xref: /openbmc/linux/fs/f2fs/gc.c (revision 987abe82)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/gc.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/f2fs_fs.h>
12 #include <linux/kthread.h>
13 #include <linux/delay.h>
14 #include <linux/freezer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/random.h>
17 #include <linux/sched/mm.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *victim_entry_slab;
27 
28 static unsigned int count_bits(const unsigned long *addr,
29 				unsigned int offset, unsigned int len);
30 
31 static int gc_thread_func(void *data)
32 {
33 	struct f2fs_sb_info *sbi = data;
34 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 	wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 	unsigned int wait_ms;
38 	struct f2fs_gc_control gc_control = {
39 		.victim_segno = NULL_SEGNO,
40 		.should_migrate_blocks = false,
41 		.err_gc_skipped = false };
42 
43 	wait_ms = gc_th->min_sleep_time;
44 
45 	set_freezable();
46 	do {
47 		bool sync_mode, foreground = false;
48 
49 		wait_event_interruptible_timeout(*wq,
50 				kthread_should_stop() || freezing(current) ||
51 				waitqueue_active(fggc_wq) ||
52 				gc_th->gc_wake,
53 				msecs_to_jiffies(wait_ms));
54 
55 		if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
56 			foreground = true;
57 
58 		/* give it a try one time */
59 		if (gc_th->gc_wake)
60 			gc_th->gc_wake = false;
61 
62 		if (try_to_freeze() || f2fs_readonly(sbi->sb)) {
63 			stat_other_skip_bggc_count(sbi);
64 			continue;
65 		}
66 		if (kthread_should_stop())
67 			break;
68 
69 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 			increase_sleep_time(gc_th, &wait_ms);
71 			stat_other_skip_bggc_count(sbi);
72 			continue;
73 		}
74 
75 		if (time_to_inject(sbi, FAULT_CHECKPOINT))
76 			f2fs_stop_checkpoint(sbi, false,
77 					STOP_CP_REASON_FAULT_INJECT);
78 
79 		if (!sb_start_write_trylock(sbi->sb)) {
80 			stat_other_skip_bggc_count(sbi);
81 			continue;
82 		}
83 
84 		/*
85 		 * [GC triggering condition]
86 		 * 0. GC is not conducted currently.
87 		 * 1. There are enough dirty segments.
88 		 * 2. IO subsystem is idle by checking the # of writeback pages.
89 		 * 3. IO subsystem is idle by checking the # of requests in
90 		 *    bdev's request list.
91 		 *
92 		 * Note) We have to avoid triggering GCs frequently.
93 		 * Because it is possible that some segments can be
94 		 * invalidated soon after by user update or deletion.
95 		 * So, I'd like to wait some time to collect dirty segments.
96 		 */
97 		if (sbi->gc_mode == GC_URGENT_HIGH ||
98 				sbi->gc_mode == GC_URGENT_MID) {
99 			wait_ms = gc_th->urgent_sleep_time;
100 			f2fs_down_write(&sbi->gc_lock);
101 			goto do_gc;
102 		}
103 
104 		if (foreground) {
105 			f2fs_down_write(&sbi->gc_lock);
106 			goto do_gc;
107 		} else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
108 			stat_other_skip_bggc_count(sbi);
109 			goto next;
110 		}
111 
112 		if (!is_idle(sbi, GC_TIME)) {
113 			increase_sleep_time(gc_th, &wait_ms);
114 			f2fs_up_write(&sbi->gc_lock);
115 			stat_io_skip_bggc_count(sbi);
116 			goto next;
117 		}
118 
119 		if (has_enough_invalid_blocks(sbi))
120 			decrease_sleep_time(gc_th, &wait_ms);
121 		else
122 			increase_sleep_time(gc_th, &wait_ms);
123 do_gc:
124 		stat_inc_gc_call_count(sbi, foreground ?
125 					FOREGROUND : BACKGROUND);
126 
127 		sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
128 
129 		/* foreground GC was been triggered via f2fs_balance_fs() */
130 		if (foreground)
131 			sync_mode = false;
132 
133 		gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
134 		gc_control.no_bg_gc = foreground;
135 		gc_control.nr_free_secs = foreground ? 1 : 0;
136 
137 		/* if return value is not zero, no victim was selected */
138 		if (f2fs_gc(sbi, &gc_control)) {
139 			/* don't bother wait_ms by foreground gc */
140 			if (!foreground)
141 				wait_ms = gc_th->no_gc_sleep_time;
142 		} else {
143 			/* reset wait_ms to default sleep time */
144 			if (wait_ms == gc_th->no_gc_sleep_time)
145 				wait_ms = gc_th->min_sleep_time;
146 		}
147 
148 		if (foreground)
149 			wake_up_all(&gc_th->fggc_wq);
150 
151 		trace_f2fs_background_gc(sbi->sb, wait_ms,
152 				prefree_segments(sbi), free_segments(sbi));
153 
154 		/* balancing f2fs's metadata periodically */
155 		f2fs_balance_fs_bg(sbi, true);
156 next:
157 		if (sbi->gc_mode != GC_NORMAL) {
158 			spin_lock(&sbi->gc_remaining_trials_lock);
159 			if (sbi->gc_remaining_trials) {
160 				sbi->gc_remaining_trials--;
161 				if (!sbi->gc_remaining_trials)
162 					sbi->gc_mode = GC_NORMAL;
163 			}
164 			spin_unlock(&sbi->gc_remaining_trials_lock);
165 		}
166 		sb_end_write(sbi->sb);
167 
168 	} while (!kthread_should_stop());
169 	return 0;
170 }
171 
172 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
173 {
174 	struct f2fs_gc_kthread *gc_th;
175 	dev_t dev = sbi->sb->s_bdev->bd_dev;
176 
177 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
178 	if (!gc_th)
179 		return -ENOMEM;
180 
181 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
182 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
183 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
184 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
185 
186 	gc_th->gc_wake = false;
187 
188 	sbi->gc_thread = gc_th;
189 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
190 	init_waitqueue_head(&sbi->gc_thread->fggc_wq);
191 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
192 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
193 	if (IS_ERR(gc_th->f2fs_gc_task)) {
194 		int err = PTR_ERR(gc_th->f2fs_gc_task);
195 
196 		kfree(gc_th);
197 		sbi->gc_thread = NULL;
198 		return err;
199 	}
200 
201 	return 0;
202 }
203 
204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
205 {
206 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
207 
208 	if (!gc_th)
209 		return;
210 	kthread_stop(gc_th->f2fs_gc_task);
211 	wake_up_all(&gc_th->fggc_wq);
212 	kfree(gc_th);
213 	sbi->gc_thread = NULL;
214 }
215 
216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
217 {
218 	int gc_mode;
219 
220 	if (gc_type == BG_GC) {
221 		if (sbi->am.atgc_enabled)
222 			gc_mode = GC_AT;
223 		else
224 			gc_mode = GC_CB;
225 	} else {
226 		gc_mode = GC_GREEDY;
227 	}
228 
229 	switch (sbi->gc_mode) {
230 	case GC_IDLE_CB:
231 	case GC_URGENT_LOW:
232 	case GC_URGENT_MID:
233 		gc_mode = GC_CB;
234 		break;
235 	case GC_IDLE_GREEDY:
236 	case GC_URGENT_HIGH:
237 		gc_mode = GC_GREEDY;
238 		break;
239 	case GC_IDLE_AT:
240 		gc_mode = GC_AT;
241 		break;
242 	}
243 
244 	return gc_mode;
245 }
246 
247 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
248 			int type, struct victim_sel_policy *p)
249 {
250 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
251 
252 	if (p->alloc_mode == SSR) {
253 		p->gc_mode = GC_GREEDY;
254 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
255 		p->max_search = dirty_i->nr_dirty[type];
256 		p->ofs_unit = 1;
257 	} else if (p->alloc_mode == AT_SSR) {
258 		p->gc_mode = GC_GREEDY;
259 		p->dirty_bitmap = dirty_i->dirty_segmap[type];
260 		p->max_search = dirty_i->nr_dirty[type];
261 		p->ofs_unit = 1;
262 	} else {
263 		p->gc_mode = select_gc_type(sbi, gc_type);
264 		p->ofs_unit = SEGS_PER_SEC(sbi);
265 		if (__is_large_section(sbi)) {
266 			p->dirty_bitmap = dirty_i->dirty_secmap;
267 			p->max_search = count_bits(p->dirty_bitmap,
268 						0, MAIN_SECS(sbi));
269 		} else {
270 			p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
271 			p->max_search = dirty_i->nr_dirty[DIRTY];
272 		}
273 	}
274 
275 	/*
276 	 * adjust candidates range, should select all dirty segments for
277 	 * foreground GC and urgent GC cases.
278 	 */
279 	if (gc_type != FG_GC &&
280 			(sbi->gc_mode != GC_URGENT_HIGH) &&
281 			(p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
282 			p->max_search > sbi->max_victim_search)
283 		p->max_search = sbi->max_victim_search;
284 
285 	/* let's select beginning hot/small space first. */
286 	if (f2fs_need_rand_seg(sbi))
287 		p->offset = get_random_u32_below(MAIN_SECS(sbi) *
288 						SEGS_PER_SEC(sbi));
289 	else if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
290 		p->offset = 0;
291 	else
292 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
293 }
294 
295 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
296 				struct victim_sel_policy *p)
297 {
298 	/* SSR allocates in a segment unit */
299 	if (p->alloc_mode == SSR)
300 		return BLKS_PER_SEG(sbi);
301 	else if (p->alloc_mode == AT_SSR)
302 		return UINT_MAX;
303 
304 	/* LFS */
305 	if (p->gc_mode == GC_GREEDY)
306 		return 2 * BLKS_PER_SEG(sbi) * p->ofs_unit;
307 	else if (p->gc_mode == GC_CB)
308 		return UINT_MAX;
309 	else if (p->gc_mode == GC_AT)
310 		return UINT_MAX;
311 	else /* No other gc_mode */
312 		return 0;
313 }
314 
315 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
316 {
317 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
318 	unsigned int secno;
319 
320 	/*
321 	 * If the gc_type is FG_GC, we can select victim segments
322 	 * selected by background GC before.
323 	 * Those segments guarantee they have small valid blocks.
324 	 */
325 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
326 		if (sec_usage_check(sbi, secno))
327 			continue;
328 		clear_bit(secno, dirty_i->victim_secmap);
329 		return GET_SEG_FROM_SEC(sbi, secno);
330 	}
331 	return NULL_SEGNO;
332 }
333 
334 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
335 {
336 	struct sit_info *sit_i = SIT_I(sbi);
337 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
338 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
339 	unsigned long long mtime = 0;
340 	unsigned int vblocks;
341 	unsigned char age = 0;
342 	unsigned char u;
343 	unsigned int i;
344 	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
345 
346 	for (i = 0; i < usable_segs_per_sec; i++)
347 		mtime += get_seg_entry(sbi, start + i)->mtime;
348 	vblocks = get_valid_blocks(sbi, segno, true);
349 
350 	mtime = div_u64(mtime, usable_segs_per_sec);
351 	vblocks = div_u64(vblocks, usable_segs_per_sec);
352 
353 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
354 
355 	/* Handle if the system time has changed by the user */
356 	if (mtime < sit_i->min_mtime)
357 		sit_i->min_mtime = mtime;
358 	if (mtime > sit_i->max_mtime)
359 		sit_i->max_mtime = mtime;
360 	if (sit_i->max_mtime != sit_i->min_mtime)
361 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
362 				sit_i->max_mtime - sit_i->min_mtime);
363 
364 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
365 }
366 
367 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
368 			unsigned int segno, struct victim_sel_policy *p)
369 {
370 	if (p->alloc_mode == SSR)
371 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
372 
373 	/* alloc_mode == LFS */
374 	if (p->gc_mode == GC_GREEDY)
375 		return get_valid_blocks(sbi, segno, true);
376 	else if (p->gc_mode == GC_CB)
377 		return get_cb_cost(sbi, segno);
378 
379 	f2fs_bug_on(sbi, 1);
380 	return 0;
381 }
382 
383 static unsigned int count_bits(const unsigned long *addr,
384 				unsigned int offset, unsigned int len)
385 {
386 	unsigned int end = offset + len, sum = 0;
387 
388 	while (offset < end) {
389 		if (test_bit(offset++, addr))
390 			++sum;
391 	}
392 	return sum;
393 }
394 
395 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi,
396 				struct rb_root_cached *root)
397 {
398 #ifdef CONFIG_F2FS_CHECK_FS
399 	struct rb_node *cur = rb_first_cached(root), *next;
400 	struct victim_entry *cur_ve, *next_ve;
401 
402 	while (cur) {
403 		next = rb_next(cur);
404 		if (!next)
405 			return true;
406 
407 		cur_ve = rb_entry(cur, struct victim_entry, rb_node);
408 		next_ve = rb_entry(next, struct victim_entry, rb_node);
409 
410 		if (cur_ve->mtime > next_ve->mtime) {
411 			f2fs_info(sbi, "broken victim_rbtree, "
412 				"cur_mtime(%llu) next_mtime(%llu)",
413 				cur_ve->mtime, next_ve->mtime);
414 			return false;
415 		}
416 		cur = next;
417 	}
418 #endif
419 	return true;
420 }
421 
422 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi,
423 					unsigned long long mtime)
424 {
425 	struct atgc_management *am = &sbi->am;
426 	struct rb_node *node = am->root.rb_root.rb_node;
427 	struct victim_entry *ve = NULL;
428 
429 	while (node) {
430 		ve = rb_entry(node, struct victim_entry, rb_node);
431 
432 		if (mtime < ve->mtime)
433 			node = node->rb_left;
434 		else
435 			node = node->rb_right;
436 	}
437 	return ve;
438 }
439 
440 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi,
441 		unsigned long long mtime, unsigned int segno)
442 {
443 	struct atgc_management *am = &sbi->am;
444 	struct victim_entry *ve;
445 
446 	ve =  f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL);
447 
448 	ve->mtime = mtime;
449 	ve->segno = segno;
450 
451 	list_add_tail(&ve->list, &am->victim_list);
452 	am->victim_count++;
453 
454 	return ve;
455 }
456 
457 static void __insert_victim_entry(struct f2fs_sb_info *sbi,
458 				unsigned long long mtime, unsigned int segno)
459 {
460 	struct atgc_management *am = &sbi->am;
461 	struct rb_root_cached *root = &am->root;
462 	struct rb_node **p = &root->rb_root.rb_node;
463 	struct rb_node *parent = NULL;
464 	struct victim_entry *ve;
465 	bool left_most = true;
466 
467 	/* look up rb tree to find parent node */
468 	while (*p) {
469 		parent = *p;
470 		ve = rb_entry(parent, struct victim_entry, rb_node);
471 
472 		if (mtime < ve->mtime) {
473 			p = &(*p)->rb_left;
474 		} else {
475 			p = &(*p)->rb_right;
476 			left_most = false;
477 		}
478 	}
479 
480 	ve = __create_victim_entry(sbi, mtime, segno);
481 
482 	rb_link_node(&ve->rb_node, parent, p);
483 	rb_insert_color_cached(&ve->rb_node, root, left_most);
484 }
485 
486 static void add_victim_entry(struct f2fs_sb_info *sbi,
487 				struct victim_sel_policy *p, unsigned int segno)
488 {
489 	struct sit_info *sit_i = SIT_I(sbi);
490 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
491 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
492 	unsigned long long mtime = 0;
493 	unsigned int i;
494 
495 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
496 		if (p->gc_mode == GC_AT &&
497 			get_valid_blocks(sbi, segno, true) == 0)
498 			return;
499 	}
500 
501 	for (i = 0; i < SEGS_PER_SEC(sbi); i++)
502 		mtime += get_seg_entry(sbi, start + i)->mtime;
503 	mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
504 
505 	/* Handle if the system time has changed by the user */
506 	if (mtime < sit_i->min_mtime)
507 		sit_i->min_mtime = mtime;
508 	if (mtime > sit_i->max_mtime)
509 		sit_i->max_mtime = mtime;
510 	if (mtime < sit_i->dirty_min_mtime)
511 		sit_i->dirty_min_mtime = mtime;
512 	if (mtime > sit_i->dirty_max_mtime)
513 		sit_i->dirty_max_mtime = mtime;
514 
515 	/* don't choose young section as candidate */
516 	if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
517 		return;
518 
519 	__insert_victim_entry(sbi, mtime, segno);
520 }
521 
522 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
523 						struct victim_sel_policy *p)
524 {
525 	struct sit_info *sit_i = SIT_I(sbi);
526 	struct atgc_management *am = &sbi->am;
527 	struct rb_root_cached *root = &am->root;
528 	struct rb_node *node;
529 	struct victim_entry *ve;
530 	unsigned long long total_time;
531 	unsigned long long age, u, accu;
532 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
533 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
534 	unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
535 	unsigned int vblocks;
536 	unsigned int dirty_threshold = max(am->max_candidate_count,
537 					am->candidate_ratio *
538 					am->victim_count / 100);
539 	unsigned int age_weight = am->age_weight;
540 	unsigned int cost;
541 	unsigned int iter = 0;
542 
543 	if (max_mtime < min_mtime)
544 		return;
545 
546 	max_mtime += 1;
547 	total_time = max_mtime - min_mtime;
548 
549 	accu = div64_u64(ULLONG_MAX, total_time);
550 	accu = min_t(unsigned long long, div_u64(accu, 100),
551 					DEFAULT_ACCURACY_CLASS);
552 
553 	node = rb_first_cached(root);
554 next:
555 	ve = rb_entry_safe(node, struct victim_entry, rb_node);
556 	if (!ve)
557 		return;
558 
559 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
560 		goto skip;
561 
562 	/* age = 10000 * x% * 60 */
563 	age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
564 								age_weight;
565 
566 	vblocks = get_valid_blocks(sbi, ve->segno, true);
567 	f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
568 
569 	/* u = 10000 * x% * 40 */
570 	u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
571 							(100 - age_weight);
572 
573 	f2fs_bug_on(sbi, age + u >= UINT_MAX);
574 
575 	cost = UINT_MAX - (age + u);
576 	iter++;
577 
578 	if (cost < p->min_cost ||
579 			(cost == p->min_cost && age > p->oldest_age)) {
580 		p->min_cost = cost;
581 		p->oldest_age = age;
582 		p->min_segno = ve->segno;
583 	}
584 skip:
585 	if (iter < dirty_threshold) {
586 		node = rb_next(node);
587 		goto next;
588 	}
589 }
590 
591 /*
592  * select candidates around source section in range of
593  * [target - dirty_threshold, target + dirty_threshold]
594  */
595 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
596 						struct victim_sel_policy *p)
597 {
598 	struct sit_info *sit_i = SIT_I(sbi);
599 	struct atgc_management *am = &sbi->am;
600 	struct victim_entry *ve;
601 	unsigned long long age;
602 	unsigned long long max_mtime = sit_i->dirty_max_mtime;
603 	unsigned long long min_mtime = sit_i->dirty_min_mtime;
604 	unsigned int vblocks;
605 	unsigned int dirty_threshold = max(am->max_candidate_count,
606 					am->candidate_ratio *
607 					am->victim_count / 100);
608 	unsigned int cost, iter;
609 	int stage = 0;
610 
611 	if (max_mtime < min_mtime)
612 		return;
613 	max_mtime += 1;
614 next_stage:
615 	iter = 0;
616 	ve = __lookup_victim_entry(sbi, p->age);
617 next_node:
618 	if (!ve) {
619 		if (stage++ == 0)
620 			goto next_stage;
621 		return;
622 	}
623 
624 	if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
625 		goto skip_node;
626 
627 	age = max_mtime - ve->mtime;
628 
629 	vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
630 	f2fs_bug_on(sbi, !vblocks);
631 
632 	/* rare case */
633 	if (vblocks == BLKS_PER_SEG(sbi))
634 		goto skip_node;
635 
636 	iter++;
637 
638 	age = max_mtime - abs(p->age - age);
639 	cost = UINT_MAX - vblocks;
640 
641 	if (cost < p->min_cost ||
642 			(cost == p->min_cost && age > p->oldest_age)) {
643 		p->min_cost = cost;
644 		p->oldest_age = age;
645 		p->min_segno = ve->segno;
646 	}
647 skip_node:
648 	if (iter < dirty_threshold) {
649 		ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) :
650 					rb_next(&ve->rb_node),
651 					struct victim_entry, rb_node);
652 		goto next_node;
653 	}
654 
655 	if (stage++ == 0)
656 		goto next_stage;
657 }
658 
659 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
660 						struct victim_sel_policy *p)
661 {
662 	f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root));
663 
664 	if (p->gc_mode == GC_AT)
665 		atgc_lookup_victim(sbi, p);
666 	else if (p->alloc_mode == AT_SSR)
667 		atssr_lookup_victim(sbi, p);
668 	else
669 		f2fs_bug_on(sbi, 1);
670 }
671 
672 static void release_victim_entry(struct f2fs_sb_info *sbi)
673 {
674 	struct atgc_management *am = &sbi->am;
675 	struct victim_entry *ve, *tmp;
676 
677 	list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
678 		list_del(&ve->list);
679 		kmem_cache_free(victim_entry_slab, ve);
680 		am->victim_count--;
681 	}
682 
683 	am->root = RB_ROOT_CACHED;
684 
685 	f2fs_bug_on(sbi, am->victim_count);
686 	f2fs_bug_on(sbi, !list_empty(&am->victim_list));
687 }
688 
689 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
690 {
691 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
692 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
693 
694 	if (!dirty_i->enable_pin_section)
695 		return false;
696 	if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
697 		dirty_i->pinned_secmap_cnt++;
698 	return true;
699 }
700 
701 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
702 {
703 	return dirty_i->pinned_secmap_cnt;
704 }
705 
706 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
707 						unsigned int secno)
708 {
709 	return dirty_i->enable_pin_section &&
710 		f2fs_pinned_section_exists(dirty_i) &&
711 		test_bit(secno, dirty_i->pinned_secmap);
712 }
713 
714 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
715 {
716 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
717 
718 	if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
719 		memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
720 		DIRTY_I(sbi)->pinned_secmap_cnt = 0;
721 	}
722 	DIRTY_I(sbi)->enable_pin_section = enable;
723 }
724 
725 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
726 							unsigned int segno)
727 {
728 	if (!f2fs_is_pinned_file(inode))
729 		return 0;
730 	if (gc_type != FG_GC)
731 		return -EBUSY;
732 	if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
733 		f2fs_pin_file_control(inode, true);
734 	return -EAGAIN;
735 }
736 
737 /*
738  * This function is called from two paths.
739  * One is garbage collection and the other is SSR segment selection.
740  * When it is called during GC, it just gets a victim segment
741  * and it does not remove it from dirty seglist.
742  * When it is called from SSR segment selection, it finds a segment
743  * which has minimum valid blocks and removes it from dirty seglist.
744  */
745 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
746 			int gc_type, int type, char alloc_mode,
747 			unsigned long long age)
748 {
749 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
750 	struct sit_info *sm = SIT_I(sbi);
751 	struct victim_sel_policy p;
752 	unsigned int secno, last_victim;
753 	unsigned int last_segment;
754 	unsigned int nsearched;
755 	bool is_atgc;
756 	int ret = 0;
757 
758 	mutex_lock(&dirty_i->seglist_lock);
759 	last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
760 
761 	p.alloc_mode = alloc_mode;
762 	p.age = age;
763 	p.age_threshold = sbi->am.age_threshold;
764 
765 retry:
766 	select_policy(sbi, gc_type, type, &p);
767 	p.min_segno = NULL_SEGNO;
768 	p.oldest_age = 0;
769 	p.min_cost = get_max_cost(sbi, &p);
770 
771 	is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
772 	nsearched = 0;
773 
774 	if (is_atgc)
775 		SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
776 
777 	if (*result != NULL_SEGNO) {
778 		if (!get_valid_blocks(sbi, *result, false)) {
779 			ret = -ENODATA;
780 			goto out;
781 		}
782 
783 		if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
784 			ret = -EBUSY;
785 		else
786 			p.min_segno = *result;
787 		goto out;
788 	}
789 
790 	ret = -ENODATA;
791 	if (p.max_search == 0)
792 		goto out;
793 
794 	if (__is_large_section(sbi) && p.alloc_mode == LFS) {
795 		if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
796 			p.min_segno = sbi->next_victim_seg[BG_GC];
797 			*result = p.min_segno;
798 			sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
799 			goto got_result;
800 		}
801 		if (gc_type == FG_GC &&
802 				sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
803 			p.min_segno = sbi->next_victim_seg[FG_GC];
804 			*result = p.min_segno;
805 			sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
806 			goto got_result;
807 		}
808 	}
809 
810 	last_victim = sm->last_victim[p.gc_mode];
811 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
812 		p.min_segno = check_bg_victims(sbi);
813 		if (p.min_segno != NULL_SEGNO)
814 			goto got_it;
815 	}
816 
817 	while (1) {
818 		unsigned long cost, *dirty_bitmap;
819 		unsigned int unit_no, segno;
820 
821 		dirty_bitmap = p.dirty_bitmap;
822 		unit_no = find_next_bit(dirty_bitmap,
823 				last_segment / p.ofs_unit,
824 				p.offset / p.ofs_unit);
825 		segno = unit_no * p.ofs_unit;
826 		if (segno >= last_segment) {
827 			if (sm->last_victim[p.gc_mode]) {
828 				last_segment =
829 					sm->last_victim[p.gc_mode];
830 				sm->last_victim[p.gc_mode] = 0;
831 				p.offset = 0;
832 				continue;
833 			}
834 			break;
835 		}
836 
837 		p.offset = segno + p.ofs_unit;
838 		nsearched++;
839 
840 #ifdef CONFIG_F2FS_CHECK_FS
841 		/*
842 		 * skip selecting the invalid segno (that is failed due to block
843 		 * validity check failure during GC) to avoid endless GC loop in
844 		 * such cases.
845 		 */
846 		if (test_bit(segno, sm->invalid_segmap))
847 			goto next;
848 #endif
849 
850 		secno = GET_SEC_FROM_SEG(sbi, segno);
851 
852 		if (sec_usage_check(sbi, secno))
853 			goto next;
854 
855 		/* Don't touch checkpointed data */
856 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
857 			if (p.alloc_mode == LFS) {
858 				/*
859 				 * LFS is set to find source section during GC.
860 				 * The victim should have no checkpointed data.
861 				 */
862 				if (get_ckpt_valid_blocks(sbi, segno, true))
863 					goto next;
864 			} else {
865 				/*
866 				 * SSR | AT_SSR are set to find target segment
867 				 * for writes which can be full by checkpointed
868 				 * and newly written blocks.
869 				 */
870 				if (!f2fs_segment_has_free_slot(sbi, segno))
871 					goto next;
872 			}
873 		}
874 
875 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
876 			goto next;
877 
878 		if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
879 			goto next;
880 
881 		if (is_atgc) {
882 			add_victim_entry(sbi, &p, segno);
883 			goto next;
884 		}
885 
886 		cost = get_gc_cost(sbi, segno, &p);
887 
888 		if (p.min_cost > cost) {
889 			p.min_segno = segno;
890 			p.min_cost = cost;
891 		}
892 next:
893 		if (nsearched >= p.max_search) {
894 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
895 				sm->last_victim[p.gc_mode] =
896 					last_victim + p.ofs_unit;
897 			else
898 				sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
899 			sm->last_victim[p.gc_mode] %=
900 				(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
901 			break;
902 		}
903 	}
904 
905 	/* get victim for GC_AT/AT_SSR */
906 	if (is_atgc) {
907 		lookup_victim_by_age(sbi, &p);
908 		release_victim_entry(sbi);
909 	}
910 
911 	if (is_atgc && p.min_segno == NULL_SEGNO &&
912 			sm->elapsed_time < p.age_threshold) {
913 		p.age_threshold = 0;
914 		goto retry;
915 	}
916 
917 	if (p.min_segno != NULL_SEGNO) {
918 got_it:
919 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
920 got_result:
921 		if (p.alloc_mode == LFS) {
922 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
923 			if (gc_type == FG_GC)
924 				sbi->cur_victim_sec = secno;
925 			else
926 				set_bit(secno, dirty_i->victim_secmap);
927 		}
928 		ret = 0;
929 
930 	}
931 out:
932 	if (p.min_segno != NULL_SEGNO)
933 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
934 				sbi->cur_victim_sec,
935 				prefree_segments(sbi), free_segments(sbi));
936 	mutex_unlock(&dirty_i->seglist_lock);
937 
938 	return ret;
939 }
940 
941 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
942 {
943 	struct inode_entry *ie;
944 
945 	ie = radix_tree_lookup(&gc_list->iroot, ino);
946 	if (ie)
947 		return ie->inode;
948 	return NULL;
949 }
950 
951 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
952 {
953 	struct inode_entry *new_ie;
954 
955 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
956 		iput(inode);
957 		return;
958 	}
959 	new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
960 					GFP_NOFS, true, NULL);
961 	new_ie->inode = inode;
962 
963 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
964 	list_add_tail(&new_ie->list, &gc_list->ilist);
965 }
966 
967 static void put_gc_inode(struct gc_inode_list *gc_list)
968 {
969 	struct inode_entry *ie, *next_ie;
970 
971 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
972 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
973 		iput(ie->inode);
974 		list_del(&ie->list);
975 		kmem_cache_free(f2fs_inode_entry_slab, ie);
976 	}
977 }
978 
979 static int check_valid_map(struct f2fs_sb_info *sbi,
980 				unsigned int segno, int offset)
981 {
982 	struct sit_info *sit_i = SIT_I(sbi);
983 	struct seg_entry *sentry;
984 	int ret;
985 
986 	down_read(&sit_i->sentry_lock);
987 	sentry = get_seg_entry(sbi, segno);
988 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
989 	up_read(&sit_i->sentry_lock);
990 	return ret;
991 }
992 
993 /*
994  * This function compares node address got in summary with that in NAT.
995  * On validity, copy that node with cold status, otherwise (invalid node)
996  * ignore that.
997  */
998 static int gc_node_segment(struct f2fs_sb_info *sbi,
999 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
1000 {
1001 	struct f2fs_summary *entry;
1002 	block_t start_addr;
1003 	int off;
1004 	int phase = 0;
1005 	bool fggc = (gc_type == FG_GC);
1006 	int submitted = 0;
1007 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1008 
1009 	start_addr = START_BLOCK(sbi, segno);
1010 
1011 next_step:
1012 	entry = sum;
1013 
1014 	if (fggc && phase == 2)
1015 		atomic_inc(&sbi->wb_sync_req[NODE]);
1016 
1017 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1018 		nid_t nid = le32_to_cpu(entry->nid);
1019 		struct page *node_page;
1020 		struct node_info ni;
1021 		int err;
1022 
1023 		/* stop BG_GC if there is not enough free sections. */
1024 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
1025 			return submitted;
1026 
1027 		if (check_valid_map(sbi, segno, off) == 0)
1028 			continue;
1029 
1030 		if (phase == 0) {
1031 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1032 							META_NAT, true);
1033 			continue;
1034 		}
1035 
1036 		if (phase == 1) {
1037 			f2fs_ra_node_page(sbi, nid);
1038 			continue;
1039 		}
1040 
1041 		/* phase == 2 */
1042 		node_page = f2fs_get_node_page(sbi, nid);
1043 		if (IS_ERR(node_page))
1044 			continue;
1045 
1046 		/* block may become invalid during f2fs_get_node_page */
1047 		if (check_valid_map(sbi, segno, off) == 0) {
1048 			f2fs_put_page(node_page, 1);
1049 			continue;
1050 		}
1051 
1052 		if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1053 			f2fs_put_page(node_page, 1);
1054 			continue;
1055 		}
1056 
1057 		if (ni.blk_addr != start_addr + off) {
1058 			f2fs_put_page(node_page, 1);
1059 			continue;
1060 		}
1061 
1062 		err = f2fs_move_node_page(node_page, gc_type);
1063 		if (!err && gc_type == FG_GC)
1064 			submitted++;
1065 		stat_inc_node_blk_count(sbi, 1, gc_type);
1066 	}
1067 
1068 	if (++phase < 3)
1069 		goto next_step;
1070 
1071 	if (fggc)
1072 		atomic_dec(&sbi->wb_sync_req[NODE]);
1073 	return submitted;
1074 }
1075 
1076 /*
1077  * Calculate start block index indicating the given node offset.
1078  * Be careful, caller should give this node offset only indicating direct node
1079  * blocks. If any node offsets, which point the other types of node blocks such
1080  * as indirect or double indirect node blocks, are given, it must be a caller's
1081  * bug.
1082  */
1083 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1084 {
1085 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1086 	unsigned int bidx;
1087 
1088 	if (node_ofs == 0)
1089 		return 0;
1090 
1091 	if (node_ofs <= 2) {
1092 		bidx = node_ofs - 1;
1093 	} else if (node_ofs <= indirect_blks) {
1094 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1095 
1096 		bidx = node_ofs - 2 - dec;
1097 	} else {
1098 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1099 
1100 		bidx = node_ofs - 5 - dec;
1101 	}
1102 	return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1103 }
1104 
1105 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1106 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1107 {
1108 	struct page *node_page;
1109 	nid_t nid;
1110 	unsigned int ofs_in_node, max_addrs, base;
1111 	block_t source_blkaddr;
1112 
1113 	nid = le32_to_cpu(sum->nid);
1114 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1115 
1116 	node_page = f2fs_get_node_page(sbi, nid);
1117 	if (IS_ERR(node_page))
1118 		return false;
1119 
1120 	if (f2fs_get_node_info(sbi, nid, dni, false)) {
1121 		f2fs_put_page(node_page, 1);
1122 		return false;
1123 	}
1124 
1125 	if (sum->version != dni->version) {
1126 		f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1127 			  __func__);
1128 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1129 	}
1130 
1131 	if (f2fs_check_nid_range(sbi, dni->ino)) {
1132 		f2fs_put_page(node_page, 1);
1133 		return false;
1134 	}
1135 
1136 	if (IS_INODE(node_page)) {
1137 		base = offset_in_addr(F2FS_INODE(node_page));
1138 		max_addrs = DEF_ADDRS_PER_INODE;
1139 	} else {
1140 		base = 0;
1141 		max_addrs = DEF_ADDRS_PER_BLOCK;
1142 	}
1143 
1144 	if (base + ofs_in_node >= max_addrs) {
1145 		f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1146 			base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1147 		f2fs_put_page(node_page, 1);
1148 		return false;
1149 	}
1150 
1151 	*nofs = ofs_of_node(node_page);
1152 	source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1153 	f2fs_put_page(node_page, 1);
1154 
1155 	if (source_blkaddr != blkaddr) {
1156 #ifdef CONFIG_F2FS_CHECK_FS
1157 		unsigned int segno = GET_SEGNO(sbi, blkaddr);
1158 		unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1159 
1160 		if (unlikely(check_valid_map(sbi, segno, offset))) {
1161 			if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1162 				f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1163 					 blkaddr, source_blkaddr, segno);
1164 				set_sbi_flag(sbi, SBI_NEED_FSCK);
1165 			}
1166 		}
1167 #endif
1168 		return false;
1169 	}
1170 	return true;
1171 }
1172 
1173 static int ra_data_block(struct inode *inode, pgoff_t index)
1174 {
1175 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1176 	struct address_space *mapping = f2fs_is_cow_file(inode) ?
1177 				F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping;
1178 	struct dnode_of_data dn;
1179 	struct page *page;
1180 	struct f2fs_io_info fio = {
1181 		.sbi = sbi,
1182 		.ino = inode->i_ino,
1183 		.type = DATA,
1184 		.temp = COLD,
1185 		.op = REQ_OP_READ,
1186 		.op_flags = 0,
1187 		.encrypted_page = NULL,
1188 		.in_list = 0,
1189 	};
1190 	int err;
1191 
1192 	page = f2fs_grab_cache_page(mapping, index, true);
1193 	if (!page)
1194 		return -ENOMEM;
1195 
1196 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1197 						&dn.data_blkaddr)) {
1198 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1199 						DATA_GENERIC_ENHANCE_READ))) {
1200 			err = -EFSCORRUPTED;
1201 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1202 			goto put_page;
1203 		}
1204 		goto got_it;
1205 	}
1206 
1207 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1208 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1209 	if (err)
1210 		goto put_page;
1211 	f2fs_put_dnode(&dn);
1212 
1213 	if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1214 		err = -ENOENT;
1215 		goto put_page;
1216 	}
1217 	if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1218 						DATA_GENERIC_ENHANCE))) {
1219 		err = -EFSCORRUPTED;
1220 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1221 		goto put_page;
1222 	}
1223 got_it:
1224 	/* read page */
1225 	fio.page = page;
1226 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1227 
1228 	/*
1229 	 * don't cache encrypted data into meta inode until previous dirty
1230 	 * data were writebacked to avoid racing between GC and flush.
1231 	 */
1232 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1233 
1234 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1235 
1236 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1237 					dn.data_blkaddr,
1238 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
1239 	if (!fio.encrypted_page) {
1240 		err = -ENOMEM;
1241 		goto put_page;
1242 	}
1243 
1244 	err = f2fs_submit_page_bio(&fio);
1245 	if (err)
1246 		goto put_encrypted_page;
1247 	f2fs_put_page(fio.encrypted_page, 0);
1248 	f2fs_put_page(page, 1);
1249 
1250 	f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
1251 	f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1252 
1253 	return 0;
1254 put_encrypted_page:
1255 	f2fs_put_page(fio.encrypted_page, 1);
1256 put_page:
1257 	f2fs_put_page(page, 1);
1258 	return err;
1259 }
1260 
1261 /*
1262  * Move data block via META_MAPPING while keeping locked data page.
1263  * This can be used to move blocks, aka LBAs, directly on disk.
1264  */
1265 static int move_data_block(struct inode *inode, block_t bidx,
1266 				int gc_type, unsigned int segno, int off)
1267 {
1268 	struct address_space *mapping = f2fs_is_cow_file(inode) ?
1269 				F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping;
1270 	struct f2fs_io_info fio = {
1271 		.sbi = F2FS_I_SB(inode),
1272 		.ino = inode->i_ino,
1273 		.type = DATA,
1274 		.temp = COLD,
1275 		.op = REQ_OP_READ,
1276 		.op_flags = 0,
1277 		.encrypted_page = NULL,
1278 		.in_list = 0,
1279 	};
1280 	struct dnode_of_data dn;
1281 	struct f2fs_summary sum;
1282 	struct node_info ni;
1283 	struct page *page, *mpage;
1284 	block_t newaddr;
1285 	int err = 0;
1286 	bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1287 	int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1288 				(fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1289 				CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1290 
1291 	/* do not read out */
1292 	page = f2fs_grab_cache_page(mapping, bidx, false);
1293 	if (!page)
1294 		return -ENOMEM;
1295 
1296 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1297 		err = -ENOENT;
1298 		goto out;
1299 	}
1300 
1301 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1302 	if (err)
1303 		goto out;
1304 
1305 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1306 	err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1307 	if (err)
1308 		goto out;
1309 
1310 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1311 		ClearPageUptodate(page);
1312 		err = -ENOENT;
1313 		goto put_out;
1314 	}
1315 
1316 	/*
1317 	 * don't cache encrypted data into meta inode until previous dirty
1318 	 * data were writebacked to avoid racing between GC and flush.
1319 	 */
1320 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1321 
1322 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1323 
1324 	err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1325 	if (err)
1326 		goto put_out;
1327 
1328 	/* read page */
1329 	fio.page = page;
1330 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1331 
1332 	if (lfs_mode)
1333 		f2fs_down_write(&fio.sbi->io_order_lock);
1334 
1335 	mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1336 					fio.old_blkaddr, false);
1337 	if (!mpage) {
1338 		err = -ENOMEM;
1339 		goto up_out;
1340 	}
1341 
1342 	fio.encrypted_page = mpage;
1343 
1344 	/* read source block in mpage */
1345 	if (!PageUptodate(mpage)) {
1346 		err = f2fs_submit_page_bio(&fio);
1347 		if (err) {
1348 			f2fs_put_page(mpage, 1);
1349 			goto up_out;
1350 		}
1351 
1352 		f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO,
1353 							F2FS_BLKSIZE);
1354 		f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO,
1355 							F2FS_BLKSIZE);
1356 
1357 		lock_page(mpage);
1358 		if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1359 						!PageUptodate(mpage))) {
1360 			err = -EIO;
1361 			f2fs_put_page(mpage, 1);
1362 			goto up_out;
1363 		}
1364 	}
1365 
1366 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1367 
1368 	/* allocate block address */
1369 	f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1370 				&sum, type, NULL);
1371 
1372 	fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1373 				newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1374 	if (!fio.encrypted_page) {
1375 		err = -ENOMEM;
1376 		f2fs_put_page(mpage, 1);
1377 		goto recover_block;
1378 	}
1379 
1380 	/* write target block */
1381 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1382 	memcpy(page_address(fio.encrypted_page),
1383 				page_address(mpage), PAGE_SIZE);
1384 	f2fs_put_page(mpage, 1);
1385 
1386 	f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr);
1387 
1388 	set_page_dirty(fio.encrypted_page);
1389 	if (clear_page_dirty_for_io(fio.encrypted_page))
1390 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
1391 
1392 	set_page_writeback(fio.encrypted_page);
1393 
1394 	fio.op = REQ_OP_WRITE;
1395 	fio.op_flags = REQ_SYNC;
1396 	fio.new_blkaddr = newaddr;
1397 	f2fs_submit_page_write(&fio);
1398 
1399 	f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE);
1400 
1401 	f2fs_update_data_blkaddr(&dn, newaddr);
1402 	set_inode_flag(inode, FI_APPEND_WRITE);
1403 
1404 	f2fs_put_page(fio.encrypted_page, 1);
1405 recover_block:
1406 	if (err)
1407 		f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1408 							true, true, true);
1409 up_out:
1410 	if (lfs_mode)
1411 		f2fs_up_write(&fio.sbi->io_order_lock);
1412 put_out:
1413 	f2fs_put_dnode(&dn);
1414 out:
1415 	f2fs_put_page(page, 1);
1416 	return err;
1417 }
1418 
1419 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1420 							unsigned int segno, int off)
1421 {
1422 	struct page *page;
1423 	int err = 0;
1424 
1425 	page = f2fs_get_lock_data_page(inode, bidx, true);
1426 	if (IS_ERR(page))
1427 		return PTR_ERR(page);
1428 
1429 	if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1430 		err = -ENOENT;
1431 		goto out;
1432 	}
1433 
1434 	err = f2fs_gc_pinned_control(inode, gc_type, segno);
1435 	if (err)
1436 		goto out;
1437 
1438 	if (gc_type == BG_GC) {
1439 		if (PageWriteback(page)) {
1440 			err = -EAGAIN;
1441 			goto out;
1442 		}
1443 		set_page_dirty(page);
1444 		set_page_private_gcing(page);
1445 	} else {
1446 		struct f2fs_io_info fio = {
1447 			.sbi = F2FS_I_SB(inode),
1448 			.ino = inode->i_ino,
1449 			.type = DATA,
1450 			.temp = COLD,
1451 			.op = REQ_OP_WRITE,
1452 			.op_flags = REQ_SYNC,
1453 			.old_blkaddr = NULL_ADDR,
1454 			.page = page,
1455 			.encrypted_page = NULL,
1456 			.need_lock = LOCK_REQ,
1457 			.io_type = FS_GC_DATA_IO,
1458 		};
1459 		bool is_dirty = PageDirty(page);
1460 
1461 retry:
1462 		f2fs_wait_on_page_writeback(page, DATA, true, true);
1463 
1464 		set_page_dirty(page);
1465 		if (clear_page_dirty_for_io(page)) {
1466 			inode_dec_dirty_pages(inode);
1467 			f2fs_remove_dirty_inode(inode);
1468 		}
1469 
1470 		set_page_private_gcing(page);
1471 
1472 		err = f2fs_do_write_data_page(&fio);
1473 		if (err) {
1474 			clear_page_private_gcing(page);
1475 			if (err == -ENOMEM) {
1476 				memalloc_retry_wait(GFP_NOFS);
1477 				goto retry;
1478 			}
1479 			if (is_dirty)
1480 				set_page_dirty(page);
1481 		}
1482 	}
1483 out:
1484 	f2fs_put_page(page, 1);
1485 	return err;
1486 }
1487 
1488 /*
1489  * This function tries to get parent node of victim data block, and identifies
1490  * data block validity. If the block is valid, copy that with cold status and
1491  * modify parent node.
1492  * If the parent node is not valid or the data block address is different,
1493  * the victim data block is ignored.
1494  */
1495 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1496 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1497 		bool force_migrate)
1498 {
1499 	struct super_block *sb = sbi->sb;
1500 	struct f2fs_summary *entry;
1501 	block_t start_addr;
1502 	int off;
1503 	int phase = 0;
1504 	int submitted = 0;
1505 	unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1506 
1507 	start_addr = START_BLOCK(sbi, segno);
1508 
1509 next_step:
1510 	entry = sum;
1511 
1512 	for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1513 		struct page *data_page;
1514 		struct inode *inode;
1515 		struct node_info dni; /* dnode info for the data */
1516 		unsigned int ofs_in_node, nofs;
1517 		block_t start_bidx;
1518 		nid_t nid = le32_to_cpu(entry->nid);
1519 
1520 		/*
1521 		 * stop BG_GC if there is not enough free sections.
1522 		 * Or, stop GC if the segment becomes fully valid caused by
1523 		 * race condition along with SSR block allocation.
1524 		 */
1525 		if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1526 			(!force_migrate && get_valid_blocks(sbi, segno, true) ==
1527 							CAP_BLKS_PER_SEC(sbi)))
1528 			return submitted;
1529 
1530 		if (check_valid_map(sbi, segno, off) == 0)
1531 			continue;
1532 
1533 		if (phase == 0) {
1534 			f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1535 							META_NAT, true);
1536 			continue;
1537 		}
1538 
1539 		if (phase == 1) {
1540 			f2fs_ra_node_page(sbi, nid);
1541 			continue;
1542 		}
1543 
1544 		/* Get an inode by ino with checking validity */
1545 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1546 			continue;
1547 
1548 		if (phase == 2) {
1549 			f2fs_ra_node_page(sbi, dni.ino);
1550 			continue;
1551 		}
1552 
1553 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1554 
1555 		if (phase == 3) {
1556 			int err;
1557 
1558 			inode = f2fs_iget(sb, dni.ino);
1559 			if (IS_ERR(inode))
1560 				continue;
1561 
1562 			if (is_bad_inode(inode) ||
1563 					special_file(inode->i_mode)) {
1564 				iput(inode);
1565 				continue;
1566 			}
1567 
1568 			if (f2fs_has_inline_data(inode)) {
1569 				iput(inode);
1570 				set_sbi_flag(sbi, SBI_NEED_FSCK);
1571 				f2fs_err_ratelimited(sbi,
1572 					"inode %lx has both inline_data flag and "
1573 					"data block, nid=%u, ofs_in_node=%u",
1574 					inode->i_ino, dni.nid, ofs_in_node);
1575 				continue;
1576 			}
1577 
1578 			err = f2fs_gc_pinned_control(inode, gc_type, segno);
1579 			if (err == -EAGAIN) {
1580 				iput(inode);
1581 				return submitted;
1582 			}
1583 
1584 			if (!f2fs_down_write_trylock(
1585 				&F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1586 				iput(inode);
1587 				sbi->skipped_gc_rwsem++;
1588 				continue;
1589 			}
1590 
1591 			start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1592 								ofs_in_node;
1593 
1594 			if (f2fs_meta_inode_gc_required(inode)) {
1595 				int err = ra_data_block(inode, start_bidx);
1596 
1597 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1598 				if (err) {
1599 					iput(inode);
1600 					continue;
1601 				}
1602 				add_gc_inode(gc_list, inode);
1603 				continue;
1604 			}
1605 
1606 			data_page = f2fs_get_read_data_page(inode, start_bidx,
1607 							REQ_RAHEAD, true, NULL);
1608 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1609 			if (IS_ERR(data_page)) {
1610 				iput(inode);
1611 				continue;
1612 			}
1613 
1614 			f2fs_put_page(data_page, 0);
1615 			add_gc_inode(gc_list, inode);
1616 			continue;
1617 		}
1618 
1619 		/* phase 4 */
1620 		inode = find_gc_inode(gc_list, dni.ino);
1621 		if (inode) {
1622 			struct f2fs_inode_info *fi = F2FS_I(inode);
1623 			bool locked = false;
1624 			int err;
1625 
1626 			if (S_ISREG(inode->i_mode)) {
1627 				if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) {
1628 					sbi->skipped_gc_rwsem++;
1629 					continue;
1630 				}
1631 				if (!f2fs_down_write_trylock(
1632 						&fi->i_gc_rwsem[READ])) {
1633 					sbi->skipped_gc_rwsem++;
1634 					f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1635 					continue;
1636 				}
1637 				locked = true;
1638 
1639 				/* wait for all inflight aio data */
1640 				inode_dio_wait(inode);
1641 			}
1642 
1643 			start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1644 								+ ofs_in_node;
1645 			if (f2fs_meta_inode_gc_required(inode))
1646 				err = move_data_block(inode, start_bidx,
1647 							gc_type, segno, off);
1648 			else
1649 				err = move_data_page(inode, start_bidx, gc_type,
1650 								segno, off);
1651 
1652 			if (!err && (gc_type == FG_GC ||
1653 					f2fs_meta_inode_gc_required(inode)))
1654 				submitted++;
1655 
1656 			if (locked) {
1657 				f2fs_up_write(&fi->i_gc_rwsem[READ]);
1658 				f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1659 			}
1660 
1661 			stat_inc_data_blk_count(sbi, 1, gc_type);
1662 		}
1663 	}
1664 
1665 	if (++phase < 5)
1666 		goto next_step;
1667 
1668 	return submitted;
1669 }
1670 
1671 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1672 			int gc_type)
1673 {
1674 	struct sit_info *sit_i = SIT_I(sbi);
1675 	int ret;
1676 
1677 	down_write(&sit_i->sentry_lock);
1678 	ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, LFS, 0);
1679 	up_write(&sit_i->sentry_lock);
1680 	return ret;
1681 }
1682 
1683 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1684 				unsigned int start_segno,
1685 				struct gc_inode_list *gc_list, int gc_type,
1686 				bool force_migrate)
1687 {
1688 	struct page *sum_page;
1689 	struct f2fs_summary_block *sum;
1690 	struct blk_plug plug;
1691 	unsigned int segno = start_segno;
1692 	unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi);
1693 	int seg_freed = 0, migrated = 0;
1694 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1695 						SUM_TYPE_DATA : SUM_TYPE_NODE;
1696 	unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE;
1697 	int submitted = 0;
1698 
1699 	if (__is_large_section(sbi))
1700 		end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi));
1701 
1702 	/*
1703 	 * zone-capacity can be less than zone-size in zoned devices,
1704 	 * resulting in less than expected usable segments in the zone,
1705 	 * calculate the end segno in the zone which can be garbage collected
1706 	 */
1707 	if (f2fs_sb_has_blkzoned(sbi))
1708 		end_segno -= SEGS_PER_SEC(sbi) -
1709 					f2fs_usable_segs_in_sec(sbi, segno);
1710 
1711 	sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1712 
1713 	/* readahead multi ssa blocks those have contiguous address */
1714 	if (__is_large_section(sbi))
1715 		f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1716 					end_segno - segno, META_SSA, true);
1717 
1718 	/* reference all summary page */
1719 	while (segno < end_segno) {
1720 		sum_page = f2fs_get_sum_page(sbi, segno++);
1721 		if (IS_ERR(sum_page)) {
1722 			int err = PTR_ERR(sum_page);
1723 
1724 			end_segno = segno - 1;
1725 			for (segno = start_segno; segno < end_segno; segno++) {
1726 				sum_page = find_get_page(META_MAPPING(sbi),
1727 						GET_SUM_BLOCK(sbi, segno));
1728 				f2fs_put_page(sum_page, 0);
1729 				f2fs_put_page(sum_page, 0);
1730 			}
1731 			return err;
1732 		}
1733 		unlock_page(sum_page);
1734 	}
1735 
1736 	blk_start_plug(&plug);
1737 
1738 	for (segno = start_segno; segno < end_segno; segno++) {
1739 
1740 		/* find segment summary of victim */
1741 		sum_page = find_get_page(META_MAPPING(sbi),
1742 					GET_SUM_BLOCK(sbi, segno));
1743 		f2fs_put_page(sum_page, 0);
1744 
1745 		if (get_valid_blocks(sbi, segno, false) == 0)
1746 			goto freed;
1747 		if (gc_type == BG_GC && __is_large_section(sbi) &&
1748 				migrated >= sbi->migration_granularity)
1749 			goto skip;
1750 		if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1751 			goto skip;
1752 
1753 		sum = page_address(sum_page);
1754 		if (type != GET_SUM_TYPE((&sum->footer))) {
1755 			f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1756 				 segno, type, GET_SUM_TYPE((&sum->footer)));
1757 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1758 			f2fs_stop_checkpoint(sbi, false,
1759 				STOP_CP_REASON_CORRUPTED_SUMMARY);
1760 			goto skip;
1761 		}
1762 
1763 		/*
1764 		 * this is to avoid deadlock:
1765 		 * - lock_page(sum_page)         - f2fs_replace_block
1766 		 *  - check_valid_map()            - down_write(sentry_lock)
1767 		 *   - down_read(sentry_lock)     - change_curseg()
1768 		 *                                  - lock_page(sum_page)
1769 		 */
1770 		if (type == SUM_TYPE_NODE)
1771 			submitted += gc_node_segment(sbi, sum->entries, segno,
1772 								gc_type);
1773 		else
1774 			submitted += gc_data_segment(sbi, sum->entries, gc_list,
1775 							segno, gc_type,
1776 							force_migrate);
1777 
1778 		stat_inc_gc_seg_count(sbi, data_type, gc_type);
1779 		sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1780 		migrated++;
1781 
1782 freed:
1783 		if (gc_type == FG_GC &&
1784 				get_valid_blocks(sbi, segno, false) == 0)
1785 			seg_freed++;
1786 
1787 		if (__is_large_section(sbi))
1788 			sbi->next_victim_seg[gc_type] =
1789 				(segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1790 skip:
1791 		f2fs_put_page(sum_page, 0);
1792 	}
1793 
1794 	if (submitted)
1795 		f2fs_submit_merged_write(sbi, data_type);
1796 
1797 	blk_finish_plug(&plug);
1798 
1799 	if (migrated)
1800 		stat_inc_gc_sec_count(sbi, data_type, gc_type);
1801 
1802 	return seg_freed;
1803 }
1804 
1805 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1806 {
1807 	int gc_type = gc_control->init_gc_type;
1808 	unsigned int segno = gc_control->victim_segno;
1809 	int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0;
1810 	int ret = 0;
1811 	struct cp_control cpc;
1812 	struct gc_inode_list gc_list = {
1813 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
1814 		.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1815 	};
1816 	unsigned int skipped_round = 0, round = 0;
1817 	unsigned int upper_secs;
1818 
1819 	trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1820 				gc_control->nr_free_secs,
1821 				get_pages(sbi, F2FS_DIRTY_NODES),
1822 				get_pages(sbi, F2FS_DIRTY_DENTS),
1823 				get_pages(sbi, F2FS_DIRTY_IMETA),
1824 				free_sections(sbi),
1825 				free_segments(sbi),
1826 				reserved_segments(sbi),
1827 				prefree_segments(sbi));
1828 
1829 	cpc.reason = __get_cp_reason(sbi);
1830 gc_more:
1831 	sbi->skipped_gc_rwsem = 0;
1832 	if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1833 		ret = -EINVAL;
1834 		goto stop;
1835 	}
1836 	if (unlikely(f2fs_cp_error(sbi))) {
1837 		ret = -EIO;
1838 		goto stop;
1839 	}
1840 
1841 	/* Let's run FG_GC, if we don't have enough space. */
1842 	if (has_not_enough_free_secs(sbi, 0, 0)) {
1843 		gc_type = FG_GC;
1844 
1845 		/*
1846 		 * For example, if there are many prefree_segments below given
1847 		 * threshold, we can make them free by checkpoint. Then, we
1848 		 * secure free segments which doesn't need fggc any more.
1849 		 */
1850 		if (prefree_segments(sbi)) {
1851 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
1852 			ret = f2fs_write_checkpoint(sbi, &cpc);
1853 			if (ret)
1854 				goto stop;
1855 			/* Reset due to checkpoint */
1856 			sec_freed = 0;
1857 		}
1858 	}
1859 
1860 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1861 	if (gc_type == BG_GC && gc_control->no_bg_gc) {
1862 		ret = -EINVAL;
1863 		goto stop;
1864 	}
1865 retry:
1866 	ret = __get_victim(sbi, &segno, gc_type);
1867 	if (ret) {
1868 		/* allow to search victim from sections has pinned data */
1869 		if (ret == -ENODATA && gc_type == FG_GC &&
1870 				f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1871 			f2fs_unpin_all_sections(sbi, false);
1872 			goto retry;
1873 		}
1874 		goto stop;
1875 	}
1876 
1877 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1878 				gc_control->should_migrate_blocks);
1879 	total_freed += seg_freed;
1880 
1881 	if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) {
1882 		sec_freed++;
1883 		total_sec_freed++;
1884 	}
1885 
1886 	if (gc_type == FG_GC) {
1887 		sbi->cur_victim_sec = NULL_SEGNO;
1888 
1889 		if (has_enough_free_secs(sbi, sec_freed, 0)) {
1890 			if (!gc_control->no_bg_gc &&
1891 			    total_sec_freed < gc_control->nr_free_secs)
1892 				goto go_gc_more;
1893 			goto stop;
1894 		}
1895 		if (sbi->skipped_gc_rwsem)
1896 			skipped_round++;
1897 		round++;
1898 		if (skipped_round > MAX_SKIP_GC_COUNT &&
1899 				skipped_round * 2 >= round) {
1900 			stat_inc_cp_call_count(sbi, TOTAL_CALL);
1901 			ret = f2fs_write_checkpoint(sbi, &cpc);
1902 			goto stop;
1903 		}
1904 	} else if (has_enough_free_secs(sbi, 0, 0)) {
1905 		goto stop;
1906 	}
1907 
1908 	__get_secs_required(sbi, NULL, &upper_secs, NULL);
1909 
1910 	/*
1911 	 * Write checkpoint to reclaim prefree segments.
1912 	 * We need more three extra sections for writer's data/node/dentry.
1913 	 */
1914 	if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS &&
1915 				prefree_segments(sbi)) {
1916 		stat_inc_cp_call_count(sbi, TOTAL_CALL);
1917 		ret = f2fs_write_checkpoint(sbi, &cpc);
1918 		if (ret)
1919 			goto stop;
1920 		/* Reset due to checkpoint */
1921 		sec_freed = 0;
1922 	}
1923 go_gc_more:
1924 	segno = NULL_SEGNO;
1925 	goto gc_more;
1926 
1927 stop:
1928 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1929 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1930 
1931 	if (gc_type == FG_GC)
1932 		f2fs_unpin_all_sections(sbi, true);
1933 
1934 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed,
1935 				get_pages(sbi, F2FS_DIRTY_NODES),
1936 				get_pages(sbi, F2FS_DIRTY_DENTS),
1937 				get_pages(sbi, F2FS_DIRTY_IMETA),
1938 				free_sections(sbi),
1939 				free_segments(sbi),
1940 				reserved_segments(sbi),
1941 				prefree_segments(sbi));
1942 
1943 	f2fs_up_write(&sbi->gc_lock);
1944 
1945 	put_gc_inode(&gc_list);
1946 
1947 	if (gc_control->err_gc_skipped && !ret)
1948 		ret = total_sec_freed ? 0 : -EAGAIN;
1949 	return ret;
1950 }
1951 
1952 int __init f2fs_create_garbage_collection_cache(void)
1953 {
1954 	victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1955 					sizeof(struct victim_entry));
1956 	return victim_entry_slab ? 0 : -ENOMEM;
1957 }
1958 
1959 void f2fs_destroy_garbage_collection_cache(void)
1960 {
1961 	kmem_cache_destroy(victim_entry_slab);
1962 }
1963 
1964 static void init_atgc_management(struct f2fs_sb_info *sbi)
1965 {
1966 	struct atgc_management *am = &sbi->am;
1967 
1968 	if (test_opt(sbi, ATGC) &&
1969 		SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1970 		am->atgc_enabled = true;
1971 
1972 	am->root = RB_ROOT_CACHED;
1973 	INIT_LIST_HEAD(&am->victim_list);
1974 	am->victim_count = 0;
1975 
1976 	am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1977 	am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1978 	am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1979 	am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1980 }
1981 
1982 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1983 {
1984 	sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1985 
1986 	/* give warm/cold data area from slower device */
1987 	if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1988 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1989 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1990 
1991 	init_atgc_management(sbi);
1992 }
1993 
1994 int f2fs_gc_range(struct f2fs_sb_info *sbi,
1995 		unsigned int start_seg, unsigned int end_seg,
1996 		bool dry_run, unsigned int dry_run_sections)
1997 {
1998 	unsigned int segno;
1999 	unsigned int gc_secs = dry_run_sections;
2000 
2001 	for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) {
2002 		struct gc_inode_list gc_list = {
2003 			.ilist = LIST_HEAD_INIT(gc_list.ilist),
2004 			.iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
2005 		};
2006 
2007 		do_garbage_collect(sbi, segno, &gc_list, FG_GC,
2008 						dry_run_sections == 0);
2009 		put_gc_inode(&gc_list);
2010 
2011 		if (!dry_run && get_valid_blocks(sbi, segno, true))
2012 			return -EAGAIN;
2013 		if (dry_run && dry_run_sections &&
2014 		    !get_valid_blocks(sbi, segno, true) && --gc_secs == 0)
2015 			break;
2016 
2017 		if (fatal_signal_pending(current))
2018 			return -ERESTARTSYS;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 static int free_segment_range(struct f2fs_sb_info *sbi,
2025 				unsigned int secs, bool dry_run)
2026 {
2027 	unsigned int next_inuse, start, end;
2028 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2029 	int gc_mode, gc_type;
2030 	int err = 0;
2031 	int type;
2032 
2033 	/* Force block allocation for GC */
2034 	MAIN_SECS(sbi) -= secs;
2035 	start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
2036 	end = MAIN_SEGS(sbi) - 1;
2037 
2038 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2039 	for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
2040 		if (SIT_I(sbi)->last_victim[gc_mode] >= start)
2041 			SIT_I(sbi)->last_victim[gc_mode] = 0;
2042 
2043 	for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
2044 		if (sbi->next_victim_seg[gc_type] >= start)
2045 			sbi->next_victim_seg[gc_type] = NULL_SEGNO;
2046 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2047 
2048 	/* Move out cursegs from the target range */
2049 	for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
2050 		f2fs_allocate_segment_for_resize(sbi, type, start, end);
2051 
2052 	/* do GC to move out valid blocks in the range */
2053 	err = f2fs_gc_range(sbi, start, end, dry_run, 0);
2054 	if (err || dry_run)
2055 		goto out;
2056 
2057 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2058 	err = f2fs_write_checkpoint(sbi, &cpc);
2059 	if (err)
2060 		goto out;
2061 
2062 	next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
2063 	if (next_inuse <= end) {
2064 		f2fs_err(sbi, "segno %u should be free but still inuse!",
2065 			 next_inuse);
2066 		f2fs_bug_on(sbi, 1);
2067 	}
2068 out:
2069 	MAIN_SECS(sbi) += secs;
2070 	return err;
2071 }
2072 
2073 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2074 {
2075 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2076 	int section_count;
2077 	int segment_count;
2078 	int segment_count_main;
2079 	long long block_count;
2080 	int segs = secs * SEGS_PER_SEC(sbi);
2081 
2082 	f2fs_down_write(&sbi->sb_lock);
2083 
2084 	section_count = le32_to_cpu(raw_sb->section_count);
2085 	segment_count = le32_to_cpu(raw_sb->segment_count);
2086 	segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2087 	block_count = le64_to_cpu(raw_sb->block_count);
2088 
2089 	raw_sb->section_count = cpu_to_le32(section_count + secs);
2090 	raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2091 	raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2092 	raw_sb->block_count = cpu_to_le64(block_count +
2093 			(long long)(segs << sbi->log_blocks_per_seg));
2094 	if (f2fs_is_multi_device(sbi)) {
2095 		int last_dev = sbi->s_ndevs - 1;
2096 		int dev_segs =
2097 			le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2098 
2099 		raw_sb->devs[last_dev].total_segments =
2100 						cpu_to_le32(dev_segs + segs);
2101 	}
2102 
2103 	f2fs_up_write(&sbi->sb_lock);
2104 }
2105 
2106 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2107 {
2108 	int segs = secs * SEGS_PER_SEC(sbi);
2109 	long long blks = (long long)segs << sbi->log_blocks_per_seg;
2110 	long long user_block_count =
2111 				le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2112 
2113 	SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2114 	MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2115 	MAIN_SECS(sbi) += secs;
2116 	FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2117 	FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2118 	F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2119 
2120 	if (f2fs_is_multi_device(sbi)) {
2121 		int last_dev = sbi->s_ndevs - 1;
2122 
2123 		FDEV(last_dev).total_segments =
2124 				(int)FDEV(last_dev).total_segments + segs;
2125 		FDEV(last_dev).end_blk =
2126 				(long long)FDEV(last_dev).end_blk + blks;
2127 #ifdef CONFIG_BLK_DEV_ZONED
2128 		FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz +
2129 					div_u64(blks, sbi->blocks_per_blkz);
2130 #endif
2131 	}
2132 }
2133 
2134 int f2fs_resize_fs(struct file *filp, __u64 block_count)
2135 {
2136 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2137 	__u64 old_block_count, shrunk_blocks;
2138 	struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2139 	unsigned int secs;
2140 	int err = 0;
2141 	__u32 rem;
2142 
2143 	old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2144 	if (block_count > old_block_count)
2145 		return -EINVAL;
2146 
2147 	if (f2fs_is_multi_device(sbi)) {
2148 		int last_dev = sbi->s_ndevs - 1;
2149 		__u64 last_segs = FDEV(last_dev).total_segments;
2150 
2151 		if (block_count + (last_segs << sbi->log_blocks_per_seg) <=
2152 								old_block_count)
2153 			return -EINVAL;
2154 	}
2155 
2156 	/* new fs size should align to section size */
2157 	div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2158 	if (rem)
2159 		return -EINVAL;
2160 
2161 	if (block_count == old_block_count)
2162 		return 0;
2163 
2164 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2165 		f2fs_err(sbi, "Should run fsck to repair first.");
2166 		return -EFSCORRUPTED;
2167 	}
2168 
2169 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2170 		f2fs_err(sbi, "Checkpoint should be enabled.");
2171 		return -EINVAL;
2172 	}
2173 
2174 	err = mnt_want_write_file(filp);
2175 	if (err)
2176 		return err;
2177 
2178 	shrunk_blocks = old_block_count - block_count;
2179 	secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2180 
2181 	/* stop other GC */
2182 	if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2183 		err = -EAGAIN;
2184 		goto out_drop_write;
2185 	}
2186 
2187 	/* stop CP to protect MAIN_SEC in free_segment_range */
2188 	f2fs_lock_op(sbi);
2189 
2190 	spin_lock(&sbi->stat_lock);
2191 	if (shrunk_blocks + valid_user_blocks(sbi) +
2192 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2193 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2194 		err = -ENOSPC;
2195 	spin_unlock(&sbi->stat_lock);
2196 
2197 	if (err)
2198 		goto out_unlock;
2199 
2200 	err = free_segment_range(sbi, secs, true);
2201 
2202 out_unlock:
2203 	f2fs_unlock_op(sbi);
2204 	f2fs_up_write(&sbi->gc_lock);
2205 out_drop_write:
2206 	mnt_drop_write_file(filp);
2207 	if (err)
2208 		return err;
2209 
2210 	err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2211 	if (err)
2212 		return err;
2213 
2214 	if (f2fs_readonly(sbi->sb)) {
2215 		err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2216 		if (err)
2217 			return err;
2218 		return -EROFS;
2219 	}
2220 
2221 	f2fs_down_write(&sbi->gc_lock);
2222 	f2fs_down_write(&sbi->cp_global_sem);
2223 
2224 	spin_lock(&sbi->stat_lock);
2225 	if (shrunk_blocks + valid_user_blocks(sbi) +
2226 		sbi->current_reserved_blocks + sbi->unusable_block_count +
2227 		F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2228 		err = -ENOSPC;
2229 	else
2230 		sbi->user_block_count -= shrunk_blocks;
2231 	spin_unlock(&sbi->stat_lock);
2232 	if (err)
2233 		goto out_err;
2234 
2235 	set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2236 	err = free_segment_range(sbi, secs, false);
2237 	if (err)
2238 		goto recover_out;
2239 
2240 	update_sb_metadata(sbi, -secs);
2241 
2242 	err = f2fs_commit_super(sbi, false);
2243 	if (err) {
2244 		update_sb_metadata(sbi, secs);
2245 		goto recover_out;
2246 	}
2247 
2248 	update_fs_metadata(sbi, -secs);
2249 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2250 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2251 
2252 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
2253 	err = f2fs_write_checkpoint(sbi, &cpc);
2254 	if (err) {
2255 		update_fs_metadata(sbi, secs);
2256 		update_sb_metadata(sbi, secs);
2257 		f2fs_commit_super(sbi, false);
2258 	}
2259 recover_out:
2260 	clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2261 	if (err) {
2262 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2263 		f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2264 
2265 		spin_lock(&sbi->stat_lock);
2266 		sbi->user_block_count += shrunk_blocks;
2267 		spin_unlock(&sbi->stat_lock);
2268 	}
2269 out_err:
2270 	f2fs_up_write(&sbi->cp_global_sem);
2271 	f2fs_up_write(&sbi->gc_lock);
2272 	thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE);
2273 	return err;
2274 }
2275