1 /* 2 * fs/f2fs/inline.c 3 * Copyright (c) 2013, Intel Corporation 4 * Authors: Huajun Li <huajun.li@intel.com> 5 * Haicheng Li <haicheng.li@intel.com> 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 14 #include "f2fs.h" 15 #include "node.h" 16 17 bool f2fs_may_inline_data(struct inode *inode) 18 { 19 if (f2fs_is_atomic_file(inode)) 20 return false; 21 22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) 23 return false; 24 25 if (i_size_read(inode) > MAX_INLINE_DATA(inode)) 26 return false; 27 28 if (f2fs_encrypted_file(inode)) 29 return false; 30 31 return true; 32 } 33 34 bool f2fs_may_inline_dentry(struct inode *inode) 35 { 36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) 37 return false; 38 39 if (!S_ISDIR(inode->i_mode)) 40 return false; 41 42 return true; 43 } 44 45 void read_inline_data(struct page *page, struct page *ipage) 46 { 47 struct inode *inode = page->mapping->host; 48 void *src_addr, *dst_addr; 49 50 if (PageUptodate(page)) 51 return; 52 53 f2fs_bug_on(F2FS_P_SB(page), page->index); 54 55 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); 56 57 /* Copy the whole inline data block */ 58 src_addr = inline_data_addr(inode, ipage); 59 dst_addr = kmap_atomic(page); 60 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 61 flush_dcache_page(page); 62 kunmap_atomic(dst_addr); 63 if (!PageUptodate(page)) 64 SetPageUptodate(page); 65 } 66 67 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from) 68 { 69 void *addr; 70 71 if (from >= MAX_INLINE_DATA(inode)) 72 return; 73 74 addr = inline_data_addr(inode, ipage); 75 76 f2fs_wait_on_page_writeback(ipage, NODE, true); 77 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); 78 set_page_dirty(ipage); 79 80 if (from == 0) 81 clear_inode_flag(inode, FI_DATA_EXIST); 82 } 83 84 int f2fs_read_inline_data(struct inode *inode, struct page *page) 85 { 86 struct page *ipage; 87 88 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 89 if (IS_ERR(ipage)) { 90 unlock_page(page); 91 return PTR_ERR(ipage); 92 } 93 94 if (!f2fs_has_inline_data(inode)) { 95 f2fs_put_page(ipage, 1); 96 return -EAGAIN; 97 } 98 99 if (page->index) 100 zero_user_segment(page, 0, PAGE_SIZE); 101 else 102 read_inline_data(page, ipage); 103 104 if (!PageUptodate(page)) 105 SetPageUptodate(page); 106 f2fs_put_page(ipage, 1); 107 unlock_page(page); 108 return 0; 109 } 110 111 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) 112 { 113 struct f2fs_io_info fio = { 114 .sbi = F2FS_I_SB(dn->inode), 115 .ino = dn->inode->i_ino, 116 .type = DATA, 117 .op = REQ_OP_WRITE, 118 .op_flags = REQ_SYNC | REQ_PRIO, 119 .page = page, 120 .encrypted_page = NULL, 121 .io_type = FS_DATA_IO, 122 }; 123 int dirty, err; 124 125 if (!f2fs_exist_data(dn->inode)) 126 goto clear_out; 127 128 err = f2fs_reserve_block(dn, 0); 129 if (err) 130 return err; 131 132 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); 133 134 read_inline_data(page, dn->inode_page); 135 set_page_dirty(page); 136 137 /* clear dirty state */ 138 dirty = clear_page_dirty_for_io(page); 139 140 /* write data page to try to make data consistent */ 141 set_page_writeback(page); 142 fio.old_blkaddr = dn->data_blkaddr; 143 set_inode_flag(dn->inode, FI_HOT_DATA); 144 write_data_page(dn, &fio); 145 f2fs_wait_on_page_writeback(page, DATA, true); 146 if (dirty) { 147 inode_dec_dirty_pages(dn->inode); 148 remove_dirty_inode(dn->inode); 149 } 150 151 /* this converted inline_data should be recovered. */ 152 set_inode_flag(dn->inode, FI_APPEND_WRITE); 153 154 /* clear inline data and flag after data writeback */ 155 truncate_inline_inode(dn->inode, dn->inode_page, 0); 156 clear_inline_node(dn->inode_page); 157 clear_out: 158 stat_dec_inline_inode(dn->inode); 159 clear_inode_flag(dn->inode, FI_INLINE_DATA); 160 f2fs_put_dnode(dn); 161 return 0; 162 } 163 164 int f2fs_convert_inline_inode(struct inode *inode) 165 { 166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 167 struct dnode_of_data dn; 168 struct page *ipage, *page; 169 int err = 0; 170 171 if (!f2fs_has_inline_data(inode)) 172 return 0; 173 174 page = f2fs_grab_cache_page(inode->i_mapping, 0, false); 175 if (!page) 176 return -ENOMEM; 177 178 f2fs_lock_op(sbi); 179 180 ipage = get_node_page(sbi, inode->i_ino); 181 if (IS_ERR(ipage)) { 182 err = PTR_ERR(ipage); 183 goto out; 184 } 185 186 set_new_dnode(&dn, inode, ipage, ipage, 0); 187 188 if (f2fs_has_inline_data(inode)) 189 err = f2fs_convert_inline_page(&dn, page); 190 191 f2fs_put_dnode(&dn); 192 out: 193 f2fs_unlock_op(sbi); 194 195 f2fs_put_page(page, 1); 196 197 f2fs_balance_fs(sbi, dn.node_changed); 198 199 return err; 200 } 201 202 int f2fs_write_inline_data(struct inode *inode, struct page *page) 203 { 204 void *src_addr, *dst_addr; 205 struct dnode_of_data dn; 206 struct address_space *mapping = page_mapping(page); 207 unsigned long flags; 208 int err; 209 210 set_new_dnode(&dn, inode, NULL, NULL, 0); 211 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 212 if (err) 213 return err; 214 215 if (!f2fs_has_inline_data(inode)) { 216 f2fs_put_dnode(&dn); 217 return -EAGAIN; 218 } 219 220 f2fs_bug_on(F2FS_I_SB(inode), page->index); 221 222 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true); 223 src_addr = kmap_atomic(page); 224 dst_addr = inline_data_addr(inode, dn.inode_page); 225 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 226 kunmap_atomic(src_addr); 227 set_page_dirty(dn.inode_page); 228 229 xa_lock_irqsave(&mapping->i_pages, flags); 230 radix_tree_tag_clear(&mapping->i_pages, page_index(page), 231 PAGECACHE_TAG_DIRTY); 232 xa_unlock_irqrestore(&mapping->i_pages, flags); 233 234 set_inode_flag(inode, FI_APPEND_WRITE); 235 set_inode_flag(inode, FI_DATA_EXIST); 236 237 clear_inline_node(dn.inode_page); 238 f2fs_put_dnode(&dn); 239 return 0; 240 } 241 242 bool recover_inline_data(struct inode *inode, struct page *npage) 243 { 244 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 245 struct f2fs_inode *ri = NULL; 246 void *src_addr, *dst_addr; 247 struct page *ipage; 248 249 /* 250 * The inline_data recovery policy is as follows. 251 * [prev.] [next] of inline_data flag 252 * o o -> recover inline_data 253 * o x -> remove inline_data, and then recover data blocks 254 * x o -> remove inline_data, and then recover inline_data 255 * x x -> recover data blocks 256 */ 257 if (IS_INODE(npage)) 258 ri = F2FS_INODE(npage); 259 260 if (f2fs_has_inline_data(inode) && 261 ri && (ri->i_inline & F2FS_INLINE_DATA)) { 262 process_inline: 263 ipage = get_node_page(sbi, inode->i_ino); 264 f2fs_bug_on(sbi, IS_ERR(ipage)); 265 266 f2fs_wait_on_page_writeback(ipage, NODE, true); 267 268 src_addr = inline_data_addr(inode, npage); 269 dst_addr = inline_data_addr(inode, ipage); 270 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 271 272 set_inode_flag(inode, FI_INLINE_DATA); 273 set_inode_flag(inode, FI_DATA_EXIST); 274 275 set_page_dirty(ipage); 276 f2fs_put_page(ipage, 1); 277 return true; 278 } 279 280 if (f2fs_has_inline_data(inode)) { 281 ipage = get_node_page(sbi, inode->i_ino); 282 f2fs_bug_on(sbi, IS_ERR(ipage)); 283 truncate_inline_inode(inode, ipage, 0); 284 clear_inode_flag(inode, FI_INLINE_DATA); 285 f2fs_put_page(ipage, 1); 286 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { 287 if (truncate_blocks(inode, 0, false)) 288 return false; 289 goto process_inline; 290 } 291 return false; 292 } 293 294 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 295 struct fscrypt_name *fname, struct page **res_page) 296 { 297 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); 298 struct qstr name = FSTR_TO_QSTR(&fname->disk_name); 299 struct f2fs_dir_entry *de; 300 struct f2fs_dentry_ptr d; 301 struct page *ipage; 302 void *inline_dentry; 303 f2fs_hash_t namehash; 304 305 ipage = get_node_page(sbi, dir->i_ino); 306 if (IS_ERR(ipage)) { 307 *res_page = ipage; 308 return NULL; 309 } 310 311 namehash = f2fs_dentry_hash(&name, fname); 312 313 inline_dentry = inline_data_addr(dir, ipage); 314 315 make_dentry_ptr_inline(dir, &d, inline_dentry); 316 de = find_target_dentry(fname, namehash, NULL, &d); 317 unlock_page(ipage); 318 if (de) 319 *res_page = ipage; 320 else 321 f2fs_put_page(ipage, 0); 322 323 return de; 324 } 325 326 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 327 struct page *ipage) 328 { 329 struct f2fs_dentry_ptr d; 330 void *inline_dentry; 331 332 inline_dentry = inline_data_addr(inode, ipage); 333 334 make_dentry_ptr_inline(inode, &d, inline_dentry); 335 do_make_empty_dir(inode, parent, &d); 336 337 set_page_dirty(ipage); 338 339 /* update i_size to MAX_INLINE_DATA */ 340 if (i_size_read(inode) < MAX_INLINE_DATA(inode)) 341 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); 342 return 0; 343 } 344 345 /* 346 * NOTE: ipage is grabbed by caller, but if any error occurs, we should 347 * release ipage in this function. 348 */ 349 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, 350 void *inline_dentry) 351 { 352 struct page *page; 353 struct dnode_of_data dn; 354 struct f2fs_dentry_block *dentry_blk; 355 struct f2fs_dentry_ptr src, dst; 356 int err; 357 358 page = f2fs_grab_cache_page(dir->i_mapping, 0, false); 359 if (!page) { 360 f2fs_put_page(ipage, 1); 361 return -ENOMEM; 362 } 363 364 set_new_dnode(&dn, dir, ipage, NULL, 0); 365 err = f2fs_reserve_block(&dn, 0); 366 if (err) 367 goto out; 368 369 f2fs_wait_on_page_writeback(page, DATA, true); 370 zero_user_segment(page, MAX_INLINE_DATA(dir), PAGE_SIZE); 371 372 dentry_blk = page_address(page); 373 374 make_dentry_ptr_inline(dir, &src, inline_dentry); 375 make_dentry_ptr_block(dir, &dst, dentry_blk); 376 377 /* copy data from inline dentry block to new dentry block */ 378 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); 379 memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap); 380 /* 381 * we do not need to zero out remainder part of dentry and filename 382 * field, since we have used bitmap for marking the usage status of 383 * them, besides, we can also ignore copying/zeroing reserved space 384 * of dentry block, because them haven't been used so far. 385 */ 386 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); 387 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); 388 389 if (!PageUptodate(page)) 390 SetPageUptodate(page); 391 set_page_dirty(page); 392 393 /* clear inline dir and flag after data writeback */ 394 truncate_inline_inode(dir, ipage, 0); 395 396 stat_dec_inline_dir(dir); 397 clear_inode_flag(dir, FI_INLINE_DENTRY); 398 399 f2fs_i_depth_write(dir, 1); 400 if (i_size_read(dir) < PAGE_SIZE) 401 f2fs_i_size_write(dir, PAGE_SIZE); 402 out: 403 f2fs_put_page(page, 1); 404 return err; 405 } 406 407 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) 408 { 409 struct f2fs_dentry_ptr d; 410 unsigned long bit_pos = 0; 411 int err = 0; 412 413 make_dentry_ptr_inline(dir, &d, inline_dentry); 414 415 while (bit_pos < d.max) { 416 struct f2fs_dir_entry *de; 417 struct qstr new_name; 418 nid_t ino; 419 umode_t fake_mode; 420 421 if (!test_bit_le(bit_pos, d.bitmap)) { 422 bit_pos++; 423 continue; 424 } 425 426 de = &d.dentry[bit_pos]; 427 428 if (unlikely(!de->name_len)) { 429 bit_pos++; 430 continue; 431 } 432 433 new_name.name = d.filename[bit_pos]; 434 new_name.len = le16_to_cpu(de->name_len); 435 436 ino = le32_to_cpu(de->ino); 437 fake_mode = get_de_type(de) << S_SHIFT; 438 439 err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL, 440 ino, fake_mode); 441 if (err) 442 goto punch_dentry_pages; 443 444 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); 445 } 446 return 0; 447 punch_dentry_pages: 448 truncate_inode_pages(&dir->i_data, 0); 449 truncate_blocks(dir, 0, false); 450 remove_dirty_inode(dir); 451 return err; 452 } 453 454 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, 455 void *inline_dentry) 456 { 457 void *backup_dentry; 458 int err; 459 460 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), 461 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); 462 if (!backup_dentry) { 463 f2fs_put_page(ipage, 1); 464 return -ENOMEM; 465 } 466 467 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); 468 truncate_inline_inode(dir, ipage, 0); 469 470 unlock_page(ipage); 471 472 err = f2fs_add_inline_entries(dir, backup_dentry); 473 if (err) 474 goto recover; 475 476 lock_page(ipage); 477 478 stat_dec_inline_dir(dir); 479 clear_inode_flag(dir, FI_INLINE_DENTRY); 480 kfree(backup_dentry); 481 return 0; 482 recover: 483 lock_page(ipage); 484 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); 485 f2fs_i_depth_write(dir, 0); 486 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); 487 set_page_dirty(ipage); 488 f2fs_put_page(ipage, 1); 489 490 kfree(backup_dentry); 491 return err; 492 } 493 494 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage, 495 void *inline_dentry) 496 { 497 if (!F2FS_I(dir)->i_dir_level) 498 return f2fs_move_inline_dirents(dir, ipage, inline_dentry); 499 else 500 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); 501 } 502 503 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 504 const struct qstr *orig_name, 505 struct inode *inode, nid_t ino, umode_t mode) 506 { 507 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 508 struct page *ipage; 509 unsigned int bit_pos; 510 f2fs_hash_t name_hash; 511 void *inline_dentry = NULL; 512 struct f2fs_dentry_ptr d; 513 int slots = GET_DENTRY_SLOTS(new_name->len); 514 struct page *page = NULL; 515 int err = 0; 516 517 ipage = get_node_page(sbi, dir->i_ino); 518 if (IS_ERR(ipage)) 519 return PTR_ERR(ipage); 520 521 inline_dentry = inline_data_addr(dir, ipage); 522 make_dentry_ptr_inline(dir, &d, inline_dentry); 523 524 bit_pos = room_for_filename(d.bitmap, slots, d.max); 525 if (bit_pos >= d.max) { 526 err = f2fs_convert_inline_dir(dir, ipage, inline_dentry); 527 if (err) 528 return err; 529 err = -EAGAIN; 530 goto out; 531 } 532 533 if (inode) { 534 down_write(&F2FS_I(inode)->i_sem); 535 page = init_inode_metadata(inode, dir, new_name, 536 orig_name, ipage); 537 if (IS_ERR(page)) { 538 err = PTR_ERR(page); 539 goto fail; 540 } 541 } 542 543 f2fs_wait_on_page_writeback(ipage, NODE, true); 544 545 name_hash = f2fs_dentry_hash(new_name, NULL); 546 f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos); 547 548 set_page_dirty(ipage); 549 550 /* we don't need to mark_inode_dirty now */ 551 if (inode) { 552 f2fs_i_pino_write(inode, dir->i_ino); 553 f2fs_put_page(page, 1); 554 } 555 556 update_parent_metadata(dir, inode, 0); 557 fail: 558 if (inode) 559 up_write(&F2FS_I(inode)->i_sem); 560 out: 561 f2fs_put_page(ipage, 1); 562 return err; 563 } 564 565 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 566 struct inode *dir, struct inode *inode) 567 { 568 struct f2fs_dentry_ptr d; 569 void *inline_dentry; 570 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); 571 unsigned int bit_pos; 572 int i; 573 574 lock_page(page); 575 f2fs_wait_on_page_writeback(page, NODE, true); 576 577 inline_dentry = inline_data_addr(dir, page); 578 make_dentry_ptr_inline(dir, &d, inline_dentry); 579 580 bit_pos = dentry - d.dentry; 581 for (i = 0; i < slots; i++) 582 __clear_bit_le(bit_pos + i, d.bitmap); 583 584 set_page_dirty(page); 585 f2fs_put_page(page, 1); 586 587 dir->i_ctime = dir->i_mtime = current_time(dir); 588 f2fs_mark_inode_dirty_sync(dir, false); 589 590 if (inode) 591 f2fs_drop_nlink(dir, inode); 592 } 593 594 bool f2fs_empty_inline_dir(struct inode *dir) 595 { 596 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 597 struct page *ipage; 598 unsigned int bit_pos = 2; 599 void *inline_dentry; 600 struct f2fs_dentry_ptr d; 601 602 ipage = get_node_page(sbi, dir->i_ino); 603 if (IS_ERR(ipage)) 604 return false; 605 606 inline_dentry = inline_data_addr(dir, ipage); 607 make_dentry_ptr_inline(dir, &d, inline_dentry); 608 609 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); 610 611 f2fs_put_page(ipage, 1); 612 613 if (bit_pos < d.max) 614 return false; 615 616 return true; 617 } 618 619 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 620 struct fscrypt_str *fstr) 621 { 622 struct inode *inode = file_inode(file); 623 struct page *ipage = NULL; 624 struct f2fs_dentry_ptr d; 625 void *inline_dentry = NULL; 626 int err; 627 628 make_dentry_ptr_inline(inode, &d, inline_dentry); 629 630 if (ctx->pos == d.max) 631 return 0; 632 633 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 634 if (IS_ERR(ipage)) 635 return PTR_ERR(ipage); 636 637 inline_dentry = inline_data_addr(inode, ipage); 638 639 make_dentry_ptr_inline(inode, &d, inline_dentry); 640 641 err = f2fs_fill_dentries(ctx, &d, 0, fstr); 642 if (!err) 643 ctx->pos = d.max; 644 645 f2fs_put_page(ipage, 1); 646 return err < 0 ? err : 0; 647 } 648 649 int f2fs_inline_data_fiemap(struct inode *inode, 650 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) 651 { 652 __u64 byteaddr, ilen; 653 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | 654 FIEMAP_EXTENT_LAST; 655 struct node_info ni; 656 struct page *ipage; 657 int err = 0; 658 659 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 660 if (IS_ERR(ipage)) 661 return PTR_ERR(ipage); 662 663 if (!f2fs_has_inline_data(inode)) { 664 err = -EAGAIN; 665 goto out; 666 } 667 668 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); 669 if (start >= ilen) 670 goto out; 671 if (start + len < ilen) 672 ilen = start + len; 673 ilen -= start; 674 675 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni); 676 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; 677 byteaddr += (char *)inline_data_addr(inode, ipage) - 678 (char *)F2FS_INODE(ipage); 679 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); 680 out: 681 f2fs_put_page(ipage, 1); 682 return err; 683 } 684