xref: /openbmc/linux/fs/f2fs/gc.c (revision d0b73b48)
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/proc_fs.h>
15 #include <linux/init.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/kthread.h>
18 #include <linux/delay.h>
19 #include <linux/freezer.h>
20 #include <linux/blkdev.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "gc.h"
26 
27 static struct kmem_cache *winode_slab;
28 
29 static int gc_thread_func(void *data)
30 {
31 	struct f2fs_sb_info *sbi = data;
32 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
33 	long wait_ms;
34 
35 	wait_ms = GC_THREAD_MIN_SLEEP_TIME;
36 
37 	do {
38 		if (try_to_freeze())
39 			continue;
40 		else
41 			wait_event_interruptible_timeout(*wq,
42 						kthread_should_stop(),
43 						msecs_to_jiffies(wait_ms));
44 		if (kthread_should_stop())
45 			break;
46 
47 		f2fs_balance_fs(sbi);
48 
49 		if (!test_opt(sbi, BG_GC))
50 			continue;
51 
52 		/*
53 		 * [GC triggering condition]
54 		 * 0. GC is not conducted currently.
55 		 * 1. There are enough dirty segments.
56 		 * 2. IO subsystem is idle by checking the # of writeback pages.
57 		 * 3. IO subsystem is idle by checking the # of requests in
58 		 *    bdev's request list.
59 		 *
60 		 * Note) We have to avoid triggering GCs too much frequently.
61 		 * Because it is possible that some segments can be
62 		 * invalidated soon after by user update or deletion.
63 		 * So, I'd like to wait some time to collect dirty segments.
64 		 */
65 		if (!mutex_trylock(&sbi->gc_mutex))
66 			continue;
67 
68 		if (!is_idle(sbi)) {
69 			wait_ms = increase_sleep_time(wait_ms);
70 			mutex_unlock(&sbi->gc_mutex);
71 			continue;
72 		}
73 
74 		if (has_enough_invalid_blocks(sbi))
75 			wait_ms = decrease_sleep_time(wait_ms);
76 		else
77 			wait_ms = increase_sleep_time(wait_ms);
78 
79 		sbi->bg_gc++;
80 
81 		if (f2fs_gc(sbi) == GC_NONE)
82 			wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
83 		else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
84 			wait_ms = GC_THREAD_MAX_SLEEP_TIME;
85 
86 	} while (!kthread_should_stop());
87 	return 0;
88 }
89 
90 int start_gc_thread(struct f2fs_sb_info *sbi)
91 {
92 	struct f2fs_gc_kthread *gc_th;
93 
94 	gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
95 	if (!gc_th)
96 		return -ENOMEM;
97 
98 	sbi->gc_thread = gc_th;
99 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
100 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
101 				GC_THREAD_NAME);
102 	if (IS_ERR(gc_th->f2fs_gc_task)) {
103 		kfree(gc_th);
104 		return -ENOMEM;
105 	}
106 	return 0;
107 }
108 
109 void stop_gc_thread(struct f2fs_sb_info *sbi)
110 {
111 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
112 	if (!gc_th)
113 		return;
114 	kthread_stop(gc_th->f2fs_gc_task);
115 	kfree(gc_th);
116 	sbi->gc_thread = NULL;
117 }
118 
119 static int select_gc_type(int gc_type)
120 {
121 	return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
122 }
123 
124 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
125 			int type, struct victim_sel_policy *p)
126 {
127 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
128 
129 	if (p->alloc_mode) {
130 		p->gc_mode = GC_GREEDY;
131 		p->dirty_segmap = dirty_i->dirty_segmap[type];
132 		p->ofs_unit = 1;
133 	} else {
134 		p->gc_mode = select_gc_type(gc_type);
135 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
136 		p->ofs_unit = sbi->segs_per_sec;
137 	}
138 	p->offset = sbi->last_victim[p->gc_mode];
139 }
140 
141 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
142 				struct victim_sel_policy *p)
143 {
144 	if (p->gc_mode == GC_GREEDY)
145 		return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
146 	else if (p->gc_mode == GC_CB)
147 		return UINT_MAX;
148 	else /* No other gc_mode */
149 		return 0;
150 }
151 
152 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
153 {
154 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
155 	unsigned int segno;
156 
157 	/*
158 	 * If the gc_type is FG_GC, we can select victim segments
159 	 * selected by background GC before.
160 	 * Those segments guarantee they have small valid blocks.
161 	 */
162 	segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
163 						TOTAL_SEGS(sbi), 0);
164 	if (segno < TOTAL_SEGS(sbi)) {
165 		clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
166 		return segno;
167 	}
168 	return NULL_SEGNO;
169 }
170 
171 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
172 {
173 	struct sit_info *sit_i = SIT_I(sbi);
174 	unsigned int secno = GET_SECNO(sbi, segno);
175 	unsigned int start = secno * sbi->segs_per_sec;
176 	unsigned long long mtime = 0;
177 	unsigned int vblocks;
178 	unsigned char age = 0;
179 	unsigned char u;
180 	unsigned int i;
181 
182 	for (i = 0; i < sbi->segs_per_sec; i++)
183 		mtime += get_seg_entry(sbi, start + i)->mtime;
184 	vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
185 
186 	mtime = div_u64(mtime, sbi->segs_per_sec);
187 	vblocks = div_u64(vblocks, sbi->segs_per_sec);
188 
189 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
190 
191 	/* Handle if the system time is changed by user */
192 	if (mtime < sit_i->min_mtime)
193 		sit_i->min_mtime = mtime;
194 	if (mtime > sit_i->max_mtime)
195 		sit_i->max_mtime = mtime;
196 	if (sit_i->max_mtime != sit_i->min_mtime)
197 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
198 				sit_i->max_mtime - sit_i->min_mtime);
199 
200 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
201 }
202 
203 static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
204 					struct victim_sel_policy *p)
205 {
206 	if (p->alloc_mode == SSR)
207 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
208 
209 	/* alloc_mode == LFS */
210 	if (p->gc_mode == GC_GREEDY)
211 		return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
212 	else
213 		return get_cb_cost(sbi, segno);
214 }
215 
216 /*
217  * This function is called from two pathes.
218  * One is garbage collection and the other is SSR segment selection.
219  * When it is called during GC, it just gets a victim segment
220  * and it does not remove it from dirty seglist.
221  * When it is called from SSR segment selection, it finds a segment
222  * which has minimum valid blocks and removes it from dirty seglist.
223  */
224 static int get_victim_by_default(struct f2fs_sb_info *sbi,
225 		unsigned int *result, int gc_type, int type, char alloc_mode)
226 {
227 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
228 	struct victim_sel_policy p;
229 	unsigned int segno;
230 	int nsearched = 0;
231 
232 	p.alloc_mode = alloc_mode;
233 	select_policy(sbi, gc_type, type, &p);
234 
235 	p.min_segno = NULL_SEGNO;
236 	p.min_cost = get_max_cost(sbi, &p);
237 
238 	mutex_lock(&dirty_i->seglist_lock);
239 
240 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
241 		p.min_segno = check_bg_victims(sbi);
242 		if (p.min_segno != NULL_SEGNO)
243 			goto got_it;
244 	}
245 
246 	while (1) {
247 		unsigned long cost;
248 
249 		segno = find_next_bit(p.dirty_segmap,
250 						TOTAL_SEGS(sbi), p.offset);
251 		if (segno >= TOTAL_SEGS(sbi)) {
252 			if (sbi->last_victim[p.gc_mode]) {
253 				sbi->last_victim[p.gc_mode] = 0;
254 				p.offset = 0;
255 				continue;
256 			}
257 			break;
258 		}
259 		p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
260 
261 		if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
262 			continue;
263 		if (gc_type == BG_GC &&
264 				test_bit(segno, dirty_i->victim_segmap[BG_GC]))
265 			continue;
266 		if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
267 			continue;
268 
269 		cost = get_gc_cost(sbi, segno, &p);
270 
271 		if (p.min_cost > cost) {
272 			p.min_segno = segno;
273 			p.min_cost = cost;
274 		}
275 
276 		if (cost == get_max_cost(sbi, &p))
277 			continue;
278 
279 		if (nsearched++ >= MAX_VICTIM_SEARCH) {
280 			sbi->last_victim[p.gc_mode] = segno;
281 			break;
282 		}
283 	}
284 got_it:
285 	if (p.min_segno != NULL_SEGNO) {
286 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
287 		if (p.alloc_mode == LFS) {
288 			int i;
289 			for (i = 0; i < p.ofs_unit; i++)
290 				set_bit(*result + i,
291 					dirty_i->victim_segmap[gc_type]);
292 		}
293 	}
294 	mutex_unlock(&dirty_i->seglist_lock);
295 
296 	return (p.min_segno == NULL_SEGNO) ? 0 : 1;
297 }
298 
299 static const struct victim_selection default_v_ops = {
300 	.get_victim = get_victim_by_default,
301 };
302 
303 static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
304 {
305 	struct list_head *this;
306 	struct inode_entry *ie;
307 
308 	list_for_each(this, ilist) {
309 		ie = list_entry(this, struct inode_entry, list);
310 		if (ie->inode->i_ino == ino)
311 			return ie->inode;
312 	}
313 	return NULL;
314 }
315 
316 static void add_gc_inode(struct inode *inode, struct list_head *ilist)
317 {
318 	struct list_head *this;
319 	struct inode_entry *new_ie, *ie;
320 
321 	list_for_each(this, ilist) {
322 		ie = list_entry(this, struct inode_entry, list);
323 		if (ie->inode == inode) {
324 			iput(inode);
325 			return;
326 		}
327 	}
328 repeat:
329 	new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
330 	if (!new_ie) {
331 		cond_resched();
332 		goto repeat;
333 	}
334 	new_ie->inode = inode;
335 	list_add_tail(&new_ie->list, ilist);
336 }
337 
338 static void put_gc_inode(struct list_head *ilist)
339 {
340 	struct inode_entry *ie, *next_ie;
341 	list_for_each_entry_safe(ie, next_ie, ilist, list) {
342 		iput(ie->inode);
343 		list_del(&ie->list);
344 		kmem_cache_free(winode_slab, ie);
345 	}
346 }
347 
348 static int check_valid_map(struct f2fs_sb_info *sbi,
349 				unsigned int segno, int offset)
350 {
351 	struct sit_info *sit_i = SIT_I(sbi);
352 	struct seg_entry *sentry;
353 	int ret;
354 
355 	mutex_lock(&sit_i->sentry_lock);
356 	sentry = get_seg_entry(sbi, segno);
357 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
358 	mutex_unlock(&sit_i->sentry_lock);
359 	return ret ? GC_OK : GC_NEXT;
360 }
361 
362 /*
363  * This function compares node address got in summary with that in NAT.
364  * On validity, copy that node with cold status, otherwise (invalid node)
365  * ignore that.
366  */
367 static int gc_node_segment(struct f2fs_sb_info *sbi,
368 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
369 {
370 	bool initial = true;
371 	struct f2fs_summary *entry;
372 	int off;
373 
374 next_step:
375 	entry = sum;
376 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
377 		nid_t nid = le32_to_cpu(entry->nid);
378 		struct page *node_page;
379 		int err;
380 
381 		/*
382 		 * It makes sure that free segments are able to write
383 		 * all the dirty node pages before CP after this CP.
384 		 * So let's check the space of dirty node pages.
385 		 */
386 		if (should_do_checkpoint(sbi)) {
387 			mutex_lock(&sbi->cp_mutex);
388 			block_operations(sbi);
389 			return GC_BLOCKED;
390 		}
391 
392 		err = check_valid_map(sbi, segno, off);
393 		if (err == GC_NEXT)
394 			continue;
395 
396 		if (initial) {
397 			ra_node_page(sbi, nid);
398 			continue;
399 		}
400 		node_page = get_node_page(sbi, nid);
401 		if (IS_ERR(node_page))
402 			continue;
403 
404 		/* set page dirty and write it */
405 		if (!PageWriteback(node_page))
406 			set_page_dirty(node_page);
407 		f2fs_put_page(node_page, 1);
408 		stat_inc_node_blk_count(sbi, 1);
409 	}
410 	if (initial) {
411 		initial = false;
412 		goto next_step;
413 	}
414 
415 	if (gc_type == FG_GC) {
416 		struct writeback_control wbc = {
417 			.sync_mode = WB_SYNC_ALL,
418 			.nr_to_write = LONG_MAX,
419 			.for_reclaim = 0,
420 		};
421 		sync_node_pages(sbi, 0, &wbc);
422 	}
423 	return GC_DONE;
424 }
425 
426 /*
427  * Calculate start block index indicating the given node offset.
428  * Be careful, caller should give this node offset only indicating direct node
429  * blocks. If any node offsets, which point the other types of node blocks such
430  * as indirect or double indirect node blocks, are given, it must be a caller's
431  * bug.
432  */
433 block_t start_bidx_of_node(unsigned int node_ofs)
434 {
435 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
436 	unsigned int bidx;
437 
438 	if (node_ofs == 0)
439 		return 0;
440 
441 	if (node_ofs <= 2) {
442 		bidx = node_ofs - 1;
443 	} else if (node_ofs <= indirect_blks) {
444 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
445 		bidx = node_ofs - 2 - dec;
446 	} else {
447 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
448 		bidx = node_ofs - 5 - dec;
449 	}
450 	return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
451 }
452 
453 static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
454 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
455 {
456 	struct page *node_page;
457 	nid_t nid;
458 	unsigned int ofs_in_node;
459 	block_t source_blkaddr;
460 
461 	nid = le32_to_cpu(sum->nid);
462 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
463 
464 	node_page = get_node_page(sbi, nid);
465 	if (IS_ERR(node_page))
466 		return GC_NEXT;
467 
468 	get_node_info(sbi, nid, dni);
469 
470 	if (sum->version != dni->version) {
471 		f2fs_put_page(node_page, 1);
472 		return GC_NEXT;
473 	}
474 
475 	*nofs = ofs_of_node(node_page);
476 	source_blkaddr = datablock_addr(node_page, ofs_in_node);
477 	f2fs_put_page(node_page, 1);
478 
479 	if (source_blkaddr != blkaddr)
480 		return GC_NEXT;
481 	return GC_OK;
482 }
483 
484 static void move_data_page(struct inode *inode, struct page *page, int gc_type)
485 {
486 	if (page->mapping != inode->i_mapping)
487 		goto out;
488 
489 	if (inode != page->mapping->host)
490 		goto out;
491 
492 	if (PageWriteback(page))
493 		goto out;
494 
495 	if (gc_type == BG_GC) {
496 		set_page_dirty(page);
497 		set_cold_data(page);
498 	} else {
499 		struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
500 		mutex_lock_op(sbi, DATA_WRITE);
501 		if (clear_page_dirty_for_io(page) &&
502 			S_ISDIR(inode->i_mode)) {
503 			dec_page_count(sbi, F2FS_DIRTY_DENTS);
504 			inode_dec_dirty_dents(inode);
505 		}
506 		set_cold_data(page);
507 		do_write_data_page(page);
508 		mutex_unlock_op(sbi, DATA_WRITE);
509 		clear_cold_data(page);
510 	}
511 out:
512 	f2fs_put_page(page, 1);
513 }
514 
515 /*
516  * This function tries to get parent node of victim data block, and identifies
517  * data block validity. If the block is valid, copy that with cold status and
518  * modify parent node.
519  * If the parent node is not valid or the data block address is different,
520  * the victim data block is ignored.
521  */
522 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
523 		struct list_head *ilist, unsigned int segno, int gc_type)
524 {
525 	struct super_block *sb = sbi->sb;
526 	struct f2fs_summary *entry;
527 	block_t start_addr;
528 	int err, off;
529 	int phase = 0;
530 
531 	start_addr = START_BLOCK(sbi, segno);
532 
533 next_step:
534 	entry = sum;
535 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
536 		struct page *data_page;
537 		struct inode *inode;
538 		struct node_info dni; /* dnode info for the data */
539 		unsigned int ofs_in_node, nofs;
540 		block_t start_bidx;
541 
542 		/*
543 		 * It makes sure that free segments are able to write
544 		 * all the dirty node pages before CP after this CP.
545 		 * So let's check the space of dirty node pages.
546 		 */
547 		if (should_do_checkpoint(sbi)) {
548 			mutex_lock(&sbi->cp_mutex);
549 			block_operations(sbi);
550 			err = GC_BLOCKED;
551 			goto stop;
552 		}
553 
554 		err = check_valid_map(sbi, segno, off);
555 		if (err == GC_NEXT)
556 			continue;
557 
558 		if (phase == 0) {
559 			ra_node_page(sbi, le32_to_cpu(entry->nid));
560 			continue;
561 		}
562 
563 		/* Get an inode by ino with checking validity */
564 		err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs);
565 		if (err == GC_NEXT)
566 			continue;
567 
568 		if (phase == 1) {
569 			ra_node_page(sbi, dni.ino);
570 			continue;
571 		}
572 
573 		start_bidx = start_bidx_of_node(nofs);
574 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
575 
576 		if (phase == 2) {
577 			inode = f2fs_iget_nowait(sb, dni.ino);
578 			if (IS_ERR(inode))
579 				continue;
580 
581 			data_page = find_data_page(inode,
582 					start_bidx + ofs_in_node);
583 			if (IS_ERR(data_page))
584 				goto next_iput;
585 
586 			f2fs_put_page(data_page, 0);
587 			add_gc_inode(inode, ilist);
588 		} else {
589 			inode = find_gc_inode(dni.ino, ilist);
590 			if (inode) {
591 				data_page = get_lock_data_page(inode,
592 						start_bidx + ofs_in_node);
593 				if (IS_ERR(data_page))
594 					continue;
595 				move_data_page(inode, data_page, gc_type);
596 				stat_inc_data_blk_count(sbi, 1);
597 			}
598 		}
599 		continue;
600 next_iput:
601 		iput(inode);
602 	}
603 	if (++phase < 4)
604 		goto next_step;
605 	err = GC_DONE;
606 stop:
607 	if (gc_type == FG_GC)
608 		f2fs_submit_bio(sbi, DATA, true);
609 	return err;
610 }
611 
612 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
613 						int gc_type, int type)
614 {
615 	struct sit_info *sit_i = SIT_I(sbi);
616 	int ret;
617 	mutex_lock(&sit_i->sentry_lock);
618 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
619 	mutex_unlock(&sit_i->sentry_lock);
620 	return ret;
621 }
622 
623 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
624 				struct list_head *ilist, int gc_type)
625 {
626 	struct page *sum_page;
627 	struct f2fs_summary_block *sum;
628 	int ret = GC_DONE;
629 
630 	/* read segment summary of victim */
631 	sum_page = get_sum_page(sbi, segno);
632 	if (IS_ERR(sum_page))
633 		return GC_ERROR;
634 
635 	/*
636 	 * CP needs to lock sum_page. In this time, we don't need
637 	 * to lock this page, because this summary page is not gone anywhere.
638 	 * Also, this page is not gonna be updated before GC is done.
639 	 */
640 	unlock_page(sum_page);
641 	sum = page_address(sum_page);
642 
643 	switch (GET_SUM_TYPE((&sum->footer))) {
644 	case SUM_TYPE_NODE:
645 		ret = gc_node_segment(sbi, sum->entries, segno, gc_type);
646 		break;
647 	case SUM_TYPE_DATA:
648 		ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
649 		break;
650 	}
651 	stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
652 	stat_inc_call_count(sbi->stat_info);
653 
654 	f2fs_put_page(sum_page, 0);
655 	return ret;
656 }
657 
658 int f2fs_gc(struct f2fs_sb_info *sbi)
659 {
660 	struct list_head ilist;
661 	unsigned int segno, i;
662 	int gc_type = BG_GC;
663 	int gc_status = GC_NONE;
664 
665 	INIT_LIST_HEAD(&ilist);
666 gc_more:
667 	if (!(sbi->sb->s_flags & MS_ACTIVE))
668 		goto stop;
669 
670 	if (has_not_enough_free_secs(sbi))
671 		gc_type = FG_GC;
672 
673 	if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
674 		goto stop;
675 
676 	for (i = 0; i < sbi->segs_per_sec; i++) {
677 		/*
678 		 * do_garbage_collect will give us three gc_status:
679 		 * GC_ERROR, GC_DONE, and GC_BLOCKED.
680 		 * If GC is finished uncleanly, we have to return
681 		 * the victim to dirty segment list.
682 		 */
683 		gc_status = do_garbage_collect(sbi, segno + i, &ilist, gc_type);
684 		if (gc_status != GC_DONE)
685 			break;
686 	}
687 	if (has_not_enough_free_secs(sbi)) {
688 		write_checkpoint(sbi, (gc_status == GC_BLOCKED), false);
689 		if (has_not_enough_free_secs(sbi))
690 			goto gc_more;
691 	}
692 stop:
693 	mutex_unlock(&sbi->gc_mutex);
694 
695 	put_gc_inode(&ilist);
696 	return gc_status;
697 }
698 
699 void build_gc_manager(struct f2fs_sb_info *sbi)
700 {
701 	DIRTY_I(sbi)->v_ops = &default_v_ops;
702 }
703 
704 int __init create_gc_caches(void)
705 {
706 	winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
707 			sizeof(struct inode_entry), NULL);
708 	if (!winode_slab)
709 		return -ENOMEM;
710 	return 0;
711 }
712 
713 void destroy_gc_caches(void)
714 {
715 	kmem_cache_destroy(winode_slab);
716 }
717