1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_interruptible_timeout(*wq, 50 kthread_should_stop() || freezing(current) || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = 0; 61 62 if (try_to_freeze()) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 76 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 77 f2fs_stop_checkpoint(sbi, false); 78 } 79 80 if (!sb_start_write_trylock(sbi->sb)) { 81 stat_other_skip_bggc_count(sbi); 82 continue; 83 } 84 85 /* 86 * [GC triggering condition] 87 * 0. GC is not conducted currently. 88 * 1. There are enough dirty segments. 89 * 2. IO subsystem is idle by checking the # of writeback pages. 90 * 3. IO subsystem is idle by checking the # of requests in 91 * bdev's request list. 92 * 93 * Note) We have to avoid triggering GCs frequently. 94 * Because it is possible that some segments can be 95 * invalidated soon after by user update or deletion. 96 * So, I'd like to wait some time to collect dirty segments. 97 */ 98 if (sbi->gc_mode == GC_URGENT_HIGH) { 99 spin_lock(&sbi->gc_urgent_high_lock); 100 if (sbi->gc_urgent_high_limited) { 101 if (!sbi->gc_urgent_high_remaining) { 102 sbi->gc_urgent_high_limited = false; 103 spin_unlock(&sbi->gc_urgent_high_lock); 104 sbi->gc_mode = GC_NORMAL; 105 continue; 106 } 107 sbi->gc_urgent_high_remaining--; 108 } 109 spin_unlock(&sbi->gc_urgent_high_lock); 110 } 111 112 if (sbi->gc_mode == GC_URGENT_HIGH || 113 sbi->gc_mode == GC_URGENT_MID) { 114 wait_ms = gc_th->urgent_sleep_time; 115 f2fs_down_write(&sbi->gc_lock); 116 goto do_gc; 117 } 118 119 if (foreground) { 120 f2fs_down_write(&sbi->gc_lock); 121 goto do_gc; 122 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 123 stat_other_skip_bggc_count(sbi); 124 goto next; 125 } 126 127 if (!is_idle(sbi, GC_TIME)) { 128 increase_sleep_time(gc_th, &wait_ms); 129 f2fs_up_write(&sbi->gc_lock); 130 stat_io_skip_bggc_count(sbi); 131 goto next; 132 } 133 134 if (has_enough_invalid_blocks(sbi)) 135 decrease_sleep_time(gc_th, &wait_ms); 136 else 137 increase_sleep_time(gc_th, &wait_ms); 138 do_gc: 139 if (!foreground) 140 stat_inc_bggc_count(sbi->stat_info); 141 142 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 143 144 /* foreground GC was been triggered via f2fs_balance_fs() */ 145 if (foreground) 146 sync_mode = false; 147 148 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 149 gc_control.no_bg_gc = foreground; 150 gc_control.nr_free_secs = foreground ? 1 : 0; 151 152 /* if return value is not zero, no victim was selected */ 153 if (f2fs_gc(sbi, &gc_control)) { 154 /* don't bother wait_ms by foreground gc */ 155 if (!foreground) 156 wait_ms = gc_th->no_gc_sleep_time; 157 } 158 159 if (foreground) 160 wake_up_all(&gc_th->fggc_wq); 161 162 trace_f2fs_background_gc(sbi->sb, wait_ms, 163 prefree_segments(sbi), free_segments(sbi)); 164 165 /* balancing f2fs's metadata periodically */ 166 f2fs_balance_fs_bg(sbi, true); 167 next: 168 sb_end_write(sbi->sb); 169 170 } while (!kthread_should_stop()); 171 return 0; 172 } 173 174 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 175 { 176 struct f2fs_gc_kthread *gc_th; 177 dev_t dev = sbi->sb->s_bdev->bd_dev; 178 int err = 0; 179 180 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 181 if (!gc_th) { 182 err = -ENOMEM; 183 goto out; 184 } 185 186 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 187 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 188 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 189 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 190 191 gc_th->gc_wake = 0; 192 193 sbi->gc_thread = gc_th; 194 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 195 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 196 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 197 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 198 if (IS_ERR(gc_th->f2fs_gc_task)) { 199 err = PTR_ERR(gc_th->f2fs_gc_task); 200 kfree(gc_th); 201 sbi->gc_thread = NULL; 202 } 203 out: 204 return err; 205 } 206 207 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 208 { 209 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 210 211 if (!gc_th) 212 return; 213 kthread_stop(gc_th->f2fs_gc_task); 214 wake_up_all(&gc_th->fggc_wq); 215 kfree(gc_th); 216 sbi->gc_thread = NULL; 217 } 218 219 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 220 { 221 int gc_mode; 222 223 if (gc_type == BG_GC) { 224 if (sbi->am.atgc_enabled) 225 gc_mode = GC_AT; 226 else 227 gc_mode = GC_CB; 228 } else { 229 gc_mode = GC_GREEDY; 230 } 231 232 switch (sbi->gc_mode) { 233 case GC_IDLE_CB: 234 gc_mode = GC_CB; 235 break; 236 case GC_IDLE_GREEDY: 237 case GC_URGENT_HIGH: 238 gc_mode = GC_GREEDY; 239 break; 240 case GC_IDLE_AT: 241 gc_mode = GC_AT; 242 break; 243 } 244 245 return gc_mode; 246 } 247 248 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 249 int type, struct victim_sel_policy *p) 250 { 251 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 252 253 if (p->alloc_mode == SSR) { 254 p->gc_mode = GC_GREEDY; 255 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 256 p->max_search = dirty_i->nr_dirty[type]; 257 p->ofs_unit = 1; 258 } else if (p->alloc_mode == AT_SSR) { 259 p->gc_mode = GC_GREEDY; 260 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 261 p->max_search = dirty_i->nr_dirty[type]; 262 p->ofs_unit = 1; 263 } else { 264 p->gc_mode = select_gc_type(sbi, gc_type); 265 p->ofs_unit = sbi->segs_per_sec; 266 if (__is_large_section(sbi)) { 267 p->dirty_bitmap = dirty_i->dirty_secmap; 268 p->max_search = count_bits(p->dirty_bitmap, 269 0, MAIN_SECS(sbi)); 270 } else { 271 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 272 p->max_search = dirty_i->nr_dirty[DIRTY]; 273 } 274 } 275 276 /* 277 * adjust candidates range, should select all dirty segments for 278 * foreground GC and urgent GC cases. 279 */ 280 if (gc_type != FG_GC && 281 (sbi->gc_mode != GC_URGENT_HIGH) && 282 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 283 p->max_search > sbi->max_victim_search) 284 p->max_search = sbi->max_victim_search; 285 286 /* let's select beginning hot/small space first in no_heap mode*/ 287 if (f2fs_need_rand_seg(sbi)) 288 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 289 else if (test_opt(sbi, NOHEAP) && 290 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 291 p->offset = 0; 292 else 293 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 294 } 295 296 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 297 struct victim_sel_policy *p) 298 { 299 /* SSR allocates in a segment unit */ 300 if (p->alloc_mode == SSR) 301 return sbi->blocks_per_seg; 302 else if (p->alloc_mode == AT_SSR) 303 return UINT_MAX; 304 305 /* LFS */ 306 if (p->gc_mode == GC_GREEDY) 307 return 2 * sbi->blocks_per_seg * p->ofs_unit; 308 else if (p->gc_mode == GC_CB) 309 return UINT_MAX; 310 else if (p->gc_mode == GC_AT) 311 return UINT_MAX; 312 else /* No other gc_mode */ 313 return 0; 314 } 315 316 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 317 { 318 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 319 unsigned int secno; 320 321 /* 322 * If the gc_type is FG_GC, we can select victim segments 323 * selected by background GC before. 324 * Those segments guarantee they have small valid blocks. 325 */ 326 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 327 if (sec_usage_check(sbi, secno)) 328 continue; 329 clear_bit(secno, dirty_i->victim_secmap); 330 return GET_SEG_FROM_SEC(sbi, secno); 331 } 332 return NULL_SEGNO; 333 } 334 335 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 336 { 337 struct sit_info *sit_i = SIT_I(sbi); 338 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 339 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 340 unsigned long long mtime = 0; 341 unsigned int vblocks; 342 unsigned char age = 0; 343 unsigned char u; 344 unsigned int i; 345 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 346 347 for (i = 0; i < usable_segs_per_sec; i++) 348 mtime += get_seg_entry(sbi, start + i)->mtime; 349 vblocks = get_valid_blocks(sbi, segno, true); 350 351 mtime = div_u64(mtime, usable_segs_per_sec); 352 vblocks = div_u64(vblocks, usable_segs_per_sec); 353 354 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 355 356 /* Handle if the system time has changed by the user */ 357 if (mtime < sit_i->min_mtime) 358 sit_i->min_mtime = mtime; 359 if (mtime > sit_i->max_mtime) 360 sit_i->max_mtime = mtime; 361 if (sit_i->max_mtime != sit_i->min_mtime) 362 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 363 sit_i->max_mtime - sit_i->min_mtime); 364 365 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 366 } 367 368 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 369 unsigned int segno, struct victim_sel_policy *p) 370 { 371 if (p->alloc_mode == SSR) 372 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 373 374 /* alloc_mode == LFS */ 375 if (p->gc_mode == GC_GREEDY) 376 return get_valid_blocks(sbi, segno, true); 377 else if (p->gc_mode == GC_CB) 378 return get_cb_cost(sbi, segno); 379 380 f2fs_bug_on(sbi, 1); 381 return 0; 382 } 383 384 static unsigned int count_bits(const unsigned long *addr, 385 unsigned int offset, unsigned int len) 386 { 387 unsigned int end = offset + len, sum = 0; 388 389 while (offset < end) { 390 if (test_bit(offset++, addr)) 391 ++sum; 392 } 393 return sum; 394 } 395 396 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 397 unsigned long long mtime, unsigned int segno, 398 struct rb_node *parent, struct rb_node **p, 399 bool left_most) 400 { 401 struct atgc_management *am = &sbi->am; 402 struct victim_entry *ve; 403 404 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 405 GFP_NOFS, true, NULL); 406 407 ve->mtime = mtime; 408 ve->segno = segno; 409 410 rb_link_node(&ve->rb_node, parent, p); 411 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 412 413 list_add_tail(&ve->list, &am->victim_list); 414 415 am->victim_count++; 416 417 return ve; 418 } 419 420 static void insert_victim_entry(struct f2fs_sb_info *sbi, 421 unsigned long long mtime, unsigned int segno) 422 { 423 struct atgc_management *am = &sbi->am; 424 struct rb_node **p; 425 struct rb_node *parent = NULL; 426 bool left_most = true; 427 428 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 429 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 430 } 431 432 static void add_victim_entry(struct f2fs_sb_info *sbi, 433 struct victim_sel_policy *p, unsigned int segno) 434 { 435 struct sit_info *sit_i = SIT_I(sbi); 436 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 437 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 438 unsigned long long mtime = 0; 439 unsigned int i; 440 441 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 442 if (p->gc_mode == GC_AT && 443 get_valid_blocks(sbi, segno, true) == 0) 444 return; 445 } 446 447 for (i = 0; i < sbi->segs_per_sec; i++) 448 mtime += get_seg_entry(sbi, start + i)->mtime; 449 mtime = div_u64(mtime, sbi->segs_per_sec); 450 451 /* Handle if the system time has changed by the user */ 452 if (mtime < sit_i->min_mtime) 453 sit_i->min_mtime = mtime; 454 if (mtime > sit_i->max_mtime) 455 sit_i->max_mtime = mtime; 456 if (mtime < sit_i->dirty_min_mtime) 457 sit_i->dirty_min_mtime = mtime; 458 if (mtime > sit_i->dirty_max_mtime) 459 sit_i->dirty_max_mtime = mtime; 460 461 /* don't choose young section as candidate */ 462 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 463 return; 464 465 insert_victim_entry(sbi, mtime, segno); 466 } 467 468 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 469 struct victim_sel_policy *p) 470 { 471 struct atgc_management *am = &sbi->am; 472 struct rb_node *parent = NULL; 473 bool left_most; 474 475 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 476 477 return parent; 478 } 479 480 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 481 struct victim_sel_policy *p) 482 { 483 struct sit_info *sit_i = SIT_I(sbi); 484 struct atgc_management *am = &sbi->am; 485 struct rb_root_cached *root = &am->root; 486 struct rb_node *node; 487 struct rb_entry *re; 488 struct victim_entry *ve; 489 unsigned long long total_time; 490 unsigned long long age, u, accu; 491 unsigned long long max_mtime = sit_i->dirty_max_mtime; 492 unsigned long long min_mtime = sit_i->dirty_min_mtime; 493 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 494 unsigned int vblocks; 495 unsigned int dirty_threshold = max(am->max_candidate_count, 496 am->candidate_ratio * 497 am->victim_count / 100); 498 unsigned int age_weight = am->age_weight; 499 unsigned int cost; 500 unsigned int iter = 0; 501 502 if (max_mtime < min_mtime) 503 return; 504 505 max_mtime += 1; 506 total_time = max_mtime - min_mtime; 507 508 accu = div64_u64(ULLONG_MAX, total_time); 509 accu = min_t(unsigned long long, div_u64(accu, 100), 510 DEFAULT_ACCURACY_CLASS); 511 512 node = rb_first_cached(root); 513 next: 514 re = rb_entry_safe(node, struct rb_entry, rb_node); 515 if (!re) 516 return; 517 518 ve = (struct victim_entry *)re; 519 520 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 521 goto skip; 522 523 /* age = 10000 * x% * 60 */ 524 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 525 age_weight; 526 527 vblocks = get_valid_blocks(sbi, ve->segno, true); 528 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 529 530 /* u = 10000 * x% * 40 */ 531 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 532 (100 - age_weight); 533 534 f2fs_bug_on(sbi, age + u >= UINT_MAX); 535 536 cost = UINT_MAX - (age + u); 537 iter++; 538 539 if (cost < p->min_cost || 540 (cost == p->min_cost && age > p->oldest_age)) { 541 p->min_cost = cost; 542 p->oldest_age = age; 543 p->min_segno = ve->segno; 544 } 545 skip: 546 if (iter < dirty_threshold) { 547 node = rb_next(node); 548 goto next; 549 } 550 } 551 552 /* 553 * select candidates around source section in range of 554 * [target - dirty_threshold, target + dirty_threshold] 555 */ 556 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 557 struct victim_sel_policy *p) 558 { 559 struct sit_info *sit_i = SIT_I(sbi); 560 struct atgc_management *am = &sbi->am; 561 struct rb_node *node; 562 struct rb_entry *re; 563 struct victim_entry *ve; 564 unsigned long long age; 565 unsigned long long max_mtime = sit_i->dirty_max_mtime; 566 unsigned long long min_mtime = sit_i->dirty_min_mtime; 567 unsigned int seg_blocks = sbi->blocks_per_seg; 568 unsigned int vblocks; 569 unsigned int dirty_threshold = max(am->max_candidate_count, 570 am->candidate_ratio * 571 am->victim_count / 100); 572 unsigned int cost; 573 unsigned int iter = 0; 574 int stage = 0; 575 576 if (max_mtime < min_mtime) 577 return; 578 max_mtime += 1; 579 next_stage: 580 node = lookup_central_victim(sbi, p); 581 next_node: 582 re = rb_entry_safe(node, struct rb_entry, rb_node); 583 if (!re) { 584 if (stage == 0) 585 goto skip_stage; 586 return; 587 } 588 589 ve = (struct victim_entry *)re; 590 591 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 592 goto skip_node; 593 594 age = max_mtime - ve->mtime; 595 596 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 597 f2fs_bug_on(sbi, !vblocks); 598 599 /* rare case */ 600 if (vblocks == seg_blocks) 601 goto skip_node; 602 603 iter++; 604 605 age = max_mtime - abs(p->age - age); 606 cost = UINT_MAX - vblocks; 607 608 if (cost < p->min_cost || 609 (cost == p->min_cost && age > p->oldest_age)) { 610 p->min_cost = cost; 611 p->oldest_age = age; 612 p->min_segno = ve->segno; 613 } 614 skip_node: 615 if (iter < dirty_threshold) { 616 if (stage == 0) 617 node = rb_prev(node); 618 else if (stage == 1) 619 node = rb_next(node); 620 goto next_node; 621 } 622 skip_stage: 623 if (stage < 1) { 624 stage++; 625 iter = 0; 626 goto next_stage; 627 } 628 } 629 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 630 struct victim_sel_policy *p) 631 { 632 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 633 &sbi->am.root, true)); 634 635 if (p->gc_mode == GC_AT) 636 atgc_lookup_victim(sbi, p); 637 else if (p->alloc_mode == AT_SSR) 638 atssr_lookup_victim(sbi, p); 639 else 640 f2fs_bug_on(sbi, 1); 641 } 642 643 static void release_victim_entry(struct f2fs_sb_info *sbi) 644 { 645 struct atgc_management *am = &sbi->am; 646 struct victim_entry *ve, *tmp; 647 648 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 649 list_del(&ve->list); 650 kmem_cache_free(victim_entry_slab, ve); 651 am->victim_count--; 652 } 653 654 am->root = RB_ROOT_CACHED; 655 656 f2fs_bug_on(sbi, am->victim_count); 657 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 658 } 659 660 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 661 { 662 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 663 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 664 665 if (!dirty_i->enable_pin_section) 666 return false; 667 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 668 dirty_i->pinned_secmap_cnt++; 669 return true; 670 } 671 672 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 673 { 674 return dirty_i->pinned_secmap_cnt; 675 } 676 677 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 678 unsigned int secno) 679 { 680 return dirty_i->enable_pin_section && 681 f2fs_pinned_section_exists(dirty_i) && 682 test_bit(secno, dirty_i->pinned_secmap); 683 } 684 685 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 686 { 687 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 688 689 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 690 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 691 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 692 } 693 DIRTY_I(sbi)->enable_pin_section = enable; 694 } 695 696 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 697 unsigned int segno) 698 { 699 if (!f2fs_is_pinned_file(inode)) 700 return 0; 701 if (gc_type != FG_GC) 702 return -EBUSY; 703 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 704 f2fs_pin_file_control(inode, true); 705 return -EAGAIN; 706 } 707 708 /* 709 * This function is called from two paths. 710 * One is garbage collection and the other is SSR segment selection. 711 * When it is called during GC, it just gets a victim segment 712 * and it does not remove it from dirty seglist. 713 * When it is called from SSR segment selection, it finds a segment 714 * which has minimum valid blocks and removes it from dirty seglist. 715 */ 716 static int get_victim_by_default(struct f2fs_sb_info *sbi, 717 unsigned int *result, int gc_type, int type, 718 char alloc_mode, unsigned long long age) 719 { 720 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 721 struct sit_info *sm = SIT_I(sbi); 722 struct victim_sel_policy p; 723 unsigned int secno, last_victim; 724 unsigned int last_segment; 725 unsigned int nsearched; 726 bool is_atgc; 727 int ret = 0; 728 729 mutex_lock(&dirty_i->seglist_lock); 730 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 731 732 p.alloc_mode = alloc_mode; 733 p.age = age; 734 p.age_threshold = sbi->am.age_threshold; 735 736 retry: 737 select_policy(sbi, gc_type, type, &p); 738 p.min_segno = NULL_SEGNO; 739 p.oldest_age = 0; 740 p.min_cost = get_max_cost(sbi, &p); 741 742 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 743 nsearched = 0; 744 745 if (is_atgc) 746 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 747 748 if (*result != NULL_SEGNO) { 749 if (!get_valid_blocks(sbi, *result, false)) { 750 ret = -ENODATA; 751 goto out; 752 } 753 754 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 755 ret = -EBUSY; 756 else 757 p.min_segno = *result; 758 goto out; 759 } 760 761 ret = -ENODATA; 762 if (p.max_search == 0) 763 goto out; 764 765 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 766 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 767 p.min_segno = sbi->next_victim_seg[BG_GC]; 768 *result = p.min_segno; 769 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 770 goto got_result; 771 } 772 if (gc_type == FG_GC && 773 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 774 p.min_segno = sbi->next_victim_seg[FG_GC]; 775 *result = p.min_segno; 776 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 777 goto got_result; 778 } 779 } 780 781 last_victim = sm->last_victim[p.gc_mode]; 782 if (p.alloc_mode == LFS && gc_type == FG_GC) { 783 p.min_segno = check_bg_victims(sbi); 784 if (p.min_segno != NULL_SEGNO) 785 goto got_it; 786 } 787 788 while (1) { 789 unsigned long cost, *dirty_bitmap; 790 unsigned int unit_no, segno; 791 792 dirty_bitmap = p.dirty_bitmap; 793 unit_no = find_next_bit(dirty_bitmap, 794 last_segment / p.ofs_unit, 795 p.offset / p.ofs_unit); 796 segno = unit_no * p.ofs_unit; 797 if (segno >= last_segment) { 798 if (sm->last_victim[p.gc_mode]) { 799 last_segment = 800 sm->last_victim[p.gc_mode]; 801 sm->last_victim[p.gc_mode] = 0; 802 p.offset = 0; 803 continue; 804 } 805 break; 806 } 807 808 p.offset = segno + p.ofs_unit; 809 nsearched++; 810 811 #ifdef CONFIG_F2FS_CHECK_FS 812 /* 813 * skip selecting the invalid segno (that is failed due to block 814 * validity check failure during GC) to avoid endless GC loop in 815 * such cases. 816 */ 817 if (test_bit(segno, sm->invalid_segmap)) 818 goto next; 819 #endif 820 821 secno = GET_SEC_FROM_SEG(sbi, segno); 822 823 if (sec_usage_check(sbi, secno)) 824 goto next; 825 826 /* Don't touch checkpointed data */ 827 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 828 if (p.alloc_mode == LFS) { 829 /* 830 * LFS is set to find source section during GC. 831 * The victim should have no checkpointed data. 832 */ 833 if (get_ckpt_valid_blocks(sbi, segno, true)) 834 goto next; 835 } else { 836 /* 837 * SSR | AT_SSR are set to find target segment 838 * for writes which can be full by checkpointed 839 * and newly written blocks. 840 */ 841 if (!f2fs_segment_has_free_slot(sbi, segno)) 842 goto next; 843 } 844 } 845 846 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 847 goto next; 848 849 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 850 goto next; 851 852 if (is_atgc) { 853 add_victim_entry(sbi, &p, segno); 854 goto next; 855 } 856 857 cost = get_gc_cost(sbi, segno, &p); 858 859 if (p.min_cost > cost) { 860 p.min_segno = segno; 861 p.min_cost = cost; 862 } 863 next: 864 if (nsearched >= p.max_search) { 865 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 866 sm->last_victim[p.gc_mode] = 867 last_victim + p.ofs_unit; 868 else 869 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 870 sm->last_victim[p.gc_mode] %= 871 (MAIN_SECS(sbi) * sbi->segs_per_sec); 872 break; 873 } 874 } 875 876 /* get victim for GC_AT/AT_SSR */ 877 if (is_atgc) { 878 lookup_victim_by_age(sbi, &p); 879 release_victim_entry(sbi); 880 } 881 882 if (is_atgc && p.min_segno == NULL_SEGNO && 883 sm->elapsed_time < p.age_threshold) { 884 p.age_threshold = 0; 885 goto retry; 886 } 887 888 if (p.min_segno != NULL_SEGNO) { 889 got_it: 890 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 891 got_result: 892 if (p.alloc_mode == LFS) { 893 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 894 if (gc_type == FG_GC) 895 sbi->cur_victim_sec = secno; 896 else 897 set_bit(secno, dirty_i->victim_secmap); 898 } 899 ret = 0; 900 901 } 902 out: 903 if (p.min_segno != NULL_SEGNO) 904 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 905 sbi->cur_victim_sec, 906 prefree_segments(sbi), free_segments(sbi)); 907 mutex_unlock(&dirty_i->seglist_lock); 908 909 return ret; 910 } 911 912 static const struct victim_selection default_v_ops = { 913 .get_victim = get_victim_by_default, 914 }; 915 916 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 917 { 918 struct inode_entry *ie; 919 920 ie = radix_tree_lookup(&gc_list->iroot, ino); 921 if (ie) 922 return ie->inode; 923 return NULL; 924 } 925 926 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 927 { 928 struct inode_entry *new_ie; 929 930 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 931 iput(inode); 932 return; 933 } 934 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 935 GFP_NOFS, true, NULL); 936 new_ie->inode = inode; 937 938 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 939 list_add_tail(&new_ie->list, &gc_list->ilist); 940 } 941 942 static void put_gc_inode(struct gc_inode_list *gc_list) 943 { 944 struct inode_entry *ie, *next_ie; 945 946 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 947 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 948 iput(ie->inode); 949 list_del(&ie->list); 950 kmem_cache_free(f2fs_inode_entry_slab, ie); 951 } 952 } 953 954 static int check_valid_map(struct f2fs_sb_info *sbi, 955 unsigned int segno, int offset) 956 { 957 struct sit_info *sit_i = SIT_I(sbi); 958 struct seg_entry *sentry; 959 int ret; 960 961 down_read(&sit_i->sentry_lock); 962 sentry = get_seg_entry(sbi, segno); 963 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 964 up_read(&sit_i->sentry_lock); 965 return ret; 966 } 967 968 /* 969 * This function compares node address got in summary with that in NAT. 970 * On validity, copy that node with cold status, otherwise (invalid node) 971 * ignore that. 972 */ 973 static int gc_node_segment(struct f2fs_sb_info *sbi, 974 struct f2fs_summary *sum, unsigned int segno, int gc_type) 975 { 976 struct f2fs_summary *entry; 977 block_t start_addr; 978 int off; 979 int phase = 0; 980 bool fggc = (gc_type == FG_GC); 981 int submitted = 0; 982 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 983 984 start_addr = START_BLOCK(sbi, segno); 985 986 next_step: 987 entry = sum; 988 989 if (fggc && phase == 2) 990 atomic_inc(&sbi->wb_sync_req[NODE]); 991 992 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 993 nid_t nid = le32_to_cpu(entry->nid); 994 struct page *node_page; 995 struct node_info ni; 996 int err; 997 998 /* stop BG_GC if there is not enough free sections. */ 999 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 1000 return submitted; 1001 1002 if (check_valid_map(sbi, segno, off) == 0) 1003 continue; 1004 1005 if (phase == 0) { 1006 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1007 META_NAT, true); 1008 continue; 1009 } 1010 1011 if (phase == 1) { 1012 f2fs_ra_node_page(sbi, nid); 1013 continue; 1014 } 1015 1016 /* phase == 2 */ 1017 node_page = f2fs_get_node_page(sbi, nid); 1018 if (IS_ERR(node_page)) 1019 continue; 1020 1021 /* block may become invalid during f2fs_get_node_page */ 1022 if (check_valid_map(sbi, segno, off) == 0) { 1023 f2fs_put_page(node_page, 1); 1024 continue; 1025 } 1026 1027 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1028 f2fs_put_page(node_page, 1); 1029 continue; 1030 } 1031 1032 if (ni.blk_addr != start_addr + off) { 1033 f2fs_put_page(node_page, 1); 1034 continue; 1035 } 1036 1037 err = f2fs_move_node_page(node_page, gc_type); 1038 if (!err && gc_type == FG_GC) 1039 submitted++; 1040 stat_inc_node_blk_count(sbi, 1, gc_type); 1041 } 1042 1043 if (++phase < 3) 1044 goto next_step; 1045 1046 if (fggc) 1047 atomic_dec(&sbi->wb_sync_req[NODE]); 1048 return submitted; 1049 } 1050 1051 /* 1052 * Calculate start block index indicating the given node offset. 1053 * Be careful, caller should give this node offset only indicating direct node 1054 * blocks. If any node offsets, which point the other types of node blocks such 1055 * as indirect or double indirect node blocks, are given, it must be a caller's 1056 * bug. 1057 */ 1058 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1059 { 1060 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1061 unsigned int bidx; 1062 1063 if (node_ofs == 0) 1064 return 0; 1065 1066 if (node_ofs <= 2) { 1067 bidx = node_ofs - 1; 1068 } else if (node_ofs <= indirect_blks) { 1069 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1070 1071 bidx = node_ofs - 2 - dec; 1072 } else { 1073 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1074 1075 bidx = node_ofs - 5 - dec; 1076 } 1077 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1078 } 1079 1080 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1081 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1082 { 1083 struct page *node_page; 1084 nid_t nid; 1085 unsigned int ofs_in_node; 1086 block_t source_blkaddr; 1087 1088 nid = le32_to_cpu(sum->nid); 1089 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1090 1091 node_page = f2fs_get_node_page(sbi, nid); 1092 if (IS_ERR(node_page)) 1093 return false; 1094 1095 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1096 f2fs_put_page(node_page, 1); 1097 return false; 1098 } 1099 1100 if (sum->version != dni->version) { 1101 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1102 __func__); 1103 set_sbi_flag(sbi, SBI_NEED_FSCK); 1104 } 1105 1106 if (f2fs_check_nid_range(sbi, dni->ino)) { 1107 f2fs_put_page(node_page, 1); 1108 return false; 1109 } 1110 1111 *nofs = ofs_of_node(node_page); 1112 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1113 f2fs_put_page(node_page, 1); 1114 1115 if (source_blkaddr != blkaddr) { 1116 #ifdef CONFIG_F2FS_CHECK_FS 1117 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1118 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1119 1120 if (unlikely(check_valid_map(sbi, segno, offset))) { 1121 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1122 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1123 blkaddr, source_blkaddr, segno); 1124 set_sbi_flag(sbi, SBI_NEED_FSCK); 1125 } 1126 } 1127 #endif 1128 return false; 1129 } 1130 return true; 1131 } 1132 1133 static int ra_data_block(struct inode *inode, pgoff_t index) 1134 { 1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1136 struct address_space *mapping = inode->i_mapping; 1137 struct dnode_of_data dn; 1138 struct page *page; 1139 struct extent_info ei = {0, 0, 0}; 1140 struct f2fs_io_info fio = { 1141 .sbi = sbi, 1142 .ino = inode->i_ino, 1143 .type = DATA, 1144 .temp = COLD, 1145 .op = REQ_OP_READ, 1146 .op_flags = 0, 1147 .encrypted_page = NULL, 1148 .in_list = false, 1149 .retry = false, 1150 }; 1151 int err; 1152 1153 page = f2fs_grab_cache_page(mapping, index, true); 1154 if (!page) 1155 return -ENOMEM; 1156 1157 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1158 dn.data_blkaddr = ei.blk + index - ei.fofs; 1159 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1160 DATA_GENERIC_ENHANCE_READ))) { 1161 err = -EFSCORRUPTED; 1162 goto put_page; 1163 } 1164 goto got_it; 1165 } 1166 1167 set_new_dnode(&dn, inode, NULL, NULL, 0); 1168 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1169 if (err) 1170 goto put_page; 1171 f2fs_put_dnode(&dn); 1172 1173 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1174 err = -ENOENT; 1175 goto put_page; 1176 } 1177 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1178 DATA_GENERIC_ENHANCE))) { 1179 err = -EFSCORRUPTED; 1180 goto put_page; 1181 } 1182 got_it: 1183 /* read page */ 1184 fio.page = page; 1185 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1186 1187 /* 1188 * don't cache encrypted data into meta inode until previous dirty 1189 * data were writebacked to avoid racing between GC and flush. 1190 */ 1191 f2fs_wait_on_page_writeback(page, DATA, true, true); 1192 1193 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1194 1195 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1196 dn.data_blkaddr, 1197 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1198 if (!fio.encrypted_page) { 1199 err = -ENOMEM; 1200 goto put_page; 1201 } 1202 1203 err = f2fs_submit_page_bio(&fio); 1204 if (err) 1205 goto put_encrypted_page; 1206 f2fs_put_page(fio.encrypted_page, 0); 1207 f2fs_put_page(page, 1); 1208 1209 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1210 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1211 1212 return 0; 1213 put_encrypted_page: 1214 f2fs_put_page(fio.encrypted_page, 1); 1215 put_page: 1216 f2fs_put_page(page, 1); 1217 return err; 1218 } 1219 1220 /* 1221 * Move data block via META_MAPPING while keeping locked data page. 1222 * This can be used to move blocks, aka LBAs, directly on disk. 1223 */ 1224 static int move_data_block(struct inode *inode, block_t bidx, 1225 int gc_type, unsigned int segno, int off) 1226 { 1227 struct f2fs_io_info fio = { 1228 .sbi = F2FS_I_SB(inode), 1229 .ino = inode->i_ino, 1230 .type = DATA, 1231 .temp = COLD, 1232 .op = REQ_OP_READ, 1233 .op_flags = 0, 1234 .encrypted_page = NULL, 1235 .in_list = false, 1236 .retry = false, 1237 }; 1238 struct dnode_of_data dn; 1239 struct f2fs_summary sum; 1240 struct node_info ni; 1241 struct page *page, *mpage; 1242 block_t newaddr; 1243 int err = 0; 1244 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1245 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1246 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1247 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1248 1249 /* do not read out */ 1250 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1251 if (!page) 1252 return -ENOMEM; 1253 1254 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1255 err = -ENOENT; 1256 goto out; 1257 } 1258 1259 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1260 if (err) 1261 goto out; 1262 1263 set_new_dnode(&dn, inode, NULL, NULL, 0); 1264 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1265 if (err) 1266 goto out; 1267 1268 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1269 ClearPageUptodate(page); 1270 err = -ENOENT; 1271 goto put_out; 1272 } 1273 1274 /* 1275 * don't cache encrypted data into meta inode until previous dirty 1276 * data were writebacked to avoid racing between GC and flush. 1277 */ 1278 f2fs_wait_on_page_writeback(page, DATA, true, true); 1279 1280 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1281 1282 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1283 if (err) 1284 goto put_out; 1285 1286 /* read page */ 1287 fio.page = page; 1288 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1289 1290 if (lfs_mode) 1291 f2fs_down_write(&fio.sbi->io_order_lock); 1292 1293 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1294 fio.old_blkaddr, false); 1295 if (!mpage) { 1296 err = -ENOMEM; 1297 goto up_out; 1298 } 1299 1300 fio.encrypted_page = mpage; 1301 1302 /* read source block in mpage */ 1303 if (!PageUptodate(mpage)) { 1304 err = f2fs_submit_page_bio(&fio); 1305 if (err) { 1306 f2fs_put_page(mpage, 1); 1307 goto up_out; 1308 } 1309 1310 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1311 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1312 1313 lock_page(mpage); 1314 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1315 !PageUptodate(mpage))) { 1316 err = -EIO; 1317 f2fs_put_page(mpage, 1); 1318 goto up_out; 1319 } 1320 } 1321 1322 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1323 1324 /* allocate block address */ 1325 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1326 &sum, type, NULL); 1327 1328 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1329 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1330 if (!fio.encrypted_page) { 1331 err = -ENOMEM; 1332 f2fs_put_page(mpage, 1); 1333 goto recover_block; 1334 } 1335 1336 /* write target block */ 1337 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1338 memcpy(page_address(fio.encrypted_page), 1339 page_address(mpage), PAGE_SIZE); 1340 f2fs_put_page(mpage, 1); 1341 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1342 fio.old_blkaddr, fio.old_blkaddr); 1343 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1344 1345 set_page_dirty(fio.encrypted_page); 1346 if (clear_page_dirty_for_io(fio.encrypted_page)) 1347 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1348 1349 set_page_writeback(fio.encrypted_page); 1350 ClearPageError(page); 1351 1352 fio.op = REQ_OP_WRITE; 1353 fio.op_flags = REQ_SYNC; 1354 fio.new_blkaddr = newaddr; 1355 f2fs_submit_page_write(&fio); 1356 if (fio.retry) { 1357 err = -EAGAIN; 1358 if (PageWriteback(fio.encrypted_page)) 1359 end_page_writeback(fio.encrypted_page); 1360 goto put_page_out; 1361 } 1362 1363 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1364 1365 f2fs_update_data_blkaddr(&dn, newaddr); 1366 set_inode_flag(inode, FI_APPEND_WRITE); 1367 if (page->index == 0) 1368 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1369 put_page_out: 1370 f2fs_put_page(fio.encrypted_page, 1); 1371 recover_block: 1372 if (err) 1373 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1374 true, true, true); 1375 up_out: 1376 if (lfs_mode) 1377 f2fs_up_write(&fio.sbi->io_order_lock); 1378 put_out: 1379 f2fs_put_dnode(&dn); 1380 out: 1381 f2fs_put_page(page, 1); 1382 return err; 1383 } 1384 1385 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1386 unsigned int segno, int off) 1387 { 1388 struct page *page; 1389 int err = 0; 1390 1391 page = f2fs_get_lock_data_page(inode, bidx, true); 1392 if (IS_ERR(page)) 1393 return PTR_ERR(page); 1394 1395 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1396 err = -ENOENT; 1397 goto out; 1398 } 1399 1400 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1401 if (err) 1402 goto out; 1403 1404 if (gc_type == BG_GC) { 1405 if (PageWriteback(page)) { 1406 err = -EAGAIN; 1407 goto out; 1408 } 1409 set_page_dirty(page); 1410 set_page_private_gcing(page); 1411 } else { 1412 struct f2fs_io_info fio = { 1413 .sbi = F2FS_I_SB(inode), 1414 .ino = inode->i_ino, 1415 .type = DATA, 1416 .temp = COLD, 1417 .op = REQ_OP_WRITE, 1418 .op_flags = REQ_SYNC, 1419 .old_blkaddr = NULL_ADDR, 1420 .page = page, 1421 .encrypted_page = NULL, 1422 .need_lock = LOCK_REQ, 1423 .io_type = FS_GC_DATA_IO, 1424 }; 1425 bool is_dirty = PageDirty(page); 1426 1427 retry: 1428 f2fs_wait_on_page_writeback(page, DATA, true, true); 1429 1430 set_page_dirty(page); 1431 if (clear_page_dirty_for_io(page)) { 1432 inode_dec_dirty_pages(inode); 1433 f2fs_remove_dirty_inode(inode); 1434 } 1435 1436 set_page_private_gcing(page); 1437 1438 err = f2fs_do_write_data_page(&fio); 1439 if (err) { 1440 clear_page_private_gcing(page); 1441 if (err == -ENOMEM) { 1442 memalloc_retry_wait(GFP_NOFS); 1443 goto retry; 1444 } 1445 if (is_dirty) 1446 set_page_dirty(page); 1447 } 1448 } 1449 out: 1450 f2fs_put_page(page, 1); 1451 return err; 1452 } 1453 1454 /* 1455 * This function tries to get parent node of victim data block, and identifies 1456 * data block validity. If the block is valid, copy that with cold status and 1457 * modify parent node. 1458 * If the parent node is not valid or the data block address is different, 1459 * the victim data block is ignored. 1460 */ 1461 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1462 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1463 bool force_migrate) 1464 { 1465 struct super_block *sb = sbi->sb; 1466 struct f2fs_summary *entry; 1467 block_t start_addr; 1468 int off; 1469 int phase = 0; 1470 int submitted = 0; 1471 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1472 1473 start_addr = START_BLOCK(sbi, segno); 1474 1475 next_step: 1476 entry = sum; 1477 1478 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1479 struct page *data_page; 1480 struct inode *inode; 1481 struct node_info dni; /* dnode info for the data */ 1482 unsigned int ofs_in_node, nofs; 1483 block_t start_bidx; 1484 nid_t nid = le32_to_cpu(entry->nid); 1485 1486 /* 1487 * stop BG_GC if there is not enough free sections. 1488 * Or, stop GC if the segment becomes fully valid caused by 1489 * race condition along with SSR block allocation. 1490 */ 1491 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1492 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1493 CAP_BLKS_PER_SEC(sbi))) 1494 return submitted; 1495 1496 if (check_valid_map(sbi, segno, off) == 0) 1497 continue; 1498 1499 if (phase == 0) { 1500 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1501 META_NAT, true); 1502 continue; 1503 } 1504 1505 if (phase == 1) { 1506 f2fs_ra_node_page(sbi, nid); 1507 continue; 1508 } 1509 1510 /* Get an inode by ino with checking validity */ 1511 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1512 continue; 1513 1514 if (phase == 2) { 1515 f2fs_ra_node_page(sbi, dni.ino); 1516 continue; 1517 } 1518 1519 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1520 1521 if (phase == 3) { 1522 int err; 1523 1524 inode = f2fs_iget(sb, dni.ino); 1525 if (IS_ERR(inode) || is_bad_inode(inode) || 1526 special_file(inode->i_mode)) 1527 continue; 1528 1529 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1530 if (err == -EAGAIN) { 1531 iput(inode); 1532 return submitted; 1533 } 1534 1535 if (!f2fs_down_write_trylock( 1536 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1537 iput(inode); 1538 sbi->skipped_gc_rwsem++; 1539 continue; 1540 } 1541 1542 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1543 ofs_in_node; 1544 1545 if (f2fs_post_read_required(inode)) { 1546 int err = ra_data_block(inode, start_bidx); 1547 1548 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1549 if (err) { 1550 iput(inode); 1551 continue; 1552 } 1553 add_gc_inode(gc_list, inode); 1554 continue; 1555 } 1556 1557 data_page = f2fs_get_read_data_page(inode, 1558 start_bidx, REQ_RAHEAD, true); 1559 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1560 if (IS_ERR(data_page)) { 1561 iput(inode); 1562 continue; 1563 } 1564 1565 f2fs_put_page(data_page, 0); 1566 add_gc_inode(gc_list, inode); 1567 continue; 1568 } 1569 1570 /* phase 4 */ 1571 inode = find_gc_inode(gc_list, dni.ino); 1572 if (inode) { 1573 struct f2fs_inode_info *fi = F2FS_I(inode); 1574 bool locked = false; 1575 int err; 1576 1577 if (S_ISREG(inode->i_mode)) { 1578 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) { 1579 sbi->skipped_gc_rwsem++; 1580 continue; 1581 } 1582 if (!f2fs_down_write_trylock( 1583 &fi->i_gc_rwsem[WRITE])) { 1584 sbi->skipped_gc_rwsem++; 1585 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1586 continue; 1587 } 1588 locked = true; 1589 1590 /* wait for all inflight aio data */ 1591 inode_dio_wait(inode); 1592 } 1593 1594 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1595 + ofs_in_node; 1596 if (f2fs_post_read_required(inode)) 1597 err = move_data_block(inode, start_bidx, 1598 gc_type, segno, off); 1599 else 1600 err = move_data_page(inode, start_bidx, gc_type, 1601 segno, off); 1602 1603 if (!err && (gc_type == FG_GC || 1604 f2fs_post_read_required(inode))) 1605 submitted++; 1606 1607 if (locked) { 1608 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1609 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1610 } 1611 1612 stat_inc_data_blk_count(sbi, 1, gc_type); 1613 } 1614 } 1615 1616 if (++phase < 5) 1617 goto next_step; 1618 1619 return submitted; 1620 } 1621 1622 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1623 int gc_type) 1624 { 1625 struct sit_info *sit_i = SIT_I(sbi); 1626 int ret; 1627 1628 down_write(&sit_i->sentry_lock); 1629 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1630 NO_CHECK_TYPE, LFS, 0); 1631 up_write(&sit_i->sentry_lock); 1632 return ret; 1633 } 1634 1635 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1636 unsigned int start_segno, 1637 struct gc_inode_list *gc_list, int gc_type, 1638 bool force_migrate) 1639 { 1640 struct page *sum_page; 1641 struct f2fs_summary_block *sum; 1642 struct blk_plug plug; 1643 unsigned int segno = start_segno; 1644 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1645 int seg_freed = 0, migrated = 0; 1646 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1647 SUM_TYPE_DATA : SUM_TYPE_NODE; 1648 int submitted = 0; 1649 1650 if (__is_large_section(sbi)) 1651 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1652 1653 /* 1654 * zone-capacity can be less than zone-size in zoned devices, 1655 * resulting in less than expected usable segments in the zone, 1656 * calculate the end segno in the zone which can be garbage collected 1657 */ 1658 if (f2fs_sb_has_blkzoned(sbi)) 1659 end_segno -= sbi->segs_per_sec - 1660 f2fs_usable_segs_in_sec(sbi, segno); 1661 1662 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1663 1664 /* readahead multi ssa blocks those have contiguous address */ 1665 if (__is_large_section(sbi)) 1666 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1667 end_segno - segno, META_SSA, true); 1668 1669 /* reference all summary page */ 1670 while (segno < end_segno) { 1671 sum_page = f2fs_get_sum_page(sbi, segno++); 1672 if (IS_ERR(sum_page)) { 1673 int err = PTR_ERR(sum_page); 1674 1675 end_segno = segno - 1; 1676 for (segno = start_segno; segno < end_segno; segno++) { 1677 sum_page = find_get_page(META_MAPPING(sbi), 1678 GET_SUM_BLOCK(sbi, segno)); 1679 f2fs_put_page(sum_page, 0); 1680 f2fs_put_page(sum_page, 0); 1681 } 1682 return err; 1683 } 1684 unlock_page(sum_page); 1685 } 1686 1687 blk_start_plug(&plug); 1688 1689 for (segno = start_segno; segno < end_segno; segno++) { 1690 1691 /* find segment summary of victim */ 1692 sum_page = find_get_page(META_MAPPING(sbi), 1693 GET_SUM_BLOCK(sbi, segno)); 1694 f2fs_put_page(sum_page, 0); 1695 1696 if (get_valid_blocks(sbi, segno, false) == 0) 1697 goto freed; 1698 if (gc_type == BG_GC && __is_large_section(sbi) && 1699 migrated >= sbi->migration_granularity) 1700 goto skip; 1701 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1702 goto skip; 1703 1704 sum = page_address(sum_page); 1705 if (type != GET_SUM_TYPE((&sum->footer))) { 1706 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1707 segno, type, GET_SUM_TYPE((&sum->footer))); 1708 set_sbi_flag(sbi, SBI_NEED_FSCK); 1709 f2fs_stop_checkpoint(sbi, false); 1710 goto skip; 1711 } 1712 1713 /* 1714 * this is to avoid deadlock: 1715 * - lock_page(sum_page) - f2fs_replace_block 1716 * - check_valid_map() - down_write(sentry_lock) 1717 * - down_read(sentry_lock) - change_curseg() 1718 * - lock_page(sum_page) 1719 */ 1720 if (type == SUM_TYPE_NODE) 1721 submitted += gc_node_segment(sbi, sum->entries, segno, 1722 gc_type); 1723 else 1724 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1725 segno, gc_type, 1726 force_migrate); 1727 1728 stat_inc_seg_count(sbi, type, gc_type); 1729 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1730 migrated++; 1731 1732 freed: 1733 if (gc_type == FG_GC && 1734 get_valid_blocks(sbi, segno, false) == 0) 1735 seg_freed++; 1736 1737 if (__is_large_section(sbi) && segno + 1 < end_segno) 1738 sbi->next_victim_seg[gc_type] = segno + 1; 1739 skip: 1740 f2fs_put_page(sum_page, 0); 1741 } 1742 1743 if (submitted) 1744 f2fs_submit_merged_write(sbi, 1745 (type == SUM_TYPE_NODE) ? NODE : DATA); 1746 1747 blk_finish_plug(&plug); 1748 1749 stat_inc_call_count(sbi->stat_info); 1750 1751 return seg_freed; 1752 } 1753 1754 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1755 { 1756 int gc_type = gc_control->init_gc_type; 1757 unsigned int segno = gc_control->victim_segno; 1758 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1759 int ret = 0; 1760 struct cp_control cpc; 1761 struct gc_inode_list gc_list = { 1762 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1763 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1764 }; 1765 unsigned int skipped_round = 0, round = 0; 1766 1767 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1768 gc_control->nr_free_secs, 1769 get_pages(sbi, F2FS_DIRTY_NODES), 1770 get_pages(sbi, F2FS_DIRTY_DENTS), 1771 get_pages(sbi, F2FS_DIRTY_IMETA), 1772 free_sections(sbi), 1773 free_segments(sbi), 1774 reserved_segments(sbi), 1775 prefree_segments(sbi)); 1776 1777 cpc.reason = __get_cp_reason(sbi); 1778 sbi->skipped_gc_rwsem = 0; 1779 gc_more: 1780 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1781 ret = -EINVAL; 1782 goto stop; 1783 } 1784 if (unlikely(f2fs_cp_error(sbi))) { 1785 ret = -EIO; 1786 goto stop; 1787 } 1788 1789 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1790 /* 1791 * For example, if there are many prefree_segments below given 1792 * threshold, we can make them free by checkpoint. Then, we 1793 * secure free segments which doesn't need fggc any more. 1794 */ 1795 if (prefree_segments(sbi)) { 1796 ret = f2fs_write_checkpoint(sbi, &cpc); 1797 if (ret) 1798 goto stop; 1799 } 1800 if (has_not_enough_free_secs(sbi, 0, 0)) 1801 gc_type = FG_GC; 1802 } 1803 1804 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1805 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1806 ret = -EINVAL; 1807 goto stop; 1808 } 1809 retry: 1810 ret = __get_victim(sbi, &segno, gc_type); 1811 if (ret) { 1812 /* allow to search victim from sections has pinned data */ 1813 if (ret == -ENODATA && gc_type == FG_GC && 1814 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1815 f2fs_unpin_all_sections(sbi, false); 1816 goto retry; 1817 } 1818 goto stop; 1819 } 1820 1821 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1822 gc_control->should_migrate_blocks); 1823 total_freed += seg_freed; 1824 1825 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1826 sec_freed++; 1827 1828 if (gc_type == FG_GC) 1829 sbi->cur_victim_sec = NULL_SEGNO; 1830 1831 if (gc_control->init_gc_type == FG_GC || 1832 !has_not_enough_free_secs(sbi, 1833 (gc_type == FG_GC) ? sec_freed : 0, 0)) { 1834 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs) 1835 goto go_gc_more; 1836 goto stop; 1837 } 1838 1839 /* FG_GC stops GC by skip_count */ 1840 if (gc_type == FG_GC) { 1841 if (sbi->skipped_gc_rwsem) 1842 skipped_round++; 1843 round++; 1844 if (skipped_round > MAX_SKIP_GC_COUNT && 1845 skipped_round * 2 >= round) { 1846 ret = f2fs_write_checkpoint(sbi, &cpc); 1847 goto stop; 1848 } 1849 } 1850 1851 /* Write checkpoint to reclaim prefree segments */ 1852 if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE && 1853 prefree_segments(sbi)) { 1854 ret = f2fs_write_checkpoint(sbi, &cpc); 1855 if (ret) 1856 goto stop; 1857 } 1858 go_gc_more: 1859 segno = NULL_SEGNO; 1860 goto gc_more; 1861 1862 stop: 1863 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1864 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1865 1866 if (gc_type == FG_GC) 1867 f2fs_unpin_all_sections(sbi, true); 1868 1869 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1870 get_pages(sbi, F2FS_DIRTY_NODES), 1871 get_pages(sbi, F2FS_DIRTY_DENTS), 1872 get_pages(sbi, F2FS_DIRTY_IMETA), 1873 free_sections(sbi), 1874 free_segments(sbi), 1875 reserved_segments(sbi), 1876 prefree_segments(sbi)); 1877 1878 f2fs_up_write(&sbi->gc_lock); 1879 1880 put_gc_inode(&gc_list); 1881 1882 if (gc_control->err_gc_skipped && !ret) 1883 ret = sec_freed ? 0 : -EAGAIN; 1884 return ret; 1885 } 1886 1887 int __init f2fs_create_garbage_collection_cache(void) 1888 { 1889 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1890 sizeof(struct victim_entry)); 1891 if (!victim_entry_slab) 1892 return -ENOMEM; 1893 return 0; 1894 } 1895 1896 void f2fs_destroy_garbage_collection_cache(void) 1897 { 1898 kmem_cache_destroy(victim_entry_slab); 1899 } 1900 1901 static void init_atgc_management(struct f2fs_sb_info *sbi) 1902 { 1903 struct atgc_management *am = &sbi->am; 1904 1905 if (test_opt(sbi, ATGC) && 1906 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1907 am->atgc_enabled = true; 1908 1909 am->root = RB_ROOT_CACHED; 1910 INIT_LIST_HEAD(&am->victim_list); 1911 am->victim_count = 0; 1912 1913 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1914 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1915 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1916 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1917 } 1918 1919 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1920 { 1921 DIRTY_I(sbi)->v_ops = &default_v_ops; 1922 1923 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1924 1925 /* give warm/cold data area from slower device */ 1926 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1927 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1928 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1929 1930 init_atgc_management(sbi); 1931 } 1932 1933 static int free_segment_range(struct f2fs_sb_info *sbi, 1934 unsigned int secs, bool gc_only) 1935 { 1936 unsigned int segno, next_inuse, start, end; 1937 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1938 int gc_mode, gc_type; 1939 int err = 0; 1940 int type; 1941 1942 /* Force block allocation for GC */ 1943 MAIN_SECS(sbi) -= secs; 1944 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1945 end = MAIN_SEGS(sbi) - 1; 1946 1947 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1948 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1949 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1950 SIT_I(sbi)->last_victim[gc_mode] = 0; 1951 1952 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1953 if (sbi->next_victim_seg[gc_type] >= start) 1954 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1955 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1956 1957 /* Move out cursegs from the target range */ 1958 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1959 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1960 1961 /* do GC to move out valid blocks in the range */ 1962 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1963 struct gc_inode_list gc_list = { 1964 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1965 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1966 }; 1967 1968 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1969 put_gc_inode(&gc_list); 1970 1971 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1972 err = -EAGAIN; 1973 goto out; 1974 } 1975 if (fatal_signal_pending(current)) { 1976 err = -ERESTARTSYS; 1977 goto out; 1978 } 1979 } 1980 if (gc_only) 1981 goto out; 1982 1983 err = f2fs_write_checkpoint(sbi, &cpc); 1984 if (err) 1985 goto out; 1986 1987 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1988 if (next_inuse <= end) { 1989 f2fs_err(sbi, "segno %u should be free but still inuse!", 1990 next_inuse); 1991 f2fs_bug_on(sbi, 1); 1992 } 1993 out: 1994 MAIN_SECS(sbi) += secs; 1995 return err; 1996 } 1997 1998 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1999 { 2000 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2001 int section_count; 2002 int segment_count; 2003 int segment_count_main; 2004 long long block_count; 2005 int segs = secs * sbi->segs_per_sec; 2006 2007 f2fs_down_write(&sbi->sb_lock); 2008 2009 section_count = le32_to_cpu(raw_sb->section_count); 2010 segment_count = le32_to_cpu(raw_sb->segment_count); 2011 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2012 block_count = le64_to_cpu(raw_sb->block_count); 2013 2014 raw_sb->section_count = cpu_to_le32(section_count + secs); 2015 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2016 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2017 raw_sb->block_count = cpu_to_le64(block_count + 2018 (long long)segs * sbi->blocks_per_seg); 2019 if (f2fs_is_multi_device(sbi)) { 2020 int last_dev = sbi->s_ndevs - 1; 2021 int dev_segs = 2022 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2023 2024 raw_sb->devs[last_dev].total_segments = 2025 cpu_to_le32(dev_segs + segs); 2026 } 2027 2028 f2fs_up_write(&sbi->sb_lock); 2029 } 2030 2031 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2032 { 2033 int segs = secs * sbi->segs_per_sec; 2034 long long blks = (long long)segs * sbi->blocks_per_seg; 2035 long long user_block_count = 2036 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2037 2038 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2039 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2040 MAIN_SECS(sbi) += secs; 2041 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2042 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2043 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2044 2045 if (f2fs_is_multi_device(sbi)) { 2046 int last_dev = sbi->s_ndevs - 1; 2047 2048 FDEV(last_dev).total_segments = 2049 (int)FDEV(last_dev).total_segments + segs; 2050 FDEV(last_dev).end_blk = 2051 (long long)FDEV(last_dev).end_blk + blks; 2052 #ifdef CONFIG_BLK_DEV_ZONED 2053 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 2054 (int)(blks >> sbi->log_blocks_per_blkz); 2055 #endif 2056 } 2057 } 2058 2059 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 2060 { 2061 __u64 old_block_count, shrunk_blocks; 2062 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2063 unsigned int secs; 2064 int err = 0; 2065 __u32 rem; 2066 2067 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2068 if (block_count > old_block_count) 2069 return -EINVAL; 2070 2071 if (f2fs_is_multi_device(sbi)) { 2072 int last_dev = sbi->s_ndevs - 1; 2073 __u64 last_segs = FDEV(last_dev).total_segments; 2074 2075 if (block_count + last_segs * sbi->blocks_per_seg <= 2076 old_block_count) 2077 return -EINVAL; 2078 } 2079 2080 /* new fs size should align to section size */ 2081 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2082 if (rem) 2083 return -EINVAL; 2084 2085 if (block_count == old_block_count) 2086 return 0; 2087 2088 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2089 f2fs_err(sbi, "Should run fsck to repair first."); 2090 return -EFSCORRUPTED; 2091 } 2092 2093 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2094 f2fs_err(sbi, "Checkpoint should be enabled."); 2095 return -EINVAL; 2096 } 2097 2098 shrunk_blocks = old_block_count - block_count; 2099 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2100 2101 /* stop other GC */ 2102 if (!f2fs_down_write_trylock(&sbi->gc_lock)) 2103 return -EAGAIN; 2104 2105 /* stop CP to protect MAIN_SEC in free_segment_range */ 2106 f2fs_lock_op(sbi); 2107 2108 spin_lock(&sbi->stat_lock); 2109 if (shrunk_blocks + valid_user_blocks(sbi) + 2110 sbi->current_reserved_blocks + sbi->unusable_block_count + 2111 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2112 err = -ENOSPC; 2113 spin_unlock(&sbi->stat_lock); 2114 2115 if (err) 2116 goto out_unlock; 2117 2118 err = free_segment_range(sbi, secs, true); 2119 2120 out_unlock: 2121 f2fs_unlock_op(sbi); 2122 f2fs_up_write(&sbi->gc_lock); 2123 if (err) 2124 return err; 2125 2126 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2127 2128 freeze_super(sbi->sb); 2129 f2fs_down_write(&sbi->gc_lock); 2130 f2fs_down_write(&sbi->cp_global_sem); 2131 2132 spin_lock(&sbi->stat_lock); 2133 if (shrunk_blocks + valid_user_blocks(sbi) + 2134 sbi->current_reserved_blocks + sbi->unusable_block_count + 2135 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2136 err = -ENOSPC; 2137 else 2138 sbi->user_block_count -= shrunk_blocks; 2139 spin_unlock(&sbi->stat_lock); 2140 if (err) 2141 goto out_err; 2142 2143 err = free_segment_range(sbi, secs, false); 2144 if (err) 2145 goto recover_out; 2146 2147 update_sb_metadata(sbi, -secs); 2148 2149 err = f2fs_commit_super(sbi, false); 2150 if (err) { 2151 update_sb_metadata(sbi, secs); 2152 goto recover_out; 2153 } 2154 2155 update_fs_metadata(sbi, -secs); 2156 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2157 set_sbi_flag(sbi, SBI_IS_DIRTY); 2158 2159 err = f2fs_write_checkpoint(sbi, &cpc); 2160 if (err) { 2161 update_fs_metadata(sbi, secs); 2162 update_sb_metadata(sbi, secs); 2163 f2fs_commit_super(sbi, false); 2164 } 2165 recover_out: 2166 if (err) { 2167 set_sbi_flag(sbi, SBI_NEED_FSCK); 2168 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2169 2170 spin_lock(&sbi->stat_lock); 2171 sbi->user_block_count += shrunk_blocks; 2172 spin_unlock(&sbi->stat_lock); 2173 } 2174 out_err: 2175 f2fs_up_write(&sbi->cp_global_sem); 2176 f2fs_up_write(&sbi->gc_lock); 2177 thaw_super(sbi->sb); 2178 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2179 return err; 2180 } 2181