state & I_NEW)) { 175 trace_f2fs_iget(inode); 176 return inode; 177 } 178 if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) 179 goto make_now; 180 181 ret = do_read_inode(inode); 182 if (ret) 183 goto bad_inode; 184 make_now: 185 if (ino == F2FS_NODE_INO(sbi)) { 186 inode->i_mapping->a_ops = &f2fs_node_aops; 187 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 188 } else if (ino == F2FS_META_INO(sbi)) { 189 inode->i_mapping->a_ops = &f2fs_meta_aops; 190 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); 191 } else if (S_ISREG(inode->i_mode)) { 192 inode->i_op = &f2fs_file_inode_operations; 193 inode->i_fop = &f2fs_file_operations; 194 inode->i_mapping->a_ops = &f2fs_dblock_aops; 195 } else if (S_ISDIR(inode->i_mode)) { 196 inode->i_op = &f2fs_dir_inode_operations; 197 inode->i_fop = &f2fs_dir_operations; 198 inode->i_mapping->a_ops = &f2fs_dblock_aops; 199 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); 200 } else if (S_ISLNK(inode->i_mode)) { 201 inode->i_op = &f2fs_symlink_inode_operations; 202 inode->i_mapping->a_ops = &f2fs_dblock_aops; 203 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 204 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 205 inode->i_op = &f2fs_special_inode_operations; 206 init_special_inode(inode, inode->i_mode, inode->i_rdev); 207 } else { 208 ret = -EIO; 209 goto bad_inode; 210 } 211 unlock_new_inode(inode); 212 trace_f2fs_iget(inode); 213 return inode; 214 215 bad_inode: 216 iget_failed(inode); 217 trace_f2fs_iget_exit(inode, ret); 218 return ERR_PTR(ret); 219 } 220 221 void update_inode(struct inode *inode, struct page *node_page) 222 { 223 struct f2fs_inode *ri; 224 225 f2fs_wait_on_page_writeback(node_page, NODE); 226 227 ri = F2FS_INODE(node_page); 228 229 ri->i_mode = cpu_to_le16(inode->i_mode); 230 ri->i_advise = F2FS_I(inode)->i_advise; 231 ri->i_uid = cpu_to_le32(i_uid_read(inode)); 232 ri->i_gid = cpu_to_le32(i_gid_read(inode)); 233 ri->i_links = cpu_to_le32(inode->i_nlink); 234 ri->i_size = cpu_to_le64(i_size_read(inode)); 235 ri->i_blocks = cpu_to_le64(inode->i_blocks); 236 237 read_lock(&F2FS_I(inode)->ext_lock); 238 set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext); 239 read_unlock(&F2FS_I(inode)->ext_lock); 240 241 set_raw_inline(F2FS_I(inode), ri); 242 243 ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 244 ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); 245 ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); 246 ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 247 ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 248 ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 249 ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); 250 ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); 251 ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); 252 ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); 253 ri->i_generation = cpu_to_le32(inode->i_generation); 254 ri->i_dir_level = F2FS_I(inode)->i_dir_level; 255 256 __set_inode_rdev(inode, ri); 257 set_cold_node(inode, node_page); 258 set_page_dirty(node_page); 259 260 clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 261 } 262 263 void update_inode_page(struct inode *inode) 264 { 265 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 266 struct page *node_page; 267 retry: 268 node_page = get_node_page(sbi, inode->i_ino); 269 if (IS_ERR(node_page)) { 270 int err = PTR_ERR(node_page); 271 if (err == -ENOMEM) { 272 cond_resched(); 273 goto retry; 274 } else if (err != -ENOENT) { 275 f2fs_stop_checkpoint(sbi); 276 } 277 return; 278 } 279 update_inode(inode, node_page); 280 f2fs_put_page(node_page, 1); 281 } 282 283 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) 284 { 285 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 286 287 if (inode->i_ino == F2FS_NODE_INO(sbi) || 288 inode->i_ino == F2FS_META_INO(sbi)) 289 return 0; 290 291 if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE)) 292 return 0; 293 294 /* 295 * We need to lock here to prevent from producing dirty node pages 296 * during the urgent cleaning time when runing out of free sections. 297 */ 298 f2fs_lock_op(sbi); 299 update_inode_page(inode); 300 f2fs_unlock_op(sbi); 301 302 if (wbc) 303 f2fs_balance_fs(sbi); 304 305 return 0; 306 } 307 308 /* 309 * Called at the last iput() if i_nlink is zero 310 */ 311 void f2fs_evict_inode(struct inode *inode) 312 { 313 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 314 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 315 316 /* some remained atomic pages should discarded */ 317 if (f2fs_is_atomic_file(inode)) 318 commit_inmem_pages(inode, true); 319 320 trace_f2fs_evict_inode(inode); 321 truncate_inode_pages_final(&inode->i_data); 322 323 if (inode->i_ino == F2FS_NODE_INO(sbi) || 324 inode->i_ino == F2FS_META_INO(sbi)) 325 goto out_clear; 326 327 f2fs_bug_on(sbi, get_dirty_pages(inode)); 328 remove_dirty_dir_inode(inode); 329 330 if (inode->i_nlink || is_bad_inode(inode)) 331 goto no_delete; 332 333 sb_start_intwrite(inode->i_sb); 334 set_inode_flag(F2FS_I(inode), FI_NO_ALLOC); 335 i_size_write(inode, 0); 336 337 if (F2FS_HAS_BLOCKS(inode)) 338 f2fs_truncate(inode); 339 340 f2fs_lock_op(sbi); 341 remove_inode_page(inode); 342 f2fs_unlock_op(sbi); 343 344 sb_end_intwrite(inode->i_sb); 345 no_delete: 346 stat_dec_inline_dir(inode); 347 stat_dec_inline_inode(inode); 348 349 /* update extent info in inode */ 350 if (inode->i_nlink) 351 f2fs_preserve_extent_tree(inode); 352 f2fs_destroy_extent_tree(inode); 353 354 invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); 355 if (xnid) 356 invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); 357 if (is_inode_flag_set(F2FS_I(inode), FI_APPEND_WRITE)) 358 add_dirty_inode(sbi, inode->i_ino, APPEND_INO); 359 if (is_inode_flag_set(F2FS_I(inode), FI_UPDATE_WRITE)) 360 add_dirty_inode(sbi, inode->i_ino, UPDATE_INO); 361 out_clear: 362 clear_inode(inode); 363 } 364 365 /* caller should call f2fs_lock_op() */ 366 void handle_failed_inode(struct inode *inode) 367 { 368 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 369 370 clear_nlink(inode); 371 make_bad_inode(inode); 372 unlock_new_inode(inode); 373 374 i_size_write(inode, 0); 375 if (F2FS_HAS_BLOCKS(inode)) 376 f2fs_truncate(inode); 377 378 remove_inode_page(inode); 379 380 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 381 clear_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY); 382 alloc_nid_failed(sbi, inode->i_ino); 383 f2fs_unlock_op(sbi); 384 385 /* iput will drop the inode object */ 386 iput(inode); 387 } 388