1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/inline.c 4 * Copyright (c) 2013, Intel Corporation 5 * Authors: Huajun Li <huajun.li@intel.com> 6 * Haicheng Li <haicheng.li@intel.com> 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/f2fs_fs.h> 11 #include <linux/fiemap.h> 12 13 #include "f2fs.h" 14 #include "node.h" 15 #include <trace/events/f2fs.h> 16 17 static bool support_inline_data(struct inode *inode) 18 { 19 if (f2fs_used_in_atomic_write(inode)) 20 return false; 21 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) 22 return false; 23 if (i_size_read(inode) > MAX_INLINE_DATA(inode)) 24 return false; 25 return true; 26 } 27 28 bool f2fs_may_inline_data(struct inode *inode) 29 { 30 if (!support_inline_data(inode)) 31 return false; 32 33 return !f2fs_post_read_required(inode); 34 } 35 36 static bool inode_has_blocks(struct inode *inode, struct page *ipage) 37 { 38 struct f2fs_inode *ri = F2FS_INODE(ipage); 39 int i; 40 41 if (F2FS_HAS_BLOCKS(inode)) 42 return true; 43 44 for (i = 0; i < DEF_NIDS_PER_INODE; i++) { 45 if (ri->i_nid[i]) 46 return true; 47 } 48 return false; 49 } 50 51 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage) 52 { 53 if (!f2fs_has_inline_data(inode)) 54 return false; 55 56 if (inode_has_blocks(inode, ipage)) 57 return false; 58 59 if (!support_inline_data(inode)) 60 return true; 61 62 /* 63 * used by sanity_check_inode(), when disk layout fields has not 64 * been synchronized to inmem fields. 65 */ 66 return (S_ISREG(inode->i_mode) && 67 (file_is_encrypt(inode) || file_is_verity(inode) || 68 (F2FS_I(inode)->i_flags & F2FS_COMPR_FL))); 69 } 70 71 bool f2fs_may_inline_dentry(struct inode *inode) 72 { 73 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) 74 return false; 75 76 if (!S_ISDIR(inode->i_mode)) 77 return false; 78 79 return true; 80 } 81 82 void f2fs_do_read_inline_data(struct page *page, struct page *ipage) 83 { 84 struct inode *inode = page->mapping->host; 85 86 if (PageUptodate(page)) 87 return; 88 89 f2fs_bug_on(F2FS_P_SB(page), page->index); 90 91 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); 92 93 /* Copy the whole inline data block */ 94 memcpy_to_page(page, 0, inline_data_addr(inode, ipage), 95 MAX_INLINE_DATA(inode)); 96 if (!PageUptodate(page)) 97 SetPageUptodate(page); 98 } 99 100 void f2fs_truncate_inline_inode(struct inode *inode, 101 struct page *ipage, u64 from) 102 { 103 void *addr; 104 105 if (from >= MAX_INLINE_DATA(inode)) 106 return; 107 108 addr = inline_data_addr(inode, ipage); 109 110 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 111 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); 112 set_page_dirty(ipage); 113 114 if (from == 0) 115 clear_inode_flag(inode, FI_DATA_EXIST); 116 } 117 118 int f2fs_read_inline_data(struct inode *inode, struct page *page) 119 { 120 struct page *ipage; 121 122 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 123 if (IS_ERR(ipage)) { 124 unlock_page(page); 125 return PTR_ERR(ipage); 126 } 127 128 if (!f2fs_has_inline_data(inode)) { 129 f2fs_put_page(ipage, 1); 130 return -EAGAIN; 131 } 132 133 if (page->index) 134 zero_user_segment(page, 0, PAGE_SIZE); 135 else 136 f2fs_do_read_inline_data(page, ipage); 137 138 if (!PageUptodate(page)) 139 SetPageUptodate(page); 140 f2fs_put_page(ipage, 1); 141 unlock_page(page); 142 return 0; 143 } 144 145 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) 146 { 147 struct f2fs_io_info fio = { 148 .sbi = F2FS_I_SB(dn->inode), 149 .ino = dn->inode->i_ino, 150 .type = DATA, 151 .op = REQ_OP_WRITE, 152 .op_flags = REQ_SYNC | REQ_PRIO, 153 .page = page, 154 .encrypted_page = NULL, 155 .io_type = FS_DATA_IO, 156 }; 157 struct node_info ni; 158 int dirty, err; 159 160 if (!f2fs_exist_data(dn->inode)) 161 goto clear_out; 162 163 err = f2fs_reserve_block(dn, 0); 164 if (err) 165 return err; 166 167 err = f2fs_get_node_info(fio.sbi, dn->nid, &ni, false); 168 if (err) { 169 f2fs_truncate_data_blocks_range(dn, 1); 170 f2fs_put_dnode(dn); 171 return err; 172 } 173 174 fio.version = ni.version; 175 176 if (unlikely(dn->data_blkaddr != NEW_ADDR)) { 177 f2fs_put_dnode(dn); 178 set_sbi_flag(fio.sbi, SBI_NEED_FSCK); 179 f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", 180 __func__, dn->inode->i_ino, dn->data_blkaddr); 181 f2fs_handle_error(fio.sbi, ERROR_INVALID_BLKADDR); 182 return -EFSCORRUPTED; 183 } 184 185 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); 186 187 f2fs_do_read_inline_data(page, dn->inode_page); 188 set_page_dirty(page); 189 190 /* clear dirty state */ 191 dirty = clear_page_dirty_for_io(page); 192 193 /* write data page to try to make data consistent */ 194 set_page_writeback(page); 195 fio.old_blkaddr = dn->data_blkaddr; 196 set_inode_flag(dn->inode, FI_HOT_DATA); 197 f2fs_outplace_write_data(dn, &fio); 198 f2fs_wait_on_page_writeback(page, DATA, true, true); 199 if (dirty) { 200 inode_dec_dirty_pages(dn->inode); 201 f2fs_remove_dirty_inode(dn->inode); 202 } 203 204 /* this converted inline_data should be recovered. */ 205 set_inode_flag(dn->inode, FI_APPEND_WRITE); 206 207 /* clear inline data and flag after data writeback */ 208 f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); 209 clear_page_private_inline(dn->inode_page); 210 clear_out: 211 stat_dec_inline_inode(dn->inode); 212 clear_inode_flag(dn->inode, FI_INLINE_DATA); 213 f2fs_put_dnode(dn); 214 return 0; 215 } 216 217 int f2fs_convert_inline_inode(struct inode *inode) 218 { 219 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 220 struct dnode_of_data dn; 221 struct page *ipage, *page; 222 int err = 0; 223 224 if (f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb)) 225 return -EROFS; 226 227 if (!f2fs_has_inline_data(inode)) 228 return 0; 229 230 err = f2fs_dquot_initialize(inode); 231 if (err) 232 return err; 233 234 page = f2fs_grab_cache_page(inode->i_mapping, 0, false); 235 if (!page) 236 return -ENOMEM; 237 238 f2fs_lock_op(sbi); 239 240 ipage = f2fs_get_node_page(sbi, inode->i_ino); 241 if (IS_ERR(ipage)) { 242 err = PTR_ERR(ipage); 243 goto out; 244 } 245 246 set_new_dnode(&dn, inode, ipage, ipage, 0); 247 248 if (f2fs_has_inline_data(inode)) 249 err = f2fs_convert_inline_page(&dn, page); 250 251 f2fs_put_dnode(&dn); 252 out: 253 f2fs_unlock_op(sbi); 254 255 f2fs_put_page(page, 1); 256 257 if (!err) 258 f2fs_balance_fs(sbi, dn.node_changed); 259 260 return err; 261 } 262 263 int f2fs_write_inline_data(struct inode *inode, struct page *page) 264 { 265 struct dnode_of_data dn; 266 int err; 267 268 set_new_dnode(&dn, inode, NULL, NULL, 0); 269 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 270 if (err) 271 return err; 272 273 if (!f2fs_has_inline_data(inode)) { 274 f2fs_put_dnode(&dn); 275 return -EAGAIN; 276 } 277 278 f2fs_bug_on(F2FS_I_SB(inode), page->index); 279 280 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true); 281 memcpy_from_page(inline_data_addr(inode, dn.inode_page), 282 page, 0, MAX_INLINE_DATA(inode)); 283 set_page_dirty(dn.inode_page); 284 285 f2fs_clear_page_cache_dirty_tag(page); 286 287 set_inode_flag(inode, FI_APPEND_WRITE); 288 set_inode_flag(inode, FI_DATA_EXIST); 289 290 clear_page_private_inline(dn.inode_page); 291 f2fs_put_dnode(&dn); 292 return 0; 293 } 294 295 int f2fs_recover_inline_data(struct inode *inode, struct page *npage) 296 { 297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 298 struct f2fs_inode *ri = NULL; 299 void *src_addr, *dst_addr; 300 struct page *ipage; 301 302 /* 303 * The inline_data recovery policy is as follows. 304 * [prev.] [next] of inline_data flag 305 * o o -> recover inline_data 306 * o x -> remove inline_data, and then recover data blocks 307 * x o -> remove data blocks, and then recover inline_data 308 * x x -> recover data blocks 309 */ 310 if (IS_INODE(npage)) 311 ri = F2FS_INODE(npage); 312 313 if (f2fs_has_inline_data(inode) && 314 ri && (ri->i_inline & F2FS_INLINE_DATA)) { 315 process_inline: 316 ipage = f2fs_get_node_page(sbi, inode->i_ino); 317 if (IS_ERR(ipage)) 318 return PTR_ERR(ipage); 319 320 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 321 322 src_addr = inline_data_addr(inode, npage); 323 dst_addr = inline_data_addr(inode, ipage); 324 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 325 326 set_inode_flag(inode, FI_INLINE_DATA); 327 set_inode_flag(inode, FI_DATA_EXIST); 328 329 set_page_dirty(ipage); 330 f2fs_put_page(ipage, 1); 331 return 1; 332 } 333 334 if (f2fs_has_inline_data(inode)) { 335 ipage = f2fs_get_node_page(sbi, inode->i_ino); 336 if (IS_ERR(ipage)) 337 return PTR_ERR(ipage); 338 f2fs_truncate_inline_inode(inode, ipage, 0); 339 stat_dec_inline_inode(inode); 340 clear_inode_flag(inode, FI_INLINE_DATA); 341 f2fs_put_page(ipage, 1); 342 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { 343 int ret; 344 345 ret = f2fs_truncate_blocks(inode, 0, false); 346 if (ret) 347 return ret; 348 stat_inc_inline_inode(inode); 349 goto process_inline; 350 } 351 return 0; 352 } 353 354 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 355 const struct f2fs_filename *fname, 356 struct page **res_page) 357 { 358 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); 359 struct f2fs_dir_entry *de; 360 struct f2fs_dentry_ptr d; 361 struct page *ipage; 362 void *inline_dentry; 363 364 ipage = f2fs_get_node_page(sbi, dir->i_ino); 365 if (IS_ERR(ipage)) { 366 *res_page = ipage; 367 return NULL; 368 } 369 370 inline_dentry = inline_data_addr(dir, ipage); 371 372 make_dentry_ptr_inline(dir, &d, inline_dentry); 373 de = f2fs_find_target_dentry(&d, fname, NULL); 374 unlock_page(ipage); 375 if (IS_ERR(de)) { 376 *res_page = ERR_CAST(de); 377 de = NULL; 378 } 379 if (de) 380 *res_page = ipage; 381 else 382 f2fs_put_page(ipage, 0); 383 384 return de; 385 } 386 387 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 388 struct page *ipage) 389 { 390 struct f2fs_dentry_ptr d; 391 void *inline_dentry; 392 393 inline_dentry = inline_data_addr(inode, ipage); 394 395 make_dentry_ptr_inline(inode, &d, inline_dentry); 396 f2fs_do_make_empty_dir(inode, parent, &d); 397 398 set_page_dirty(ipage); 399 400 /* update i_size to MAX_INLINE_DATA */ 401 if (i_size_read(inode) < MAX_INLINE_DATA(inode)) 402 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); 403 return 0; 404 } 405 406 /* 407 * NOTE: ipage is grabbed by caller, but if any error occurs, we should 408 * release ipage in this function. 409 */ 410 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, 411 void *inline_dentry) 412 { 413 struct page *page; 414 struct dnode_of_data dn; 415 struct f2fs_dentry_block *dentry_blk; 416 struct f2fs_dentry_ptr src, dst; 417 int err; 418 419 page = f2fs_grab_cache_page(dir->i_mapping, 0, true); 420 if (!page) { 421 f2fs_put_page(ipage, 1); 422 return -ENOMEM; 423 } 424 425 set_new_dnode(&dn, dir, ipage, NULL, 0); 426 err = f2fs_reserve_block(&dn, 0); 427 if (err) 428 goto out; 429 430 if (unlikely(dn.data_blkaddr != NEW_ADDR)) { 431 f2fs_put_dnode(&dn); 432 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); 433 f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", 434 __func__, dir->i_ino, dn.data_blkaddr); 435 f2fs_handle_error(F2FS_P_SB(page), ERROR_INVALID_BLKADDR); 436 err = -EFSCORRUPTED; 437 goto out; 438 } 439 440 f2fs_wait_on_page_writeback(page, DATA, true, true); 441 442 dentry_blk = page_address(page); 443 444 /* 445 * Start by zeroing the full block, to ensure that all unused space is 446 * zeroed and no uninitialized memory is leaked to disk. 447 */ 448 memset(dentry_blk, 0, F2FS_BLKSIZE); 449 450 make_dentry_ptr_inline(dir, &src, inline_dentry); 451 make_dentry_ptr_block(dir, &dst, dentry_blk); 452 453 /* copy data from inline dentry block to new dentry block */ 454 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); 455 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); 456 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); 457 458 if (!PageUptodate(page)) 459 SetPageUptodate(page); 460 set_page_dirty(page); 461 462 /* clear inline dir and flag after data writeback */ 463 f2fs_truncate_inline_inode(dir, ipage, 0); 464 465 stat_dec_inline_dir(dir); 466 clear_inode_flag(dir, FI_INLINE_DENTRY); 467 468 /* 469 * should retrieve reserved space which was used to keep 470 * inline_dentry's structure for backward compatibility. 471 */ 472 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && 473 !f2fs_has_inline_xattr(dir)) 474 F2FS_I(dir)->i_inline_xattr_size = 0; 475 476 f2fs_i_depth_write(dir, 1); 477 if (i_size_read(dir) < PAGE_SIZE) 478 f2fs_i_size_write(dir, PAGE_SIZE); 479 out: 480 f2fs_put_page(page, 1); 481 return err; 482 } 483 484 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) 485 { 486 struct f2fs_dentry_ptr d; 487 unsigned long bit_pos = 0; 488 int err = 0; 489 490 make_dentry_ptr_inline(dir, &d, inline_dentry); 491 492 while (bit_pos < d.max) { 493 struct f2fs_dir_entry *de; 494 struct f2fs_filename fname; 495 nid_t ino; 496 umode_t fake_mode; 497 498 if (!test_bit_le(bit_pos, d.bitmap)) { 499 bit_pos++; 500 continue; 501 } 502 503 de = &d.dentry[bit_pos]; 504 505 if (unlikely(!de->name_len)) { 506 bit_pos++; 507 continue; 508 } 509 510 /* 511 * We only need the disk_name and hash to move the dentry. 512 * We don't need the original or casefolded filenames. 513 */ 514 memset(&fname, 0, sizeof(fname)); 515 fname.disk_name.name = d.filename[bit_pos]; 516 fname.disk_name.len = le16_to_cpu(de->name_len); 517 fname.hash = de->hash_code; 518 519 ino = le32_to_cpu(de->ino); 520 fake_mode = fs_ftype_to_dtype(de->file_type) << S_DT_SHIFT; 521 522 err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode); 523 if (err) 524 goto punch_dentry_pages; 525 526 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); 527 } 528 return 0; 529 punch_dentry_pages: 530 truncate_inode_pages(&dir->i_data, 0); 531 f2fs_truncate_blocks(dir, 0, false); 532 f2fs_remove_dirty_inode(dir); 533 return err; 534 } 535 536 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, 537 void *inline_dentry) 538 { 539 void *backup_dentry; 540 int err; 541 542 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), 543 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); 544 if (!backup_dentry) { 545 f2fs_put_page(ipage, 1); 546 return -ENOMEM; 547 } 548 549 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); 550 f2fs_truncate_inline_inode(dir, ipage, 0); 551 552 unlock_page(ipage); 553 554 err = f2fs_add_inline_entries(dir, backup_dentry); 555 if (err) 556 goto recover; 557 558 lock_page(ipage); 559 560 stat_dec_inline_dir(dir); 561 clear_inode_flag(dir, FI_INLINE_DENTRY); 562 563 /* 564 * should retrieve reserved space which was used to keep 565 * inline_dentry's structure for backward compatibility. 566 */ 567 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && 568 !f2fs_has_inline_xattr(dir)) 569 F2FS_I(dir)->i_inline_xattr_size = 0; 570 571 kfree(backup_dentry); 572 return 0; 573 recover: 574 lock_page(ipage); 575 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 576 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); 577 f2fs_i_depth_write(dir, 0); 578 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); 579 set_page_dirty(ipage); 580 f2fs_put_page(ipage, 1); 581 582 kfree(backup_dentry); 583 return err; 584 } 585 586 static int do_convert_inline_dir(struct inode *dir, struct page *ipage, 587 void *inline_dentry) 588 { 589 if (!F2FS_I(dir)->i_dir_level) 590 return f2fs_move_inline_dirents(dir, ipage, inline_dentry); 591 else 592 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); 593 } 594 595 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry) 596 { 597 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 598 struct page *ipage; 599 struct f2fs_filename fname; 600 void *inline_dentry = NULL; 601 int err = 0; 602 603 if (!f2fs_has_inline_dentry(dir)) 604 return 0; 605 606 f2fs_lock_op(sbi); 607 608 err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname); 609 if (err) 610 goto out; 611 612 ipage = f2fs_get_node_page(sbi, dir->i_ino); 613 if (IS_ERR(ipage)) { 614 err = PTR_ERR(ipage); 615 goto out_fname; 616 } 617 618 if (f2fs_has_enough_room(dir, ipage, &fname)) { 619 f2fs_put_page(ipage, 1); 620 goto out_fname; 621 } 622 623 inline_dentry = inline_data_addr(dir, ipage); 624 625 err = do_convert_inline_dir(dir, ipage, inline_dentry); 626 if (!err) 627 f2fs_put_page(ipage, 1); 628 out_fname: 629 f2fs_free_filename(&fname); 630 out: 631 f2fs_unlock_op(sbi); 632 return err; 633 } 634 635 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 636 struct inode *inode, nid_t ino, umode_t mode) 637 { 638 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 639 struct page *ipage; 640 unsigned int bit_pos; 641 void *inline_dentry = NULL; 642 struct f2fs_dentry_ptr d; 643 int slots = GET_DENTRY_SLOTS(fname->disk_name.len); 644 struct page *page = NULL; 645 int err = 0; 646 647 ipage = f2fs_get_node_page(sbi, dir->i_ino); 648 if (IS_ERR(ipage)) 649 return PTR_ERR(ipage); 650 651 inline_dentry = inline_data_addr(dir, ipage); 652 make_dentry_ptr_inline(dir, &d, inline_dentry); 653 654 bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); 655 if (bit_pos >= d.max) { 656 err = do_convert_inline_dir(dir, ipage, inline_dentry); 657 if (err) 658 return err; 659 err = -EAGAIN; 660 goto out; 661 } 662 663 if (inode) { 664 f2fs_down_write_nested(&F2FS_I(inode)->i_sem, 665 SINGLE_DEPTH_NESTING); 666 page = f2fs_init_inode_metadata(inode, dir, fname, ipage); 667 if (IS_ERR(page)) { 668 err = PTR_ERR(page); 669 goto fail; 670 } 671 } 672 673 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 674 675 f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, 676 bit_pos); 677 678 set_page_dirty(ipage); 679 680 /* we don't need to mark_inode_dirty now */ 681 if (inode) { 682 f2fs_i_pino_write(inode, dir->i_ino); 683 684 /* synchronize inode page's data from inode cache */ 685 if (is_inode_flag_set(inode, FI_NEW_INODE)) 686 f2fs_update_inode(inode, page); 687 688 f2fs_put_page(page, 1); 689 } 690 691 f2fs_update_parent_metadata(dir, inode, 0); 692 fail: 693 if (inode) 694 f2fs_up_write(&F2FS_I(inode)->i_sem); 695 out: 696 f2fs_put_page(ipage, 1); 697 return err; 698 } 699 700 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 701 struct inode *dir, struct inode *inode) 702 { 703 struct f2fs_dentry_ptr d; 704 void *inline_dentry; 705 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); 706 unsigned int bit_pos; 707 int i; 708 709 lock_page(page); 710 f2fs_wait_on_page_writeback(page, NODE, true, true); 711 712 inline_dentry = inline_data_addr(dir, page); 713 make_dentry_ptr_inline(dir, &d, inline_dentry); 714 715 bit_pos = dentry - d.dentry; 716 for (i = 0; i < slots; i++) 717 __clear_bit_le(bit_pos + i, d.bitmap); 718 719 set_page_dirty(page); 720 f2fs_put_page(page, 1); 721 722 dir->i_mtime = inode_set_ctime_current(dir); 723 f2fs_mark_inode_dirty_sync(dir, false); 724 725 if (inode) 726 f2fs_drop_nlink(dir, inode); 727 } 728 729 bool f2fs_empty_inline_dir(struct inode *dir) 730 { 731 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 732 struct page *ipage; 733 unsigned int bit_pos = 2; 734 void *inline_dentry; 735 struct f2fs_dentry_ptr d; 736 737 ipage = f2fs_get_node_page(sbi, dir->i_ino); 738 if (IS_ERR(ipage)) 739 return false; 740 741 inline_dentry = inline_data_addr(dir, ipage); 742 make_dentry_ptr_inline(dir, &d, inline_dentry); 743 744 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); 745 746 f2fs_put_page(ipage, 1); 747 748 if (bit_pos < d.max) 749 return false; 750 751 return true; 752 } 753 754 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 755 struct fscrypt_str *fstr) 756 { 757 struct inode *inode = file_inode(file); 758 struct page *ipage = NULL; 759 struct f2fs_dentry_ptr d; 760 void *inline_dentry = NULL; 761 int err; 762 763 make_dentry_ptr_inline(inode, &d, inline_dentry); 764 765 if (ctx->pos == d.max) 766 return 0; 767 768 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 769 if (IS_ERR(ipage)) 770 return PTR_ERR(ipage); 771 772 /* 773 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access 774 * ipage without page's lock held. 775 */ 776 unlock_page(ipage); 777 778 inline_dentry = inline_data_addr(inode, ipage); 779 780 make_dentry_ptr_inline(inode, &d, inline_dentry); 781 782 err = f2fs_fill_dentries(ctx, &d, 0, fstr); 783 if (!err) 784 ctx->pos = d.max; 785 786 f2fs_put_page(ipage, 0); 787 return err < 0 ? err : 0; 788 } 789 790 int f2fs_inline_data_fiemap(struct inode *inode, 791 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) 792 { 793 __u64 byteaddr, ilen; 794 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | 795 FIEMAP_EXTENT_LAST; 796 struct node_info ni; 797 struct page *ipage; 798 int err = 0; 799 800 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 801 if (IS_ERR(ipage)) 802 return PTR_ERR(ipage); 803 804 if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && 805 !f2fs_has_inline_data(inode)) { 806 err = -EAGAIN; 807 goto out; 808 } 809 810 if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { 811 err = -EAGAIN; 812 goto out; 813 } 814 815 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); 816 if (start >= ilen) 817 goto out; 818 if (start + len < ilen) 819 ilen = start + len; 820 ilen -= start; 821 822 err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni, false); 823 if (err) 824 goto out; 825 826 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; 827 byteaddr += (char *)inline_data_addr(inode, ipage) - 828 (char *)F2FS_INODE(ipage); 829 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); 830 trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err); 831 out: 832 f2fs_put_page(ipage, 1); 833 return err; 834 } 835