1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/init.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/kthread.h> 14 #include <linux/delay.h> 15 #include <linux/freezer.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "gc.h" 21 #include <trace/events/f2fs.h> 22 23 static int gc_thread_func(void *data) 24 { 25 struct f2fs_sb_info *sbi = data; 26 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 27 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 28 unsigned int wait_ms; 29 30 wait_ms = gc_th->min_sleep_time; 31 32 set_freezable(); 33 do { 34 wait_event_interruptible_timeout(*wq, 35 kthread_should_stop() || freezing(current) || 36 gc_th->gc_wake, 37 msecs_to_jiffies(wait_ms)); 38 39 /* give it a try one time */ 40 if (gc_th->gc_wake) 41 gc_th->gc_wake = 0; 42 43 if (try_to_freeze()) { 44 stat_other_skip_bggc_count(sbi); 45 continue; 46 } 47 if (kthread_should_stop()) 48 break; 49 50 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 51 increase_sleep_time(gc_th, &wait_ms); 52 stat_other_skip_bggc_count(sbi); 53 continue; 54 } 55 56 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 57 f2fs_show_injection_info(FAULT_CHECKPOINT); 58 f2fs_stop_checkpoint(sbi, false); 59 } 60 61 if (!sb_start_write_trylock(sbi->sb)) { 62 stat_other_skip_bggc_count(sbi); 63 continue; 64 } 65 66 /* 67 * [GC triggering condition] 68 * 0. GC is not conducted currently. 69 * 1. There are enough dirty segments. 70 * 2. IO subsystem is idle by checking the # of writeback pages. 71 * 3. IO subsystem is idle by checking the # of requests in 72 * bdev's request list. 73 * 74 * Note) We have to avoid triggering GCs frequently. 75 * Because it is possible that some segments can be 76 * invalidated soon after by user update or deletion. 77 * So, I'd like to wait some time to collect dirty segments. 78 */ 79 if (sbi->gc_mode == GC_URGENT) { 80 wait_ms = gc_th->urgent_sleep_time; 81 mutex_lock(&sbi->gc_mutex); 82 goto do_gc; 83 } 84 85 if (!mutex_trylock(&sbi->gc_mutex)) { 86 stat_other_skip_bggc_count(sbi); 87 goto next; 88 } 89 90 if (!is_idle(sbi, GC_TIME)) { 91 increase_sleep_time(gc_th, &wait_ms); 92 mutex_unlock(&sbi->gc_mutex); 93 stat_io_skip_bggc_count(sbi); 94 goto next; 95 } 96 97 if (has_enough_invalid_blocks(sbi)) 98 decrease_sleep_time(gc_th, &wait_ms); 99 else 100 increase_sleep_time(gc_th, &wait_ms); 101 do_gc: 102 stat_inc_bggc_count(sbi); 103 104 /* if return value is not zero, no victim was selected */ 105 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO)) 106 wait_ms = gc_th->no_gc_sleep_time; 107 108 trace_f2fs_background_gc(sbi->sb, wait_ms, 109 prefree_segments(sbi), free_segments(sbi)); 110 111 /* balancing f2fs's metadata periodically */ 112 f2fs_balance_fs_bg(sbi); 113 next: 114 sb_end_write(sbi->sb); 115 116 } while (!kthread_should_stop()); 117 return 0; 118 } 119 120 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 121 { 122 struct f2fs_gc_kthread *gc_th; 123 dev_t dev = sbi->sb->s_bdev->bd_dev; 124 int err = 0; 125 126 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 127 if (!gc_th) { 128 err = -ENOMEM; 129 goto out; 130 } 131 132 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 133 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 134 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 135 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 136 137 gc_th->gc_wake= 0; 138 139 sbi->gc_thread = gc_th; 140 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 141 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 142 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 143 if (IS_ERR(gc_th->f2fs_gc_task)) { 144 err = PTR_ERR(gc_th->f2fs_gc_task); 145 kvfree(gc_th); 146 sbi->gc_thread = NULL; 147 } 148 out: 149 return err; 150 } 151 152 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 153 { 154 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 155 if (!gc_th) 156 return; 157 kthread_stop(gc_th->f2fs_gc_task); 158 kvfree(gc_th); 159 sbi->gc_thread = NULL; 160 } 161 162 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 163 { 164 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY; 165 166 switch (sbi->gc_mode) { 167 case GC_IDLE_CB: 168 gc_mode = GC_CB; 169 break; 170 case GC_IDLE_GREEDY: 171 case GC_URGENT: 172 gc_mode = GC_GREEDY; 173 break; 174 } 175 return gc_mode; 176 } 177 178 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 179 int type, struct victim_sel_policy *p) 180 { 181 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 182 183 if (p->alloc_mode == SSR) { 184 p->gc_mode = GC_GREEDY; 185 p->dirty_segmap = dirty_i->dirty_segmap[type]; 186 p->max_search = dirty_i->nr_dirty[type]; 187 p->ofs_unit = 1; 188 } else { 189 p->gc_mode = select_gc_type(sbi, gc_type); 190 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; 191 p->max_search = dirty_i->nr_dirty[DIRTY]; 192 p->ofs_unit = sbi->segs_per_sec; 193 } 194 195 /* we need to check every dirty segments in the FG_GC case */ 196 if (gc_type != FG_GC && 197 (sbi->gc_mode != GC_URGENT) && 198 p->max_search > sbi->max_victim_search) 199 p->max_search = sbi->max_victim_search; 200 201 /* let's select beginning hot/small space first in no_heap mode*/ 202 if (test_opt(sbi, NOHEAP) && 203 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 204 p->offset = 0; 205 else 206 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 207 } 208 209 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 210 struct victim_sel_policy *p) 211 { 212 /* SSR allocates in a segment unit */ 213 if (p->alloc_mode == SSR) 214 return sbi->blocks_per_seg; 215 if (p->gc_mode == GC_GREEDY) 216 return 2 * sbi->blocks_per_seg * p->ofs_unit; 217 else if (p->gc_mode == GC_CB) 218 return UINT_MAX; 219 else /* No other gc_mode */ 220 return 0; 221 } 222 223 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 224 { 225 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 226 unsigned int secno; 227 228 /* 229 * If the gc_type is FG_GC, we can select victim segments 230 * selected by background GC before. 231 * Those segments guarantee they have small valid blocks. 232 */ 233 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 234 if (sec_usage_check(sbi, secno)) 235 continue; 236 clear_bit(secno, dirty_i->victim_secmap); 237 return GET_SEG_FROM_SEC(sbi, secno); 238 } 239 return NULL_SEGNO; 240 } 241 242 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 243 { 244 struct sit_info *sit_i = SIT_I(sbi); 245 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 246 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 247 unsigned long long mtime = 0; 248 unsigned int vblocks; 249 unsigned char age = 0; 250 unsigned char u; 251 unsigned int i; 252 253 for (i = 0; i < sbi->segs_per_sec; i++) 254 mtime += get_seg_entry(sbi, start + i)->mtime; 255 vblocks = get_valid_blocks(sbi, segno, true); 256 257 mtime = div_u64(mtime, sbi->segs_per_sec); 258 vblocks = div_u64(vblocks, sbi->segs_per_sec); 259 260 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 261 262 /* Handle if the system time has changed by the user */ 263 if (mtime < sit_i->min_mtime) 264 sit_i->min_mtime = mtime; 265 if (mtime > sit_i->max_mtime) 266 sit_i->max_mtime = mtime; 267 if (sit_i->max_mtime != sit_i->min_mtime) 268 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 269 sit_i->max_mtime - sit_i->min_mtime); 270 271 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 272 } 273 274 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 275 unsigned int segno, struct victim_sel_policy *p) 276 { 277 if (p->alloc_mode == SSR) 278 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 279 280 /* alloc_mode == LFS */ 281 if (p->gc_mode == GC_GREEDY) 282 return get_valid_blocks(sbi, segno, true); 283 else 284 return get_cb_cost(sbi, segno); 285 } 286 287 static unsigned int count_bits(const unsigned long *addr, 288 unsigned int offset, unsigned int len) 289 { 290 unsigned int end = offset + len, sum = 0; 291 292 while (offset < end) { 293 if (test_bit(offset++, addr)) 294 ++sum; 295 } 296 return sum; 297 } 298 299 /* 300 * This function is called from two paths. 301 * One is garbage collection and the other is SSR segment selection. 302 * When it is called during GC, it just gets a victim segment 303 * and it does not remove it from dirty seglist. 304 * When it is called from SSR segment selection, it finds a segment 305 * which has minimum valid blocks and removes it from dirty seglist. 306 */ 307 static int get_victim_by_default(struct f2fs_sb_info *sbi, 308 unsigned int *result, int gc_type, int type, char alloc_mode) 309 { 310 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 311 struct sit_info *sm = SIT_I(sbi); 312 struct victim_sel_policy p; 313 unsigned int secno, last_victim; 314 unsigned int last_segment; 315 unsigned int nsearched = 0; 316 317 mutex_lock(&dirty_i->seglist_lock); 318 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 319 320 p.alloc_mode = alloc_mode; 321 select_policy(sbi, gc_type, type, &p); 322 323 p.min_segno = NULL_SEGNO; 324 p.min_cost = get_max_cost(sbi, &p); 325 326 if (*result != NULL_SEGNO) { 327 if (get_valid_blocks(sbi, *result, false) && 328 !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 329 p.min_segno = *result; 330 goto out; 331 } 332 333 if (p.max_search == 0) 334 goto out; 335 336 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 337 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 338 p.min_segno = sbi->next_victim_seg[BG_GC]; 339 *result = p.min_segno; 340 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 341 goto got_result; 342 } 343 if (gc_type == FG_GC && 344 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 345 p.min_segno = sbi->next_victim_seg[FG_GC]; 346 *result = p.min_segno; 347 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 348 goto got_result; 349 } 350 } 351 352 last_victim = sm->last_victim[p.gc_mode]; 353 if (p.alloc_mode == LFS && gc_type == FG_GC) { 354 p.min_segno = check_bg_victims(sbi); 355 if (p.min_segno != NULL_SEGNO) 356 goto got_it; 357 } 358 359 while (1) { 360 unsigned long cost; 361 unsigned int segno; 362 363 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset); 364 if (segno >= last_segment) { 365 if (sm->last_victim[p.gc_mode]) { 366 last_segment = 367 sm->last_victim[p.gc_mode]; 368 sm->last_victim[p.gc_mode] = 0; 369 p.offset = 0; 370 continue; 371 } 372 break; 373 } 374 375 p.offset = segno + p.ofs_unit; 376 if (p.ofs_unit > 1) { 377 p.offset -= segno % p.ofs_unit; 378 nsearched += count_bits(p.dirty_segmap, 379 p.offset - p.ofs_unit, 380 p.ofs_unit); 381 } else { 382 nsearched++; 383 } 384 385 secno = GET_SEC_FROM_SEG(sbi, segno); 386 387 if (sec_usage_check(sbi, secno)) 388 goto next; 389 /* Don't touch checkpointed data */ 390 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 391 get_ckpt_valid_blocks(sbi, segno) && 392 p.alloc_mode != SSR)) 393 goto next; 394 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 395 goto next; 396 397 cost = get_gc_cost(sbi, segno, &p); 398 399 if (p.min_cost > cost) { 400 p.min_segno = segno; 401 p.min_cost = cost; 402 } 403 next: 404 if (nsearched >= p.max_search) { 405 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 406 sm->last_victim[p.gc_mode] = last_victim + 1; 407 else 408 sm->last_victim[p.gc_mode] = segno + 1; 409 sm->last_victim[p.gc_mode] %= 410 (MAIN_SECS(sbi) * sbi->segs_per_sec); 411 break; 412 } 413 } 414 if (p.min_segno != NULL_SEGNO) { 415 got_it: 416 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 417 got_result: 418 if (p.alloc_mode == LFS) { 419 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 420 if (gc_type == FG_GC) 421 sbi->cur_victim_sec = secno; 422 else 423 set_bit(secno, dirty_i->victim_secmap); 424 } 425 426 } 427 out: 428 if (p.min_segno != NULL_SEGNO) 429 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 430 sbi->cur_victim_sec, 431 prefree_segments(sbi), free_segments(sbi)); 432 mutex_unlock(&dirty_i->seglist_lock); 433 434 return (p.min_segno == NULL_SEGNO) ? 0 : 1; 435 } 436 437 static const struct victim_selection default_v_ops = { 438 .get_victim = get_victim_by_default, 439 }; 440 441 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 442 { 443 struct inode_entry *ie; 444 445 ie = radix_tree_lookup(&gc_list->iroot, ino); 446 if (ie) 447 return ie->inode; 448 return NULL; 449 } 450 451 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 452 { 453 struct inode_entry *new_ie; 454 455 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 456 iput(inode); 457 return; 458 } 459 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS); 460 new_ie->inode = inode; 461 462 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 463 list_add_tail(&new_ie->list, &gc_list->ilist); 464 } 465 466 static void put_gc_inode(struct gc_inode_list *gc_list) 467 { 468 struct inode_entry *ie, *next_ie; 469 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 470 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 471 iput(ie->inode); 472 list_del(&ie->list); 473 kmem_cache_free(f2fs_inode_entry_slab, ie); 474 } 475 } 476 477 static int check_valid_map(struct f2fs_sb_info *sbi, 478 unsigned int segno, int offset) 479 { 480 struct sit_info *sit_i = SIT_I(sbi); 481 struct seg_entry *sentry; 482 int ret; 483 484 down_read(&sit_i->sentry_lock); 485 sentry = get_seg_entry(sbi, segno); 486 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 487 up_read(&sit_i->sentry_lock); 488 return ret; 489 } 490 491 /* 492 * This function compares node address got in summary with that in NAT. 493 * On validity, copy that node with cold status, otherwise (invalid node) 494 * ignore that. 495 */ 496 static int gc_node_segment(struct f2fs_sb_info *sbi, 497 struct f2fs_summary *sum, unsigned int segno, int gc_type) 498 { 499 struct f2fs_summary *entry; 500 block_t start_addr; 501 int off; 502 int phase = 0; 503 bool fggc = (gc_type == FG_GC); 504 int submitted = 0; 505 506 start_addr = START_BLOCK(sbi, segno); 507 508 next_step: 509 entry = sum; 510 511 if (fggc && phase == 2) 512 atomic_inc(&sbi->wb_sync_req[NODE]); 513 514 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { 515 nid_t nid = le32_to_cpu(entry->nid); 516 struct page *node_page; 517 struct node_info ni; 518 int err; 519 520 /* stop BG_GC if there is not enough free sections. */ 521 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 522 return submitted; 523 524 if (check_valid_map(sbi, segno, off) == 0) 525 continue; 526 527 if (phase == 0) { 528 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 529 META_NAT, true); 530 continue; 531 } 532 533 if (phase == 1) { 534 f2fs_ra_node_page(sbi, nid); 535 continue; 536 } 537 538 /* phase == 2 */ 539 node_page = f2fs_get_node_page(sbi, nid); 540 if (IS_ERR(node_page)) 541 continue; 542 543 /* block may become invalid during f2fs_get_node_page */ 544 if (check_valid_map(sbi, segno, off) == 0) { 545 f2fs_put_page(node_page, 1); 546 continue; 547 } 548 549 if (f2fs_get_node_info(sbi, nid, &ni)) { 550 f2fs_put_page(node_page, 1); 551 continue; 552 } 553 554 if (ni.blk_addr != start_addr + off) { 555 f2fs_put_page(node_page, 1); 556 continue; 557 } 558 559 err = f2fs_move_node_page(node_page, gc_type); 560 if (!err && gc_type == FG_GC) 561 submitted++; 562 stat_inc_node_blk_count(sbi, 1, gc_type); 563 } 564 565 if (++phase < 3) 566 goto next_step; 567 568 if (fggc) 569 atomic_dec(&sbi->wb_sync_req[NODE]); 570 return submitted; 571 } 572 573 /* 574 * Calculate start block index indicating the given node offset. 575 * Be careful, caller should give this node offset only indicating direct node 576 * blocks. If any node offsets, which point the other types of node blocks such 577 * as indirect or double indirect node blocks, are given, it must be a caller's 578 * bug. 579 */ 580 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 581 { 582 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 583 unsigned int bidx; 584 585 if (node_ofs == 0) 586 return 0; 587 588 if (node_ofs <= 2) { 589 bidx = node_ofs - 1; 590 } else if (node_ofs <= indirect_blks) { 591 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 592 bidx = node_ofs - 2 - dec; 593 } else { 594 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 595 bidx = node_ofs - 5 - dec; 596 } 597 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 598 } 599 600 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 601 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 602 { 603 struct page *node_page; 604 nid_t nid; 605 unsigned int ofs_in_node; 606 block_t source_blkaddr; 607 608 nid = le32_to_cpu(sum->nid); 609 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 610 611 node_page = f2fs_get_node_page(sbi, nid); 612 if (IS_ERR(node_page)) 613 return false; 614 615 if (f2fs_get_node_info(sbi, nid, dni)) { 616 f2fs_put_page(node_page, 1); 617 return false; 618 } 619 620 if (sum->version != dni->version) { 621 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 622 __func__); 623 set_sbi_flag(sbi, SBI_NEED_FSCK); 624 } 625 626 *nofs = ofs_of_node(node_page); 627 source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node); 628 f2fs_put_page(node_page, 1); 629 630 if (source_blkaddr != blkaddr) 631 return false; 632 return true; 633 } 634 635 static int ra_data_block(struct inode *inode, pgoff_t index) 636 { 637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 638 struct address_space *mapping = inode->i_mapping; 639 struct dnode_of_data dn; 640 struct page *page; 641 struct extent_info ei = {0, 0, 0}; 642 struct f2fs_io_info fio = { 643 .sbi = sbi, 644 .ino = inode->i_ino, 645 .type = DATA, 646 .temp = COLD, 647 .op = REQ_OP_READ, 648 .op_flags = 0, 649 .encrypted_page = NULL, 650 .in_list = false, 651 .retry = false, 652 }; 653 int err; 654 655 page = f2fs_grab_cache_page(mapping, index, true); 656 if (!page) 657 return -ENOMEM; 658 659 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 660 dn.data_blkaddr = ei.blk + index - ei.fofs; 661 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 662 DATA_GENERIC_ENHANCE_READ))) { 663 err = -EFSCORRUPTED; 664 goto put_page; 665 } 666 goto got_it; 667 } 668 669 set_new_dnode(&dn, inode, NULL, NULL, 0); 670 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 671 if (err) 672 goto put_page; 673 f2fs_put_dnode(&dn); 674 675 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 676 err = -ENOENT; 677 goto put_page; 678 } 679 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 680 DATA_GENERIC_ENHANCE))) { 681 err = -EFSCORRUPTED; 682 goto put_page; 683 } 684 got_it: 685 /* read page */ 686 fio.page = page; 687 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 688 689 /* 690 * don't cache encrypted data into meta inode until previous dirty 691 * data were writebacked to avoid racing between GC and flush. 692 */ 693 f2fs_wait_on_page_writeback(page, DATA, true, true); 694 695 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 696 697 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 698 dn.data_blkaddr, 699 FGP_LOCK | FGP_CREAT, GFP_NOFS); 700 if (!fio.encrypted_page) { 701 err = -ENOMEM; 702 goto put_page; 703 } 704 705 err = f2fs_submit_page_bio(&fio); 706 if (err) 707 goto put_encrypted_page; 708 f2fs_put_page(fio.encrypted_page, 0); 709 f2fs_put_page(page, 1); 710 return 0; 711 put_encrypted_page: 712 f2fs_put_page(fio.encrypted_page, 1); 713 put_page: 714 f2fs_put_page(page, 1); 715 return err; 716 } 717 718 /* 719 * Move data block via META_MAPPING while keeping locked data page. 720 * This can be used to move blocks, aka LBAs, directly on disk. 721 */ 722 static int move_data_block(struct inode *inode, block_t bidx, 723 int gc_type, unsigned int segno, int off) 724 { 725 struct f2fs_io_info fio = { 726 .sbi = F2FS_I_SB(inode), 727 .ino = inode->i_ino, 728 .type = DATA, 729 .temp = COLD, 730 .op = REQ_OP_READ, 731 .op_flags = 0, 732 .encrypted_page = NULL, 733 .in_list = false, 734 .retry = false, 735 }; 736 struct dnode_of_data dn; 737 struct f2fs_summary sum; 738 struct node_info ni; 739 struct page *page, *mpage; 740 block_t newaddr; 741 int err = 0; 742 bool lfs_mode = test_opt(fio.sbi, LFS); 743 744 /* do not read out */ 745 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 746 if (!page) 747 return -ENOMEM; 748 749 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 750 err = -ENOENT; 751 goto out; 752 } 753 754 if (f2fs_is_atomic_file(inode)) { 755 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 756 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 757 err = -EAGAIN; 758 goto out; 759 } 760 761 if (f2fs_is_pinned_file(inode)) { 762 f2fs_pin_file_control(inode, true); 763 err = -EAGAIN; 764 goto out; 765 } 766 767 set_new_dnode(&dn, inode, NULL, NULL, 0); 768 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 769 if (err) 770 goto out; 771 772 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 773 ClearPageUptodate(page); 774 err = -ENOENT; 775 goto put_out; 776 } 777 778 /* 779 * don't cache encrypted data into meta inode until previous dirty 780 * data were writebacked to avoid racing between GC and flush. 781 */ 782 f2fs_wait_on_page_writeback(page, DATA, true, true); 783 784 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 785 786 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 787 if (err) 788 goto put_out; 789 790 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 791 792 /* read page */ 793 fio.page = page; 794 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 795 796 if (lfs_mode) 797 down_write(&fio.sbi->io_order_lock); 798 799 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 800 &sum, CURSEG_COLD_DATA, NULL, false); 801 802 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 803 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 804 if (!fio.encrypted_page) { 805 err = -ENOMEM; 806 goto recover_block; 807 } 808 809 mpage = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 810 fio.old_blkaddr, FGP_LOCK, GFP_NOFS); 811 if (mpage) { 812 bool updated = false; 813 814 if (PageUptodate(mpage)) { 815 memcpy(page_address(fio.encrypted_page), 816 page_address(mpage), PAGE_SIZE); 817 updated = true; 818 } 819 f2fs_put_page(mpage, 1); 820 invalidate_mapping_pages(META_MAPPING(fio.sbi), 821 fio.old_blkaddr, fio.old_blkaddr); 822 if (updated) 823 goto write_page; 824 } 825 826 err = f2fs_submit_page_bio(&fio); 827 if (err) 828 goto put_page_out; 829 830 /* write page */ 831 lock_page(fio.encrypted_page); 832 833 if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) { 834 err = -EIO; 835 goto put_page_out; 836 } 837 if (unlikely(!PageUptodate(fio.encrypted_page))) { 838 err = -EIO; 839 goto put_page_out; 840 } 841 842 write_page: 843 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 844 set_page_dirty(fio.encrypted_page); 845 if (clear_page_dirty_for_io(fio.encrypted_page)) 846 dec_page_count(fio.sbi, F2FS_DIRTY_META); 847 848 set_page_writeback(fio.encrypted_page); 849 ClearPageError(page); 850 851 /* allocate block address */ 852 f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); 853 854 fio.op = REQ_OP_WRITE; 855 fio.op_flags = REQ_SYNC; 856 fio.new_blkaddr = newaddr; 857 f2fs_submit_page_write(&fio); 858 if (fio.retry) { 859 err = -EAGAIN; 860 if (PageWriteback(fio.encrypted_page)) 861 end_page_writeback(fio.encrypted_page); 862 goto put_page_out; 863 } 864 865 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 866 867 f2fs_update_data_blkaddr(&dn, newaddr); 868 set_inode_flag(inode, FI_APPEND_WRITE); 869 if (page->index == 0) 870 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 871 put_page_out: 872 f2fs_put_page(fio.encrypted_page, 1); 873 recover_block: 874 if (lfs_mode) 875 up_write(&fio.sbi->io_order_lock); 876 if (err) 877 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 878 true, true); 879 put_out: 880 f2fs_put_dnode(&dn); 881 out: 882 f2fs_put_page(page, 1); 883 return err; 884 } 885 886 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 887 unsigned int segno, int off) 888 { 889 struct page *page; 890 int err = 0; 891 892 page = f2fs_get_lock_data_page(inode, bidx, true); 893 if (IS_ERR(page)) 894 return PTR_ERR(page); 895 896 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 897 err = -ENOENT; 898 goto out; 899 } 900 901 if (f2fs_is_atomic_file(inode)) { 902 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 903 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 904 err = -EAGAIN; 905 goto out; 906 } 907 if (f2fs_is_pinned_file(inode)) { 908 if (gc_type == FG_GC) 909 f2fs_pin_file_control(inode, true); 910 err = -EAGAIN; 911 goto out; 912 } 913 914 if (gc_type == BG_GC) { 915 if (PageWriteback(page)) { 916 err = -EAGAIN; 917 goto out; 918 } 919 set_page_dirty(page); 920 set_cold_data(page); 921 } else { 922 struct f2fs_io_info fio = { 923 .sbi = F2FS_I_SB(inode), 924 .ino = inode->i_ino, 925 .type = DATA, 926 .temp = COLD, 927 .op = REQ_OP_WRITE, 928 .op_flags = REQ_SYNC, 929 .old_blkaddr = NULL_ADDR, 930 .page = page, 931 .encrypted_page = NULL, 932 .need_lock = LOCK_REQ, 933 .io_type = FS_GC_DATA_IO, 934 }; 935 bool is_dirty = PageDirty(page); 936 937 retry: 938 f2fs_wait_on_page_writeback(page, DATA, true, true); 939 940 set_page_dirty(page); 941 if (clear_page_dirty_for_io(page)) { 942 inode_dec_dirty_pages(inode); 943 f2fs_remove_dirty_inode(inode); 944 } 945 946 set_cold_data(page); 947 948 err = f2fs_do_write_data_page(&fio); 949 if (err) { 950 clear_cold_data(page); 951 if (err == -ENOMEM) { 952 congestion_wait(BLK_RW_ASYNC, HZ/50); 953 goto retry; 954 } 955 if (is_dirty) 956 set_page_dirty(page); 957 } 958 } 959 out: 960 f2fs_put_page(page, 1); 961 return err; 962 } 963 964 /* 965 * This function tries to get parent node of victim data block, and identifies 966 * data block validity. If the block is valid, copy that with cold status and 967 * modify parent node. 968 * If the parent node is not valid or the data block address is different, 969 * the victim data block is ignored. 970 */ 971 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 972 struct gc_inode_list *gc_list, unsigned int segno, int gc_type) 973 { 974 struct super_block *sb = sbi->sb; 975 struct f2fs_summary *entry; 976 block_t start_addr; 977 int off; 978 int phase = 0; 979 int submitted = 0; 980 981 start_addr = START_BLOCK(sbi, segno); 982 983 next_step: 984 entry = sum; 985 986 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { 987 struct page *data_page; 988 struct inode *inode; 989 struct node_info dni; /* dnode info for the data */ 990 unsigned int ofs_in_node, nofs; 991 block_t start_bidx; 992 nid_t nid = le32_to_cpu(entry->nid); 993 994 /* stop BG_GC if there is not enough free sections. */ 995 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 996 return submitted; 997 998 if (check_valid_map(sbi, segno, off) == 0) 999 continue; 1000 1001 if (phase == 0) { 1002 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1003 META_NAT, true); 1004 continue; 1005 } 1006 1007 if (phase == 1) { 1008 f2fs_ra_node_page(sbi, nid); 1009 continue; 1010 } 1011 1012 /* Get an inode by ino with checking validity */ 1013 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1014 continue; 1015 1016 if (phase == 2) { 1017 f2fs_ra_node_page(sbi, dni.ino); 1018 continue; 1019 } 1020 1021 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1022 1023 if (phase == 3) { 1024 inode = f2fs_iget(sb, dni.ino); 1025 if (IS_ERR(inode) || is_bad_inode(inode)) 1026 continue; 1027 1028 if (!down_write_trylock( 1029 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1030 iput(inode); 1031 sbi->skipped_gc_rwsem++; 1032 continue; 1033 } 1034 1035 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1036 ofs_in_node; 1037 1038 if (f2fs_post_read_required(inode)) { 1039 int err = ra_data_block(inode, start_bidx); 1040 1041 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1042 if (err) { 1043 iput(inode); 1044 continue; 1045 } 1046 add_gc_inode(gc_list, inode); 1047 continue; 1048 } 1049 1050 data_page = f2fs_get_read_data_page(inode, 1051 start_bidx, REQ_RAHEAD, true); 1052 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1053 if (IS_ERR(data_page)) { 1054 iput(inode); 1055 continue; 1056 } 1057 1058 f2fs_put_page(data_page, 0); 1059 add_gc_inode(gc_list, inode); 1060 continue; 1061 } 1062 1063 /* phase 4 */ 1064 inode = find_gc_inode(gc_list, dni.ino); 1065 if (inode) { 1066 struct f2fs_inode_info *fi = F2FS_I(inode); 1067 bool locked = false; 1068 int err; 1069 1070 if (S_ISREG(inode->i_mode)) { 1071 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) 1072 continue; 1073 if (!down_write_trylock( 1074 &fi->i_gc_rwsem[WRITE])) { 1075 sbi->skipped_gc_rwsem++; 1076 up_write(&fi->i_gc_rwsem[READ]); 1077 continue; 1078 } 1079 locked = true; 1080 1081 /* wait for all inflight aio data */ 1082 inode_dio_wait(inode); 1083 } 1084 1085 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1086 + ofs_in_node; 1087 if (f2fs_post_read_required(inode)) 1088 err = move_data_block(inode, start_bidx, 1089 gc_type, segno, off); 1090 else 1091 err = move_data_page(inode, start_bidx, gc_type, 1092 segno, off); 1093 1094 if (!err && (gc_type == FG_GC || 1095 f2fs_post_read_required(inode))) 1096 submitted++; 1097 1098 if (locked) { 1099 up_write(&fi->i_gc_rwsem[WRITE]); 1100 up_write(&fi->i_gc_rwsem[READ]); 1101 } 1102 1103 stat_inc_data_blk_count(sbi, 1, gc_type); 1104 } 1105 } 1106 1107 if (++phase < 5) 1108 goto next_step; 1109 1110 return submitted; 1111 } 1112 1113 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1114 int gc_type) 1115 { 1116 struct sit_info *sit_i = SIT_I(sbi); 1117 int ret; 1118 1119 down_write(&sit_i->sentry_lock); 1120 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1121 NO_CHECK_TYPE, LFS); 1122 up_write(&sit_i->sentry_lock); 1123 return ret; 1124 } 1125 1126 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1127 unsigned int start_segno, 1128 struct gc_inode_list *gc_list, int gc_type) 1129 { 1130 struct page *sum_page; 1131 struct f2fs_summary_block *sum; 1132 struct blk_plug plug; 1133 unsigned int segno = start_segno; 1134 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1135 int seg_freed = 0, migrated = 0; 1136 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1137 SUM_TYPE_DATA : SUM_TYPE_NODE; 1138 int submitted = 0; 1139 1140 if (__is_large_section(sbi)) 1141 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1142 1143 /* readahead multi ssa blocks those have contiguous address */ 1144 if (__is_large_section(sbi)) 1145 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1146 end_segno - segno, META_SSA, true); 1147 1148 /* reference all summary page */ 1149 while (segno < end_segno) { 1150 sum_page = f2fs_get_sum_page(sbi, segno++); 1151 if (IS_ERR(sum_page)) { 1152 int err = PTR_ERR(sum_page); 1153 1154 end_segno = segno - 1; 1155 for (segno = start_segno; segno < end_segno; segno++) { 1156 sum_page = find_get_page(META_MAPPING(sbi), 1157 GET_SUM_BLOCK(sbi, segno)); 1158 f2fs_put_page(sum_page, 0); 1159 f2fs_put_page(sum_page, 0); 1160 } 1161 return err; 1162 } 1163 unlock_page(sum_page); 1164 } 1165 1166 blk_start_plug(&plug); 1167 1168 for (segno = start_segno; segno < end_segno; segno++) { 1169 1170 /* find segment summary of victim */ 1171 sum_page = find_get_page(META_MAPPING(sbi), 1172 GET_SUM_BLOCK(sbi, segno)); 1173 f2fs_put_page(sum_page, 0); 1174 1175 if (get_valid_blocks(sbi, segno, false) == 0) 1176 goto freed; 1177 if (__is_large_section(sbi) && 1178 migrated >= sbi->migration_granularity) 1179 goto skip; 1180 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1181 goto skip; 1182 1183 sum = page_address(sum_page); 1184 if (type != GET_SUM_TYPE((&sum->footer))) { 1185 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1186 segno, type, GET_SUM_TYPE((&sum->footer))); 1187 set_sbi_flag(sbi, SBI_NEED_FSCK); 1188 f2fs_stop_checkpoint(sbi, false); 1189 goto skip; 1190 } 1191 1192 /* 1193 * this is to avoid deadlock: 1194 * - lock_page(sum_page) - f2fs_replace_block 1195 * - check_valid_map() - down_write(sentry_lock) 1196 * - down_read(sentry_lock) - change_curseg() 1197 * - lock_page(sum_page) 1198 */ 1199 if (type == SUM_TYPE_NODE) 1200 submitted += gc_node_segment(sbi, sum->entries, segno, 1201 gc_type); 1202 else 1203 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1204 segno, gc_type); 1205 1206 stat_inc_seg_count(sbi, type, gc_type); 1207 1208 freed: 1209 if (gc_type == FG_GC && 1210 get_valid_blocks(sbi, segno, false) == 0) 1211 seg_freed++; 1212 migrated++; 1213 1214 if (__is_large_section(sbi) && segno + 1 < end_segno) 1215 sbi->next_victim_seg[gc_type] = segno + 1; 1216 skip: 1217 f2fs_put_page(sum_page, 0); 1218 } 1219 1220 if (submitted) 1221 f2fs_submit_merged_write(sbi, 1222 (type == SUM_TYPE_NODE) ? NODE : DATA); 1223 1224 blk_finish_plug(&plug); 1225 1226 stat_inc_call_count(sbi->stat_info); 1227 1228 return seg_freed; 1229 } 1230 1231 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1232 bool background, unsigned int segno) 1233 { 1234 int gc_type = sync ? FG_GC : BG_GC; 1235 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1236 int ret = 0; 1237 struct cp_control cpc; 1238 unsigned int init_segno = segno; 1239 struct gc_inode_list gc_list = { 1240 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1241 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1242 }; 1243 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1244 unsigned long long first_skipped; 1245 unsigned int skipped_round = 0, round = 0; 1246 1247 trace_f2fs_gc_begin(sbi->sb, sync, background, 1248 get_pages(sbi, F2FS_DIRTY_NODES), 1249 get_pages(sbi, F2FS_DIRTY_DENTS), 1250 get_pages(sbi, F2FS_DIRTY_IMETA), 1251 free_sections(sbi), 1252 free_segments(sbi), 1253 reserved_segments(sbi), 1254 prefree_segments(sbi)); 1255 1256 cpc.reason = __get_cp_reason(sbi); 1257 sbi->skipped_gc_rwsem = 0; 1258 first_skipped = last_skipped; 1259 gc_more: 1260 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1261 ret = -EINVAL; 1262 goto stop; 1263 } 1264 if (unlikely(f2fs_cp_error(sbi))) { 1265 ret = -EIO; 1266 goto stop; 1267 } 1268 1269 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1270 /* 1271 * For example, if there are many prefree_segments below given 1272 * threshold, we can make them free by checkpoint. Then, we 1273 * secure free segments which doesn't need fggc any more. 1274 */ 1275 if (prefree_segments(sbi) && 1276 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1277 ret = f2fs_write_checkpoint(sbi, &cpc); 1278 if (ret) 1279 goto stop; 1280 } 1281 if (has_not_enough_free_secs(sbi, 0, 0)) 1282 gc_type = FG_GC; 1283 } 1284 1285 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1286 if (gc_type == BG_GC && !background) { 1287 ret = -EINVAL; 1288 goto stop; 1289 } 1290 if (!__get_victim(sbi, &segno, gc_type)) { 1291 ret = -ENODATA; 1292 goto stop; 1293 } 1294 1295 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); 1296 if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec) 1297 sec_freed++; 1298 total_freed += seg_freed; 1299 1300 if (gc_type == FG_GC) { 1301 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1302 sbi->skipped_gc_rwsem) 1303 skipped_round++; 1304 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1305 round++; 1306 } 1307 1308 if (gc_type == FG_GC) 1309 sbi->cur_victim_sec = NULL_SEGNO; 1310 1311 if (sync) 1312 goto stop; 1313 1314 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1315 if (skipped_round <= MAX_SKIP_GC_COUNT || 1316 skipped_round * 2 < round) { 1317 segno = NULL_SEGNO; 1318 goto gc_more; 1319 } 1320 1321 if (first_skipped < last_skipped && 1322 (last_skipped - first_skipped) > 1323 sbi->skipped_gc_rwsem) { 1324 f2fs_drop_inmem_pages_all(sbi, true); 1325 segno = NULL_SEGNO; 1326 goto gc_more; 1327 } 1328 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1329 ret = f2fs_write_checkpoint(sbi, &cpc); 1330 } 1331 stop: 1332 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1333 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1334 1335 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1336 get_pages(sbi, F2FS_DIRTY_NODES), 1337 get_pages(sbi, F2FS_DIRTY_DENTS), 1338 get_pages(sbi, F2FS_DIRTY_IMETA), 1339 free_sections(sbi), 1340 free_segments(sbi), 1341 reserved_segments(sbi), 1342 prefree_segments(sbi)); 1343 1344 mutex_unlock(&sbi->gc_mutex); 1345 1346 put_gc_inode(&gc_list); 1347 1348 if (sync && !ret) 1349 ret = sec_freed ? 0 : -EAGAIN; 1350 return ret; 1351 } 1352 1353 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1354 { 1355 DIRTY_I(sbi)->v_ops = &default_v_ops; 1356 1357 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1358 1359 /* give warm/cold data area from slower device */ 1360 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1361 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1362 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1363 } 1364 1365 static int free_segment_range(struct f2fs_sb_info *sbi, unsigned int start, 1366 unsigned int end) 1367 { 1368 int type; 1369 unsigned int segno, next_inuse; 1370 int err = 0; 1371 1372 /* Move out cursegs from the target range */ 1373 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_TYPE; type++) 1374 allocate_segment_for_resize(sbi, type, start, end); 1375 1376 /* do GC to move out valid blocks in the range */ 1377 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1378 struct gc_inode_list gc_list = { 1379 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1380 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1381 }; 1382 1383 mutex_lock(&sbi->gc_mutex); 1384 do_garbage_collect(sbi, segno, &gc_list, FG_GC); 1385 mutex_unlock(&sbi->gc_mutex); 1386 put_gc_inode(&gc_list); 1387 1388 if (get_valid_blocks(sbi, segno, true)) 1389 return -EAGAIN; 1390 } 1391 1392 err = f2fs_sync_fs(sbi->sb, 1); 1393 if (err) 1394 return err; 1395 1396 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1397 if (next_inuse <= end) { 1398 f2fs_err(sbi, "segno %u should be free but still inuse!", 1399 next_inuse); 1400 f2fs_bug_on(sbi, 1); 1401 } 1402 return err; 1403 } 1404 1405 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1406 { 1407 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1408 int section_count = le32_to_cpu(raw_sb->section_count); 1409 int segment_count = le32_to_cpu(raw_sb->segment_count); 1410 int segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1411 long long block_count = le64_to_cpu(raw_sb->block_count); 1412 int segs = secs * sbi->segs_per_sec; 1413 1414 raw_sb->section_count = cpu_to_le32(section_count + secs); 1415 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1416 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1417 raw_sb->block_count = cpu_to_le64(block_count + 1418 (long long)segs * sbi->blocks_per_seg); 1419 } 1420 1421 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1422 { 1423 int segs = secs * sbi->segs_per_sec; 1424 long long user_block_count = 1425 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1426 1427 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1428 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1429 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1430 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1431 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + 1432 (long long)segs * sbi->blocks_per_seg); 1433 } 1434 1435 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1436 { 1437 __u64 old_block_count, shrunk_blocks; 1438 unsigned int secs; 1439 int gc_mode, gc_type; 1440 int err = 0; 1441 __u32 rem; 1442 1443 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 1444 if (block_count > old_block_count) 1445 return -EINVAL; 1446 1447 /* new fs size should align to section size */ 1448 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 1449 if (rem) 1450 return -EINVAL; 1451 1452 if (block_count == old_block_count) 1453 return 0; 1454 1455 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1456 f2fs_err(sbi, "Should run fsck to repair first."); 1457 return -EFSCORRUPTED; 1458 } 1459 1460 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1461 f2fs_err(sbi, "Checkpoint should be enabled."); 1462 return -EINVAL; 1463 } 1464 1465 freeze_bdev(sbi->sb->s_bdev); 1466 1467 shrunk_blocks = old_block_count - block_count; 1468 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 1469 spin_lock(&sbi->stat_lock); 1470 if (shrunk_blocks + valid_user_blocks(sbi) + 1471 sbi->current_reserved_blocks + sbi->unusable_block_count + 1472 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 1473 err = -ENOSPC; 1474 else 1475 sbi->user_block_count -= shrunk_blocks; 1476 spin_unlock(&sbi->stat_lock); 1477 if (err) { 1478 thaw_bdev(sbi->sb->s_bdev, sbi->sb); 1479 return err; 1480 } 1481 1482 mutex_lock(&sbi->resize_mutex); 1483 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 1484 1485 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1486 1487 MAIN_SECS(sbi) -= secs; 1488 1489 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1490 if (SIT_I(sbi)->last_victim[gc_mode] >= 1491 MAIN_SECS(sbi) * sbi->segs_per_sec) 1492 SIT_I(sbi)->last_victim[gc_mode] = 0; 1493 1494 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1495 if (sbi->next_victim_seg[gc_type] >= 1496 MAIN_SECS(sbi) * sbi->segs_per_sec) 1497 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1498 1499 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1500 1501 err = free_segment_range(sbi, MAIN_SECS(sbi) * sbi->segs_per_sec, 1502 MAIN_SEGS(sbi) - 1); 1503 if (err) 1504 goto out; 1505 1506 update_sb_metadata(sbi, -secs); 1507 1508 err = f2fs_commit_super(sbi, false); 1509 if (err) { 1510 update_sb_metadata(sbi, secs); 1511 goto out; 1512 } 1513 1514 update_fs_metadata(sbi, -secs); 1515 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 1516 err = f2fs_sync_fs(sbi->sb, 1); 1517 if (err) { 1518 update_fs_metadata(sbi, secs); 1519 update_sb_metadata(sbi, secs); 1520 f2fs_commit_super(sbi, false); 1521 } 1522 out: 1523 if (err) { 1524 set_sbi_flag(sbi, SBI_NEED_FSCK); 1525 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 1526 1527 MAIN_SECS(sbi) += secs; 1528 spin_lock(&sbi->stat_lock); 1529 sbi->user_block_count += shrunk_blocks; 1530 spin_unlock(&sbi->stat_lock); 1531 } 1532 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 1533 mutex_unlock(&sbi->resize_mutex); 1534 thaw_bdev(sbi->sb->s_bdev, sbi->sb); 1535 return err; 1536 } 1537