xref: /openbmc/linux/fs/f2fs/gc.c (revision da097dcc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *victim_entry_slab;
27 
28 static unsigned int count_bits(const unsigned long *addr,
29 				unsigned int offset, unsigned int len);
30 
31 static int gc_thread_func(void *data)
32 {
33 	struct f2fs_sb_info *sbi = data;
34 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 	wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 	unsigned int wait_ms;
38 	struct f2fs_gc_control gc_control = {
39 		.victim_segno = NULL_SEGNO,
40 		.should_migrate_blocks = false,
41 		.err_gc_skipped = false };
42 
43 	wait_ms = gc_th->min_sleep_time;
44 
45 	set_freezable();
46 	do {
47 		bool sync_mode, foreground = false;
48 
49 		wait_event_interruptible_timeout(*wq,
50 				kthread_should_stop() || freezing(current) ||
51 				waitqueue_active(fggc_wq) ||
52 				gc_th->gc_wake,
53 				msecs_to_jiffies(wait_ms));
54 
55 		if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56 			foreground = true;
57 
58 		/* give it a try one time */
59 		if (gc_th->gc_wake)
60 			gc_th->gc_wake = false;
61 
62 		if (try_to_freeze() || f2fs_readonly(sbi->sb)) {
63 			stat_other_skip_bggc_count(sbi);
64 			continue;
65 		}
66 		if (kthread_should_stop())
67 			break;
68 
69 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 			increase_sleep_time(gc_th, &wait_ms);
71 			stat_other_skip_bggc_count(sbi);
72 			continue;
73 		}
74 
75 		if (time_to_inject(sbi, FAULT_CHECKPOINT))
76 			f2fs_stop_checkpoint(sbi, false,
77 					STOP_CP_REASON_FAULT_INJECT);
78 
79 		if (!sb_start_write_trylock(sbi->sb)) {
80 			stat_other_skip_bggc_count(sbi);
81 			continue;
82 		}
83 
84 		/*
85 		 * [GC triggering condition]
86 		 * 0. GC is not conducted currently.
87 		 * 1. There are enough dirty segments.
88 		 * 2. IO subsystem is idle by checking the # of writeback pages.
89 		 * 3. IO subsystem is idle by checking the # of requests in
90 		 *    bdev's request list.
91 		 *
92 		 * Note) We have to avoid triggering GCs frequently.
93 		 * Because it is possible that some segments can be
94 		 * invalidated soon after by user update or deletion.
95 		 * So, I'd like to wait some time to collect dirty segments.
96 		 */
97 		if (sbi->gc_mode == GC_URGENT_HIGH ||
98 				sbi->gc_mode == GC_URGENT_MID) {
99 			wait_ms = gc_th->urgent_sleep_time;
100 			f2fs_down_write(&sbi->gc_lock);
101 			goto do_gc;
102 		}
103 
104 		if (foreground) {
105 			f2fs_down_write(&sbi->gc_lock);
106 			goto do_gc;
107 		} else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
108 			stat_other_skip_bggc_count(sbi);
109 			goto next;
110 		}
111 
112 		if (!is_idle(sbi, GC_TIME)) {
113 			increase_sleep_time(gc_th, &wait_ms);
114 			f2fs_up_write(&sbi->gc_lock);
115 			stat_io_skip_bggc_count(sbi);
116 			goto next;
117 		}
118 
119 		if (has_enough_invalid_blocks(sbi))
120 			decrease_sleep_time(gc_th, &wait_ms);
121 		else
122 			increase_sleep_time(gc_th, &wait_ms);
123 do_gc:
124 		stat_inc_gc_call_count(sbi, foreground ?
125 					FOREGROUND : BACKGROUND);
126 
127 		sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
128 
129 		/* foreground GC was been triggered via f2fs_balance_fs() */
130 		if (foreground)
131 			sync_mode = false;
132 
133 		gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
134 		gc_control.no_bg_gc = foreground;
135 		gc_control.nr_free_secs = foreground ? 1 : 0;
136 
137 		/* if return value is not zero, no victim was selected */
138 		if (f2fs_gc(sbi, &gc_control)) {
139 			/* don't bother wait_ms by foreground gc */
140 			if (!foreground)
141 				wait_ms = gc_th->no_gc_sleep_time;
142 		} else {
143 			/* reset wait_ms to default sleep time */
144 			if (wait_ms == gc_th->no_gc_sleep_time)
145 				wait_ms = gc_th->min_sleep_time;
146 		}
147 
148 		if (foreground)
149 			wake_up_all(&gc_th->fggc_wq);
150 
151 		trace_f2fs_background_gc(sbi->sb, wait_ms,
152 				prefree_segments(sbi), free_segments(sbi));
153 
154 		/* balancing f2fs's metadata periodically */
155 		f2fs_balance_fs_bg(sbi, true);
156 next:
157 		if (sbi->gc_mode != GC_NORMAL) {
158 			spin_lock(&sbi->gc_remaining_trials_lock);
159 			if (sbi->gc_remaining_trials) {
160 				sbi->gc_remaining_trials--;
161 				if (!sbi->gc_remaining_trials)
162 					sbi->gc_mode = GC_NORMAL;
163 			}
164 			spin_unlock(&sbi->gc_remaining_trials_lock);
165 		}
166 		sb_end_write(sbi->sb);
167 
168 	} while (!kthread_should_stop());
169 	return 0;
170 }
171 
172 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
173 {
174 	struct f2fs_gc_kthread *gc_th;
175 	dev_t dev = sbi->sb->s_bdev->bd_dev;
176 
177 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
178 	if (!gc_th)
179 		return -ENOMEM;
180 
181 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
182 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
183 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
184 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
185 
186 	gc_th->gc_wake = false;
187 
188 	sbi->gc_thread = gc_th;
189 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
190 	init_waitqueue_head(&sbi->gc_thread->fggc_wq);
191 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
192 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
193 	if (IS_ERR(gc_th->f2fs_gc_task)) {
194 		int err = PTR_ERR(gc_th->f2fs_gc_task);
195 
196 		kfree(gc_th);
197 		sbi->gc_thread = NULL;
198 		return err;
199 	}
200 
201 	return 0;
202 }
203 
204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
205 {
206 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
207 
208 	if (!gc_th)
209 		return;
210 	kthread_stop(gc_th->f2fs_gc_task);
211 	wake_up_all(&gc_th->fggc_wq);
212 	kfree(gc_th);
213 	sbi->gc_thread = NULL;
214 }
215 
216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
217 {
218 	int gc_mode;
219 
220 	if (gc_type == BG_GC) {
221 		if (sbi->am.atgc_enabled)
222 			gc_mode = GC_AT;
223 		else
224 			gc_mode = GC_CB;
225 	} else {
226 		gc_mode = GC_GREEDY;
227 	}
228 
229 	switch (sbi->gc_mode) {
230 	case GC_IDLE_CB:
231 		gc_mode = GC_CB;
232 		break;
233 	case GC_IDLE_GREEDY:
234 	case GC_URGENT_HIGH:
235 		gc_mode = GC_GREEDY;
236 		break;
237 	case GC_IDLE_AT:
238 		gc_mode = GC_AT;
239 		break;
240 	}
241 
242 	return gc_mode;
243 }
244 
245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
246 			int type, struct victim_sel_policy *p)
247 {
248 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
249 
250 	if (p->alloc_mode == SSR) {
251 		p->gc_mode = GC_GREEDY;
252 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
253 		p->max_search = dirty_i->nr_dirty[type];
254 		p->ofs_unit = 1;
255 	} else if (p->alloc_mode == AT_SSR) {
256 		p->gc_mode = GC_GREEDY;
257 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
258 		p->max_search = dirty_i->nr_dirty[type];
259 		p->ofs_unit = 1;
260 	} else {
261 		p->gc_mode = select_gc_type(sbi, gc_type);
262 		p->ofs_unit = SEGS_PER_SEC(sbi);
263 		if (__is_large_section(sbi)) {
264 			p->dirty_bitmap = dirty_i->dirty_secmap;
265 			p->max_search = count_bits(p->dirty_bitmap,
266 						0, MAIN_SECS(sbi));
267 		} else {
268 			p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
269 			p->max_search = dirty_i->nr_dirty[DIRTY];
270 		}
271 	}
272 
273 	/*
274 	 * adjust candidates range, should select all dirty segments for
275 	 * foreground GC and urgent GC cases.
276 	 */
277 	if (gc_type != FG_GC &&
278 			(sbi->gc_mode != GC_URGENT_HIGH) &&
279 			(p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
280 			p->max_search > sbi->max_victim_search)
281 		p->max_search = sbi->max_victim_search;
282 
283 	/* let's select beginning hot/small space first. */
284 	if (f2fs_need_rand_seg(sbi))
285 		p->offset = get_random_u32_below(MAIN_SECS(sbi) *
286 						SEGS_PER_SEC(sbi));
287 	else if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
288 		p->offset = 0;
289 	else
290 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
291 }
292 
293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
294 				struct victim_sel_policy *p)
295 {
296 	/* SSR allocates in a segment unit */
297 	if (p->alloc_mode == SSR)
298 		return BLKS_PER_SEG(sbi);
299 	else if (p->alloc_mode == AT_SSR)
300 		return UINT_MAX;
301 
302 	/* LFS */
303 	if (p->gc_mode == GC_GREEDY)
304 		return 2 * BLKS_PER_SEG(sbi) * p->ofs_unit;
305 	else if (p->gc_mode == GC_CB)
306 		return UINT_MAX;
307 	else if (p->gc_mode == GC_AT)
308 		return UINT_MAX;
309 	else /* No other gc_mode */
310 		return 0;
311 }
312 
313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
314 {
315 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
316 	unsigned int secno;
317 
318 	/*
319 	 * If the gc_type is FG_GC, we can select victim segments
320 	 * selected by background GC before.
321 	 * Those segments guarantee they have small valid blocks.
322 	 */
323 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
324 		if (sec_usage_check(sbi, secno))
325 			continue;
326 		clear_bit(secno, dirty_i->victim_secmap);
327 		return GET_SEG_FROM_SEC(sbi, secno);
328 	}
329 	return NULL_SEGNO;
330 }
331 
332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
333 {
334 	struct sit_info *sit_i = SIT_I(sbi);
335 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
336 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
337 	unsigned long long mtime = 0;
338 	unsigned int vblocks;
339 	unsigned char age = 0;
340 	unsigned char u;
341 	unsigned int i;
342 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
343 
344 	for (i = 0; i < usable_segs_per_sec; i++)
345 		mtime += get_seg_entry(sbi, start + i)->mtime;
346 	vblocks = get_valid_blocks(sbi, segno, true);
347 
348 	mtime = div_u64(mtime, usable_segs_per_sec);
349 	vblocks = div_u64(vblocks, usable_segs_per_sec);
350 
351 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
352 
353 	/* Handle if the system time has changed by the user */
354 	if (mtime < sit_i->min_mtime)
355 		sit_i->min_mtime = mtime;
356 	if (mtime > sit_i->max_mtime)
357 		sit_i->max_mtime = mtime;
358 	if (sit_i->max_mtime != sit_i->min_mtime)
359 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
360 				sit_i->max_mtime - sit_i->min_mtime);
361 
362 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
363 }
364 
365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
366 			unsigned int segno, struct victim_sel_policy *p)
367 {
368 	if (p->alloc_mode == SSR)
369 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
370 
371 	/* alloc_mode == LFS */
372 	if (p->gc_mode == GC_GREEDY)
373 		return get_valid_blocks(sbi, segno, true);
374 	else if (p->gc_mode == GC_CB)
375 		return get_cb_cost(sbi, segno);
376 
377 	f2fs_bug_on(sbi, 1);
378 	return 0;
379 }
380 
381 static unsigned int count_bits(const unsigned long *addr,
382 				unsigned int offset, unsigned int len)
383 {
384 	unsigned int end = offset + len, sum = 0;
385 
386 	while (offset < end) {
387 		if (test_bit(offset++, addr))
388 			++sum;
389 	}
390 	return sum;
391 }
392 
393 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi,
394 				struct rb_root_cached *root)
395 {
396 #ifdef CONFIG_F2FS_CHECK_FS
397 	struct rb_node *cur = rb_first_cached(root), *next;
398 	struct victim_entry *cur_ve, *next_ve;
399 
400 	while (cur) {
401 		next = rb_next(cur);
402 		if (!next)
403 			return true;
404 
405 		cur_ve = rb_entry(cur, struct victim_entry, rb_node);
406 		next_ve = rb_entry(next, struct victim_entry, rb_node);
407 
408 		if (cur_ve->mtime > next_ve->mtime) {
409 			f2fs_info(sbi, "broken victim_rbtree, "
410 				"cur_mtime(%llu) next_mtime(%llu)",
411 				cur_ve->mtime, next_ve->mtime);
412 			return false;
413 		}
414 		cur = next;
415 	}
416 #endif
417 	return true;
418 }
419 
420 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi,
421 					unsigned long long mtime)
422 {
423 	struct atgc_management *am = &sbi->am;
424 	struct rb_node *node = am->root.rb_root.rb_node;
425 	struct victim_entry *ve = NULL;
426 
427 	while (node) {
428 		ve = rb_entry(node, struct victim_entry, rb_node);
429 
430 		if (mtime < ve->mtime)
431 			node = node->rb_left;
432 		else
433 			node = node->rb_right;
434 	}
435 	return ve;
436 }
437 
438 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi,
439 		unsigned long long mtime, unsigned int segno)
440 {
441 	struct atgc_management *am = &sbi->am;
442 	struct victim_entry *ve;
443 
444 	ve =  f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL);
445 
446 	ve->mtime = mtime;
447 	ve->segno = segno;
448 
449 	list_add_tail(&ve->list, &am->victim_list);
450 	am->victim_count++;
451 
452 	return ve;
453 }
454 
455 static void __insert_victim_entry(struct f2fs_sb_info *sbi,
456 				unsigned long long mtime, unsigned int segno)
457 {
458 	struct atgc_management *am = &sbi->am;
459 	struct rb_root_cached *root = &am->root;
460 	struct rb_node **p = &root->rb_root.rb_node;
461 	struct rb_node *parent = NULL;
462 	struct victim_entry *ve;
463 	bool left_most = true;
464 
465 	/* look up rb tree to find parent node */
466 	while (*p) {
467 		parent = *p;
468 		ve = rb_entry(parent, struct victim_entry, rb_node);
469 
470 		if (mtime < ve->mtime) {
471 			p = &(*p)->rb_left;
472 		} else {
473 			p = &(*p)->rb_right;
474 			left_most = false;
475 		}
476 	}
477 
478 	ve = __create_victim_entry(sbi, mtime, segno);
479 
480 	rb_link_node(&ve->rb_node, parent, p);
481 	rb_insert_color_cached(&ve->rb_node, root, left_most);
482 }
483 
484 static void add_victim_entry(struct f2fs_sb_info *sbi,
485 				struct victim_sel_policy *p, unsigned int segno)
486 {
487 	struct sit_info *sit_i = SIT_I(sbi);
488 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
489 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
490 	unsigned long long mtime = 0;
491 	unsigned int i;
492 
493 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
494 		if (p->gc_mode == GC_AT &&
495 			get_valid_blocks(sbi, segno, true) == 0)
496 			return;
497 	}
498 
499 	for (i = 0; i < SEGS_PER_SEC(sbi); i++)
500 		mtime += get_seg_entry(sbi, start + i)->mtime;
501 	mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
502 
503 	/* Handle if the system time has changed by the user */
504 	if (mtime < sit_i->min_mtime)
505 		sit_i->min_mtime = mtime;
506 	if (mtime > sit_i->max_mtime)
507 		sit_i->max_mtime = mtime;
508 	if (mtime < sit_i->dirty_min_mtime)
509 		sit_i->dirty_min_mtime = mtime;
510 	if (mtime > sit_i->dirty_max_mtime)
511 		sit_i->dirty_max_mtime = mtime;
512 
513 	/* don't choose young section as candidate */
514 	if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
515 		return;
516 
517 	__insert_victim_entry(sbi, mtime, segno);
518 }
519 
520 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
521 						struct victim_sel_policy *p)
522 {
523 	struct sit_info *sit_i = SIT_I(sbi);
524 	struct atgc_management *am = &sbi->am;
525 	struct rb_root_cached *root = &am->root;
526 	struct rb_node *node;
527 	struct victim_entry *ve;
528 	unsigned long long total_time;
529 	unsigned long long age, u, accu;
530 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
531 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
532 	unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
533 	unsigned int vblocks;
534 	unsigned int dirty_threshold = max(am->max_candidate_count,
535 					am->candidate_ratio *
536 					am->victim_count / 100);
537 	unsigned int age_weight = am->age_weight;
538 	unsigned int cost;
539 	unsigned int iter = 0;
540 
541 	if (max_mtime < min_mtime)
542 		return;
543 
544 	max_mtime += 1;
545 	total_time = max_mtime - min_mtime;
546 
547 	accu = div64_u64(ULLONG_MAX, total_time);
548 	accu = min_t(unsigned long long, div_u64(accu, 100),
549 					DEFAULT_ACCURACY_CLASS);
550 
551 	node = rb_first_cached(root);
552 next:
553 	ve = rb_entry_safe(node, struct victim_entry, rb_node);
554 	if (!ve)
555 		return;
556 
557 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
558 		goto skip;
559 
560 	/* age = 10000 * x% * 60 */
561 	age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
562 								age_weight;
563 
564 	vblocks = get_valid_blocks(sbi, ve->segno, true);
565 	f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
566 
567 	/* u = 10000 * x% * 40 */
568 	u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
569 							(100 - age_weight);
570 
571 	f2fs_bug_on(sbi, age + u >= UINT_MAX);
572 
573 	cost = UINT_MAX - (age + u);
574 	iter++;
575 
576 	if (cost < p->min_cost ||
577 			(cost == p->min_cost && age > p->oldest_age)) {
578 		p->min_cost = cost;
579 		p->oldest_age = age;
580 		p->min_segno = ve->segno;
581 	}
582 skip:
583 	if (iter < dirty_threshold) {
584 		node = rb_next(node);
585 		goto next;
586 	}
587 }
588 
589 /*
590  * select candidates around source section in range of
591  * [target - dirty_threshold, target + dirty_threshold]
592  */
593 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
594 						struct victim_sel_policy *p)
595 {
596 	struct sit_info *sit_i = SIT_I(sbi);
597 	struct atgc_management *am = &sbi->am;
598 	struct victim_entry *ve;
599 	unsigned long long age;
600 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
601 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
602 	unsigned int vblocks;
603 	unsigned int dirty_threshold = max(am->max_candidate_count,
604 					am->candidate_ratio *
605 					am->victim_count / 100);
606 	unsigned int cost, iter;
607 	int stage = 0;
608 
609 	if (max_mtime < min_mtime)
610 		return;
611 	max_mtime += 1;
612 next_stage:
613 	iter = 0;
614 	ve = __lookup_victim_entry(sbi, p->age);
615 next_node:
616 	if (!ve) {
617 		if (stage++ == 0)
618 			goto next_stage;
619 		return;
620 	}
621 
622 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
623 		goto skip_node;
624 
625 	age = max_mtime - ve->mtime;
626 
627 	vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
628 	f2fs_bug_on(sbi, !vblocks);
629 
630 	/* rare case */
631 	if (vblocks == BLKS_PER_SEG(sbi))
632 		goto skip_node;
633 
634 	iter++;
635 
636 	age = max_mtime - abs(p->age - age);
637 	cost = UINT_MAX - vblocks;
638 
639 	if (cost < p->min_cost ||
640 			(cost == p->min_cost && age > p->oldest_age)) {
641 		p->min_cost = cost;
642 		p->oldest_age = age;
643 		p->min_segno = ve->segno;
644 	}
645 skip_node:
646 	if (iter < dirty_threshold) {
647 		ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) :
648 					rb_next(&ve->rb_node),
649 					struct victim_entry, rb_node);
650 		goto next_node;
651 	}
652 
653 	if (stage++ == 0)
654 		goto next_stage;
655 }
656 
657 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
658 						struct victim_sel_policy *p)
659 {
660 	f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root));
661 
662 	if (p->gc_mode == GC_AT)
663 		atgc_lookup_victim(sbi, p);
664 	else if (p->alloc_mode == AT_SSR)
665 		atssr_lookup_victim(sbi, p);
666 	else
667 		f2fs_bug_on(sbi, 1);
668 }
669 
670 static void release_victim_entry(struct f2fs_sb_info *sbi)
671 {
672 	struct atgc_management *am = &sbi->am;
673 	struct victim_entry *ve, *tmp;
674 
675 	list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
676 		list_del(&ve->list);
677 		kmem_cache_free(victim_entry_slab, ve);
678 		am->victim_count--;
679 	}
680 
681 	am->root = RB_ROOT_CACHED;
682 
683 	f2fs_bug_on(sbi, am->victim_count);
684 	f2fs_bug_on(sbi, !list_empty(&am->victim_list));
685 }
686 
687 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
688 {
689 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
690 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
691 
692 	if (!dirty_i->enable_pin_section)
693 		return false;
694 	if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
695 		dirty_i->pinned_secmap_cnt++;
696 	return true;
697 }
698 
699 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
700 {
701 	return dirty_i->pinned_secmap_cnt;
702 }
703 
704 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
705 						unsigned int secno)
706 {
707 	return dirty_i->enable_pin_section &&
708 		f2fs_pinned_section_exists(dirty_i) &&
709 		test_bit(secno, dirty_i->pinned_secmap);
710 }
711 
712 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
713 {
714 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
715 
716 	if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
717 		memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
718 		DIRTY_I(sbi)->pinned_secmap_cnt = 0;
719 	}
720 	DIRTY_I(sbi)->enable_pin_section = enable;
721 }
722 
723 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
724 							unsigned int segno)
725 {
726 	if (!f2fs_is_pinned_file(inode))
727 		return 0;
728 	if (gc_type != FG_GC)
729 		return -EBUSY;
730 	if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
731 		f2fs_pin_file_control(inode, true);
732 	return -EAGAIN;
733 }
734 
735 /*
736  * This function is called from two paths.
737  * One is garbage collection and the other is SSR segment selection.
738  * When it is called during GC, it just gets a victim segment
739  * and it does not remove it from dirty seglist.
740  * When it is called from SSR segment selection, it finds a segment
741  * which has minimum valid blocks and removes it from dirty seglist.
742  */
743 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
744 			int gc_type, int type, char alloc_mode,
745 			unsigned long long age)
746 {
747 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
748 	struct sit_info *sm = SIT_I(sbi);
749 	struct victim_sel_policy p;
750 	unsigned int secno, last_victim;
751 	unsigned int last_segment;
752 	unsigned int nsearched;
753 	bool is_atgc;
754 	int ret = 0;
755 
756 	mutex_lock(&dirty_i->seglist_lock);
757 	last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
758 
759 	p.alloc_mode = alloc_mode;
760 	p.age = age;
761 	p.age_threshold = sbi->am.age_threshold;
762 
763 retry:
764 	select_policy(sbi, gc_type, type, &p);
765 	p.min_segno = NULL_SEGNO;
766 	p.oldest_age = 0;
767 	p.min_cost = get_max_cost(sbi, &p);
768 
769 	is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
770 	nsearched = 0;
771 
772 	if (is_atgc)
773 		SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
774 
775 	if (*result != NULL_SEGNO) {
776 		if (!get_valid_blocks(sbi, *result, false)) {
777 			ret = -ENODATA;
778 			goto out;
779 		}
780 
781 		if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
782 			ret = -EBUSY;
783 		else
784 			p.min_segno = *result;
785 		goto out;
786 	}
787 
788 	ret = -ENODATA;
789 	if (p.max_search == 0)
790 		goto out;
791 
792 	if (__is_large_section(sbi) && p.alloc_mode == LFS) {
793 		if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
794 			p.min_segno = sbi->next_victim_seg[BG_GC];
795 			*result = p.min_segno;
796 			sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
797 			goto got_result;
798 		}
799 		if (gc_type == FG_GC &&
800 				sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
801 			p.min_segno = sbi->next_victim_seg[FG_GC];
802 			*result = p.min_segno;
803 			sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
804 			goto got_result;
805 		}
806 	}
807 
808 	last_victim = sm->last_victim[p.gc_mode];
809 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
810 		p.min_segno = check_bg_victims(sbi);
811 		if (p.min_segno != NULL_SEGNO)
812 			goto got_it;
813 	}
814 
815 	while (1) {
816 		unsigned long cost, *dirty_bitmap;
817 		unsigned int unit_no, segno;
818 
819 		dirty_bitmap = p.dirty_bitmap;
820 		unit_no = find_next_bit(dirty_bitmap,
821 				last_segment / p.ofs_unit,
822 				p.offset / p.ofs_unit);
823 		segno = unit_no * p.ofs_unit;
824 		if (segno >= last_segment) {
825 			if (sm->last_victim[p.gc_mode]) {
826 				last_segment =
827 					sm->last_victim[p.gc_mode];
828 				sm->last_victim[p.gc_mode] = 0;
829 				p.offset = 0;
830 				continue;
831 			}
832 			break;
833 		}
834 
835 		p.offset = segno + p.ofs_unit;
836 		nsearched++;
837 
838 #ifdef CONFIG_F2FS_CHECK_FS
839 		/*
840 		 * skip selecting the invalid segno (that is failed due to block
841 		 * validity check failure during GC) to avoid endless GC loop in
842 		 * such cases.
843 		 */
844 		if (test_bit(segno, sm->invalid_segmap))
845 			goto next;
846 #endif
847 
848 		secno = GET_SEC_FROM_SEG(sbi, segno);
849 
850 		if (sec_usage_check(sbi, secno))
851 			goto next;
852 
853 		/* Don't touch checkpointed data */
854 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
855 			if (p.alloc_mode == LFS) {
856 				/*
857 				 * LFS is set to find source section during GC.
858 				 * The victim should have no checkpointed data.
859 				 */
860 				if (get_ckpt_valid_blocks(sbi, segno, true))
861 					goto next;
862 			} else {
863 				/*
864 				 * SSR | AT_SSR are set to find target segment
865 				 * for writes which can be full by checkpointed
866 				 * and newly written blocks.
867 				 */
868 				if (!f2fs_segment_has_free_slot(sbi, segno))
869 					goto next;
870 			}
871 		}
872 
873 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
874 			goto next;
875 
876 		if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
877 			goto next;
878 
879 		if (is_atgc) {
880 			add_victim_entry(sbi, &p, segno);
881 			goto next;
882 		}
883 
884 		cost = get_gc_cost(sbi, segno, &p);
885 
886 		if (p.min_cost > cost) {
887 			p.min_segno = segno;
888 			p.min_cost = cost;
889 		}
890 next:
891 		if (nsearched >= p.max_search) {
892 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
893 				sm->last_victim[p.gc_mode] =
894 					last_victim + p.ofs_unit;
895 			else
896 				sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
897 			sm->last_victim[p.gc_mode] %=
898 				(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
899 			break;
900 		}
901 	}
902 
903 	/* get victim for GC_AT/AT_SSR */
904 	if (is_atgc) {
905 		lookup_victim_by_age(sbi, &p);
906 		release_victim_entry(sbi);
907 	}
908 
909 	if (is_atgc && p.min_segno == NULL_SEGNO &&
910 			sm->elapsed_time < p.age_threshold) {
911 		p.age_threshold = 0;
912 		goto retry;
913 	}
914 
915 	if (p.min_segno != NULL_SEGNO) {
916 got_it:
917 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
918 got_result:
919 		if (p.alloc_mode == LFS) {
920 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
921 			if (gc_type == FG_GC)
922 				sbi->cur_victim_sec = secno;
923 			else
924 				set_bit(secno, dirty_i->victim_secmap);
925 		}
926 		ret = 0;
927 
928 	}
929 out:
930 	if (p.min_segno != NULL_SEGNO)
931 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
932 				sbi->cur_victim_sec,
933 				prefree_segments(sbi), free_segments(sbi));
934 	mutex_unlock(&dirty_i->seglist_lock);
935 
936 	return ret;
937 }
938 
939 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
940 {
941 	struct inode_entry *ie;
942 
943 	ie = radix_tree_lookup(&gc_list->iroot, ino);
944 	if (ie)
945 		return ie->inode;
946 	return NULL;
947 }
948 
949 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
950 {
951 	struct inode_entry *new_ie;
952 
953 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
954 		iput(inode);
955 		return;
956 	}
957 	new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
958 					GFP_NOFS, true, NULL);
959 	new_ie->inode = inode;
960 
961 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
962 	list_add_tail(&new_ie->list, &gc_list->ilist);
963 }
964 
965 static void put_gc_inode(struct gc_inode_list *gc_list)
966 {
967 	struct inode_entry *ie, *next_ie;
968 
969 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
970 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
971 		iput(ie->inode);
972 		list_del(&ie->list);
973 		kmem_cache_free(f2fs_inode_entry_slab, ie);
974 	}
975 }
976 
977 static int check_valid_map(struct f2fs_sb_info *sbi,
978 				unsigned int segno, int offset)
979 {
980 	struct sit_info *sit_i = SIT_I(sbi);
981 	struct seg_entry *sentry;
982 	int ret;
983 
984 	down_read(&sit_i->sentry_lock);
985 	sentry = get_seg_entry(sbi, segno);
986 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
987 	up_read(&sit_i->sentry_lock);
988 	return ret;
989 }
990 
991 /*
992  * This function compares node address got in summary with that in NAT.
993  * On validity, copy that node with cold status, otherwise (invalid node)
994  * ignore that.
995  */
996 static int gc_node_segment(struct f2fs_sb_info *sbi,
997 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
998 {
999 	struct f2fs_summary *entry;
1000 	block_t start_addr;
1001 	int off;
1002 	int phase = 0;
1003 	bool fggc = (gc_type == FG_GC);
1004 	int submitted = 0;
1005 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1006 
1007 	start_addr = START_BLOCK(sbi, segno);
1008 
1009 next_step:
1010 	entry = sum;
1011 
1012 	if (fggc && phase == 2)
1013 		atomic_inc(&sbi->wb_sync_req[NODE]);
1014 
1015 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1016 		nid_t nid = le32_to_cpu(entry->nid);
1017 		struct page *node_page;
1018 		struct node_info ni;
1019 		int err;
1020 
1021 		/* stop BG_GC if there is not enough free sections. */
1022 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
1023 			return submitted;
1024 
1025 		if (check_valid_map(sbi, segno, off) == 0)
1026 			continue;
1027 
1028 		if (phase == 0) {
1029 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1030 							META_NAT, true);
1031 			continue;
1032 		}
1033 
1034 		if (phase == 1) {
1035 			f2fs_ra_node_page(sbi, nid);
1036 			continue;
1037 		}
1038 
1039 		/* phase == 2 */
1040 		node_page = f2fs_get_node_page(sbi, nid);
1041 		if (IS_ERR(node_page))
1042 			continue;
1043 
1044 		/* block may become invalid during f2fs_get_node_page */
1045 		if (check_valid_map(sbi, segno, off) == 0) {
1046 			f2fs_put_page(node_page, 1);
1047 			continue;
1048 		}
1049 
1050 		if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1051 			f2fs_put_page(node_page, 1);
1052 			continue;
1053 		}
1054 
1055 		if (ni.blk_addr != start_addr + off) {
1056 			f2fs_put_page(node_page, 1);
1057 			continue;
1058 		}
1059 
1060 		err = f2fs_move_node_page(node_page, gc_type);
1061 		if (!err && gc_type == FG_GC)
1062 			submitted++;
1063 		stat_inc_node_blk_count(sbi, 1, gc_type);
1064 	}
1065 
1066 	if (++phase < 3)
1067 		goto next_step;
1068 
1069 	if (fggc)
1070 		atomic_dec(&sbi->wb_sync_req[NODE]);
1071 	return submitted;
1072 }
1073 
1074 /*
1075  * Calculate start block index indicating the given node offset.
1076  * Be careful, caller should give this node offset only indicating direct node
1077  * blocks. If any node offsets, which point the other types of node blocks such
1078  * as indirect or double indirect node blocks, are given, it must be a caller's
1079  * bug.
1080  */
1081 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1082 {
1083 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1084 	unsigned int bidx;
1085 
1086 	if (node_ofs == 0)
1087 		return 0;
1088 
1089 	if (node_ofs <= 2) {
1090 		bidx = node_ofs - 1;
1091 	} else if (node_ofs <= indirect_blks) {
1092 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1093 
1094 		bidx = node_ofs - 2 - dec;
1095 	} else {
1096 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1097 
1098 		bidx = node_ofs - 5 - dec;
1099 	}
1100 	return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1101 }
1102 
1103 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1104 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1105 {
1106 	struct page *node_page;
1107 	nid_t nid;
1108 	unsigned int ofs_in_node, max_addrs, base;
1109 	block_t source_blkaddr;
1110 
1111 	nid = le32_to_cpu(sum->nid);
1112 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1113 
1114 	node_page = f2fs_get_node_page(sbi, nid);
1115 	if (IS_ERR(node_page))
1116 		return false;
1117 
1118 	if (f2fs_get_node_info(sbi, nid, dni, false)) {
1119 		f2fs_put_page(node_page, 1);
1120 		return false;
1121 	}
1122 
1123 	if (sum->version != dni->version) {
1124 		f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1125 			  __func__);
1126 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1127 	}
1128 
1129 	if (f2fs_check_nid_range(sbi, dni->ino)) {
1130 		f2fs_put_page(node_page, 1);
1131 		return false;
1132 	}
1133 
1134 	if (IS_INODE(node_page)) {
1135 		base = offset_in_addr(F2FS_INODE(node_page));
1136 		max_addrs = DEF_ADDRS_PER_INODE;
1137 	} else {
1138 		base = 0;
1139 		max_addrs = DEF_ADDRS_PER_BLOCK;
1140 	}
1141 
1142 	if (base + ofs_in_node >= max_addrs) {
1143 		f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1144 			base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1145 		f2fs_put_page(node_page, 1);
1146 		return false;
1147 	}
1148 
1149 	*nofs = ofs_of_node(node_page);
1150 	source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1151 	f2fs_put_page(node_page, 1);
1152 
1153 	if (source_blkaddr != blkaddr) {
1154 #ifdef CONFIG_F2FS_CHECK_FS
1155 		unsigned int segno = GET_SEGNO(sbi, blkaddr);
1156 		unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1157 
1158 		if (unlikely(check_valid_map(sbi, segno, offset))) {
1159 			if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1160 				f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1161 					 blkaddr, source_blkaddr, segno);
1162 				set_sbi_flag(sbi, SBI_NEED_FSCK);
1163 			}
1164 		}
1165 #endif
1166 		return false;
1167 	}
1168 	return true;
1169 }
1170 
1171 static int ra_data_block(struct inode *inode, pgoff_t index)
1172 {
1173 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1174 	struct address_space *mapping = inode->i_mapping;
1175 	struct dnode_of_data dn;
1176 	struct page *page;
1177 	struct f2fs_io_info fio = {
1178 		.sbi = sbi,
1179 		.ino = inode->i_ino,
1180 		.type = DATA,
1181 		.temp = COLD,
1182 		.op = REQ_OP_READ,
1183 		.op_flags = 0,
1184 		.encrypted_page = NULL,
1185 		.in_list = 0,
1186 	};
1187 	int err;
1188 
1189 	page = f2fs_grab_cache_page(mapping, index, true);
1190 	if (!page)
1191 		return -ENOMEM;
1192 
1193 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1194 						&dn.data_blkaddr)) {
1195 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1196 						DATA_GENERIC_ENHANCE_READ))) {
1197 			err = -EFSCORRUPTED;
1198 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1199 			goto put_page;
1200 		}
1201 		goto got_it;
1202 	}
1203 
1204 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1205 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1206 	if (err)
1207 		goto put_page;
1208 	f2fs_put_dnode(&dn);
1209 
1210 	if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1211 		err = -ENOENT;
1212 		goto put_page;
1213 	}
1214 	if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1215 						DATA_GENERIC_ENHANCE))) {
1216 		err = -EFSCORRUPTED;
1217 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1218 		goto put_page;
1219 	}
1220 got_it:
1221 	/* read page */
1222 	fio.page = page;
1223 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1224 
1225 	/*
1226 	 * don't cache encrypted data into meta inode until previous dirty
1227 	 * data were writebacked to avoid racing between GC and flush.
1228 	 */
1229 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1230 
1231 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1232 
1233 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1234 					dn.data_blkaddr,
1235 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
1236 	if (!fio.encrypted_page) {
1237 		err = -ENOMEM;
1238 		goto put_page;
1239 	}
1240 
1241 	err = f2fs_submit_page_bio(&fio);
1242 	if (err)
1243 		goto put_encrypted_page;
1244 	f2fs_put_page(fio.encrypted_page, 0);
1245 	f2fs_put_page(page, 1);
1246 
1247 	f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1248 	f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1249 
1250 	return 0;
1251 put_encrypted_page:
1252 	f2fs_put_page(fio.encrypted_page, 1);
1253 put_page:
1254 	f2fs_put_page(page, 1);
1255 	return err;
1256 }
1257 
1258 /*
1259  * Move data block via META_MAPPING while keeping locked data page.
1260  * This can be used to move blocks, aka LBAs, directly on disk.
1261  */
1262 static int move_data_block(struct inode *inode, block_t bidx,
1263 				int gc_type, unsigned int segno, int off)
1264 {
1265 	struct f2fs_io_info fio = {
1266 		.sbi = F2FS_I_SB(inode),
1267 		.ino = inode->i_ino,
1268 		.type = DATA,
1269 		.temp = COLD,
1270 		.op = REQ_OP_READ,
1271 		.op_flags = 0,
1272 		.encrypted_page = NULL,
1273 		.in_list = 0,
1274 	};
1275 	struct dnode_of_data dn;
1276 	struct f2fs_summary sum;
1277 	struct node_info ni;
1278 	struct page *page, *mpage;
1279 	block_t newaddr;
1280 	int err = 0;
1281 	bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1282 	int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1283 				(fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1284 				CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1285 
1286 	/* do not read out */
1287 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1288 	if (!page)
1289 		return -ENOMEM;
1290 
1291 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1292 		err = -ENOENT;
1293 		goto out;
1294 	}
1295 
1296 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1297 	if (err)
1298 		goto out;
1299 
1300 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1301 	err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1302 	if (err)
1303 		goto out;
1304 
1305 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1306 		ClearPageUptodate(page);
1307 		err = -ENOENT;
1308 		goto put_out;
1309 	}
1310 
1311 	/*
1312 	 * don't cache encrypted data into meta inode until previous dirty
1313 	 * data were writebacked to avoid racing between GC and flush.
1314 	 */
1315 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1316 
1317 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1318 
1319 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1320 	if (err)
1321 		goto put_out;
1322 
1323 	/* read page */
1324 	fio.page = page;
1325 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1326 
1327 	if (lfs_mode)
1328 		f2fs_down_write(&fio.sbi->io_order_lock);
1329 
1330 	mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1331 					fio.old_blkaddr, false);
1332 	if (!mpage) {
1333 		err = -ENOMEM;
1334 		goto up_out;
1335 	}
1336 
1337 	fio.encrypted_page = mpage;
1338 
1339 	/* read source block in mpage */
1340 	if (!PageUptodate(mpage)) {
1341 		err = f2fs_submit_page_bio(&fio);
1342 		if (err) {
1343 			f2fs_put_page(mpage, 1);
1344 			goto up_out;
1345 		}
1346 
1347 		f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1348 							F2FS_BLKSIZE);
1349 		f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1350 							F2FS_BLKSIZE);
1351 
1352 		lock_page(mpage);
1353 		if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1354 						!PageUptodate(mpage))) {
1355 			err = -EIO;
1356 			f2fs_put_page(mpage, 1);
1357 			goto up_out;
1358 		}
1359 	}
1360 
1361 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1362 
1363 	/* allocate block address */
1364 	f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1365 				&sum, type, NULL);
1366 
1367 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1368 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1369 	if (!fio.encrypted_page) {
1370 		err = -ENOMEM;
1371 		f2fs_put_page(mpage, 1);
1372 		goto recover_block;
1373 	}
1374 
1375 	/* write target block */
1376 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1377 	memcpy(page_address(fio.encrypted_page),
1378 				page_address(mpage), PAGE_SIZE);
1379 	f2fs_put_page(mpage, 1);
1380 
1381 	f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr);
1382 
1383 	set_page_dirty(fio.encrypted_page);
1384 	if (clear_page_dirty_for_io(fio.encrypted_page))
1385 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
1386 
1387 	set_page_writeback(fio.encrypted_page);
1388 
1389 	fio.op = REQ_OP_WRITE;
1390 	fio.op_flags = REQ_SYNC;
1391 	fio.new_blkaddr = newaddr;
1392 	f2fs_submit_page_write(&fio);
1393 
1394 	f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1395 
1396 	f2fs_update_data_blkaddr(&dn, newaddr);
1397 	set_inode_flag(inode, FI_APPEND_WRITE);
1398 
1399 	f2fs_put_page(fio.encrypted_page, 1);
1400 recover_block:
1401 	if (err)
1402 		f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1403 							true, true, true);
1404 up_out:
1405 	if (lfs_mode)
1406 		f2fs_up_write(&fio.sbi->io_order_lock);
1407 put_out:
1408 	f2fs_put_dnode(&dn);
1409 out:
1410 	f2fs_put_page(page, 1);
1411 	return err;
1412 }
1413 
1414 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1415 							unsigned int segno, int off)
1416 {
1417 	struct page *page;
1418 	int err = 0;
1419 
1420 	page = f2fs_get_lock_data_page(inode, bidx, true);
1421 	if (IS_ERR(page))
1422 		return PTR_ERR(page);
1423 
1424 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1425 		err = -ENOENT;
1426 		goto out;
1427 	}
1428 
1429 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1430 	if (err)
1431 		goto out;
1432 
1433 	if (gc_type == BG_GC) {
1434 		if (PageWriteback(page)) {
1435 			err = -EAGAIN;
1436 			goto out;
1437 		}
1438 		set_page_dirty(page);
1439 		set_page_private_gcing(page);
1440 	} else {
1441 		struct f2fs_io_info fio = {
1442 			.sbi = F2FS_I_SB(inode),
1443 			.ino = inode->i_ino,
1444 			.type = DATA,
1445 			.temp = COLD,
1446 			.op = REQ_OP_WRITE,
1447 			.op_flags = REQ_SYNC,
1448 			.old_blkaddr = NULL_ADDR,
1449 			.page = page,
1450 			.encrypted_page = NULL,
1451 			.need_lock = LOCK_REQ,
1452 			.io_type = FS_GC_DATA_IO,
1453 		};
1454 		bool is_dirty = PageDirty(page);
1455 
1456 retry:
1457 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1458 
1459 		set_page_dirty(page);
1460 		if (clear_page_dirty_for_io(page)) {
1461 			inode_dec_dirty_pages(inode);
1462 			f2fs_remove_dirty_inode(inode);
1463 		}
1464 
1465 		set_page_private_gcing(page);
1466 
1467 		err = f2fs_do_write_data_page(&fio);
1468 		if (err) {
1469 			clear_page_private_gcing(page);
1470 			if (err == -ENOMEM) {
1471 				memalloc_retry_wait(GFP_NOFS);
1472 				goto retry;
1473 			}
1474 			if (is_dirty)
1475 				set_page_dirty(page);
1476 		}
1477 	}
1478 out:
1479 	f2fs_put_page(page, 1);
1480 	return err;
1481 }
1482 
1483 /*
1484  * This function tries to get parent node of victim data block, and identifies
1485  * data block validity. If the block is valid, copy that with cold status and
1486  * modify parent node.
1487  * If the parent node is not valid or the data block address is different,
1488  * the victim data block is ignored.
1489  */
1490 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1491 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1492 		bool force_migrate)
1493 {
1494 	struct super_block *sb = sbi->sb;
1495 	struct f2fs_summary *entry;
1496 	block_t start_addr;
1497 	int off;
1498 	int phase = 0;
1499 	int submitted = 0;
1500 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1501 
1502 	start_addr = START_BLOCK(sbi, segno);
1503 
1504 next_step:
1505 	entry = sum;
1506 
1507 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1508 		struct page *data_page;
1509 		struct inode *inode;
1510 		struct node_info dni; /* dnode info for the data */
1511 		unsigned int ofs_in_node, nofs;
1512 		block_t start_bidx;
1513 		nid_t nid = le32_to_cpu(entry->nid);
1514 
1515 		/*
1516 		 * stop BG_GC if there is not enough free sections.
1517 		 * Or, stop GC if the segment becomes fully valid caused by
1518 		 * race condition along with SSR block allocation.
1519 		 */
1520 		if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1521 			(!force_migrate && get_valid_blocks(sbi, segno, true) ==
1522 							CAP_BLKS_PER_SEC(sbi)))
1523 			return submitted;
1524 
1525 		if (check_valid_map(sbi, segno, off) == 0)
1526 			continue;
1527 
1528 		if (phase == 0) {
1529 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1530 							META_NAT, true);
1531 			continue;
1532 		}
1533 
1534 		if (phase == 1) {
1535 			f2fs_ra_node_page(sbi, nid);
1536 			continue;
1537 		}
1538 
1539 		/* Get an inode by ino with checking validity */
1540 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1541 			continue;
1542 
1543 		if (phase == 2) {
1544 			f2fs_ra_node_page(sbi, dni.ino);
1545 			continue;
1546 		}
1547 
1548 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1549 
1550 		if (phase == 3) {
1551 			int err;
1552 
1553 			inode = f2fs_iget(sb, dni.ino);
1554 			if (IS_ERR(inode))
1555 				continue;
1556 
1557 			if (is_bad_inode(inode) ||
1558 					special_file(inode->i_mode)) {
1559 				iput(inode);
1560 				continue;
1561 			}
1562 
1563 			err = f2fs_gc_pinned_control(inode, gc_type, segno);
1564 			if (err == -EAGAIN) {
1565 				iput(inode);
1566 				return submitted;
1567 			}
1568 
1569 			if (!f2fs_down_write_trylock(
1570 				&F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1571 				iput(inode);
1572 				sbi->skipped_gc_rwsem++;
1573 				continue;
1574 			}
1575 
1576 			start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1577 								ofs_in_node;
1578 
1579 			if (f2fs_post_read_required(inode)) {
1580 				int err = ra_data_block(inode, start_bidx);
1581 
1582 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1583 				if (err) {
1584 					iput(inode);
1585 					continue;
1586 				}
1587 				add_gc_inode(gc_list, inode);
1588 				continue;
1589 			}
1590 
1591 			data_page = f2fs_get_read_data_page(inode, start_bidx,
1592 							REQ_RAHEAD, true, NULL);
1593 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1594 			if (IS_ERR(data_page)) {
1595 				iput(inode);
1596 				continue;
1597 			}
1598 
1599 			f2fs_put_page(data_page, 0);
1600 			add_gc_inode(gc_list, inode);
1601 			continue;
1602 		}
1603 
1604 		/* phase 4 */
1605 		inode = find_gc_inode(gc_list, dni.ino);
1606 		if (inode) {
1607 			struct f2fs_inode_info *fi = F2FS_I(inode);
1608 			bool locked = false;
1609 			int err;
1610 
1611 			if (S_ISREG(inode->i_mode)) {
1612 				if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) {
1613 					sbi->skipped_gc_rwsem++;
1614 					continue;
1615 				}
1616 				if (!f2fs_down_write_trylock(
1617 						&fi->i_gc_rwsem[READ])) {
1618 					sbi->skipped_gc_rwsem++;
1619 					f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1620 					continue;
1621 				}
1622 				locked = true;
1623 
1624 				/* wait for all inflight aio data */
1625 				inode_dio_wait(inode);
1626 			}
1627 
1628 			start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1629 								+ ofs_in_node;
1630 			if (f2fs_post_read_required(inode))
1631 				err = move_data_block(inode, start_bidx,
1632 							gc_type, segno, off);
1633 			else
1634 				err = move_data_page(inode, start_bidx, gc_type,
1635 								segno, off);
1636 
1637 			if (!err && (gc_type == FG_GC ||
1638 					f2fs_post_read_required(inode)))
1639 				submitted++;
1640 
1641 			if (locked) {
1642 				f2fs_up_write(&fi->i_gc_rwsem[READ]);
1643 				f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1644 			}
1645 
1646 			stat_inc_data_blk_count(sbi, 1, gc_type);
1647 		}
1648 	}
1649 
1650 	if (++phase < 5)
1651 		goto next_step;
1652 
1653 	return submitted;
1654 }
1655 
1656 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1657 			int gc_type)
1658 {
1659 	struct sit_info *sit_i = SIT_I(sbi);
1660 	int ret;
1661 
1662 	down_write(&sit_i->sentry_lock);
1663 	ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, LFS, 0);
1664 	up_write(&sit_i->sentry_lock);
1665 	return ret;
1666 }
1667 
1668 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1669 				unsigned int start_segno,
1670 				struct gc_inode_list *gc_list, int gc_type,
1671 				bool force_migrate)
1672 {
1673 	struct page *sum_page;
1674 	struct f2fs_summary_block *sum;
1675 	struct blk_plug plug;
1676 	unsigned int segno = start_segno;
1677 	unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi);
1678 	int seg_freed = 0, migrated = 0;
1679 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1680 						SUM_TYPE_DATA : SUM_TYPE_NODE;
1681 	unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE;
1682 	int submitted = 0;
1683 
1684 	if (__is_large_section(sbi))
1685 		end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi));
1686 
1687 	/*
1688 	 * zone-capacity can be less than zone-size in zoned devices,
1689 	 * resulting in less than expected usable segments in the zone,
1690 	 * calculate the end segno in the zone which can be garbage collected
1691 	 */
1692 	if (f2fs_sb_has_blkzoned(sbi))
1693 		end_segno -= SEGS_PER_SEC(sbi) -
1694 					f2fs_usable_segs_in_sec(sbi, segno);
1695 
1696 	sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1697 
1698 	/* readahead multi ssa blocks those have contiguous address */
1699 	if (__is_large_section(sbi))
1700 		f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1701 					end_segno - segno, META_SSA, true);
1702 
1703 	/* reference all summary page */
1704 	while (segno < end_segno) {
1705 		sum_page = f2fs_get_sum_page(sbi, segno++);
1706 		if (IS_ERR(sum_page)) {
1707 			int err = PTR_ERR(sum_page);
1708 
1709 			end_segno = segno - 1;
1710 			for (segno = start_segno; segno < end_segno; segno++) {
1711 				sum_page = find_get_page(META_MAPPING(sbi),
1712 						GET_SUM_BLOCK(sbi, segno));
1713 				f2fs_put_page(sum_page, 0);
1714 				f2fs_put_page(sum_page, 0);
1715 			}
1716 			return err;
1717 		}
1718 		unlock_page(sum_page);
1719 	}
1720 
1721 	blk_start_plug(&plug);
1722 
1723 	for (segno = start_segno; segno < end_segno; segno++) {
1724 
1725 		/* find segment summary of victim */
1726 		sum_page = find_get_page(META_MAPPING(sbi),
1727 					GET_SUM_BLOCK(sbi, segno));
1728 		f2fs_put_page(sum_page, 0);
1729 
1730 		if (get_valid_blocks(sbi, segno, false) == 0)
1731 			goto freed;
1732 		if (gc_type == BG_GC && __is_large_section(sbi) &&
1733 				migrated >= sbi->migration_granularity)
1734 			goto skip;
1735 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1736 			goto skip;
1737 
1738 		sum = page_address(sum_page);
1739 		if (type != GET_SUM_TYPE((&sum->footer))) {
1740 			f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1741 				 segno, type, GET_SUM_TYPE((&sum->footer)));
1742 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1743 			f2fs_stop_checkpoint(sbi, false,
1744 				STOP_CP_REASON_CORRUPTED_SUMMARY);
1745 			goto skip;
1746 		}
1747 
1748 		/*
1749 		 * this is to avoid deadlock:
1750 		 * - lock_page(sum_page)         - f2fs_replace_block
1751 		 *  - check_valid_map()            - down_write(sentry_lock)
1752 		 *   - down_read(sentry_lock)     - change_curseg()
1753 		 *                                  - lock_page(sum_page)
1754 		 */
1755 		if (type == SUM_TYPE_NODE)
1756 			submitted += gc_node_segment(sbi, sum->entries, segno,
1757 								gc_type);
1758 		else
1759 			submitted += gc_data_segment(sbi, sum->entries, gc_list,
1760 							segno, gc_type,
1761 							force_migrate);
1762 
1763 		stat_inc_gc_seg_count(sbi, data_type, gc_type);
1764 		sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1765 		migrated++;
1766 
1767 freed:
1768 		if (gc_type == FG_GC &&
1769 				get_valid_blocks(sbi, segno, false) == 0)
1770 			seg_freed++;
1771 
1772 		if (__is_large_section(sbi))
1773 			sbi->next_victim_seg[gc_type] =
1774 				(segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1775 skip:
1776 		f2fs_put_page(sum_page, 0);
1777 	}
1778 
1779 	if (submitted)
1780 		f2fs_submit_merged_write(sbi, data_type);
1781 
1782 	blk_finish_plug(&plug);
1783 
1784 	if (migrated)
1785 		stat_inc_gc_sec_count(sbi, data_type, gc_type);
1786 
1787 	return seg_freed;
1788 }
1789 
1790 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1791 {
1792 	int gc_type = gc_control->init_gc_type;
1793 	unsigned int segno = gc_control->victim_segno;
1794 	int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0;
1795 	int ret = 0;
1796 	struct cp_control cpc;
1797 	struct gc_inode_list gc_list = {
1798 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
1799 		.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1800 	};
1801 	unsigned int skipped_round = 0, round = 0;
1802 	unsigned int upper_secs;
1803 
1804 	trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1805 				gc_control->nr_free_secs,
1806 				get_pages(sbi, F2FS_DIRTY_NODES),
1807 				get_pages(sbi, F2FS_DIRTY_DENTS),
1808 				get_pages(sbi, F2FS_DIRTY_IMETA),
1809 				free_sections(sbi),
1810 				free_segments(sbi),
1811 				reserved_segments(sbi),
1812 				prefree_segments(sbi));
1813 
1814 	cpc.reason = __get_cp_reason(sbi);
1815 gc_more:
1816 	sbi->skipped_gc_rwsem = 0;
1817 	if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1818 		ret = -EINVAL;
1819 		goto stop;
1820 	}
1821 	if (unlikely(f2fs_cp_error(sbi))) {
1822 		ret = -EIO;
1823 		goto stop;
1824 	}
1825 
1826 	/* Let's run FG_GC, if we don't have enough space. */
1827 	if (has_not_enough_free_secs(sbi, 0, 0)) {
1828 		gc_type = FG_GC;
1829 
1830 		/*
1831 		 * For example, if there are many prefree_segments below given
1832 		 * threshold, we can make them free by checkpoint. Then, we
1833 		 * secure free segments which doesn't need fggc any more.
1834 		 */
1835 		if (prefree_segments(sbi)) {
1836 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
1837 			ret = f2fs_write_checkpoint(sbi, &cpc);
1838 			if (ret)
1839 				goto stop;
1840 			/* Reset due to checkpoint */
1841 			sec_freed = 0;
1842 		}
1843 	}
1844 
1845 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1846 	if (gc_type == BG_GC && gc_control->no_bg_gc) {
1847 		ret = -EINVAL;
1848 		goto stop;
1849 	}
1850 retry:
1851 	ret = __get_victim(sbi, &segno, gc_type);
1852 	if (ret) {
1853 		/* allow to search victim from sections has pinned data */
1854 		if (ret == -ENODATA && gc_type == FG_GC &&
1855 				f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1856 			f2fs_unpin_all_sections(sbi, false);
1857 			goto retry;
1858 		}
1859 		goto stop;
1860 	}
1861 
1862 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1863 				gc_control->should_migrate_blocks);
1864 	total_freed += seg_freed;
1865 
1866 	if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) {
1867 		sec_freed++;
1868 		total_sec_freed++;
1869 	}
1870 
1871 	if (gc_type == FG_GC) {
1872 		sbi->cur_victim_sec = NULL_SEGNO;
1873 
1874 		if (has_enough_free_secs(sbi, sec_freed, 0)) {
1875 			if (!gc_control->no_bg_gc &&
1876 			    total_sec_freed < gc_control->nr_free_secs)
1877 				goto go_gc_more;
1878 			goto stop;
1879 		}
1880 		if (sbi->skipped_gc_rwsem)
1881 			skipped_round++;
1882 		round++;
1883 		if (skipped_round > MAX_SKIP_GC_COUNT &&
1884 				skipped_round * 2 >= round) {
1885 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
1886 			ret = f2fs_write_checkpoint(sbi, &cpc);
1887 			goto stop;
1888 		}
1889 	} else if (has_enough_free_secs(sbi, 0, 0)) {
1890 		goto stop;
1891 	}
1892 
1893 	__get_secs_required(sbi, NULL, &upper_secs, NULL);
1894 
1895 	/*
1896 	 * Write checkpoint to reclaim prefree segments.
1897 	 * We need more three extra sections for writer's data/node/dentry.
1898 	 */
1899 	if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS &&
1900 				prefree_segments(sbi)) {
1901 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1902 		ret = f2fs_write_checkpoint(sbi, &cpc);
1903 		if (ret)
1904 			goto stop;
1905 		/* Reset due to checkpoint */
1906 		sec_freed = 0;
1907 	}
1908 go_gc_more:
1909 	segno = NULL_SEGNO;
1910 	goto gc_more;
1911 
1912 stop:
1913 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1914 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1915 
1916 	if (gc_type == FG_GC)
1917 		f2fs_unpin_all_sections(sbi, true);
1918 
1919 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed,
1920 				get_pages(sbi, F2FS_DIRTY_NODES),
1921 				get_pages(sbi, F2FS_DIRTY_DENTS),
1922 				get_pages(sbi, F2FS_DIRTY_IMETA),
1923 				free_sections(sbi),
1924 				free_segments(sbi),
1925 				reserved_segments(sbi),
1926 				prefree_segments(sbi));
1927 
1928 	f2fs_up_write(&sbi->gc_lock);
1929 
1930 	put_gc_inode(&gc_list);
1931 
1932 	if (gc_control->err_gc_skipped && !ret)
1933 		ret = total_sec_freed ? 0 : -EAGAIN;
1934 	return ret;
1935 }
1936 
1937 int __init f2fs_create_garbage_collection_cache(void)
1938 {
1939 	victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1940 					sizeof(struct victim_entry));
1941 	return victim_entry_slab ? 0 : -ENOMEM;
1942 }
1943 
1944 void f2fs_destroy_garbage_collection_cache(void)
1945 {
1946 	kmem_cache_destroy(victim_entry_slab);
1947 }
1948 
1949 static void init_atgc_management(struct f2fs_sb_info *sbi)
1950 {
1951 	struct atgc_management *am = &sbi->am;
1952 
1953 	if (test_opt(sbi, ATGC) &&
1954 		SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1955 		am->atgc_enabled = true;
1956 
1957 	am->root = RB_ROOT_CACHED;
1958 	INIT_LIST_HEAD(&am->victim_list);
1959 	am->victim_count = 0;
1960 
1961 	am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1962 	am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1963 	am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1964 	am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1965 }
1966 
1967 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1968 {
1969 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1970 
1971 	/* give warm/cold data area from slower device */
1972 	if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1973 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1974 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1975 
1976 	init_atgc_management(sbi);
1977 }
1978 
1979 int f2fs_gc_range(struct f2fs_sb_info *sbi,
1980 		unsigned int start_seg, unsigned int end_seg,
1981 		bool dry_run, unsigned int dry_run_sections)
1982 {
1983 	unsigned int segno;
1984 	unsigned int gc_secs = dry_run_sections;
1985 
1986 	for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) {
1987 		struct gc_inode_list gc_list = {
1988 			.ilist = LIST_HEAD_INIT(gc_list.ilist),
1989 			.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1990 		};
1991 
1992 		do_garbage_collect(sbi, segno, &gc_list, FG_GC,
1993 						dry_run_sections == 0);
1994 		put_gc_inode(&gc_list);
1995 
1996 		if (!dry_run && get_valid_blocks(sbi, segno, true))
1997 			return -EAGAIN;
1998 		if (dry_run && dry_run_sections &&
1999 		    !get_valid_blocks(sbi, segno, true) && --gc_secs == 0)
2000 			break;
2001 
2002 		if (fatal_signal_pending(current))
2003 			return -ERESTARTSYS;
2004 	}
2005 
2006 	return 0;
2007 }
2008 
2009 static int free_segment_range(struct f2fs_sb_info *sbi,
2010 				unsigned int secs, bool dry_run)
2011 {
2012 	unsigned int next_inuse, start, end;
2013 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2014 	int gc_mode, gc_type;
2015 	int err = 0;
2016 	int type;
2017 
2018 	/* Force block allocation for GC */
2019 	MAIN_SECS(sbi) -= secs;
2020 	start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
2021 	end = MAIN_SEGS(sbi) - 1;
2022 
2023 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2024 	for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
2025 		if (SIT_I(sbi)->last_victim[gc_mode] >= start)
2026 			SIT_I(sbi)->last_victim[gc_mode] = 0;
2027 
2028 	for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
2029 		if (sbi->next_victim_seg[gc_type] >= start)
2030 			sbi->next_victim_seg[gc_type] = NULL_SEGNO;
2031 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2032 
2033 	/* Move out cursegs from the target range */
2034 	for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
2035 		f2fs_allocate_segment_for_resize(sbi, type, start, end);
2036 
2037 	/* do GC to move out valid blocks in the range */
2038 	err = f2fs_gc_range(sbi, start, end, dry_run, 0);
2039 	if (err || dry_run)
2040 		goto out;
2041 
2042 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2043 	err = f2fs_write_checkpoint(sbi, &cpc);
2044 	if (err)
2045 		goto out;
2046 
2047 	next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
2048 	if (next_inuse <= end) {
2049 		f2fs_err(sbi, "segno %u should be free but still inuse!",
2050 			 next_inuse);
2051 		f2fs_bug_on(sbi, 1);
2052 	}
2053 out:
2054 	MAIN_SECS(sbi) += secs;
2055 	return err;
2056 }
2057 
2058 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2059 {
2060 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2061 	int section_count;
2062 	int segment_count;
2063 	int segment_count_main;
2064 	long long block_count;
2065 	int segs = secs * SEGS_PER_SEC(sbi);
2066 
2067 	f2fs_down_write(&sbi->sb_lock);
2068 
2069 	section_count = le32_to_cpu(raw_sb->section_count);
2070 	segment_count = le32_to_cpu(raw_sb->segment_count);
2071 	segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2072 	block_count = le64_to_cpu(raw_sb->block_count);
2073 
2074 	raw_sb->section_count = cpu_to_le32(section_count + secs);
2075 	raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2076 	raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2077 	raw_sb->block_count = cpu_to_le64(block_count +
2078 			(long long)(segs << sbi->log_blocks_per_seg));
2079 	if (f2fs_is_multi_device(sbi)) {
2080 		int last_dev = sbi->s_ndevs - 1;
2081 		int dev_segs =
2082 			le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2083 
2084 		raw_sb->devs[last_dev].total_segments =
2085 						cpu_to_le32(dev_segs + segs);
2086 	}
2087 
2088 	f2fs_up_write(&sbi->sb_lock);
2089 }
2090 
2091 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2092 {
2093 	int segs = secs * SEGS_PER_SEC(sbi);
2094 	long long blks = (long long)segs << sbi->log_blocks_per_seg;
2095 	long long user_block_count =
2096 				le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2097 
2098 	SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2099 	MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2100 	MAIN_SECS(sbi) += secs;
2101 	FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2102 	FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2103 	F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2104 
2105 	if (f2fs_is_multi_device(sbi)) {
2106 		int last_dev = sbi->s_ndevs - 1;
2107 
2108 		FDEV(last_dev).total_segments =
2109 				(int)FDEV(last_dev).total_segments + segs;
2110 		FDEV(last_dev).end_blk =
2111 				(long long)FDEV(last_dev).end_blk + blks;
2112 #ifdef CONFIG_BLK_DEV_ZONED
2113 		FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz +
2114 					div_u64(blks, sbi->blocks_per_blkz);
2115 #endif
2116 	}
2117 }
2118 
2119 int f2fs_resize_fs(struct file *filp, __u64 block_count)
2120 {
2121 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2122 	__u64 old_block_count, shrunk_blocks;
2123 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2124 	unsigned int secs;
2125 	int err = 0;
2126 	__u32 rem;
2127 
2128 	old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2129 	if (block_count > old_block_count)
2130 		return -EINVAL;
2131 
2132 	if (f2fs_is_multi_device(sbi)) {
2133 		int last_dev = sbi->s_ndevs - 1;
2134 		__u64 last_segs = FDEV(last_dev).total_segments;
2135 
2136 		if (block_count + (last_segs << sbi->log_blocks_per_seg) <=
2137 								old_block_count)
2138 			return -EINVAL;
2139 	}
2140 
2141 	/* new fs size should align to section size */
2142 	div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2143 	if (rem)
2144 		return -EINVAL;
2145 
2146 	if (block_count == old_block_count)
2147 		return 0;
2148 
2149 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2150 		f2fs_err(sbi, "Should run fsck to repair first.");
2151 		return -EFSCORRUPTED;
2152 	}
2153 
2154 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2155 		f2fs_err(sbi, "Checkpoint should be enabled.");
2156 		return -EINVAL;
2157 	}
2158 
2159 	err = mnt_want_write_file(filp);
2160 	if (err)
2161 		return err;
2162 
2163 	shrunk_blocks = old_block_count - block_count;
2164 	secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2165 
2166 	/* stop other GC */
2167 	if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2168 		err = -EAGAIN;
2169 		goto out_drop_write;
2170 	}
2171 
2172 	/* stop CP to protect MAIN_SEC in free_segment_range */
2173 	f2fs_lock_op(sbi);
2174 
2175 	spin_lock(&sbi->stat_lock);
2176 	if (shrunk_blocks + valid_user_blocks(sbi) +
2177 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2178 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2179 		err = -ENOSPC;
2180 	spin_unlock(&sbi->stat_lock);
2181 
2182 	if (err)
2183 		goto out_unlock;
2184 
2185 	err = free_segment_range(sbi, secs, true);
2186 
2187 out_unlock:
2188 	f2fs_unlock_op(sbi);
2189 	f2fs_up_write(&sbi->gc_lock);
2190 out_drop_write:
2191 	mnt_drop_write_file(filp);
2192 	if (err)
2193 		return err;
2194 
2195 	err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2196 	if (err)
2197 		return err;
2198 
2199 	if (f2fs_readonly(sbi->sb)) {
2200 		err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2201 		if (err)
2202 			return err;
2203 		return -EROFS;
2204 	}
2205 
2206 	f2fs_down_write(&sbi->gc_lock);
2207 	f2fs_down_write(&sbi->cp_global_sem);
2208 
2209 	spin_lock(&sbi->stat_lock);
2210 	if (shrunk_blocks + valid_user_blocks(sbi) +
2211 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2212 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2213 		err = -ENOSPC;
2214 	else
2215 		sbi->user_block_count -= shrunk_blocks;
2216 	spin_unlock(&sbi->stat_lock);
2217 	if (err)
2218 		goto out_err;
2219 
2220 	set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2221 	err = free_segment_range(sbi, secs, false);
2222 	if (err)
2223 		goto recover_out;
2224 
2225 	update_sb_metadata(sbi, -secs);
2226 
2227 	err = f2fs_commit_super(sbi, false);
2228 	if (err) {
2229 		update_sb_metadata(sbi, secs);
2230 		goto recover_out;
2231 	}
2232 
2233 	update_fs_metadata(sbi, -secs);
2234 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2235 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2236 
2237 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2238 	err = f2fs_write_checkpoint(sbi, &cpc);
2239 	if (err) {
2240 		update_fs_metadata(sbi, secs);
2241 		update_sb_metadata(sbi, secs);
2242 		f2fs_commit_super(sbi, false);
2243 	}
2244 recover_out:
2245 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2246 	if (err) {
2247 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2248 		f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2249 
2250 		spin_lock(&sbi->stat_lock);
2251 		sbi->user_block_count += shrunk_blocks;
2252 		spin_unlock(&sbi->stat_lock);
2253 	}
2254 out_err:
2255 	f2fs_up_write(&sbi->cp_global_sem);
2256 	f2fs_up_write(&sbi->gc_lock);
2257 	thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2258 	return err;
2259 }
2260