xref: /openbmc/linux/fs/f2fs/gc.c (revision 867a0e05)
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19 #include <linux/blkdev.h>
20 
21 #include "f2fs.h"
22 #include "node.h"
23 #include "segment.h"
24 #include "gc.h"
25 #include <trace/events/f2fs.h>
26 
27 static struct kmem_cache *winode_slab;
28 
29 static int gc_thread_func(void *data)
30 {
31 	struct f2fs_sb_info *sbi = data;
32 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
33 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
34 	long wait_ms;
35 
36 	wait_ms = gc_th->min_sleep_time;
37 
38 	do {
39 		if (try_to_freeze())
40 			continue;
41 		else
42 			wait_event_interruptible_timeout(*wq,
43 						kthread_should_stop(),
44 						msecs_to_jiffies(wait_ms));
45 		if (kthread_should_stop())
46 			break;
47 
48 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
49 			wait_ms = increase_sleep_time(gc_th, wait_ms);
50 			continue;
51 		}
52 
53 		/*
54 		 * [GC triggering condition]
55 		 * 0. GC is not conducted currently.
56 		 * 1. There are enough dirty segments.
57 		 * 2. IO subsystem is idle by checking the # of writeback pages.
58 		 * 3. IO subsystem is idle by checking the # of requests in
59 		 *    bdev's request list.
60 		 *
61 		 * Note) We have to avoid triggering GCs frequently.
62 		 * Because it is possible that some segments can be
63 		 * invalidated soon after by user update or deletion.
64 		 * So, I'd like to wait some time to collect dirty segments.
65 		 */
66 		if (!mutex_trylock(&sbi->gc_mutex))
67 			continue;
68 
69 		if (!is_idle(sbi)) {
70 			wait_ms = increase_sleep_time(gc_th, wait_ms);
71 			mutex_unlock(&sbi->gc_mutex);
72 			continue;
73 		}
74 
75 		if (has_enough_invalid_blocks(sbi))
76 			wait_ms = decrease_sleep_time(gc_th, wait_ms);
77 		else
78 			wait_ms = increase_sleep_time(gc_th, wait_ms);
79 
80 		stat_inc_bggc_count(sbi);
81 
82 		/* if return value is not zero, no victim was selected */
83 		if (f2fs_gc(sbi))
84 			wait_ms = gc_th->no_gc_sleep_time;
85 
86 		/* balancing f2fs's metadata periodically */
87 		f2fs_balance_fs_bg(sbi);
88 
89 	} while (!kthread_should_stop());
90 	return 0;
91 }
92 
93 int start_gc_thread(struct f2fs_sb_info *sbi)
94 {
95 	struct f2fs_gc_kthread *gc_th;
96 	dev_t dev = sbi->sb->s_bdev->bd_dev;
97 	int err = 0;
98 
99 	gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
100 	if (!gc_th) {
101 		err = -ENOMEM;
102 		goto out;
103 	}
104 
105 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
106 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
107 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
108 
109 	gc_th->gc_idle = 0;
110 
111 	sbi->gc_thread = gc_th;
112 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
113 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
114 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
115 	if (IS_ERR(gc_th->f2fs_gc_task)) {
116 		err = PTR_ERR(gc_th->f2fs_gc_task);
117 		kfree(gc_th);
118 		sbi->gc_thread = NULL;
119 	}
120 out:
121 	return err;
122 }
123 
124 void stop_gc_thread(struct f2fs_sb_info *sbi)
125 {
126 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
127 	if (!gc_th)
128 		return;
129 	kthread_stop(gc_th->f2fs_gc_task);
130 	kfree(gc_th);
131 	sbi->gc_thread = NULL;
132 }
133 
134 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
135 {
136 	int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
137 
138 	if (gc_th && gc_th->gc_idle) {
139 		if (gc_th->gc_idle == 1)
140 			gc_mode = GC_CB;
141 		else if (gc_th->gc_idle == 2)
142 			gc_mode = GC_GREEDY;
143 	}
144 	return gc_mode;
145 }
146 
147 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
148 			int type, struct victim_sel_policy *p)
149 {
150 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
151 
152 	if (p->alloc_mode == SSR) {
153 		p->gc_mode = GC_GREEDY;
154 		p->dirty_segmap = dirty_i->dirty_segmap[type];
155 		p->max_search = dirty_i->nr_dirty[type];
156 		p->ofs_unit = 1;
157 	} else {
158 		p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
159 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
160 		p->max_search = dirty_i->nr_dirty[DIRTY];
161 		p->ofs_unit = sbi->segs_per_sec;
162 	}
163 
164 	if (p->max_search > sbi->max_victim_search)
165 		p->max_search = sbi->max_victim_search;
166 
167 	p->offset = sbi->last_victim[p->gc_mode];
168 }
169 
170 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
171 				struct victim_sel_policy *p)
172 {
173 	/* SSR allocates in a segment unit */
174 	if (p->alloc_mode == SSR)
175 		return 1 << sbi->log_blocks_per_seg;
176 	if (p->gc_mode == GC_GREEDY)
177 		return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
178 	else if (p->gc_mode == GC_CB)
179 		return UINT_MAX;
180 	else /* No other gc_mode */
181 		return 0;
182 }
183 
184 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
185 {
186 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
187 	unsigned int secno;
188 
189 	/*
190 	 * If the gc_type is FG_GC, we can select victim segments
191 	 * selected by background GC before.
192 	 * Those segments guarantee they have small valid blocks.
193 	 */
194 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
195 		if (sec_usage_check(sbi, secno))
196 			continue;
197 		clear_bit(secno, dirty_i->victim_secmap);
198 		return secno * sbi->segs_per_sec;
199 	}
200 	return NULL_SEGNO;
201 }
202 
203 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
204 {
205 	struct sit_info *sit_i = SIT_I(sbi);
206 	unsigned int secno = GET_SECNO(sbi, segno);
207 	unsigned int start = secno * sbi->segs_per_sec;
208 	unsigned long long mtime = 0;
209 	unsigned int vblocks;
210 	unsigned char age = 0;
211 	unsigned char u;
212 	unsigned int i;
213 
214 	for (i = 0; i < sbi->segs_per_sec; i++)
215 		mtime += get_seg_entry(sbi, start + i)->mtime;
216 	vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
217 
218 	mtime = div_u64(mtime, sbi->segs_per_sec);
219 	vblocks = div_u64(vblocks, sbi->segs_per_sec);
220 
221 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
222 
223 	/* Handle if the system time has changed by the user */
224 	if (mtime < sit_i->min_mtime)
225 		sit_i->min_mtime = mtime;
226 	if (mtime > sit_i->max_mtime)
227 		sit_i->max_mtime = mtime;
228 	if (sit_i->max_mtime != sit_i->min_mtime)
229 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
230 				sit_i->max_mtime - sit_i->min_mtime);
231 
232 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
233 }
234 
235 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
236 			unsigned int segno, struct victim_sel_policy *p)
237 {
238 	if (p->alloc_mode == SSR)
239 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
240 
241 	/* alloc_mode == LFS */
242 	if (p->gc_mode == GC_GREEDY)
243 		return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
244 	else
245 		return get_cb_cost(sbi, segno);
246 }
247 
248 /*
249  * This function is called from two paths.
250  * One is garbage collection and the other is SSR segment selection.
251  * When it is called during GC, it just gets a victim segment
252  * and it does not remove it from dirty seglist.
253  * When it is called from SSR segment selection, it finds a segment
254  * which has minimum valid blocks and removes it from dirty seglist.
255  */
256 static int get_victim_by_default(struct f2fs_sb_info *sbi,
257 		unsigned int *result, int gc_type, int type, char alloc_mode)
258 {
259 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
260 	struct victim_sel_policy p;
261 	unsigned int secno, max_cost;
262 	int nsearched = 0;
263 
264 	mutex_lock(&dirty_i->seglist_lock);
265 
266 	p.alloc_mode = alloc_mode;
267 	select_policy(sbi, gc_type, type, &p);
268 
269 	p.min_segno = NULL_SEGNO;
270 	p.min_cost = max_cost = get_max_cost(sbi, &p);
271 
272 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
273 		p.min_segno = check_bg_victims(sbi);
274 		if (p.min_segno != NULL_SEGNO)
275 			goto got_it;
276 	}
277 
278 	while (1) {
279 		unsigned long cost;
280 		unsigned int segno;
281 
282 		segno = find_next_bit(p.dirty_segmap, MAIN_SEGS(sbi), p.offset);
283 		if (segno >= MAIN_SEGS(sbi)) {
284 			if (sbi->last_victim[p.gc_mode]) {
285 				sbi->last_victim[p.gc_mode] = 0;
286 				p.offset = 0;
287 				continue;
288 			}
289 			break;
290 		}
291 
292 		p.offset = segno + p.ofs_unit;
293 		if (p.ofs_unit > 1)
294 			p.offset -= segno % p.ofs_unit;
295 
296 		secno = GET_SECNO(sbi, segno);
297 
298 		if (sec_usage_check(sbi, secno))
299 			continue;
300 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
301 			continue;
302 
303 		cost = get_gc_cost(sbi, segno, &p);
304 
305 		if (p.min_cost > cost) {
306 			p.min_segno = segno;
307 			p.min_cost = cost;
308 		} else if (unlikely(cost == max_cost)) {
309 			continue;
310 		}
311 
312 		if (nsearched++ >= p.max_search) {
313 			sbi->last_victim[p.gc_mode] = segno;
314 			break;
315 		}
316 	}
317 	if (p.min_segno != NULL_SEGNO) {
318 got_it:
319 		if (p.alloc_mode == LFS) {
320 			secno = GET_SECNO(sbi, p.min_segno);
321 			if (gc_type == FG_GC)
322 				sbi->cur_victim_sec = secno;
323 			else
324 				set_bit(secno, dirty_i->victim_secmap);
325 		}
326 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
327 
328 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
329 				sbi->cur_victim_sec,
330 				prefree_segments(sbi), free_segments(sbi));
331 	}
332 	mutex_unlock(&dirty_i->seglist_lock);
333 
334 	return (p.min_segno == NULL_SEGNO) ? 0 : 1;
335 }
336 
337 static const struct victim_selection default_v_ops = {
338 	.get_victim = get_victim_by_default,
339 };
340 
341 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
342 {
343 	struct inode_entry *ie;
344 
345 	ie = radix_tree_lookup(&gc_list->iroot, ino);
346 	if (ie)
347 		return ie->inode;
348 	return NULL;
349 }
350 
351 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
352 {
353 	struct inode_entry *new_ie;
354 
355 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
356 		iput(inode);
357 		return;
358 	}
359 	new_ie = f2fs_kmem_cache_alloc(winode_slab, GFP_NOFS);
360 	new_ie->inode = inode;
361 retry:
362 	if (radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie)) {
363 		cond_resched();
364 		goto retry;
365 	}
366 	list_add_tail(&new_ie->list, &gc_list->ilist);
367 }
368 
369 static void put_gc_inode(struct gc_inode_list *gc_list)
370 {
371 	struct inode_entry *ie, *next_ie;
372 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
373 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
374 		iput(ie->inode);
375 		list_del(&ie->list);
376 		kmem_cache_free(winode_slab, ie);
377 	}
378 }
379 
380 static int check_valid_map(struct f2fs_sb_info *sbi,
381 				unsigned int segno, int offset)
382 {
383 	struct sit_info *sit_i = SIT_I(sbi);
384 	struct seg_entry *sentry;
385 	int ret;
386 
387 	mutex_lock(&sit_i->sentry_lock);
388 	sentry = get_seg_entry(sbi, segno);
389 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
390 	mutex_unlock(&sit_i->sentry_lock);
391 	return ret;
392 }
393 
394 /*
395  * This function compares node address got in summary with that in NAT.
396  * On validity, copy that node with cold status, otherwise (invalid node)
397  * ignore that.
398  */
399 static void gc_node_segment(struct f2fs_sb_info *sbi,
400 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
401 {
402 	bool initial = true;
403 	struct f2fs_summary *entry;
404 	int off;
405 
406 next_step:
407 	entry = sum;
408 
409 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
410 		nid_t nid = le32_to_cpu(entry->nid);
411 		struct page *node_page;
412 
413 		/* stop BG_GC if there is not enough free sections. */
414 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
415 			return;
416 
417 		if (check_valid_map(sbi, segno, off) == 0)
418 			continue;
419 
420 		if (initial) {
421 			ra_node_page(sbi, nid);
422 			continue;
423 		}
424 		node_page = get_node_page(sbi, nid);
425 		if (IS_ERR(node_page))
426 			continue;
427 
428 		/* block may become invalid during get_node_page */
429 		if (check_valid_map(sbi, segno, off) == 0) {
430 			f2fs_put_page(node_page, 1);
431 			continue;
432 		}
433 
434 		/* set page dirty and write it */
435 		if (gc_type == FG_GC) {
436 			f2fs_wait_on_page_writeback(node_page, NODE);
437 			set_page_dirty(node_page);
438 		} else {
439 			if (!PageWriteback(node_page))
440 				set_page_dirty(node_page);
441 		}
442 		f2fs_put_page(node_page, 1);
443 		stat_inc_node_blk_count(sbi, 1);
444 	}
445 
446 	if (initial) {
447 		initial = false;
448 		goto next_step;
449 	}
450 
451 	if (gc_type == FG_GC) {
452 		struct writeback_control wbc = {
453 			.sync_mode = WB_SYNC_ALL,
454 			.nr_to_write = LONG_MAX,
455 			.for_reclaim = 0,
456 		};
457 		sync_node_pages(sbi, 0, &wbc);
458 
459 		/*
460 		 * In the case of FG_GC, it'd be better to reclaim this victim
461 		 * completely.
462 		 */
463 		if (get_valid_blocks(sbi, segno, 1) != 0)
464 			goto next_step;
465 	}
466 }
467 
468 /*
469  * Calculate start block index indicating the given node offset.
470  * Be careful, caller should give this node offset only indicating direct node
471  * blocks. If any node offsets, which point the other types of node blocks such
472  * as indirect or double indirect node blocks, are given, it must be a caller's
473  * bug.
474  */
475 block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
476 {
477 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
478 	unsigned int bidx;
479 
480 	if (node_ofs == 0)
481 		return 0;
482 
483 	if (node_ofs <= 2) {
484 		bidx = node_ofs - 1;
485 	} else if (node_ofs <= indirect_blks) {
486 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
487 		bidx = node_ofs - 2 - dec;
488 	} else {
489 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
490 		bidx = node_ofs - 5 - dec;
491 	}
492 	return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
493 }
494 
495 static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
496 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
497 {
498 	struct page *node_page;
499 	nid_t nid;
500 	unsigned int ofs_in_node;
501 	block_t source_blkaddr;
502 
503 	nid = le32_to_cpu(sum->nid);
504 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
505 
506 	node_page = get_node_page(sbi, nid);
507 	if (IS_ERR(node_page))
508 		return 0;
509 
510 	get_node_info(sbi, nid, dni);
511 
512 	if (sum->version != dni->version) {
513 		f2fs_put_page(node_page, 1);
514 		return 0;
515 	}
516 
517 	*nofs = ofs_of_node(node_page);
518 	source_blkaddr = datablock_addr(node_page, ofs_in_node);
519 	f2fs_put_page(node_page, 1);
520 
521 	if (source_blkaddr != blkaddr)
522 		return 0;
523 	return 1;
524 }
525 
526 static void move_data_page(struct inode *inode, struct page *page, int gc_type)
527 {
528 	struct f2fs_io_info fio = {
529 		.type = DATA,
530 		.rw = WRITE_SYNC,
531 	};
532 
533 	if (gc_type == BG_GC) {
534 		if (PageWriteback(page))
535 			goto out;
536 		set_page_dirty(page);
537 		set_cold_data(page);
538 	} else {
539 		f2fs_wait_on_page_writeback(page, DATA);
540 
541 		if (clear_page_dirty_for_io(page))
542 			inode_dec_dirty_pages(inode);
543 		set_cold_data(page);
544 		do_write_data_page(page, &fio);
545 		clear_cold_data(page);
546 	}
547 out:
548 	f2fs_put_page(page, 1);
549 }
550 
551 /*
552  * This function tries to get parent node of victim data block, and identifies
553  * data block validity. If the block is valid, copy that with cold status and
554  * modify parent node.
555  * If the parent node is not valid or the data block address is different,
556  * the victim data block is ignored.
557  */
558 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
559 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
560 {
561 	struct super_block *sb = sbi->sb;
562 	struct f2fs_summary *entry;
563 	block_t start_addr;
564 	int off;
565 	int phase = 0;
566 
567 	start_addr = START_BLOCK(sbi, segno);
568 
569 next_step:
570 	entry = sum;
571 
572 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
573 		struct page *data_page;
574 		struct inode *inode;
575 		struct node_info dni; /* dnode info for the data */
576 		unsigned int ofs_in_node, nofs;
577 		block_t start_bidx;
578 
579 		/* stop BG_GC if there is not enough free sections. */
580 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
581 			return;
582 
583 		if (check_valid_map(sbi, segno, off) == 0)
584 			continue;
585 
586 		if (phase == 0) {
587 			ra_node_page(sbi, le32_to_cpu(entry->nid));
588 			continue;
589 		}
590 
591 		/* Get an inode by ino with checking validity */
592 		if (check_dnode(sbi, entry, &dni, start_addr + off, &nofs) == 0)
593 			continue;
594 
595 		if (phase == 1) {
596 			ra_node_page(sbi, dni.ino);
597 			continue;
598 		}
599 
600 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
601 
602 		if (phase == 2) {
603 			inode = f2fs_iget(sb, dni.ino);
604 			if (IS_ERR(inode) || is_bad_inode(inode))
605 				continue;
606 
607 			start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
608 
609 			data_page = find_data_page(inode,
610 					start_bidx + ofs_in_node, false);
611 			if (IS_ERR(data_page)) {
612 				iput(inode);
613 				continue;
614 			}
615 
616 			f2fs_put_page(data_page, 0);
617 			add_gc_inode(gc_list, inode);
618 			continue;
619 		}
620 
621 		/* phase 3 */
622 		inode = find_gc_inode(gc_list, dni.ino);
623 		if (inode) {
624 			start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
625 			data_page = get_lock_data_page(inode,
626 						start_bidx + ofs_in_node);
627 			if (IS_ERR(data_page))
628 				continue;
629 			move_data_page(inode, data_page, gc_type);
630 			stat_inc_data_blk_count(sbi, 1);
631 		}
632 	}
633 
634 	if (++phase < 4)
635 		goto next_step;
636 
637 	if (gc_type == FG_GC) {
638 		f2fs_submit_merged_bio(sbi, DATA, WRITE);
639 
640 		/*
641 		 * In the case of FG_GC, it'd be better to reclaim this victim
642 		 * completely.
643 		 */
644 		if (get_valid_blocks(sbi, segno, 1) != 0) {
645 			phase = 2;
646 			goto next_step;
647 		}
648 	}
649 }
650 
651 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
652 			int gc_type)
653 {
654 	struct sit_info *sit_i = SIT_I(sbi);
655 	int ret;
656 
657 	mutex_lock(&sit_i->sentry_lock);
658 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
659 					      NO_CHECK_TYPE, LFS);
660 	mutex_unlock(&sit_i->sentry_lock);
661 	return ret;
662 }
663 
664 static void do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
665 				struct gc_inode_list *gc_list, int gc_type)
666 {
667 	struct page *sum_page;
668 	struct f2fs_summary_block *sum;
669 	struct blk_plug plug;
670 
671 	/* read segment summary of victim */
672 	sum_page = get_sum_page(sbi, segno);
673 
674 	blk_start_plug(&plug);
675 
676 	sum = page_address(sum_page);
677 
678 	switch (GET_SUM_TYPE((&sum->footer))) {
679 	case SUM_TYPE_NODE:
680 		gc_node_segment(sbi, sum->entries, segno, gc_type);
681 		break;
682 	case SUM_TYPE_DATA:
683 		gc_data_segment(sbi, sum->entries, gc_list, segno, gc_type);
684 		break;
685 	}
686 	blk_finish_plug(&plug);
687 
688 	stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
689 	stat_inc_call_count(sbi->stat_info);
690 
691 	f2fs_put_page(sum_page, 1);
692 }
693 
694 int f2fs_gc(struct f2fs_sb_info *sbi)
695 {
696 	unsigned int segno, i;
697 	int gc_type = BG_GC;
698 	int nfree = 0;
699 	int ret = -1;
700 	struct cp_control cpc;
701 	struct gc_inode_list gc_list = {
702 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
703 		.iroot = RADIX_TREE_INIT(GFP_NOFS),
704 	};
705 
706 	cpc.reason = test_opt(sbi, FASTBOOT) ? CP_UMOUNT : CP_SYNC;
707 
708 gc_more:
709 	if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
710 		goto stop;
711 	if (unlikely(f2fs_cp_error(sbi)))
712 		goto stop;
713 
714 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, nfree)) {
715 		gc_type = FG_GC;
716 		write_checkpoint(sbi, &cpc);
717 	}
718 
719 	if (!__get_victim(sbi, &segno, gc_type))
720 		goto stop;
721 	ret = 0;
722 
723 	/* readahead multi ssa blocks those have contiguous address */
724 	if (sbi->segs_per_sec > 1)
725 		ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
726 								META_SSA);
727 
728 	for (i = 0; i < sbi->segs_per_sec; i++)
729 		do_garbage_collect(sbi, segno + i, &gc_list, gc_type);
730 
731 	if (gc_type == FG_GC) {
732 		sbi->cur_victim_sec = NULL_SEGNO;
733 		nfree++;
734 		WARN_ON(get_valid_blocks(sbi, segno, sbi->segs_per_sec));
735 	}
736 
737 	if (has_not_enough_free_secs(sbi, nfree))
738 		goto gc_more;
739 
740 	if (gc_type == FG_GC)
741 		write_checkpoint(sbi, &cpc);
742 stop:
743 	mutex_unlock(&sbi->gc_mutex);
744 
745 	put_gc_inode(&gc_list);
746 	return ret;
747 }
748 
749 void build_gc_manager(struct f2fs_sb_info *sbi)
750 {
751 	DIRTY_I(sbi)->v_ops = &default_v_ops;
752 }
753 
754 int __init create_gc_caches(void)
755 {
756 	winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
757 			sizeof(struct inode_entry));
758 	if (!winode_slab)
759 		return -ENOMEM;
760 	return 0;
761 }
762 
763 void destroy_gc_caches(void)
764 {
765 	kmem_cache_destroy(winode_slab);
766 }
767