1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_interruptible_timeout(*wq, 50 kthread_should_stop() || freezing(current) || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = false; 61 62 if (try_to_freeze() || f2fs_readonly(sbi->sb)) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 76 f2fs_stop_checkpoint(sbi, false, 77 STOP_CP_REASON_FAULT_INJECT); 78 79 if (!sb_start_write_trylock(sbi->sb)) { 80 stat_other_skip_bggc_count(sbi); 81 continue; 82 } 83 84 /* 85 * [GC triggering condition] 86 * 0. GC is not conducted currently. 87 * 1. There are enough dirty segments. 88 * 2. IO subsystem is idle by checking the # of writeback pages. 89 * 3. IO subsystem is idle by checking the # of requests in 90 * bdev's request list. 91 * 92 * Note) We have to avoid triggering GCs frequently. 93 * Because it is possible that some segments can be 94 * invalidated soon after by user update or deletion. 95 * So, I'd like to wait some time to collect dirty segments. 96 */ 97 if (sbi->gc_mode == GC_URGENT_HIGH || 98 sbi->gc_mode == GC_URGENT_MID) { 99 wait_ms = gc_th->urgent_sleep_time; 100 f2fs_down_write(&sbi->gc_lock); 101 goto do_gc; 102 } 103 104 if (foreground) { 105 f2fs_down_write(&sbi->gc_lock); 106 goto do_gc; 107 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 108 stat_other_skip_bggc_count(sbi); 109 goto next; 110 } 111 112 if (!is_idle(sbi, GC_TIME)) { 113 increase_sleep_time(gc_th, &wait_ms); 114 f2fs_up_write(&sbi->gc_lock); 115 stat_io_skip_bggc_count(sbi); 116 goto next; 117 } 118 119 if (has_enough_invalid_blocks(sbi)) 120 decrease_sleep_time(gc_th, &wait_ms); 121 else 122 increase_sleep_time(gc_th, &wait_ms); 123 do_gc: 124 stat_inc_gc_call_count(sbi, foreground ? 125 FOREGROUND : BACKGROUND); 126 127 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 128 129 /* foreground GC was been triggered via f2fs_balance_fs() */ 130 if (foreground) 131 sync_mode = false; 132 133 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 134 gc_control.no_bg_gc = foreground; 135 gc_control.nr_free_secs = foreground ? 1 : 0; 136 137 /* if return value is not zero, no victim was selected */ 138 if (f2fs_gc(sbi, &gc_control)) { 139 /* don't bother wait_ms by foreground gc */ 140 if (!foreground) 141 wait_ms = gc_th->no_gc_sleep_time; 142 } else { 143 /* reset wait_ms to default sleep time */ 144 if (wait_ms == gc_th->no_gc_sleep_time) 145 wait_ms = gc_th->min_sleep_time; 146 } 147 148 if (foreground) 149 wake_up_all(&gc_th->fggc_wq); 150 151 trace_f2fs_background_gc(sbi->sb, wait_ms, 152 prefree_segments(sbi), free_segments(sbi)); 153 154 /* balancing f2fs's metadata periodically */ 155 f2fs_balance_fs_bg(sbi, true); 156 next: 157 if (sbi->gc_mode != GC_NORMAL) { 158 spin_lock(&sbi->gc_remaining_trials_lock); 159 if (sbi->gc_remaining_trials) { 160 sbi->gc_remaining_trials--; 161 if (!sbi->gc_remaining_trials) 162 sbi->gc_mode = GC_NORMAL; 163 } 164 spin_unlock(&sbi->gc_remaining_trials_lock); 165 } 166 sb_end_write(sbi->sb); 167 168 } while (!kthread_should_stop()); 169 return 0; 170 } 171 172 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 173 { 174 struct f2fs_gc_kthread *gc_th; 175 dev_t dev = sbi->sb->s_bdev->bd_dev; 176 177 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 178 if (!gc_th) 179 return -ENOMEM; 180 181 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 182 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 183 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 184 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 185 186 gc_th->gc_wake = false; 187 188 sbi->gc_thread = gc_th; 189 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 190 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 191 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 192 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 193 if (IS_ERR(gc_th->f2fs_gc_task)) { 194 int err = PTR_ERR(gc_th->f2fs_gc_task); 195 196 kfree(gc_th); 197 sbi->gc_thread = NULL; 198 return err; 199 } 200 201 return 0; 202 } 203 204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 205 { 206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 207 208 if (!gc_th) 209 return; 210 kthread_stop(gc_th->f2fs_gc_task); 211 wake_up_all(&gc_th->fggc_wq); 212 kfree(gc_th); 213 sbi->gc_thread = NULL; 214 } 215 216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 217 { 218 int gc_mode; 219 220 if (gc_type == BG_GC) { 221 if (sbi->am.atgc_enabled) 222 gc_mode = GC_AT; 223 else 224 gc_mode = GC_CB; 225 } else { 226 gc_mode = GC_GREEDY; 227 } 228 229 switch (sbi->gc_mode) { 230 case GC_IDLE_CB: 231 gc_mode = GC_CB; 232 break; 233 case GC_IDLE_GREEDY: 234 case GC_URGENT_HIGH: 235 gc_mode = GC_GREEDY; 236 break; 237 case GC_IDLE_AT: 238 gc_mode = GC_AT; 239 break; 240 } 241 242 return gc_mode; 243 } 244 245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 246 int type, struct victim_sel_policy *p) 247 { 248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 249 250 if (p->alloc_mode == SSR) { 251 p->gc_mode = GC_GREEDY; 252 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 253 p->max_search = dirty_i->nr_dirty[type]; 254 p->ofs_unit = 1; 255 } else if (p->alloc_mode == AT_SSR) { 256 p->gc_mode = GC_GREEDY; 257 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 258 p->max_search = dirty_i->nr_dirty[type]; 259 p->ofs_unit = 1; 260 } else { 261 p->gc_mode = select_gc_type(sbi, gc_type); 262 p->ofs_unit = SEGS_PER_SEC(sbi); 263 if (__is_large_section(sbi)) { 264 p->dirty_bitmap = dirty_i->dirty_secmap; 265 p->max_search = count_bits(p->dirty_bitmap, 266 0, MAIN_SECS(sbi)); 267 } else { 268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 269 p->max_search = dirty_i->nr_dirty[DIRTY]; 270 } 271 } 272 273 /* 274 * adjust candidates range, should select all dirty segments for 275 * foreground GC and urgent GC cases. 276 */ 277 if (gc_type != FG_GC && 278 (sbi->gc_mode != GC_URGENT_HIGH) && 279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 280 p->max_search > sbi->max_victim_search) 281 p->max_search = sbi->max_victim_search; 282 283 /* let's select beginning hot/small space first. */ 284 if (f2fs_need_rand_seg(sbi)) 285 p->offset = get_random_u32_below(MAIN_SECS(sbi) * 286 SEGS_PER_SEC(sbi)); 287 else if (type == CURSEG_HOT_DATA || IS_NODESEG(type)) 288 p->offset = 0; 289 else 290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 291 } 292 293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 294 struct victim_sel_policy *p) 295 { 296 /* SSR allocates in a segment unit */ 297 if (p->alloc_mode == SSR) 298 return BLKS_PER_SEG(sbi); 299 else if (p->alloc_mode == AT_SSR) 300 return UINT_MAX; 301 302 /* LFS */ 303 if (p->gc_mode == GC_GREEDY) 304 return 2 * BLKS_PER_SEG(sbi) * p->ofs_unit; 305 else if (p->gc_mode == GC_CB) 306 return UINT_MAX; 307 else if (p->gc_mode == GC_AT) 308 return UINT_MAX; 309 else /* No other gc_mode */ 310 return 0; 311 } 312 313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 314 { 315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 316 unsigned int secno; 317 318 /* 319 * If the gc_type is FG_GC, we can select victim segments 320 * selected by background GC before. 321 * Those segments guarantee they have small valid blocks. 322 */ 323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 324 if (sec_usage_check(sbi, secno)) 325 continue; 326 clear_bit(secno, dirty_i->victim_secmap); 327 return GET_SEG_FROM_SEC(sbi, secno); 328 } 329 return NULL_SEGNO; 330 } 331 332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 333 { 334 struct sit_info *sit_i = SIT_I(sbi); 335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 337 unsigned long long mtime = 0; 338 unsigned int vblocks; 339 unsigned char age = 0; 340 unsigned char u; 341 unsigned int i; 342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 343 344 for (i = 0; i < usable_segs_per_sec; i++) 345 mtime += get_seg_entry(sbi, start + i)->mtime; 346 vblocks = get_valid_blocks(sbi, segno, true); 347 348 mtime = div_u64(mtime, usable_segs_per_sec); 349 vblocks = div_u64(vblocks, usable_segs_per_sec); 350 351 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 352 353 /* Handle if the system time has changed by the user */ 354 if (mtime < sit_i->min_mtime) 355 sit_i->min_mtime = mtime; 356 if (mtime > sit_i->max_mtime) 357 sit_i->max_mtime = mtime; 358 if (sit_i->max_mtime != sit_i->min_mtime) 359 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 360 sit_i->max_mtime - sit_i->min_mtime); 361 362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 363 } 364 365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 366 unsigned int segno, struct victim_sel_policy *p) 367 { 368 if (p->alloc_mode == SSR) 369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 370 371 /* alloc_mode == LFS */ 372 if (p->gc_mode == GC_GREEDY) 373 return get_valid_blocks(sbi, segno, true); 374 else if (p->gc_mode == GC_CB) 375 return get_cb_cost(sbi, segno); 376 377 f2fs_bug_on(sbi, 1); 378 return 0; 379 } 380 381 static unsigned int count_bits(const unsigned long *addr, 382 unsigned int offset, unsigned int len) 383 { 384 unsigned int end = offset + len, sum = 0; 385 386 while (offset < end) { 387 if (test_bit(offset++, addr)) 388 ++sum; 389 } 390 return sum; 391 } 392 393 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi, 394 struct rb_root_cached *root) 395 { 396 #ifdef CONFIG_F2FS_CHECK_FS 397 struct rb_node *cur = rb_first_cached(root), *next; 398 struct victim_entry *cur_ve, *next_ve; 399 400 while (cur) { 401 next = rb_next(cur); 402 if (!next) 403 return true; 404 405 cur_ve = rb_entry(cur, struct victim_entry, rb_node); 406 next_ve = rb_entry(next, struct victim_entry, rb_node); 407 408 if (cur_ve->mtime > next_ve->mtime) { 409 f2fs_info(sbi, "broken victim_rbtree, " 410 "cur_mtime(%llu) next_mtime(%llu)", 411 cur_ve->mtime, next_ve->mtime); 412 return false; 413 } 414 cur = next; 415 } 416 #endif 417 return true; 418 } 419 420 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi, 421 unsigned long long mtime) 422 { 423 struct atgc_management *am = &sbi->am; 424 struct rb_node *node = am->root.rb_root.rb_node; 425 struct victim_entry *ve = NULL; 426 427 while (node) { 428 ve = rb_entry(node, struct victim_entry, rb_node); 429 430 if (mtime < ve->mtime) 431 node = node->rb_left; 432 else 433 node = node->rb_right; 434 } 435 return ve; 436 } 437 438 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi, 439 unsigned long long mtime, unsigned int segno) 440 { 441 struct atgc_management *am = &sbi->am; 442 struct victim_entry *ve; 443 444 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL); 445 446 ve->mtime = mtime; 447 ve->segno = segno; 448 449 list_add_tail(&ve->list, &am->victim_list); 450 am->victim_count++; 451 452 return ve; 453 } 454 455 static void __insert_victim_entry(struct f2fs_sb_info *sbi, 456 unsigned long long mtime, unsigned int segno) 457 { 458 struct atgc_management *am = &sbi->am; 459 struct rb_root_cached *root = &am->root; 460 struct rb_node **p = &root->rb_root.rb_node; 461 struct rb_node *parent = NULL; 462 struct victim_entry *ve; 463 bool left_most = true; 464 465 /* look up rb tree to find parent node */ 466 while (*p) { 467 parent = *p; 468 ve = rb_entry(parent, struct victim_entry, rb_node); 469 470 if (mtime < ve->mtime) { 471 p = &(*p)->rb_left; 472 } else { 473 p = &(*p)->rb_right; 474 left_most = false; 475 } 476 } 477 478 ve = __create_victim_entry(sbi, mtime, segno); 479 480 rb_link_node(&ve->rb_node, parent, p); 481 rb_insert_color_cached(&ve->rb_node, root, left_most); 482 } 483 484 static void add_victim_entry(struct f2fs_sb_info *sbi, 485 struct victim_sel_policy *p, unsigned int segno) 486 { 487 struct sit_info *sit_i = SIT_I(sbi); 488 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 489 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 490 unsigned long long mtime = 0; 491 unsigned int i; 492 493 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 494 if (p->gc_mode == GC_AT && 495 get_valid_blocks(sbi, segno, true) == 0) 496 return; 497 } 498 499 for (i = 0; i < SEGS_PER_SEC(sbi); i++) 500 mtime += get_seg_entry(sbi, start + i)->mtime; 501 mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); 502 503 /* Handle if the system time has changed by the user */ 504 if (mtime < sit_i->min_mtime) 505 sit_i->min_mtime = mtime; 506 if (mtime > sit_i->max_mtime) 507 sit_i->max_mtime = mtime; 508 if (mtime < sit_i->dirty_min_mtime) 509 sit_i->dirty_min_mtime = mtime; 510 if (mtime > sit_i->dirty_max_mtime) 511 sit_i->dirty_max_mtime = mtime; 512 513 /* don't choose young section as candidate */ 514 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 515 return; 516 517 __insert_victim_entry(sbi, mtime, segno); 518 } 519 520 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 521 struct victim_sel_policy *p) 522 { 523 struct sit_info *sit_i = SIT_I(sbi); 524 struct atgc_management *am = &sbi->am; 525 struct rb_root_cached *root = &am->root; 526 struct rb_node *node; 527 struct victim_entry *ve; 528 unsigned long long total_time; 529 unsigned long long age, u, accu; 530 unsigned long long max_mtime = sit_i->dirty_max_mtime; 531 unsigned long long min_mtime = sit_i->dirty_min_mtime; 532 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 533 unsigned int vblocks; 534 unsigned int dirty_threshold = max(am->max_candidate_count, 535 am->candidate_ratio * 536 am->victim_count / 100); 537 unsigned int age_weight = am->age_weight; 538 unsigned int cost; 539 unsigned int iter = 0; 540 541 if (max_mtime < min_mtime) 542 return; 543 544 max_mtime += 1; 545 total_time = max_mtime - min_mtime; 546 547 accu = div64_u64(ULLONG_MAX, total_time); 548 accu = min_t(unsigned long long, div_u64(accu, 100), 549 DEFAULT_ACCURACY_CLASS); 550 551 node = rb_first_cached(root); 552 next: 553 ve = rb_entry_safe(node, struct victim_entry, rb_node); 554 if (!ve) 555 return; 556 557 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 558 goto skip; 559 560 /* age = 10000 * x% * 60 */ 561 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 562 age_weight; 563 564 vblocks = get_valid_blocks(sbi, ve->segno, true); 565 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 566 567 /* u = 10000 * x% * 40 */ 568 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 569 (100 - age_weight); 570 571 f2fs_bug_on(sbi, age + u >= UINT_MAX); 572 573 cost = UINT_MAX - (age + u); 574 iter++; 575 576 if (cost < p->min_cost || 577 (cost == p->min_cost && age > p->oldest_age)) { 578 p->min_cost = cost; 579 p->oldest_age = age; 580 p->min_segno = ve->segno; 581 } 582 skip: 583 if (iter < dirty_threshold) { 584 node = rb_next(node); 585 goto next; 586 } 587 } 588 589 /* 590 * select candidates around source section in range of 591 * [target - dirty_threshold, target + dirty_threshold] 592 */ 593 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 594 struct victim_sel_policy *p) 595 { 596 struct sit_info *sit_i = SIT_I(sbi); 597 struct atgc_management *am = &sbi->am; 598 struct victim_entry *ve; 599 unsigned long long age; 600 unsigned long long max_mtime = sit_i->dirty_max_mtime; 601 unsigned long long min_mtime = sit_i->dirty_min_mtime; 602 unsigned int vblocks; 603 unsigned int dirty_threshold = max(am->max_candidate_count, 604 am->candidate_ratio * 605 am->victim_count / 100); 606 unsigned int cost, iter; 607 int stage = 0; 608 609 if (max_mtime < min_mtime) 610 return; 611 max_mtime += 1; 612 next_stage: 613 iter = 0; 614 ve = __lookup_victim_entry(sbi, p->age); 615 next_node: 616 if (!ve) { 617 if (stage++ == 0) 618 goto next_stage; 619 return; 620 } 621 622 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 623 goto skip_node; 624 625 age = max_mtime - ve->mtime; 626 627 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 628 f2fs_bug_on(sbi, !vblocks); 629 630 /* rare case */ 631 if (vblocks == BLKS_PER_SEG(sbi)) 632 goto skip_node; 633 634 iter++; 635 636 age = max_mtime - abs(p->age - age); 637 cost = UINT_MAX - vblocks; 638 639 if (cost < p->min_cost || 640 (cost == p->min_cost && age > p->oldest_age)) { 641 p->min_cost = cost; 642 p->oldest_age = age; 643 p->min_segno = ve->segno; 644 } 645 skip_node: 646 if (iter < dirty_threshold) { 647 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) : 648 rb_next(&ve->rb_node), 649 struct victim_entry, rb_node); 650 goto next_node; 651 } 652 653 if (stage++ == 0) 654 goto next_stage; 655 } 656 657 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 658 struct victim_sel_policy *p) 659 { 660 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root)); 661 662 if (p->gc_mode == GC_AT) 663 atgc_lookup_victim(sbi, p); 664 else if (p->alloc_mode == AT_SSR) 665 atssr_lookup_victim(sbi, p); 666 else 667 f2fs_bug_on(sbi, 1); 668 } 669 670 static void release_victim_entry(struct f2fs_sb_info *sbi) 671 { 672 struct atgc_management *am = &sbi->am; 673 struct victim_entry *ve, *tmp; 674 675 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 676 list_del(&ve->list); 677 kmem_cache_free(victim_entry_slab, ve); 678 am->victim_count--; 679 } 680 681 am->root = RB_ROOT_CACHED; 682 683 f2fs_bug_on(sbi, am->victim_count); 684 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 685 } 686 687 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 688 { 689 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 690 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 691 692 if (!dirty_i->enable_pin_section) 693 return false; 694 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 695 dirty_i->pinned_secmap_cnt++; 696 return true; 697 } 698 699 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 700 { 701 return dirty_i->pinned_secmap_cnt; 702 } 703 704 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 705 unsigned int secno) 706 { 707 return dirty_i->enable_pin_section && 708 f2fs_pinned_section_exists(dirty_i) && 709 test_bit(secno, dirty_i->pinned_secmap); 710 } 711 712 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 713 { 714 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 715 716 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 717 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 718 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 719 } 720 DIRTY_I(sbi)->enable_pin_section = enable; 721 } 722 723 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 724 unsigned int segno) 725 { 726 if (!f2fs_is_pinned_file(inode)) 727 return 0; 728 if (gc_type != FG_GC) 729 return -EBUSY; 730 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 731 f2fs_pin_file_control(inode, true); 732 return -EAGAIN; 733 } 734 735 /* 736 * This function is called from two paths. 737 * One is garbage collection and the other is SSR segment selection. 738 * When it is called during GC, it just gets a victim segment 739 * and it does not remove it from dirty seglist. 740 * When it is called from SSR segment selection, it finds a segment 741 * which has minimum valid blocks and removes it from dirty seglist. 742 */ 743 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 744 int gc_type, int type, char alloc_mode, 745 unsigned long long age) 746 { 747 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 748 struct sit_info *sm = SIT_I(sbi); 749 struct victim_sel_policy p; 750 unsigned int secno, last_victim; 751 unsigned int last_segment; 752 unsigned int nsearched; 753 bool is_atgc; 754 int ret = 0; 755 756 mutex_lock(&dirty_i->seglist_lock); 757 last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi); 758 759 p.alloc_mode = alloc_mode; 760 p.age = age; 761 p.age_threshold = sbi->am.age_threshold; 762 763 retry: 764 select_policy(sbi, gc_type, type, &p); 765 p.min_segno = NULL_SEGNO; 766 p.oldest_age = 0; 767 p.min_cost = get_max_cost(sbi, &p); 768 769 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 770 nsearched = 0; 771 772 if (is_atgc) 773 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 774 775 if (*result != NULL_SEGNO) { 776 if (!get_valid_blocks(sbi, *result, false)) { 777 ret = -ENODATA; 778 goto out; 779 } 780 781 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 782 ret = -EBUSY; 783 else 784 p.min_segno = *result; 785 goto out; 786 } 787 788 ret = -ENODATA; 789 if (p.max_search == 0) 790 goto out; 791 792 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 793 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 794 p.min_segno = sbi->next_victim_seg[BG_GC]; 795 *result = p.min_segno; 796 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 797 goto got_result; 798 } 799 if (gc_type == FG_GC && 800 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 801 p.min_segno = sbi->next_victim_seg[FG_GC]; 802 *result = p.min_segno; 803 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 804 goto got_result; 805 } 806 } 807 808 last_victim = sm->last_victim[p.gc_mode]; 809 if (p.alloc_mode == LFS && gc_type == FG_GC) { 810 p.min_segno = check_bg_victims(sbi); 811 if (p.min_segno != NULL_SEGNO) 812 goto got_it; 813 } 814 815 while (1) { 816 unsigned long cost, *dirty_bitmap; 817 unsigned int unit_no, segno; 818 819 dirty_bitmap = p.dirty_bitmap; 820 unit_no = find_next_bit(dirty_bitmap, 821 last_segment / p.ofs_unit, 822 p.offset / p.ofs_unit); 823 segno = unit_no * p.ofs_unit; 824 if (segno >= last_segment) { 825 if (sm->last_victim[p.gc_mode]) { 826 last_segment = 827 sm->last_victim[p.gc_mode]; 828 sm->last_victim[p.gc_mode] = 0; 829 p.offset = 0; 830 continue; 831 } 832 break; 833 } 834 835 p.offset = segno + p.ofs_unit; 836 nsearched++; 837 838 #ifdef CONFIG_F2FS_CHECK_FS 839 /* 840 * skip selecting the invalid segno (that is failed due to block 841 * validity check failure during GC) to avoid endless GC loop in 842 * such cases. 843 */ 844 if (test_bit(segno, sm->invalid_segmap)) 845 goto next; 846 #endif 847 848 secno = GET_SEC_FROM_SEG(sbi, segno); 849 850 if (sec_usage_check(sbi, secno)) 851 goto next; 852 853 /* Don't touch checkpointed data */ 854 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 855 if (p.alloc_mode == LFS) { 856 /* 857 * LFS is set to find source section during GC. 858 * The victim should have no checkpointed data. 859 */ 860 if (get_ckpt_valid_blocks(sbi, segno, true)) 861 goto next; 862 } else { 863 /* 864 * SSR | AT_SSR are set to find target segment 865 * for writes which can be full by checkpointed 866 * and newly written blocks. 867 */ 868 if (!f2fs_segment_has_free_slot(sbi, segno)) 869 goto next; 870 } 871 } 872 873 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 874 goto next; 875 876 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 877 goto next; 878 879 if (is_atgc) { 880 add_victim_entry(sbi, &p, segno); 881 goto next; 882 } 883 884 cost = get_gc_cost(sbi, segno, &p); 885 886 if (p.min_cost > cost) { 887 p.min_segno = segno; 888 p.min_cost = cost; 889 } 890 next: 891 if (nsearched >= p.max_search) { 892 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 893 sm->last_victim[p.gc_mode] = 894 last_victim + p.ofs_unit; 895 else 896 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 897 sm->last_victim[p.gc_mode] %= 898 (MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 899 break; 900 } 901 } 902 903 /* get victim for GC_AT/AT_SSR */ 904 if (is_atgc) { 905 lookup_victim_by_age(sbi, &p); 906 release_victim_entry(sbi); 907 } 908 909 if (is_atgc && p.min_segno == NULL_SEGNO && 910 sm->elapsed_time < p.age_threshold) { 911 p.age_threshold = 0; 912 goto retry; 913 } 914 915 if (p.min_segno != NULL_SEGNO) { 916 got_it: 917 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 918 got_result: 919 if (p.alloc_mode == LFS) { 920 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 921 if (gc_type == FG_GC) 922 sbi->cur_victim_sec = secno; 923 else 924 set_bit(secno, dirty_i->victim_secmap); 925 } 926 ret = 0; 927 928 } 929 out: 930 if (p.min_segno != NULL_SEGNO) 931 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 932 sbi->cur_victim_sec, 933 prefree_segments(sbi), free_segments(sbi)); 934 mutex_unlock(&dirty_i->seglist_lock); 935 936 return ret; 937 } 938 939 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 940 { 941 struct inode_entry *ie; 942 943 ie = radix_tree_lookup(&gc_list->iroot, ino); 944 if (ie) 945 return ie->inode; 946 return NULL; 947 } 948 949 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 950 { 951 struct inode_entry *new_ie; 952 953 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 954 iput(inode); 955 return; 956 } 957 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 958 GFP_NOFS, true, NULL); 959 new_ie->inode = inode; 960 961 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 962 list_add_tail(&new_ie->list, &gc_list->ilist); 963 } 964 965 static void put_gc_inode(struct gc_inode_list *gc_list) 966 { 967 struct inode_entry *ie, *next_ie; 968 969 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 970 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 971 iput(ie->inode); 972 list_del(&ie->list); 973 kmem_cache_free(f2fs_inode_entry_slab, ie); 974 } 975 } 976 977 static int check_valid_map(struct f2fs_sb_info *sbi, 978 unsigned int segno, int offset) 979 { 980 struct sit_info *sit_i = SIT_I(sbi); 981 struct seg_entry *sentry; 982 int ret; 983 984 down_read(&sit_i->sentry_lock); 985 sentry = get_seg_entry(sbi, segno); 986 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 987 up_read(&sit_i->sentry_lock); 988 return ret; 989 } 990 991 /* 992 * This function compares node address got in summary with that in NAT. 993 * On validity, copy that node with cold status, otherwise (invalid node) 994 * ignore that. 995 */ 996 static int gc_node_segment(struct f2fs_sb_info *sbi, 997 struct f2fs_summary *sum, unsigned int segno, int gc_type) 998 { 999 struct f2fs_summary *entry; 1000 block_t start_addr; 1001 int off; 1002 int phase = 0; 1003 bool fggc = (gc_type == FG_GC); 1004 int submitted = 0; 1005 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1006 1007 start_addr = START_BLOCK(sbi, segno); 1008 1009 next_step: 1010 entry = sum; 1011 1012 if (fggc && phase == 2) 1013 atomic_inc(&sbi->wb_sync_req[NODE]); 1014 1015 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1016 nid_t nid = le32_to_cpu(entry->nid); 1017 struct page *node_page; 1018 struct node_info ni; 1019 int err; 1020 1021 /* stop BG_GC if there is not enough free sections. */ 1022 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 1023 return submitted; 1024 1025 if (check_valid_map(sbi, segno, off) == 0) 1026 continue; 1027 1028 if (phase == 0) { 1029 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1030 META_NAT, true); 1031 continue; 1032 } 1033 1034 if (phase == 1) { 1035 f2fs_ra_node_page(sbi, nid); 1036 continue; 1037 } 1038 1039 /* phase == 2 */ 1040 node_page = f2fs_get_node_page(sbi, nid); 1041 if (IS_ERR(node_page)) 1042 continue; 1043 1044 /* block may become invalid during f2fs_get_node_page */ 1045 if (check_valid_map(sbi, segno, off) == 0) { 1046 f2fs_put_page(node_page, 1); 1047 continue; 1048 } 1049 1050 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1051 f2fs_put_page(node_page, 1); 1052 continue; 1053 } 1054 1055 if (ni.blk_addr != start_addr + off) { 1056 f2fs_put_page(node_page, 1); 1057 continue; 1058 } 1059 1060 err = f2fs_move_node_page(node_page, gc_type); 1061 if (!err && gc_type == FG_GC) 1062 submitted++; 1063 stat_inc_node_blk_count(sbi, 1, gc_type); 1064 } 1065 1066 if (++phase < 3) 1067 goto next_step; 1068 1069 if (fggc) 1070 atomic_dec(&sbi->wb_sync_req[NODE]); 1071 return submitted; 1072 } 1073 1074 /* 1075 * Calculate start block index indicating the given node offset. 1076 * Be careful, caller should give this node offset only indicating direct node 1077 * blocks. If any node offsets, which point the other types of node blocks such 1078 * as indirect or double indirect node blocks, are given, it must be a caller's 1079 * bug. 1080 */ 1081 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1082 { 1083 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1084 unsigned int bidx; 1085 1086 if (node_ofs == 0) 1087 return 0; 1088 1089 if (node_ofs <= 2) { 1090 bidx = node_ofs - 1; 1091 } else if (node_ofs <= indirect_blks) { 1092 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1093 1094 bidx = node_ofs - 2 - dec; 1095 } else { 1096 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1097 1098 bidx = node_ofs - 5 - dec; 1099 } 1100 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1101 } 1102 1103 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1104 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1105 { 1106 struct page *node_page; 1107 nid_t nid; 1108 unsigned int ofs_in_node, max_addrs, base; 1109 block_t source_blkaddr; 1110 1111 nid = le32_to_cpu(sum->nid); 1112 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1113 1114 node_page = f2fs_get_node_page(sbi, nid); 1115 if (IS_ERR(node_page)) 1116 return false; 1117 1118 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1119 f2fs_put_page(node_page, 1); 1120 return false; 1121 } 1122 1123 if (sum->version != dni->version) { 1124 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1125 __func__); 1126 set_sbi_flag(sbi, SBI_NEED_FSCK); 1127 } 1128 1129 if (f2fs_check_nid_range(sbi, dni->ino)) { 1130 f2fs_put_page(node_page, 1); 1131 return false; 1132 } 1133 1134 if (IS_INODE(node_page)) { 1135 base = offset_in_addr(F2FS_INODE(node_page)); 1136 max_addrs = DEF_ADDRS_PER_INODE; 1137 } else { 1138 base = 0; 1139 max_addrs = DEF_ADDRS_PER_BLOCK; 1140 } 1141 1142 if (base + ofs_in_node >= max_addrs) { 1143 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u", 1144 base, ofs_in_node, max_addrs, dni->ino, dni->nid); 1145 f2fs_put_page(node_page, 1); 1146 return false; 1147 } 1148 1149 *nofs = ofs_of_node(node_page); 1150 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1151 f2fs_put_page(node_page, 1); 1152 1153 if (source_blkaddr != blkaddr) { 1154 #ifdef CONFIG_F2FS_CHECK_FS 1155 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1156 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1157 1158 if (unlikely(check_valid_map(sbi, segno, offset))) { 1159 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1160 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1161 blkaddr, source_blkaddr, segno); 1162 set_sbi_flag(sbi, SBI_NEED_FSCK); 1163 } 1164 } 1165 #endif 1166 return false; 1167 } 1168 return true; 1169 } 1170 1171 static int ra_data_block(struct inode *inode, pgoff_t index) 1172 { 1173 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1174 struct address_space *mapping = f2fs_is_cow_file(inode) ? 1175 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping; 1176 struct dnode_of_data dn; 1177 struct page *page; 1178 struct f2fs_io_info fio = { 1179 .sbi = sbi, 1180 .ino = inode->i_ino, 1181 .type = DATA, 1182 .temp = COLD, 1183 .op = REQ_OP_READ, 1184 .op_flags = 0, 1185 .encrypted_page = NULL, 1186 .in_list = 0, 1187 }; 1188 int err; 1189 1190 page = f2fs_grab_cache_page(mapping, index, true); 1191 if (!page) 1192 return -ENOMEM; 1193 1194 if (f2fs_lookup_read_extent_cache_block(inode, index, 1195 &dn.data_blkaddr)) { 1196 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1197 DATA_GENERIC_ENHANCE_READ))) { 1198 err = -EFSCORRUPTED; 1199 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1200 goto put_page; 1201 } 1202 goto got_it; 1203 } 1204 1205 set_new_dnode(&dn, inode, NULL, NULL, 0); 1206 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1207 if (err) 1208 goto put_page; 1209 f2fs_put_dnode(&dn); 1210 1211 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1212 err = -ENOENT; 1213 goto put_page; 1214 } 1215 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1216 DATA_GENERIC_ENHANCE))) { 1217 err = -EFSCORRUPTED; 1218 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1219 goto put_page; 1220 } 1221 got_it: 1222 /* read page */ 1223 fio.page = page; 1224 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1225 1226 /* 1227 * don't cache encrypted data into meta inode until previous dirty 1228 * data were writebacked to avoid racing between GC and flush. 1229 */ 1230 f2fs_wait_on_page_writeback(page, DATA, true, true); 1231 1232 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1233 1234 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1235 dn.data_blkaddr, 1236 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1237 if (!fio.encrypted_page) { 1238 err = -ENOMEM; 1239 goto put_page; 1240 } 1241 1242 err = f2fs_submit_page_bio(&fio); 1243 if (err) 1244 goto put_encrypted_page; 1245 f2fs_put_page(fio.encrypted_page, 0); 1246 f2fs_put_page(page, 1); 1247 1248 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1249 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1250 1251 return 0; 1252 put_encrypted_page: 1253 f2fs_put_page(fio.encrypted_page, 1); 1254 put_page: 1255 f2fs_put_page(page, 1); 1256 return err; 1257 } 1258 1259 /* 1260 * Move data block via META_MAPPING while keeping locked data page. 1261 * This can be used to move blocks, aka LBAs, directly on disk. 1262 */ 1263 static int move_data_block(struct inode *inode, block_t bidx, 1264 int gc_type, unsigned int segno, int off) 1265 { 1266 struct address_space *mapping = f2fs_is_cow_file(inode) ? 1267 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping; 1268 struct f2fs_io_info fio = { 1269 .sbi = F2FS_I_SB(inode), 1270 .ino = inode->i_ino, 1271 .type = DATA, 1272 .temp = COLD, 1273 .op = REQ_OP_READ, 1274 .op_flags = 0, 1275 .encrypted_page = NULL, 1276 .in_list = 0, 1277 }; 1278 struct dnode_of_data dn; 1279 struct f2fs_summary sum; 1280 struct node_info ni; 1281 struct page *page, *mpage; 1282 block_t newaddr; 1283 int err = 0; 1284 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1285 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1286 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1287 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1288 1289 /* do not read out */ 1290 page = f2fs_grab_cache_page(mapping, bidx, false); 1291 if (!page) 1292 return -ENOMEM; 1293 1294 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1295 err = -ENOENT; 1296 goto out; 1297 } 1298 1299 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1300 if (err) 1301 goto out; 1302 1303 set_new_dnode(&dn, inode, NULL, NULL, 0); 1304 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1305 if (err) 1306 goto out; 1307 1308 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1309 ClearPageUptodate(page); 1310 err = -ENOENT; 1311 goto put_out; 1312 } 1313 1314 /* 1315 * don't cache encrypted data into meta inode until previous dirty 1316 * data were writebacked to avoid racing between GC and flush. 1317 */ 1318 f2fs_wait_on_page_writeback(page, DATA, true, true); 1319 1320 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1321 1322 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1323 if (err) 1324 goto put_out; 1325 1326 /* read page */ 1327 fio.page = page; 1328 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1329 1330 if (lfs_mode) 1331 f2fs_down_write(&fio.sbi->io_order_lock); 1332 1333 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1334 fio.old_blkaddr, false); 1335 if (!mpage) { 1336 err = -ENOMEM; 1337 goto up_out; 1338 } 1339 1340 fio.encrypted_page = mpage; 1341 1342 /* read source block in mpage */ 1343 if (!PageUptodate(mpage)) { 1344 err = f2fs_submit_page_bio(&fio); 1345 if (err) { 1346 f2fs_put_page(mpage, 1); 1347 goto up_out; 1348 } 1349 1350 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1351 F2FS_BLKSIZE); 1352 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1353 F2FS_BLKSIZE); 1354 1355 lock_page(mpage); 1356 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1357 !PageUptodate(mpage))) { 1358 err = -EIO; 1359 f2fs_put_page(mpage, 1); 1360 goto up_out; 1361 } 1362 } 1363 1364 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1365 1366 /* allocate block address */ 1367 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1368 &sum, type, NULL); 1369 1370 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1371 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1372 if (!fio.encrypted_page) { 1373 err = -ENOMEM; 1374 f2fs_put_page(mpage, 1); 1375 goto recover_block; 1376 } 1377 1378 /* write target block */ 1379 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1380 memcpy(page_address(fio.encrypted_page), 1381 page_address(mpage), PAGE_SIZE); 1382 f2fs_put_page(mpage, 1); 1383 1384 f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr); 1385 1386 set_page_dirty(fio.encrypted_page); 1387 if (clear_page_dirty_for_io(fio.encrypted_page)) 1388 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1389 1390 set_page_writeback(fio.encrypted_page); 1391 1392 fio.op = REQ_OP_WRITE; 1393 fio.op_flags = REQ_SYNC; 1394 fio.new_blkaddr = newaddr; 1395 f2fs_submit_page_write(&fio); 1396 1397 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1398 1399 f2fs_update_data_blkaddr(&dn, newaddr); 1400 set_inode_flag(inode, FI_APPEND_WRITE); 1401 1402 f2fs_put_page(fio.encrypted_page, 1); 1403 recover_block: 1404 if (err) 1405 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1406 true, true, true); 1407 up_out: 1408 if (lfs_mode) 1409 f2fs_up_write(&fio.sbi->io_order_lock); 1410 put_out: 1411 f2fs_put_dnode(&dn); 1412 out: 1413 f2fs_put_page(page, 1); 1414 return err; 1415 } 1416 1417 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1418 unsigned int segno, int off) 1419 { 1420 struct page *page; 1421 int err = 0; 1422 1423 page = f2fs_get_lock_data_page(inode, bidx, true); 1424 if (IS_ERR(page)) 1425 return PTR_ERR(page); 1426 1427 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1428 err = -ENOENT; 1429 goto out; 1430 } 1431 1432 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1433 if (err) 1434 goto out; 1435 1436 if (gc_type == BG_GC) { 1437 if (PageWriteback(page)) { 1438 err = -EAGAIN; 1439 goto out; 1440 } 1441 set_page_dirty(page); 1442 set_page_private_gcing(page); 1443 } else { 1444 struct f2fs_io_info fio = { 1445 .sbi = F2FS_I_SB(inode), 1446 .ino = inode->i_ino, 1447 .type = DATA, 1448 .temp = COLD, 1449 .op = REQ_OP_WRITE, 1450 .op_flags = REQ_SYNC, 1451 .old_blkaddr = NULL_ADDR, 1452 .page = page, 1453 .encrypted_page = NULL, 1454 .need_lock = LOCK_REQ, 1455 .io_type = FS_GC_DATA_IO, 1456 }; 1457 bool is_dirty = PageDirty(page); 1458 1459 retry: 1460 f2fs_wait_on_page_writeback(page, DATA, true, true); 1461 1462 set_page_dirty(page); 1463 if (clear_page_dirty_for_io(page)) { 1464 inode_dec_dirty_pages(inode); 1465 f2fs_remove_dirty_inode(inode); 1466 } 1467 1468 set_page_private_gcing(page); 1469 1470 err = f2fs_do_write_data_page(&fio); 1471 if (err) { 1472 clear_page_private_gcing(page); 1473 if (err == -ENOMEM) { 1474 memalloc_retry_wait(GFP_NOFS); 1475 goto retry; 1476 } 1477 if (is_dirty) 1478 set_page_dirty(page); 1479 } 1480 } 1481 out: 1482 f2fs_put_page(page, 1); 1483 return err; 1484 } 1485 1486 /* 1487 * This function tries to get parent node of victim data block, and identifies 1488 * data block validity. If the block is valid, copy that with cold status and 1489 * modify parent node. 1490 * If the parent node is not valid or the data block address is different, 1491 * the victim data block is ignored. 1492 */ 1493 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1494 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1495 bool force_migrate) 1496 { 1497 struct super_block *sb = sbi->sb; 1498 struct f2fs_summary *entry; 1499 block_t start_addr; 1500 int off; 1501 int phase = 0; 1502 int submitted = 0; 1503 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1504 1505 start_addr = START_BLOCK(sbi, segno); 1506 1507 next_step: 1508 entry = sum; 1509 1510 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1511 struct page *data_page; 1512 struct inode *inode; 1513 struct node_info dni; /* dnode info for the data */ 1514 unsigned int ofs_in_node, nofs; 1515 block_t start_bidx; 1516 nid_t nid = le32_to_cpu(entry->nid); 1517 1518 /* 1519 * stop BG_GC if there is not enough free sections. 1520 * Or, stop GC if the segment becomes fully valid caused by 1521 * race condition along with SSR block allocation. 1522 */ 1523 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1524 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1525 CAP_BLKS_PER_SEC(sbi))) 1526 return submitted; 1527 1528 if (check_valid_map(sbi, segno, off) == 0) 1529 continue; 1530 1531 if (phase == 0) { 1532 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1533 META_NAT, true); 1534 continue; 1535 } 1536 1537 if (phase == 1) { 1538 f2fs_ra_node_page(sbi, nid); 1539 continue; 1540 } 1541 1542 /* Get an inode by ino with checking validity */ 1543 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1544 continue; 1545 1546 if (phase == 2) { 1547 f2fs_ra_node_page(sbi, dni.ino); 1548 continue; 1549 } 1550 1551 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1552 1553 if (phase == 3) { 1554 int err; 1555 1556 inode = f2fs_iget(sb, dni.ino); 1557 if (IS_ERR(inode)) 1558 continue; 1559 1560 if (is_bad_inode(inode) || 1561 special_file(inode->i_mode)) { 1562 iput(inode); 1563 continue; 1564 } 1565 1566 if (f2fs_has_inline_data(inode)) { 1567 iput(inode); 1568 set_sbi_flag(sbi, SBI_NEED_FSCK); 1569 f2fs_err_ratelimited(sbi, 1570 "inode %lx has both inline_data flag and " 1571 "data block, nid=%u, ofs_in_node=%u", 1572 inode->i_ino, dni.nid, ofs_in_node); 1573 continue; 1574 } 1575 1576 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1577 if (err == -EAGAIN) { 1578 iput(inode); 1579 return submitted; 1580 } 1581 1582 if (!f2fs_down_write_trylock( 1583 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1584 iput(inode); 1585 sbi->skipped_gc_rwsem++; 1586 continue; 1587 } 1588 1589 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1590 ofs_in_node; 1591 1592 if (f2fs_meta_inode_gc_required(inode)) { 1593 int err = ra_data_block(inode, start_bidx); 1594 1595 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1596 if (err) { 1597 iput(inode); 1598 continue; 1599 } 1600 add_gc_inode(gc_list, inode); 1601 continue; 1602 } 1603 1604 data_page = f2fs_get_read_data_page(inode, start_bidx, 1605 REQ_RAHEAD, true, NULL); 1606 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1607 if (IS_ERR(data_page)) { 1608 iput(inode); 1609 continue; 1610 } 1611 1612 f2fs_put_page(data_page, 0); 1613 add_gc_inode(gc_list, inode); 1614 continue; 1615 } 1616 1617 /* phase 4 */ 1618 inode = find_gc_inode(gc_list, dni.ino); 1619 if (inode) { 1620 struct f2fs_inode_info *fi = F2FS_I(inode); 1621 bool locked = false; 1622 int err; 1623 1624 if (S_ISREG(inode->i_mode)) { 1625 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) { 1626 sbi->skipped_gc_rwsem++; 1627 continue; 1628 } 1629 if (!f2fs_down_write_trylock( 1630 &fi->i_gc_rwsem[READ])) { 1631 sbi->skipped_gc_rwsem++; 1632 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1633 continue; 1634 } 1635 locked = true; 1636 1637 /* wait for all inflight aio data */ 1638 inode_dio_wait(inode); 1639 } 1640 1641 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1642 + ofs_in_node; 1643 if (f2fs_meta_inode_gc_required(inode)) 1644 err = move_data_block(inode, start_bidx, 1645 gc_type, segno, off); 1646 else 1647 err = move_data_page(inode, start_bidx, gc_type, 1648 segno, off); 1649 1650 if (!err && (gc_type == FG_GC || 1651 f2fs_meta_inode_gc_required(inode))) 1652 submitted++; 1653 1654 if (locked) { 1655 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1656 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1657 } 1658 1659 stat_inc_data_blk_count(sbi, 1, gc_type); 1660 } 1661 } 1662 1663 if (++phase < 5) 1664 goto next_step; 1665 1666 return submitted; 1667 } 1668 1669 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1670 int gc_type) 1671 { 1672 struct sit_info *sit_i = SIT_I(sbi); 1673 int ret; 1674 1675 down_write(&sit_i->sentry_lock); 1676 ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, LFS, 0); 1677 up_write(&sit_i->sentry_lock); 1678 return ret; 1679 } 1680 1681 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1682 unsigned int start_segno, 1683 struct gc_inode_list *gc_list, int gc_type, 1684 bool force_migrate) 1685 { 1686 struct page *sum_page; 1687 struct f2fs_summary_block *sum; 1688 struct blk_plug plug; 1689 unsigned int segno = start_segno; 1690 unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi); 1691 int seg_freed = 0, migrated = 0; 1692 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1693 SUM_TYPE_DATA : SUM_TYPE_NODE; 1694 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE; 1695 int submitted = 0; 1696 1697 if (__is_large_section(sbi)) 1698 end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi)); 1699 1700 /* 1701 * zone-capacity can be less than zone-size in zoned devices, 1702 * resulting in less than expected usable segments in the zone, 1703 * calculate the end segno in the zone which can be garbage collected 1704 */ 1705 if (f2fs_sb_has_blkzoned(sbi)) 1706 end_segno -= SEGS_PER_SEC(sbi) - 1707 f2fs_usable_segs_in_sec(sbi, segno); 1708 1709 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1710 1711 /* readahead multi ssa blocks those have contiguous address */ 1712 if (__is_large_section(sbi)) 1713 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1714 end_segno - segno, META_SSA, true); 1715 1716 /* reference all summary page */ 1717 while (segno < end_segno) { 1718 sum_page = f2fs_get_sum_page(sbi, segno++); 1719 if (IS_ERR(sum_page)) { 1720 int err = PTR_ERR(sum_page); 1721 1722 end_segno = segno - 1; 1723 for (segno = start_segno; segno < end_segno; segno++) { 1724 sum_page = find_get_page(META_MAPPING(sbi), 1725 GET_SUM_BLOCK(sbi, segno)); 1726 f2fs_put_page(sum_page, 0); 1727 f2fs_put_page(sum_page, 0); 1728 } 1729 return err; 1730 } 1731 unlock_page(sum_page); 1732 } 1733 1734 blk_start_plug(&plug); 1735 1736 for (segno = start_segno; segno < end_segno; segno++) { 1737 1738 /* find segment summary of victim */ 1739 sum_page = find_get_page(META_MAPPING(sbi), 1740 GET_SUM_BLOCK(sbi, segno)); 1741 f2fs_put_page(sum_page, 0); 1742 1743 if (get_valid_blocks(sbi, segno, false) == 0) 1744 goto freed; 1745 if (gc_type == BG_GC && __is_large_section(sbi) && 1746 migrated >= sbi->migration_granularity) 1747 goto skip; 1748 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1749 goto skip; 1750 1751 sum = page_address(sum_page); 1752 if (type != GET_SUM_TYPE((&sum->footer))) { 1753 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1754 segno, type, GET_SUM_TYPE((&sum->footer))); 1755 set_sbi_flag(sbi, SBI_NEED_FSCK); 1756 f2fs_stop_checkpoint(sbi, false, 1757 STOP_CP_REASON_CORRUPTED_SUMMARY); 1758 goto skip; 1759 } 1760 1761 /* 1762 * this is to avoid deadlock: 1763 * - lock_page(sum_page) - f2fs_replace_block 1764 * - check_valid_map() - down_write(sentry_lock) 1765 * - down_read(sentry_lock) - change_curseg() 1766 * - lock_page(sum_page) 1767 */ 1768 if (type == SUM_TYPE_NODE) 1769 submitted += gc_node_segment(sbi, sum->entries, segno, 1770 gc_type); 1771 else 1772 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1773 segno, gc_type, 1774 force_migrate); 1775 1776 stat_inc_gc_seg_count(sbi, data_type, gc_type); 1777 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1778 migrated++; 1779 1780 freed: 1781 if (gc_type == FG_GC && 1782 get_valid_blocks(sbi, segno, false) == 0) 1783 seg_freed++; 1784 1785 if (__is_large_section(sbi)) 1786 sbi->next_victim_seg[gc_type] = 1787 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO; 1788 skip: 1789 f2fs_put_page(sum_page, 0); 1790 } 1791 1792 if (submitted) 1793 f2fs_submit_merged_write(sbi, data_type); 1794 1795 blk_finish_plug(&plug); 1796 1797 if (migrated) 1798 stat_inc_gc_sec_count(sbi, data_type, gc_type); 1799 1800 return seg_freed; 1801 } 1802 1803 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1804 { 1805 int gc_type = gc_control->init_gc_type; 1806 unsigned int segno = gc_control->victim_segno; 1807 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0; 1808 int ret = 0; 1809 struct cp_control cpc; 1810 struct gc_inode_list gc_list = { 1811 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1812 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1813 }; 1814 unsigned int skipped_round = 0, round = 0; 1815 unsigned int upper_secs; 1816 1817 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1818 gc_control->nr_free_secs, 1819 get_pages(sbi, F2FS_DIRTY_NODES), 1820 get_pages(sbi, F2FS_DIRTY_DENTS), 1821 get_pages(sbi, F2FS_DIRTY_IMETA), 1822 free_sections(sbi), 1823 free_segments(sbi), 1824 reserved_segments(sbi), 1825 prefree_segments(sbi)); 1826 1827 cpc.reason = __get_cp_reason(sbi); 1828 gc_more: 1829 sbi->skipped_gc_rwsem = 0; 1830 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1831 ret = -EINVAL; 1832 goto stop; 1833 } 1834 if (unlikely(f2fs_cp_error(sbi))) { 1835 ret = -EIO; 1836 goto stop; 1837 } 1838 1839 /* Let's run FG_GC, if we don't have enough space. */ 1840 if (has_not_enough_free_secs(sbi, 0, 0)) { 1841 gc_type = FG_GC; 1842 1843 /* 1844 * For example, if there are many prefree_segments below given 1845 * threshold, we can make them free by checkpoint. Then, we 1846 * secure free segments which doesn't need fggc any more. 1847 */ 1848 if (prefree_segments(sbi)) { 1849 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1850 ret = f2fs_write_checkpoint(sbi, &cpc); 1851 if (ret) 1852 goto stop; 1853 /* Reset due to checkpoint */ 1854 sec_freed = 0; 1855 } 1856 } 1857 1858 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1859 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1860 ret = -EINVAL; 1861 goto stop; 1862 } 1863 retry: 1864 ret = __get_victim(sbi, &segno, gc_type); 1865 if (ret) { 1866 /* allow to search victim from sections has pinned data */ 1867 if (ret == -ENODATA && gc_type == FG_GC && 1868 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1869 f2fs_unpin_all_sections(sbi, false); 1870 goto retry; 1871 } 1872 goto stop; 1873 } 1874 1875 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1876 gc_control->should_migrate_blocks); 1877 total_freed += seg_freed; 1878 1879 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) { 1880 sec_freed++; 1881 total_sec_freed++; 1882 } 1883 1884 if (gc_type == FG_GC) { 1885 sbi->cur_victim_sec = NULL_SEGNO; 1886 1887 if (has_enough_free_secs(sbi, sec_freed, 0)) { 1888 if (!gc_control->no_bg_gc && 1889 total_sec_freed < gc_control->nr_free_secs) 1890 goto go_gc_more; 1891 goto stop; 1892 } 1893 if (sbi->skipped_gc_rwsem) 1894 skipped_round++; 1895 round++; 1896 if (skipped_round > MAX_SKIP_GC_COUNT && 1897 skipped_round * 2 >= round) { 1898 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1899 ret = f2fs_write_checkpoint(sbi, &cpc); 1900 goto stop; 1901 } 1902 } else if (has_enough_free_secs(sbi, 0, 0)) { 1903 goto stop; 1904 } 1905 1906 __get_secs_required(sbi, NULL, &upper_secs, NULL); 1907 1908 /* 1909 * Write checkpoint to reclaim prefree segments. 1910 * We need more three extra sections for writer's data/node/dentry. 1911 */ 1912 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS && 1913 prefree_segments(sbi)) { 1914 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1915 ret = f2fs_write_checkpoint(sbi, &cpc); 1916 if (ret) 1917 goto stop; 1918 /* Reset due to checkpoint */ 1919 sec_freed = 0; 1920 } 1921 go_gc_more: 1922 segno = NULL_SEGNO; 1923 goto gc_more; 1924 1925 stop: 1926 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1927 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1928 1929 if (gc_type == FG_GC) 1930 f2fs_unpin_all_sections(sbi, true); 1931 1932 trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed, 1933 get_pages(sbi, F2FS_DIRTY_NODES), 1934 get_pages(sbi, F2FS_DIRTY_DENTS), 1935 get_pages(sbi, F2FS_DIRTY_IMETA), 1936 free_sections(sbi), 1937 free_segments(sbi), 1938 reserved_segments(sbi), 1939 prefree_segments(sbi)); 1940 1941 f2fs_up_write(&sbi->gc_lock); 1942 1943 put_gc_inode(&gc_list); 1944 1945 if (gc_control->err_gc_skipped && !ret) 1946 ret = total_sec_freed ? 0 : -EAGAIN; 1947 return ret; 1948 } 1949 1950 int __init f2fs_create_garbage_collection_cache(void) 1951 { 1952 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1953 sizeof(struct victim_entry)); 1954 return victim_entry_slab ? 0 : -ENOMEM; 1955 } 1956 1957 void f2fs_destroy_garbage_collection_cache(void) 1958 { 1959 kmem_cache_destroy(victim_entry_slab); 1960 } 1961 1962 static void init_atgc_management(struct f2fs_sb_info *sbi) 1963 { 1964 struct atgc_management *am = &sbi->am; 1965 1966 if (test_opt(sbi, ATGC) && 1967 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1968 am->atgc_enabled = true; 1969 1970 am->root = RB_ROOT_CACHED; 1971 INIT_LIST_HEAD(&am->victim_list); 1972 am->victim_count = 0; 1973 1974 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1975 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1976 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1977 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1978 } 1979 1980 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1981 { 1982 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1983 1984 /* give warm/cold data area from slower device */ 1985 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1986 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1987 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1988 1989 init_atgc_management(sbi); 1990 } 1991 1992 int f2fs_gc_range(struct f2fs_sb_info *sbi, 1993 unsigned int start_seg, unsigned int end_seg, 1994 bool dry_run, unsigned int dry_run_sections) 1995 { 1996 unsigned int segno; 1997 unsigned int gc_secs = dry_run_sections; 1998 1999 for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) { 2000 struct gc_inode_list gc_list = { 2001 .ilist = LIST_HEAD_INIT(gc_list.ilist), 2002 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 2003 }; 2004 2005 do_garbage_collect(sbi, segno, &gc_list, FG_GC, 2006 dry_run_sections == 0); 2007 put_gc_inode(&gc_list); 2008 2009 if (!dry_run && get_valid_blocks(sbi, segno, true)) 2010 return -EAGAIN; 2011 if (dry_run && dry_run_sections && 2012 !get_valid_blocks(sbi, segno, true) && --gc_secs == 0) 2013 break; 2014 2015 if (fatal_signal_pending(current)) 2016 return -ERESTARTSYS; 2017 } 2018 2019 return 0; 2020 } 2021 2022 static int free_segment_range(struct f2fs_sb_info *sbi, 2023 unsigned int secs, bool dry_run) 2024 { 2025 unsigned int next_inuse, start, end; 2026 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2027 int gc_mode, gc_type; 2028 int err = 0; 2029 int type; 2030 2031 /* Force block allocation for GC */ 2032 MAIN_SECS(sbi) -= secs; 2033 start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi); 2034 end = MAIN_SEGS(sbi) - 1; 2035 2036 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2037 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 2038 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 2039 SIT_I(sbi)->last_victim[gc_mode] = 0; 2040 2041 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 2042 if (sbi->next_victim_seg[gc_type] >= start) 2043 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 2044 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2045 2046 /* Move out cursegs from the target range */ 2047 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 2048 f2fs_allocate_segment_for_resize(sbi, type, start, end); 2049 2050 /* do GC to move out valid blocks in the range */ 2051 err = f2fs_gc_range(sbi, start, end, dry_run, 0); 2052 if (err || dry_run) 2053 goto out; 2054 2055 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2056 err = f2fs_write_checkpoint(sbi, &cpc); 2057 if (err) 2058 goto out; 2059 2060 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 2061 if (next_inuse <= end) { 2062 f2fs_err(sbi, "segno %u should be free but still inuse!", 2063 next_inuse); 2064 f2fs_bug_on(sbi, 1); 2065 } 2066 out: 2067 MAIN_SECS(sbi) += secs; 2068 return err; 2069 } 2070 2071 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2072 { 2073 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2074 int section_count; 2075 int segment_count; 2076 int segment_count_main; 2077 long long block_count; 2078 int segs = secs * SEGS_PER_SEC(sbi); 2079 2080 f2fs_down_write(&sbi->sb_lock); 2081 2082 section_count = le32_to_cpu(raw_sb->section_count); 2083 segment_count = le32_to_cpu(raw_sb->segment_count); 2084 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2085 block_count = le64_to_cpu(raw_sb->block_count); 2086 2087 raw_sb->section_count = cpu_to_le32(section_count + secs); 2088 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2089 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2090 raw_sb->block_count = cpu_to_le64(block_count + 2091 (long long)(segs << sbi->log_blocks_per_seg)); 2092 if (f2fs_is_multi_device(sbi)) { 2093 int last_dev = sbi->s_ndevs - 1; 2094 int dev_segs = 2095 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2096 2097 raw_sb->devs[last_dev].total_segments = 2098 cpu_to_le32(dev_segs + segs); 2099 } 2100 2101 f2fs_up_write(&sbi->sb_lock); 2102 } 2103 2104 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2105 { 2106 int segs = secs * SEGS_PER_SEC(sbi); 2107 long long blks = (long long)segs << sbi->log_blocks_per_seg; 2108 long long user_block_count = 2109 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2110 2111 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2112 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2113 MAIN_SECS(sbi) += secs; 2114 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2115 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2116 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2117 2118 if (f2fs_is_multi_device(sbi)) { 2119 int last_dev = sbi->s_ndevs - 1; 2120 2121 FDEV(last_dev).total_segments = 2122 (int)FDEV(last_dev).total_segments + segs; 2123 FDEV(last_dev).end_blk = 2124 (long long)FDEV(last_dev).end_blk + blks; 2125 #ifdef CONFIG_BLK_DEV_ZONED 2126 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz + 2127 div_u64(blks, sbi->blocks_per_blkz); 2128 #endif 2129 } 2130 } 2131 2132 int f2fs_resize_fs(struct file *filp, __u64 block_count) 2133 { 2134 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2135 __u64 old_block_count, shrunk_blocks; 2136 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2137 unsigned int secs; 2138 int err = 0; 2139 __u32 rem; 2140 2141 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2142 if (block_count > old_block_count) 2143 return -EINVAL; 2144 2145 if (f2fs_is_multi_device(sbi)) { 2146 int last_dev = sbi->s_ndevs - 1; 2147 __u64 last_segs = FDEV(last_dev).total_segments; 2148 2149 if (block_count + (last_segs << sbi->log_blocks_per_seg) <= 2150 old_block_count) 2151 return -EINVAL; 2152 } 2153 2154 /* new fs size should align to section size */ 2155 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2156 if (rem) 2157 return -EINVAL; 2158 2159 if (block_count == old_block_count) 2160 return 0; 2161 2162 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2163 f2fs_err(sbi, "Should run fsck to repair first."); 2164 return -EFSCORRUPTED; 2165 } 2166 2167 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2168 f2fs_err(sbi, "Checkpoint should be enabled."); 2169 return -EINVAL; 2170 } 2171 2172 err = mnt_want_write_file(filp); 2173 if (err) 2174 return err; 2175 2176 shrunk_blocks = old_block_count - block_count; 2177 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2178 2179 /* stop other GC */ 2180 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2181 err = -EAGAIN; 2182 goto out_drop_write; 2183 } 2184 2185 /* stop CP to protect MAIN_SEC in free_segment_range */ 2186 f2fs_lock_op(sbi); 2187 2188 spin_lock(&sbi->stat_lock); 2189 if (shrunk_blocks + valid_user_blocks(sbi) + 2190 sbi->current_reserved_blocks + sbi->unusable_block_count + 2191 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2192 err = -ENOSPC; 2193 spin_unlock(&sbi->stat_lock); 2194 2195 if (err) 2196 goto out_unlock; 2197 2198 err = free_segment_range(sbi, secs, true); 2199 2200 out_unlock: 2201 f2fs_unlock_op(sbi); 2202 f2fs_up_write(&sbi->gc_lock); 2203 out_drop_write: 2204 mnt_drop_write_file(filp); 2205 if (err) 2206 return err; 2207 2208 err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2209 if (err) 2210 return err; 2211 2212 if (f2fs_readonly(sbi->sb)) { 2213 err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2214 if (err) 2215 return err; 2216 return -EROFS; 2217 } 2218 2219 f2fs_down_write(&sbi->gc_lock); 2220 f2fs_down_write(&sbi->cp_global_sem); 2221 2222 spin_lock(&sbi->stat_lock); 2223 if (shrunk_blocks + valid_user_blocks(sbi) + 2224 sbi->current_reserved_blocks + sbi->unusable_block_count + 2225 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2226 err = -ENOSPC; 2227 else 2228 sbi->user_block_count -= shrunk_blocks; 2229 spin_unlock(&sbi->stat_lock); 2230 if (err) 2231 goto out_err; 2232 2233 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2234 err = free_segment_range(sbi, secs, false); 2235 if (err) 2236 goto recover_out; 2237 2238 update_sb_metadata(sbi, -secs); 2239 2240 err = f2fs_commit_super(sbi, false); 2241 if (err) { 2242 update_sb_metadata(sbi, secs); 2243 goto recover_out; 2244 } 2245 2246 update_fs_metadata(sbi, -secs); 2247 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2248 set_sbi_flag(sbi, SBI_IS_DIRTY); 2249 2250 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2251 err = f2fs_write_checkpoint(sbi, &cpc); 2252 if (err) { 2253 update_fs_metadata(sbi, secs); 2254 update_sb_metadata(sbi, secs); 2255 f2fs_commit_super(sbi, false); 2256 } 2257 recover_out: 2258 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2259 if (err) { 2260 set_sbi_flag(sbi, SBI_NEED_FSCK); 2261 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2262 2263 spin_lock(&sbi->stat_lock); 2264 sbi->user_block_count += shrunk_blocks; 2265 spin_unlock(&sbi->stat_lock); 2266 } 2267 out_err: 2268 f2fs_up_write(&sbi->cp_global_sem); 2269 f2fs_up_write(&sbi->gc_lock); 2270 thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2271 return err; 2272 } 2273