xref: /openbmc/linux/fs/f2fs/gc.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/init.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/kthread.h>
14 #include <linux/delay.h>
15 #include <linux/freezer.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "gc.h"
21 #include <trace/events/f2fs.h>
22 
23 static int gc_thread_func(void *data)
24 {
25 	struct f2fs_sb_info *sbi = data;
26 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
27 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
28 	unsigned int wait_ms;
29 
30 	wait_ms = gc_th->min_sleep_time;
31 
32 	set_freezable();
33 	do {
34 		bool sync_mode;
35 
36 		wait_event_interruptible_timeout(*wq,
37 				kthread_should_stop() || freezing(current) ||
38 				gc_th->gc_wake,
39 				msecs_to_jiffies(wait_ms));
40 
41 		/* give it a try one time */
42 		if (gc_th->gc_wake)
43 			gc_th->gc_wake = 0;
44 
45 		if (try_to_freeze()) {
46 			stat_other_skip_bggc_count(sbi);
47 			continue;
48 		}
49 		if (kthread_should_stop())
50 			break;
51 
52 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
53 			increase_sleep_time(gc_th, &wait_ms);
54 			stat_other_skip_bggc_count(sbi);
55 			continue;
56 		}
57 
58 		if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
59 			f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
60 			f2fs_stop_checkpoint(sbi, false);
61 		}
62 
63 		if (!sb_start_write_trylock(sbi->sb)) {
64 			stat_other_skip_bggc_count(sbi);
65 			continue;
66 		}
67 
68 		/*
69 		 * [GC triggering condition]
70 		 * 0. GC is not conducted currently.
71 		 * 1. There are enough dirty segments.
72 		 * 2. IO subsystem is idle by checking the # of writeback pages.
73 		 * 3. IO subsystem is idle by checking the # of requests in
74 		 *    bdev's request list.
75 		 *
76 		 * Note) We have to avoid triggering GCs frequently.
77 		 * Because it is possible that some segments can be
78 		 * invalidated soon after by user update or deletion.
79 		 * So, I'd like to wait some time to collect dirty segments.
80 		 */
81 		if (sbi->gc_mode == GC_URGENT) {
82 			wait_ms = gc_th->urgent_sleep_time;
83 			down_write(&sbi->gc_lock);
84 			goto do_gc;
85 		}
86 
87 		if (!down_write_trylock(&sbi->gc_lock)) {
88 			stat_other_skip_bggc_count(sbi);
89 			goto next;
90 		}
91 
92 		if (!is_idle(sbi, GC_TIME)) {
93 			increase_sleep_time(gc_th, &wait_ms);
94 			up_write(&sbi->gc_lock);
95 			stat_io_skip_bggc_count(sbi);
96 			goto next;
97 		}
98 
99 		if (has_enough_invalid_blocks(sbi))
100 			decrease_sleep_time(gc_th, &wait_ms);
101 		else
102 			increase_sleep_time(gc_th, &wait_ms);
103 do_gc:
104 		stat_inc_bggc_count(sbi->stat_info);
105 
106 		sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
107 
108 		/* if return value is not zero, no victim was selected */
109 		if (f2fs_gc(sbi, sync_mode, true, NULL_SEGNO))
110 			wait_ms = gc_th->no_gc_sleep_time;
111 
112 		trace_f2fs_background_gc(sbi->sb, wait_ms,
113 				prefree_segments(sbi), free_segments(sbi));
114 
115 		/* balancing f2fs's metadata periodically */
116 		f2fs_balance_fs_bg(sbi, true);
117 next:
118 		sb_end_write(sbi->sb);
119 
120 	} while (!kthread_should_stop());
121 	return 0;
122 }
123 
124 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
125 {
126 	struct f2fs_gc_kthread *gc_th;
127 	dev_t dev = sbi->sb->s_bdev->bd_dev;
128 	int err = 0;
129 
130 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
131 	if (!gc_th) {
132 		err = -ENOMEM;
133 		goto out;
134 	}
135 
136 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
137 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
138 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
139 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
140 
141 	gc_th->gc_wake= 0;
142 
143 	sbi->gc_thread = gc_th;
144 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
145 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
146 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
147 	if (IS_ERR(gc_th->f2fs_gc_task)) {
148 		err = PTR_ERR(gc_th->f2fs_gc_task);
149 		kvfree(gc_th);
150 		sbi->gc_thread = NULL;
151 	}
152 out:
153 	return err;
154 }
155 
156 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
157 {
158 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
159 	if (!gc_th)
160 		return;
161 	kthread_stop(gc_th->f2fs_gc_task);
162 	kvfree(gc_th);
163 	sbi->gc_thread = NULL;
164 }
165 
166 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
167 {
168 	int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
169 
170 	switch (sbi->gc_mode) {
171 	case GC_IDLE_CB:
172 		gc_mode = GC_CB;
173 		break;
174 	case GC_IDLE_GREEDY:
175 	case GC_URGENT:
176 		gc_mode = GC_GREEDY;
177 		break;
178 	}
179 	return gc_mode;
180 }
181 
182 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
183 			int type, struct victim_sel_policy *p)
184 {
185 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
186 
187 	if (p->alloc_mode == SSR) {
188 		p->gc_mode = GC_GREEDY;
189 		p->dirty_segmap = dirty_i->dirty_segmap[type];
190 		p->max_search = dirty_i->nr_dirty[type];
191 		p->ofs_unit = 1;
192 	} else {
193 		p->gc_mode = select_gc_type(sbi, gc_type);
194 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
195 		p->max_search = dirty_i->nr_dirty[DIRTY];
196 		p->ofs_unit = sbi->segs_per_sec;
197 	}
198 
199 	/*
200 	 * adjust candidates range, should select all dirty segments for
201 	 * foreground GC and urgent GC cases.
202 	 */
203 	if (gc_type != FG_GC &&
204 			(sbi->gc_mode != GC_URGENT) &&
205 			p->max_search > sbi->max_victim_search)
206 		p->max_search = sbi->max_victim_search;
207 
208 	/* let's select beginning hot/small space first in no_heap mode*/
209 	if (test_opt(sbi, NOHEAP) &&
210 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
211 		p->offset = 0;
212 	else
213 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
214 }
215 
216 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
217 				struct victim_sel_policy *p)
218 {
219 	/* SSR allocates in a segment unit */
220 	if (p->alloc_mode == SSR)
221 		return sbi->blocks_per_seg;
222 	if (p->gc_mode == GC_GREEDY)
223 		return 2 * sbi->blocks_per_seg * p->ofs_unit;
224 	else if (p->gc_mode == GC_CB)
225 		return UINT_MAX;
226 	else /* No other gc_mode */
227 		return 0;
228 }
229 
230 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
231 {
232 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
233 	unsigned int secno;
234 
235 	/*
236 	 * If the gc_type is FG_GC, we can select victim segments
237 	 * selected by background GC before.
238 	 * Those segments guarantee they have small valid blocks.
239 	 */
240 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
241 		if (sec_usage_check(sbi, secno))
242 			continue;
243 		clear_bit(secno, dirty_i->victim_secmap);
244 		return GET_SEG_FROM_SEC(sbi, secno);
245 	}
246 	return NULL_SEGNO;
247 }
248 
249 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
250 {
251 	struct sit_info *sit_i = SIT_I(sbi);
252 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
253 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
254 	unsigned long long mtime = 0;
255 	unsigned int vblocks;
256 	unsigned char age = 0;
257 	unsigned char u;
258 	unsigned int i;
259 
260 	for (i = 0; i < sbi->segs_per_sec; i++)
261 		mtime += get_seg_entry(sbi, start + i)->mtime;
262 	vblocks = get_valid_blocks(sbi, segno, true);
263 
264 	mtime = div_u64(mtime, sbi->segs_per_sec);
265 	vblocks = div_u64(vblocks, sbi->segs_per_sec);
266 
267 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
268 
269 	/* Handle if the system time has changed by the user */
270 	if (mtime < sit_i->min_mtime)
271 		sit_i->min_mtime = mtime;
272 	if (mtime > sit_i->max_mtime)
273 		sit_i->max_mtime = mtime;
274 	if (sit_i->max_mtime != sit_i->min_mtime)
275 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
276 				sit_i->max_mtime - sit_i->min_mtime);
277 
278 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
279 }
280 
281 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
282 			unsigned int segno, struct victim_sel_policy *p)
283 {
284 	if (p->alloc_mode == SSR)
285 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
286 
287 	/* alloc_mode == LFS */
288 	if (p->gc_mode == GC_GREEDY)
289 		return get_valid_blocks(sbi, segno, true);
290 	else
291 		return get_cb_cost(sbi, segno);
292 }
293 
294 static unsigned int count_bits(const unsigned long *addr,
295 				unsigned int offset, unsigned int len)
296 {
297 	unsigned int end = offset + len, sum = 0;
298 
299 	while (offset < end) {
300 		if (test_bit(offset++, addr))
301 			++sum;
302 	}
303 	return sum;
304 }
305 
306 /*
307  * This function is called from two paths.
308  * One is garbage collection and the other is SSR segment selection.
309  * When it is called during GC, it just gets a victim segment
310  * and it does not remove it from dirty seglist.
311  * When it is called from SSR segment selection, it finds a segment
312  * which has minimum valid blocks and removes it from dirty seglist.
313  */
314 static int get_victim_by_default(struct f2fs_sb_info *sbi,
315 		unsigned int *result, int gc_type, int type, char alloc_mode)
316 {
317 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
318 	struct sit_info *sm = SIT_I(sbi);
319 	struct victim_sel_policy p;
320 	unsigned int secno, last_victim;
321 	unsigned int last_segment;
322 	unsigned int nsearched = 0;
323 
324 	mutex_lock(&dirty_i->seglist_lock);
325 	last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
326 
327 	p.alloc_mode = alloc_mode;
328 	select_policy(sbi, gc_type, type, &p);
329 
330 	p.min_segno = NULL_SEGNO;
331 	p.min_cost = get_max_cost(sbi, &p);
332 
333 	if (*result != NULL_SEGNO) {
334 		if (get_valid_blocks(sbi, *result, false) &&
335 			!sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
336 			p.min_segno = *result;
337 		goto out;
338 	}
339 
340 	if (p.max_search == 0)
341 		goto out;
342 
343 	if (__is_large_section(sbi) && p.alloc_mode == LFS) {
344 		if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
345 			p.min_segno = sbi->next_victim_seg[BG_GC];
346 			*result = p.min_segno;
347 			sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
348 			goto got_result;
349 		}
350 		if (gc_type == FG_GC &&
351 				sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
352 			p.min_segno = sbi->next_victim_seg[FG_GC];
353 			*result = p.min_segno;
354 			sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
355 			goto got_result;
356 		}
357 	}
358 
359 	last_victim = sm->last_victim[p.gc_mode];
360 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
361 		p.min_segno = check_bg_victims(sbi);
362 		if (p.min_segno != NULL_SEGNO)
363 			goto got_it;
364 	}
365 
366 	while (1) {
367 		unsigned long cost;
368 		unsigned int segno;
369 
370 		segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
371 		if (segno >= last_segment) {
372 			if (sm->last_victim[p.gc_mode]) {
373 				last_segment =
374 					sm->last_victim[p.gc_mode];
375 				sm->last_victim[p.gc_mode] = 0;
376 				p.offset = 0;
377 				continue;
378 			}
379 			break;
380 		}
381 
382 		p.offset = segno + p.ofs_unit;
383 		if (p.ofs_unit > 1) {
384 			p.offset -= segno % p.ofs_unit;
385 			nsearched += count_bits(p.dirty_segmap,
386 						p.offset - p.ofs_unit,
387 						p.ofs_unit);
388 		} else {
389 			nsearched++;
390 		}
391 
392 #ifdef CONFIG_F2FS_CHECK_FS
393 		/*
394 		 * skip selecting the invalid segno (that is failed due to block
395 		 * validity check failure during GC) to avoid endless GC loop in
396 		 * such cases.
397 		 */
398 		if (test_bit(segno, sm->invalid_segmap))
399 			goto next;
400 #endif
401 
402 		secno = GET_SEC_FROM_SEG(sbi, segno);
403 
404 		if (sec_usage_check(sbi, secno))
405 			goto next;
406 		/* Don't touch checkpointed data */
407 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
408 					get_ckpt_valid_blocks(sbi, segno) &&
409 					p.alloc_mode != SSR))
410 			goto next;
411 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
412 			goto next;
413 
414 		cost = get_gc_cost(sbi, segno, &p);
415 
416 		if (p.min_cost > cost) {
417 			p.min_segno = segno;
418 			p.min_cost = cost;
419 		}
420 next:
421 		if (nsearched >= p.max_search) {
422 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
423 				sm->last_victim[p.gc_mode] = last_victim + 1;
424 			else
425 				sm->last_victim[p.gc_mode] = segno + 1;
426 			sm->last_victim[p.gc_mode] %=
427 				(MAIN_SECS(sbi) * sbi->segs_per_sec);
428 			break;
429 		}
430 	}
431 	if (p.min_segno != NULL_SEGNO) {
432 got_it:
433 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
434 got_result:
435 		if (p.alloc_mode == LFS) {
436 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
437 			if (gc_type == FG_GC)
438 				sbi->cur_victim_sec = secno;
439 			else
440 				set_bit(secno, dirty_i->victim_secmap);
441 		}
442 
443 	}
444 out:
445 	if (p.min_segno != NULL_SEGNO)
446 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
447 				sbi->cur_victim_sec,
448 				prefree_segments(sbi), free_segments(sbi));
449 	mutex_unlock(&dirty_i->seglist_lock);
450 
451 	return (p.min_segno == NULL_SEGNO) ? 0 : 1;
452 }
453 
454 static const struct victim_selection default_v_ops = {
455 	.get_victim = get_victim_by_default,
456 };
457 
458 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
459 {
460 	struct inode_entry *ie;
461 
462 	ie = radix_tree_lookup(&gc_list->iroot, ino);
463 	if (ie)
464 		return ie->inode;
465 	return NULL;
466 }
467 
468 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
469 {
470 	struct inode_entry *new_ie;
471 
472 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
473 		iput(inode);
474 		return;
475 	}
476 	new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS);
477 	new_ie->inode = inode;
478 
479 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
480 	list_add_tail(&new_ie->list, &gc_list->ilist);
481 }
482 
483 static void put_gc_inode(struct gc_inode_list *gc_list)
484 {
485 	struct inode_entry *ie, *next_ie;
486 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
487 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
488 		iput(ie->inode);
489 		list_del(&ie->list);
490 		kmem_cache_free(f2fs_inode_entry_slab, ie);
491 	}
492 }
493 
494 static int check_valid_map(struct f2fs_sb_info *sbi,
495 				unsigned int segno, int offset)
496 {
497 	struct sit_info *sit_i = SIT_I(sbi);
498 	struct seg_entry *sentry;
499 	int ret;
500 
501 	down_read(&sit_i->sentry_lock);
502 	sentry = get_seg_entry(sbi, segno);
503 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
504 	up_read(&sit_i->sentry_lock);
505 	return ret;
506 }
507 
508 /*
509  * This function compares node address got in summary with that in NAT.
510  * On validity, copy that node with cold status, otherwise (invalid node)
511  * ignore that.
512  */
513 static int gc_node_segment(struct f2fs_sb_info *sbi,
514 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
515 {
516 	struct f2fs_summary *entry;
517 	block_t start_addr;
518 	int off;
519 	int phase = 0;
520 	bool fggc = (gc_type == FG_GC);
521 	int submitted = 0;
522 
523 	start_addr = START_BLOCK(sbi, segno);
524 
525 next_step:
526 	entry = sum;
527 
528 	if (fggc && phase == 2)
529 		atomic_inc(&sbi->wb_sync_req[NODE]);
530 
531 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
532 		nid_t nid = le32_to_cpu(entry->nid);
533 		struct page *node_page;
534 		struct node_info ni;
535 		int err;
536 
537 		/* stop BG_GC if there is not enough free sections. */
538 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
539 			return submitted;
540 
541 		if (check_valid_map(sbi, segno, off) == 0)
542 			continue;
543 
544 		if (phase == 0) {
545 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
546 							META_NAT, true);
547 			continue;
548 		}
549 
550 		if (phase == 1) {
551 			f2fs_ra_node_page(sbi, nid);
552 			continue;
553 		}
554 
555 		/* phase == 2 */
556 		node_page = f2fs_get_node_page(sbi, nid);
557 		if (IS_ERR(node_page))
558 			continue;
559 
560 		/* block may become invalid during f2fs_get_node_page */
561 		if (check_valid_map(sbi, segno, off) == 0) {
562 			f2fs_put_page(node_page, 1);
563 			continue;
564 		}
565 
566 		if (f2fs_get_node_info(sbi, nid, &ni)) {
567 			f2fs_put_page(node_page, 1);
568 			continue;
569 		}
570 
571 		if (ni.blk_addr != start_addr + off) {
572 			f2fs_put_page(node_page, 1);
573 			continue;
574 		}
575 
576 		err = f2fs_move_node_page(node_page, gc_type);
577 		if (!err && gc_type == FG_GC)
578 			submitted++;
579 		stat_inc_node_blk_count(sbi, 1, gc_type);
580 	}
581 
582 	if (++phase < 3)
583 		goto next_step;
584 
585 	if (fggc)
586 		atomic_dec(&sbi->wb_sync_req[NODE]);
587 	return submitted;
588 }
589 
590 /*
591  * Calculate start block index indicating the given node offset.
592  * Be careful, caller should give this node offset only indicating direct node
593  * blocks. If any node offsets, which point the other types of node blocks such
594  * as indirect or double indirect node blocks, are given, it must be a caller's
595  * bug.
596  */
597 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
598 {
599 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
600 	unsigned int bidx;
601 
602 	if (node_ofs == 0)
603 		return 0;
604 
605 	if (node_ofs <= 2) {
606 		bidx = node_ofs - 1;
607 	} else if (node_ofs <= indirect_blks) {
608 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
609 		bidx = node_ofs - 2 - dec;
610 	} else {
611 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
612 		bidx = node_ofs - 5 - dec;
613 	}
614 	return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
615 }
616 
617 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
618 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
619 {
620 	struct page *node_page;
621 	nid_t nid;
622 	unsigned int ofs_in_node;
623 	block_t source_blkaddr;
624 
625 	nid = le32_to_cpu(sum->nid);
626 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
627 
628 	node_page = f2fs_get_node_page(sbi, nid);
629 	if (IS_ERR(node_page))
630 		return false;
631 
632 	if (f2fs_get_node_info(sbi, nid, dni)) {
633 		f2fs_put_page(node_page, 1);
634 		return false;
635 	}
636 
637 	if (sum->version != dni->version) {
638 		f2fs_warn(sbi, "%s: valid data with mismatched node version.",
639 			  __func__);
640 		set_sbi_flag(sbi, SBI_NEED_FSCK);
641 	}
642 
643 	*nofs = ofs_of_node(node_page);
644 	source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
645 	f2fs_put_page(node_page, 1);
646 
647 	if (source_blkaddr != blkaddr) {
648 #ifdef CONFIG_F2FS_CHECK_FS
649 		unsigned int segno = GET_SEGNO(sbi, blkaddr);
650 		unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
651 
652 		if (unlikely(check_valid_map(sbi, segno, offset))) {
653 			if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
654 				f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u\n",
655 						blkaddr, source_blkaddr, segno);
656 				f2fs_bug_on(sbi, 1);
657 			}
658 		}
659 #endif
660 		return false;
661 	}
662 	return true;
663 }
664 
665 static int ra_data_block(struct inode *inode, pgoff_t index)
666 {
667 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
668 	struct address_space *mapping = inode->i_mapping;
669 	struct dnode_of_data dn;
670 	struct page *page;
671 	struct extent_info ei = {0, 0, 0};
672 	struct f2fs_io_info fio = {
673 		.sbi = sbi,
674 		.ino = inode->i_ino,
675 		.type = DATA,
676 		.temp = COLD,
677 		.op = REQ_OP_READ,
678 		.op_flags = 0,
679 		.encrypted_page = NULL,
680 		.in_list = false,
681 		.retry = false,
682 	};
683 	int err;
684 
685 	page = f2fs_grab_cache_page(mapping, index, true);
686 	if (!page)
687 		return -ENOMEM;
688 
689 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
690 		dn.data_blkaddr = ei.blk + index - ei.fofs;
691 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
692 						DATA_GENERIC_ENHANCE_READ))) {
693 			err = -EFSCORRUPTED;
694 			goto put_page;
695 		}
696 		goto got_it;
697 	}
698 
699 	set_new_dnode(&dn, inode, NULL, NULL, 0);
700 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
701 	if (err)
702 		goto put_page;
703 	f2fs_put_dnode(&dn);
704 
705 	if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
706 		err = -ENOENT;
707 		goto put_page;
708 	}
709 	if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
710 						DATA_GENERIC_ENHANCE))) {
711 		err = -EFSCORRUPTED;
712 		goto put_page;
713 	}
714 got_it:
715 	/* read page */
716 	fio.page = page;
717 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
718 
719 	/*
720 	 * don't cache encrypted data into meta inode until previous dirty
721 	 * data were writebacked to avoid racing between GC and flush.
722 	 */
723 	f2fs_wait_on_page_writeback(page, DATA, true, true);
724 
725 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
726 
727 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
728 					dn.data_blkaddr,
729 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
730 	if (!fio.encrypted_page) {
731 		err = -ENOMEM;
732 		goto put_page;
733 	}
734 
735 	err = f2fs_submit_page_bio(&fio);
736 	if (err)
737 		goto put_encrypted_page;
738 	f2fs_put_page(fio.encrypted_page, 0);
739 	f2fs_put_page(page, 1);
740 	return 0;
741 put_encrypted_page:
742 	f2fs_put_page(fio.encrypted_page, 1);
743 put_page:
744 	f2fs_put_page(page, 1);
745 	return err;
746 }
747 
748 /*
749  * Move data block via META_MAPPING while keeping locked data page.
750  * This can be used to move blocks, aka LBAs, directly on disk.
751  */
752 static int move_data_block(struct inode *inode, block_t bidx,
753 				int gc_type, unsigned int segno, int off)
754 {
755 	struct f2fs_io_info fio = {
756 		.sbi = F2FS_I_SB(inode),
757 		.ino = inode->i_ino,
758 		.type = DATA,
759 		.temp = COLD,
760 		.op = REQ_OP_READ,
761 		.op_flags = 0,
762 		.encrypted_page = NULL,
763 		.in_list = false,
764 		.retry = false,
765 	};
766 	struct dnode_of_data dn;
767 	struct f2fs_summary sum;
768 	struct node_info ni;
769 	struct page *page, *mpage;
770 	block_t newaddr;
771 	int err = 0;
772 	bool lfs_mode = f2fs_lfs_mode(fio.sbi);
773 
774 	/* do not read out */
775 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
776 	if (!page)
777 		return -ENOMEM;
778 
779 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
780 		err = -ENOENT;
781 		goto out;
782 	}
783 
784 	if (f2fs_is_atomic_file(inode)) {
785 		F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
786 		F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
787 		err = -EAGAIN;
788 		goto out;
789 	}
790 
791 	if (f2fs_is_pinned_file(inode)) {
792 		f2fs_pin_file_control(inode, true);
793 		err = -EAGAIN;
794 		goto out;
795 	}
796 
797 	set_new_dnode(&dn, inode, NULL, NULL, 0);
798 	err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
799 	if (err)
800 		goto out;
801 
802 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
803 		ClearPageUptodate(page);
804 		err = -ENOENT;
805 		goto put_out;
806 	}
807 
808 	/*
809 	 * don't cache encrypted data into meta inode until previous dirty
810 	 * data were writebacked to avoid racing between GC and flush.
811 	 */
812 	f2fs_wait_on_page_writeback(page, DATA, true, true);
813 
814 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
815 
816 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni);
817 	if (err)
818 		goto put_out;
819 
820 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
821 
822 	/* read page */
823 	fio.page = page;
824 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
825 
826 	if (lfs_mode)
827 		down_write(&fio.sbi->io_order_lock);
828 
829 	mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
830 					fio.old_blkaddr, false);
831 	if (!mpage)
832 		goto up_out;
833 
834 	fio.encrypted_page = mpage;
835 
836 	/* read source block in mpage */
837 	if (!PageUptodate(mpage)) {
838 		err = f2fs_submit_page_bio(&fio);
839 		if (err) {
840 			f2fs_put_page(mpage, 1);
841 			goto up_out;
842 		}
843 		lock_page(mpage);
844 		if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
845 						!PageUptodate(mpage))) {
846 			err = -EIO;
847 			f2fs_put_page(mpage, 1);
848 			goto up_out;
849 		}
850 	}
851 
852 	f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
853 					&sum, CURSEG_COLD_DATA, NULL, false);
854 
855 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
856 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
857 	if (!fio.encrypted_page) {
858 		err = -ENOMEM;
859 		f2fs_put_page(mpage, 1);
860 		goto recover_block;
861 	}
862 
863 	/* write target block */
864 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
865 	memcpy(page_address(fio.encrypted_page),
866 				page_address(mpage), PAGE_SIZE);
867 	f2fs_put_page(mpage, 1);
868 	invalidate_mapping_pages(META_MAPPING(fio.sbi),
869 				fio.old_blkaddr, fio.old_blkaddr);
870 
871 	set_page_dirty(fio.encrypted_page);
872 	if (clear_page_dirty_for_io(fio.encrypted_page))
873 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
874 
875 	set_page_writeback(fio.encrypted_page);
876 	ClearPageError(page);
877 
878 	/* allocate block address */
879 	f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true);
880 
881 	fio.op = REQ_OP_WRITE;
882 	fio.op_flags = REQ_SYNC;
883 	fio.new_blkaddr = newaddr;
884 	f2fs_submit_page_write(&fio);
885 	if (fio.retry) {
886 		err = -EAGAIN;
887 		if (PageWriteback(fio.encrypted_page))
888 			end_page_writeback(fio.encrypted_page);
889 		goto put_page_out;
890 	}
891 
892 	f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
893 
894 	f2fs_update_data_blkaddr(&dn, newaddr);
895 	set_inode_flag(inode, FI_APPEND_WRITE);
896 	if (page->index == 0)
897 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
898 put_page_out:
899 	f2fs_put_page(fio.encrypted_page, 1);
900 recover_block:
901 	if (err)
902 		f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
903 								true, true);
904 up_out:
905 	if (lfs_mode)
906 		up_write(&fio.sbi->io_order_lock);
907 put_out:
908 	f2fs_put_dnode(&dn);
909 out:
910 	f2fs_put_page(page, 1);
911 	return err;
912 }
913 
914 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
915 							unsigned int segno, int off)
916 {
917 	struct page *page;
918 	int err = 0;
919 
920 	page = f2fs_get_lock_data_page(inode, bidx, true);
921 	if (IS_ERR(page))
922 		return PTR_ERR(page);
923 
924 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
925 		err = -ENOENT;
926 		goto out;
927 	}
928 
929 	if (f2fs_is_atomic_file(inode)) {
930 		F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++;
931 		F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++;
932 		err = -EAGAIN;
933 		goto out;
934 	}
935 	if (f2fs_is_pinned_file(inode)) {
936 		if (gc_type == FG_GC)
937 			f2fs_pin_file_control(inode, true);
938 		err = -EAGAIN;
939 		goto out;
940 	}
941 
942 	if (gc_type == BG_GC) {
943 		if (PageWriteback(page)) {
944 			err = -EAGAIN;
945 			goto out;
946 		}
947 		set_page_dirty(page);
948 		set_cold_data(page);
949 	} else {
950 		struct f2fs_io_info fio = {
951 			.sbi = F2FS_I_SB(inode),
952 			.ino = inode->i_ino,
953 			.type = DATA,
954 			.temp = COLD,
955 			.op = REQ_OP_WRITE,
956 			.op_flags = REQ_SYNC,
957 			.old_blkaddr = NULL_ADDR,
958 			.page = page,
959 			.encrypted_page = NULL,
960 			.need_lock = LOCK_REQ,
961 			.io_type = FS_GC_DATA_IO,
962 		};
963 		bool is_dirty = PageDirty(page);
964 
965 retry:
966 		f2fs_wait_on_page_writeback(page, DATA, true, true);
967 
968 		set_page_dirty(page);
969 		if (clear_page_dirty_for_io(page)) {
970 			inode_dec_dirty_pages(inode);
971 			f2fs_remove_dirty_inode(inode);
972 		}
973 
974 		set_cold_data(page);
975 
976 		err = f2fs_do_write_data_page(&fio);
977 		if (err) {
978 			clear_cold_data(page);
979 			if (err == -ENOMEM) {
980 				congestion_wait(BLK_RW_ASYNC,
981 						DEFAULT_IO_TIMEOUT);
982 				goto retry;
983 			}
984 			if (is_dirty)
985 				set_page_dirty(page);
986 		}
987 	}
988 out:
989 	f2fs_put_page(page, 1);
990 	return err;
991 }
992 
993 /*
994  * This function tries to get parent node of victim data block, and identifies
995  * data block validity. If the block is valid, copy that with cold status and
996  * modify parent node.
997  * If the parent node is not valid or the data block address is different,
998  * the victim data block is ignored.
999  */
1000 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1001 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
1002 {
1003 	struct super_block *sb = sbi->sb;
1004 	struct f2fs_summary *entry;
1005 	block_t start_addr;
1006 	int off;
1007 	int phase = 0;
1008 	int submitted = 0;
1009 
1010 	start_addr = START_BLOCK(sbi, segno);
1011 
1012 next_step:
1013 	entry = sum;
1014 
1015 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
1016 		struct page *data_page;
1017 		struct inode *inode;
1018 		struct node_info dni; /* dnode info for the data */
1019 		unsigned int ofs_in_node, nofs;
1020 		block_t start_bidx;
1021 		nid_t nid = le32_to_cpu(entry->nid);
1022 
1023 		/*
1024 		 * stop BG_GC if there is not enough free sections.
1025 		 * Or, stop GC if the segment becomes fully valid caused by
1026 		 * race condition along with SSR block allocation.
1027 		 */
1028 		if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1029 				get_valid_blocks(sbi, segno, true) ==
1030 							BLKS_PER_SEC(sbi))
1031 			return submitted;
1032 
1033 		if (check_valid_map(sbi, segno, off) == 0)
1034 			continue;
1035 
1036 		if (phase == 0) {
1037 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1038 							META_NAT, true);
1039 			continue;
1040 		}
1041 
1042 		if (phase == 1) {
1043 			f2fs_ra_node_page(sbi, nid);
1044 			continue;
1045 		}
1046 
1047 		/* Get an inode by ino with checking validity */
1048 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1049 			continue;
1050 
1051 		if (phase == 2) {
1052 			f2fs_ra_node_page(sbi, dni.ino);
1053 			continue;
1054 		}
1055 
1056 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1057 
1058 		if (phase == 3) {
1059 			inode = f2fs_iget(sb, dni.ino);
1060 			if (IS_ERR(inode) || is_bad_inode(inode)) {
1061 				set_sbi_flag(sbi, SBI_NEED_FSCK);
1062 				continue;
1063 			}
1064 
1065 			if (!down_write_trylock(
1066 				&F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1067 				iput(inode);
1068 				sbi->skipped_gc_rwsem++;
1069 				continue;
1070 			}
1071 
1072 			start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1073 								ofs_in_node;
1074 
1075 			if (f2fs_post_read_required(inode)) {
1076 				int err = ra_data_block(inode, start_bidx);
1077 
1078 				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1079 				if (err) {
1080 					iput(inode);
1081 					continue;
1082 				}
1083 				add_gc_inode(gc_list, inode);
1084 				continue;
1085 			}
1086 
1087 			data_page = f2fs_get_read_data_page(inode,
1088 						start_bidx, REQ_RAHEAD, true);
1089 			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1090 			if (IS_ERR(data_page)) {
1091 				iput(inode);
1092 				continue;
1093 			}
1094 
1095 			f2fs_put_page(data_page, 0);
1096 			add_gc_inode(gc_list, inode);
1097 			continue;
1098 		}
1099 
1100 		/* phase 4 */
1101 		inode = find_gc_inode(gc_list, dni.ino);
1102 		if (inode) {
1103 			struct f2fs_inode_info *fi = F2FS_I(inode);
1104 			bool locked = false;
1105 			int err;
1106 
1107 			if (S_ISREG(inode->i_mode)) {
1108 				if (!down_write_trylock(&fi->i_gc_rwsem[READ]))
1109 					continue;
1110 				if (!down_write_trylock(
1111 						&fi->i_gc_rwsem[WRITE])) {
1112 					sbi->skipped_gc_rwsem++;
1113 					up_write(&fi->i_gc_rwsem[READ]);
1114 					continue;
1115 				}
1116 				locked = true;
1117 
1118 				/* wait for all inflight aio data */
1119 				inode_dio_wait(inode);
1120 			}
1121 
1122 			start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1123 								+ ofs_in_node;
1124 			if (f2fs_post_read_required(inode))
1125 				err = move_data_block(inode, start_bidx,
1126 							gc_type, segno, off);
1127 			else
1128 				err = move_data_page(inode, start_bidx, gc_type,
1129 								segno, off);
1130 
1131 			if (!err && (gc_type == FG_GC ||
1132 					f2fs_post_read_required(inode)))
1133 				submitted++;
1134 
1135 			if (locked) {
1136 				up_write(&fi->i_gc_rwsem[WRITE]);
1137 				up_write(&fi->i_gc_rwsem[READ]);
1138 			}
1139 
1140 			stat_inc_data_blk_count(sbi, 1, gc_type);
1141 		}
1142 	}
1143 
1144 	if (++phase < 5)
1145 		goto next_step;
1146 
1147 	return submitted;
1148 }
1149 
1150 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1151 			int gc_type)
1152 {
1153 	struct sit_info *sit_i = SIT_I(sbi);
1154 	int ret;
1155 
1156 	down_write(&sit_i->sentry_lock);
1157 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1158 					      NO_CHECK_TYPE, LFS);
1159 	up_write(&sit_i->sentry_lock);
1160 	return ret;
1161 }
1162 
1163 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1164 				unsigned int start_segno,
1165 				struct gc_inode_list *gc_list, int gc_type)
1166 {
1167 	struct page *sum_page;
1168 	struct f2fs_summary_block *sum;
1169 	struct blk_plug plug;
1170 	unsigned int segno = start_segno;
1171 	unsigned int end_segno = start_segno + sbi->segs_per_sec;
1172 	int seg_freed = 0, migrated = 0;
1173 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1174 						SUM_TYPE_DATA : SUM_TYPE_NODE;
1175 	int submitted = 0;
1176 
1177 	if (__is_large_section(sbi))
1178 		end_segno = rounddown(end_segno, sbi->segs_per_sec);
1179 
1180 	/* readahead multi ssa blocks those have contiguous address */
1181 	if (__is_large_section(sbi))
1182 		f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1183 					end_segno - segno, META_SSA, true);
1184 
1185 	/* reference all summary page */
1186 	while (segno < end_segno) {
1187 		sum_page = f2fs_get_sum_page(sbi, segno++);
1188 		if (IS_ERR(sum_page)) {
1189 			int err = PTR_ERR(sum_page);
1190 
1191 			end_segno = segno - 1;
1192 			for (segno = start_segno; segno < end_segno; segno++) {
1193 				sum_page = find_get_page(META_MAPPING(sbi),
1194 						GET_SUM_BLOCK(sbi, segno));
1195 				f2fs_put_page(sum_page, 0);
1196 				f2fs_put_page(sum_page, 0);
1197 			}
1198 			return err;
1199 		}
1200 		unlock_page(sum_page);
1201 	}
1202 
1203 	blk_start_plug(&plug);
1204 
1205 	for (segno = start_segno; segno < end_segno; segno++) {
1206 
1207 		/* find segment summary of victim */
1208 		sum_page = find_get_page(META_MAPPING(sbi),
1209 					GET_SUM_BLOCK(sbi, segno));
1210 		f2fs_put_page(sum_page, 0);
1211 
1212 		if (get_valid_blocks(sbi, segno, false) == 0)
1213 			goto freed;
1214 		if (gc_type == BG_GC && __is_large_section(sbi) &&
1215 				migrated >= sbi->migration_granularity)
1216 			goto skip;
1217 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1218 			goto skip;
1219 
1220 		sum = page_address(sum_page);
1221 		if (type != GET_SUM_TYPE((&sum->footer))) {
1222 			f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1223 				 segno, type, GET_SUM_TYPE((&sum->footer)));
1224 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1225 			f2fs_stop_checkpoint(sbi, false);
1226 			goto skip;
1227 		}
1228 
1229 		/*
1230 		 * this is to avoid deadlock:
1231 		 * - lock_page(sum_page)         - f2fs_replace_block
1232 		 *  - check_valid_map()            - down_write(sentry_lock)
1233 		 *   - down_read(sentry_lock)     - change_curseg()
1234 		 *                                  - lock_page(sum_page)
1235 		 */
1236 		if (type == SUM_TYPE_NODE)
1237 			submitted += gc_node_segment(sbi, sum->entries, segno,
1238 								gc_type);
1239 		else
1240 			submitted += gc_data_segment(sbi, sum->entries, gc_list,
1241 							segno, gc_type);
1242 
1243 		stat_inc_seg_count(sbi, type, gc_type);
1244 		migrated++;
1245 
1246 freed:
1247 		if (gc_type == FG_GC &&
1248 				get_valid_blocks(sbi, segno, false) == 0)
1249 			seg_freed++;
1250 
1251 		if (__is_large_section(sbi) && segno + 1 < end_segno)
1252 			sbi->next_victim_seg[gc_type] = segno + 1;
1253 skip:
1254 		f2fs_put_page(sum_page, 0);
1255 	}
1256 
1257 	if (submitted)
1258 		f2fs_submit_merged_write(sbi,
1259 				(type == SUM_TYPE_NODE) ? NODE : DATA);
1260 
1261 	blk_finish_plug(&plug);
1262 
1263 	stat_inc_call_count(sbi->stat_info);
1264 
1265 	return seg_freed;
1266 }
1267 
1268 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
1269 			bool background, unsigned int segno)
1270 {
1271 	int gc_type = sync ? FG_GC : BG_GC;
1272 	int sec_freed = 0, seg_freed = 0, total_freed = 0;
1273 	int ret = 0;
1274 	struct cp_control cpc;
1275 	unsigned int init_segno = segno;
1276 	struct gc_inode_list gc_list = {
1277 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
1278 		.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1279 	};
1280 	unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC];
1281 	unsigned long long first_skipped;
1282 	unsigned int skipped_round = 0, round = 0;
1283 
1284 	trace_f2fs_gc_begin(sbi->sb, sync, background,
1285 				get_pages(sbi, F2FS_DIRTY_NODES),
1286 				get_pages(sbi, F2FS_DIRTY_DENTS),
1287 				get_pages(sbi, F2FS_DIRTY_IMETA),
1288 				free_sections(sbi),
1289 				free_segments(sbi),
1290 				reserved_segments(sbi),
1291 				prefree_segments(sbi));
1292 
1293 	cpc.reason = __get_cp_reason(sbi);
1294 	sbi->skipped_gc_rwsem = 0;
1295 	first_skipped = last_skipped;
1296 gc_more:
1297 	if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1298 		ret = -EINVAL;
1299 		goto stop;
1300 	}
1301 	if (unlikely(f2fs_cp_error(sbi))) {
1302 		ret = -EIO;
1303 		goto stop;
1304 	}
1305 
1306 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1307 		/*
1308 		 * For example, if there are many prefree_segments below given
1309 		 * threshold, we can make them free by checkpoint. Then, we
1310 		 * secure free segments which doesn't need fggc any more.
1311 		 */
1312 		if (prefree_segments(sbi) &&
1313 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
1314 			ret = f2fs_write_checkpoint(sbi, &cpc);
1315 			if (ret)
1316 				goto stop;
1317 		}
1318 		if (has_not_enough_free_secs(sbi, 0, 0))
1319 			gc_type = FG_GC;
1320 	}
1321 
1322 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1323 	if (gc_type == BG_GC && !background) {
1324 		ret = -EINVAL;
1325 		goto stop;
1326 	}
1327 	if (!__get_victim(sbi, &segno, gc_type)) {
1328 		ret = -ENODATA;
1329 		goto stop;
1330 	}
1331 
1332 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
1333 	if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
1334 		sec_freed++;
1335 	total_freed += seg_freed;
1336 
1337 	if (gc_type == FG_GC) {
1338 		if (sbi->skipped_atomic_files[FG_GC] > last_skipped ||
1339 						sbi->skipped_gc_rwsem)
1340 			skipped_round++;
1341 		last_skipped = sbi->skipped_atomic_files[FG_GC];
1342 		round++;
1343 	}
1344 
1345 	if (gc_type == FG_GC && seg_freed)
1346 		sbi->cur_victim_sec = NULL_SEGNO;
1347 
1348 	if (sync)
1349 		goto stop;
1350 
1351 	if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1352 		if (skipped_round <= MAX_SKIP_GC_COUNT ||
1353 					skipped_round * 2 < round) {
1354 			segno = NULL_SEGNO;
1355 			goto gc_more;
1356 		}
1357 
1358 		if (first_skipped < last_skipped &&
1359 				(last_skipped - first_skipped) >
1360 						sbi->skipped_gc_rwsem) {
1361 			f2fs_drop_inmem_pages_all(sbi, true);
1362 			segno = NULL_SEGNO;
1363 			goto gc_more;
1364 		}
1365 		if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1366 			ret = f2fs_write_checkpoint(sbi, &cpc);
1367 	}
1368 stop:
1369 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1370 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1371 
1372 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1373 				get_pages(sbi, F2FS_DIRTY_NODES),
1374 				get_pages(sbi, F2FS_DIRTY_DENTS),
1375 				get_pages(sbi, F2FS_DIRTY_IMETA),
1376 				free_sections(sbi),
1377 				free_segments(sbi),
1378 				reserved_segments(sbi),
1379 				prefree_segments(sbi));
1380 
1381 	up_write(&sbi->gc_lock);
1382 
1383 	put_gc_inode(&gc_list);
1384 
1385 	if (sync && !ret)
1386 		ret = sec_freed ? 0 : -EAGAIN;
1387 	return ret;
1388 }
1389 
1390 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1391 {
1392 	DIRTY_I(sbi)->v_ops = &default_v_ops;
1393 
1394 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1395 
1396 	/* give warm/cold data area from slower device */
1397 	if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1398 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1399 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1400 }
1401 
1402 static int free_segment_range(struct f2fs_sb_info *sbi, unsigned int start,
1403 							unsigned int end)
1404 {
1405 	int type;
1406 	unsigned int segno, next_inuse;
1407 	int err = 0;
1408 
1409 	/* Move out cursegs from the target range */
1410 	for (type = CURSEG_HOT_DATA; type < NR_CURSEG_TYPE; type++)
1411 		allocate_segment_for_resize(sbi, type, start, end);
1412 
1413 	/* do GC to move out valid blocks in the range */
1414 	for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1415 		struct gc_inode_list gc_list = {
1416 			.ilist = LIST_HEAD_INIT(gc_list.ilist),
1417 			.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1418 		};
1419 
1420 		down_write(&sbi->gc_lock);
1421 		do_garbage_collect(sbi, segno, &gc_list, FG_GC);
1422 		up_write(&sbi->gc_lock);
1423 		put_gc_inode(&gc_list);
1424 
1425 		if (get_valid_blocks(sbi, segno, true))
1426 			return -EAGAIN;
1427 	}
1428 
1429 	err = f2fs_sync_fs(sbi->sb, 1);
1430 	if (err)
1431 		return err;
1432 
1433 	next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1434 	if (next_inuse <= end) {
1435 		f2fs_err(sbi, "segno %u should be free but still inuse!",
1436 			 next_inuse);
1437 		f2fs_bug_on(sbi, 1);
1438 	}
1439 	return err;
1440 }
1441 
1442 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
1443 {
1444 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
1445 	int section_count;
1446 	int segment_count;
1447 	int segment_count_main;
1448 	long long block_count;
1449 	int segs = secs * sbi->segs_per_sec;
1450 
1451 	down_write(&sbi->sb_lock);
1452 
1453 	section_count = le32_to_cpu(raw_sb->section_count);
1454 	segment_count = le32_to_cpu(raw_sb->segment_count);
1455 	segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
1456 	block_count = le64_to_cpu(raw_sb->block_count);
1457 
1458 	raw_sb->section_count = cpu_to_le32(section_count + secs);
1459 	raw_sb->segment_count = cpu_to_le32(segment_count + segs);
1460 	raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
1461 	raw_sb->block_count = cpu_to_le64(block_count +
1462 					(long long)segs * sbi->blocks_per_seg);
1463 	if (f2fs_is_multi_device(sbi)) {
1464 		int last_dev = sbi->s_ndevs - 1;
1465 		int dev_segs =
1466 			le32_to_cpu(raw_sb->devs[last_dev].total_segments);
1467 
1468 		raw_sb->devs[last_dev].total_segments =
1469 						cpu_to_le32(dev_segs + segs);
1470 	}
1471 
1472 	up_write(&sbi->sb_lock);
1473 }
1474 
1475 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
1476 {
1477 	int segs = secs * sbi->segs_per_sec;
1478 	long long blks = (long long)segs * sbi->blocks_per_seg;
1479 	long long user_block_count =
1480 				le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
1481 
1482 	SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
1483 	MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
1484 	FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
1485 	FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
1486 	F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
1487 
1488 	if (f2fs_is_multi_device(sbi)) {
1489 		int last_dev = sbi->s_ndevs - 1;
1490 
1491 		FDEV(last_dev).total_segments =
1492 				(int)FDEV(last_dev).total_segments + segs;
1493 		FDEV(last_dev).end_blk =
1494 				(long long)FDEV(last_dev).end_blk + blks;
1495 #ifdef CONFIG_BLK_DEV_ZONED
1496 		FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
1497 					(int)(blks >> sbi->log_blocks_per_blkz);
1498 #endif
1499 	}
1500 }
1501 
1502 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
1503 {
1504 	__u64 old_block_count, shrunk_blocks;
1505 	unsigned int secs;
1506 	int gc_mode, gc_type;
1507 	int err = 0;
1508 	__u32 rem;
1509 
1510 	old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
1511 	if (block_count > old_block_count)
1512 		return -EINVAL;
1513 
1514 	if (f2fs_is_multi_device(sbi)) {
1515 		int last_dev = sbi->s_ndevs - 1;
1516 		__u64 last_segs = FDEV(last_dev).total_segments;
1517 
1518 		if (block_count + last_segs * sbi->blocks_per_seg <=
1519 								old_block_count)
1520 			return -EINVAL;
1521 	}
1522 
1523 	/* new fs size should align to section size */
1524 	div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
1525 	if (rem)
1526 		return -EINVAL;
1527 
1528 	if (block_count == old_block_count)
1529 		return 0;
1530 
1531 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1532 		f2fs_err(sbi, "Should run fsck to repair first.");
1533 		return -EFSCORRUPTED;
1534 	}
1535 
1536 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1537 		f2fs_err(sbi, "Checkpoint should be enabled.");
1538 		return -EINVAL;
1539 	}
1540 
1541 	freeze_bdev(sbi->sb->s_bdev);
1542 
1543 	shrunk_blocks = old_block_count - block_count;
1544 	secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
1545 	spin_lock(&sbi->stat_lock);
1546 	if (shrunk_blocks + valid_user_blocks(sbi) +
1547 		sbi->current_reserved_blocks + sbi->unusable_block_count +
1548 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
1549 		err = -ENOSPC;
1550 	else
1551 		sbi->user_block_count -= shrunk_blocks;
1552 	spin_unlock(&sbi->stat_lock);
1553 	if (err) {
1554 		thaw_bdev(sbi->sb->s_bdev, sbi->sb);
1555 		return err;
1556 	}
1557 
1558 	mutex_lock(&sbi->resize_mutex);
1559 	set_sbi_flag(sbi, SBI_IS_RESIZEFS);
1560 
1561 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1562 
1563 	MAIN_SECS(sbi) -= secs;
1564 
1565 	for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1566 		if (SIT_I(sbi)->last_victim[gc_mode] >=
1567 					MAIN_SECS(sbi) * sbi->segs_per_sec)
1568 			SIT_I(sbi)->last_victim[gc_mode] = 0;
1569 
1570 	for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1571 		if (sbi->next_victim_seg[gc_type] >=
1572 					MAIN_SECS(sbi) * sbi->segs_per_sec)
1573 			sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1574 
1575 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1576 
1577 	err = free_segment_range(sbi, MAIN_SECS(sbi) * sbi->segs_per_sec,
1578 			MAIN_SEGS(sbi) - 1);
1579 	if (err)
1580 		goto out;
1581 
1582 	update_sb_metadata(sbi, -secs);
1583 
1584 	err = f2fs_commit_super(sbi, false);
1585 	if (err) {
1586 		update_sb_metadata(sbi, secs);
1587 		goto out;
1588 	}
1589 
1590 	mutex_lock(&sbi->cp_mutex);
1591 	update_fs_metadata(sbi, -secs);
1592 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
1593 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1594 	mutex_unlock(&sbi->cp_mutex);
1595 
1596 	err = f2fs_sync_fs(sbi->sb, 1);
1597 	if (err) {
1598 		mutex_lock(&sbi->cp_mutex);
1599 		update_fs_metadata(sbi, secs);
1600 		mutex_unlock(&sbi->cp_mutex);
1601 		update_sb_metadata(sbi, secs);
1602 		f2fs_commit_super(sbi, false);
1603 	}
1604 out:
1605 	if (err) {
1606 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1607 		f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
1608 
1609 		MAIN_SECS(sbi) += secs;
1610 		spin_lock(&sbi->stat_lock);
1611 		sbi->user_block_count += shrunk_blocks;
1612 		spin_unlock(&sbi->stat_lock);
1613 	}
1614 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
1615 	mutex_unlock(&sbi->resize_mutex);
1616 	thaw_bdev(sbi->sb->s_bdev, sbi->sb);
1617 	return err;
1618 }
1619