xref: /openbmc/linux/fs/f2fs/gc.c (revision 84fbfc33)
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25 
26 static int gc_thread_func(void *data)
27 {
28 	struct f2fs_sb_info *sbi = data;
29 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 	unsigned int wait_ms;
32 
33 	wait_ms = gc_th->min_sleep_time;
34 
35 	set_freezable();
36 	do {
37 		wait_event_interruptible_timeout(*wq,
38 				kthread_should_stop() || freezing(current) ||
39 				gc_th->gc_wake,
40 				msecs_to_jiffies(wait_ms));
41 
42 		/* give it a try one time */
43 		if (gc_th->gc_wake)
44 			gc_th->gc_wake = 0;
45 
46 		if (try_to_freeze())
47 			continue;
48 		if (kthread_should_stop())
49 			break;
50 
51 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
52 			increase_sleep_time(gc_th, &wait_ms);
53 			continue;
54 		}
55 
56 #ifdef CONFIG_F2FS_FAULT_INJECTION
57 		if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
58 			f2fs_show_injection_info(FAULT_CHECKPOINT);
59 			f2fs_stop_checkpoint(sbi, false);
60 		}
61 #endif
62 
63 		if (!sb_start_write_trylock(sbi->sb))
64 			continue;
65 
66 		/*
67 		 * [GC triggering condition]
68 		 * 0. GC is not conducted currently.
69 		 * 1. There are enough dirty segments.
70 		 * 2. IO subsystem is idle by checking the # of writeback pages.
71 		 * 3. IO subsystem is idle by checking the # of requests in
72 		 *    bdev's request list.
73 		 *
74 		 * Note) We have to avoid triggering GCs frequently.
75 		 * Because it is possible that some segments can be
76 		 * invalidated soon after by user update or deletion.
77 		 * So, I'd like to wait some time to collect dirty segments.
78 		 */
79 		if (!mutex_trylock(&sbi->gc_mutex))
80 			goto next;
81 
82 		if (gc_th->gc_urgent) {
83 			wait_ms = gc_th->urgent_sleep_time;
84 			goto do_gc;
85 		}
86 
87 		if (!is_idle(sbi)) {
88 			increase_sleep_time(gc_th, &wait_ms);
89 			mutex_unlock(&sbi->gc_mutex);
90 			goto next;
91 		}
92 
93 		if (has_enough_invalid_blocks(sbi))
94 			decrease_sleep_time(gc_th, &wait_ms);
95 		else
96 			increase_sleep_time(gc_th, &wait_ms);
97 do_gc:
98 		stat_inc_bggc_count(sbi);
99 
100 		/* if return value is not zero, no victim was selected */
101 		if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO))
102 			wait_ms = gc_th->no_gc_sleep_time;
103 
104 		trace_f2fs_background_gc(sbi->sb, wait_ms,
105 				prefree_segments(sbi), free_segments(sbi));
106 
107 		/* balancing f2fs's metadata periodically */
108 		f2fs_balance_fs_bg(sbi);
109 next:
110 		sb_end_write(sbi->sb);
111 
112 	} while (!kthread_should_stop());
113 	return 0;
114 }
115 
116 int start_gc_thread(struct f2fs_sb_info *sbi)
117 {
118 	struct f2fs_gc_kthread *gc_th;
119 	dev_t dev = sbi->sb->s_bdev->bd_dev;
120 	int err = 0;
121 
122 	gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
123 	if (!gc_th) {
124 		err = -ENOMEM;
125 		goto out;
126 	}
127 
128 	gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
129 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
130 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
131 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
132 
133 	gc_th->gc_idle = 0;
134 	gc_th->gc_urgent = 0;
135 	gc_th->gc_wake= 0;
136 
137 	sbi->gc_thread = gc_th;
138 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
139 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
140 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
141 	if (IS_ERR(gc_th->f2fs_gc_task)) {
142 		err = PTR_ERR(gc_th->f2fs_gc_task);
143 		kfree(gc_th);
144 		sbi->gc_thread = NULL;
145 	}
146 out:
147 	return err;
148 }
149 
150 void stop_gc_thread(struct f2fs_sb_info *sbi)
151 {
152 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
153 	if (!gc_th)
154 		return;
155 	kthread_stop(gc_th->f2fs_gc_task);
156 	kfree(gc_th);
157 	sbi->gc_thread = NULL;
158 }
159 
160 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
161 {
162 	int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
163 
164 	if (gc_th && gc_th->gc_idle) {
165 		if (gc_th->gc_idle == 1)
166 			gc_mode = GC_CB;
167 		else if (gc_th->gc_idle == 2)
168 			gc_mode = GC_GREEDY;
169 	}
170 	return gc_mode;
171 }
172 
173 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
174 			int type, struct victim_sel_policy *p)
175 {
176 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
177 
178 	if (p->alloc_mode == SSR) {
179 		p->gc_mode = GC_GREEDY;
180 		p->dirty_segmap = dirty_i->dirty_segmap[type];
181 		p->max_search = dirty_i->nr_dirty[type];
182 		p->ofs_unit = 1;
183 	} else {
184 		p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
185 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
186 		p->max_search = dirty_i->nr_dirty[DIRTY];
187 		p->ofs_unit = sbi->segs_per_sec;
188 	}
189 
190 	/* we need to check every dirty segments in the FG_GC case */
191 	if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
192 		p->max_search = sbi->max_victim_search;
193 
194 	/* let's select beginning hot/small space first */
195 	if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
196 		p->offset = 0;
197 	else
198 		p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
199 }
200 
201 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
202 				struct victim_sel_policy *p)
203 {
204 	/* SSR allocates in a segment unit */
205 	if (p->alloc_mode == SSR)
206 		return sbi->blocks_per_seg;
207 	if (p->gc_mode == GC_GREEDY)
208 		return 2 * sbi->blocks_per_seg * p->ofs_unit;
209 	else if (p->gc_mode == GC_CB)
210 		return UINT_MAX;
211 	else /* No other gc_mode */
212 		return 0;
213 }
214 
215 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
216 {
217 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
218 	unsigned int secno;
219 
220 	/*
221 	 * If the gc_type is FG_GC, we can select victim segments
222 	 * selected by background GC before.
223 	 * Those segments guarantee they have small valid blocks.
224 	 */
225 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
226 		if (sec_usage_check(sbi, secno))
227 			continue;
228 
229 		if (no_fggc_candidate(sbi, secno))
230 			continue;
231 
232 		clear_bit(secno, dirty_i->victim_secmap);
233 		return GET_SEG_FROM_SEC(sbi, secno);
234 	}
235 	return NULL_SEGNO;
236 }
237 
238 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
239 {
240 	struct sit_info *sit_i = SIT_I(sbi);
241 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
242 	unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
243 	unsigned long long mtime = 0;
244 	unsigned int vblocks;
245 	unsigned char age = 0;
246 	unsigned char u;
247 	unsigned int i;
248 
249 	for (i = 0; i < sbi->segs_per_sec; i++)
250 		mtime += get_seg_entry(sbi, start + i)->mtime;
251 	vblocks = get_valid_blocks(sbi, segno, true);
252 
253 	mtime = div_u64(mtime, sbi->segs_per_sec);
254 	vblocks = div_u64(vblocks, sbi->segs_per_sec);
255 
256 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
257 
258 	/* Handle if the system time has changed by the user */
259 	if (mtime < sit_i->min_mtime)
260 		sit_i->min_mtime = mtime;
261 	if (mtime > sit_i->max_mtime)
262 		sit_i->max_mtime = mtime;
263 	if (sit_i->max_mtime != sit_i->min_mtime)
264 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
265 				sit_i->max_mtime - sit_i->min_mtime);
266 
267 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
268 }
269 
270 static unsigned int get_greedy_cost(struct f2fs_sb_info *sbi,
271 						unsigned int segno)
272 {
273 	unsigned int valid_blocks =
274 			get_valid_blocks(sbi, segno, true);
275 
276 	return IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
277 				valid_blocks * 2 : valid_blocks;
278 }
279 
280 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
281 			unsigned int segno, struct victim_sel_policy *p)
282 {
283 	if (p->alloc_mode == SSR)
284 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
285 
286 	/* alloc_mode == LFS */
287 	if (p->gc_mode == GC_GREEDY)
288 		return get_greedy_cost(sbi, segno);
289 	else
290 		return get_cb_cost(sbi, segno);
291 }
292 
293 static unsigned int count_bits(const unsigned long *addr,
294 				unsigned int offset, unsigned int len)
295 {
296 	unsigned int end = offset + len, sum = 0;
297 
298 	while (offset < end) {
299 		if (test_bit(offset++, addr))
300 			++sum;
301 	}
302 	return sum;
303 }
304 
305 /*
306  * This function is called from two paths.
307  * One is garbage collection and the other is SSR segment selection.
308  * When it is called during GC, it just gets a victim segment
309  * and it does not remove it from dirty seglist.
310  * When it is called from SSR segment selection, it finds a segment
311  * which has minimum valid blocks and removes it from dirty seglist.
312  */
313 static int get_victim_by_default(struct f2fs_sb_info *sbi,
314 		unsigned int *result, int gc_type, int type, char alloc_mode)
315 {
316 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
317 	struct sit_info *sm = SIT_I(sbi);
318 	struct victim_sel_policy p;
319 	unsigned int secno, last_victim;
320 	unsigned int last_segment = MAIN_SEGS(sbi);
321 	unsigned int nsearched = 0;
322 
323 	mutex_lock(&dirty_i->seglist_lock);
324 
325 	p.alloc_mode = alloc_mode;
326 	select_policy(sbi, gc_type, type, &p);
327 
328 	p.min_segno = NULL_SEGNO;
329 	p.min_cost = get_max_cost(sbi, &p);
330 
331 	if (*result != NULL_SEGNO) {
332 		if (IS_DATASEG(get_seg_entry(sbi, *result)->type) &&
333 			get_valid_blocks(sbi, *result, false) &&
334 			!sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
335 			p.min_segno = *result;
336 		goto out;
337 	}
338 
339 	if (p.max_search == 0)
340 		goto out;
341 
342 	last_victim = sm->last_victim[p.gc_mode];
343 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
344 		p.min_segno = check_bg_victims(sbi);
345 		if (p.min_segno != NULL_SEGNO)
346 			goto got_it;
347 	}
348 
349 	while (1) {
350 		unsigned long cost;
351 		unsigned int segno;
352 
353 		segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
354 		if (segno >= last_segment) {
355 			if (sm->last_victim[p.gc_mode]) {
356 				last_segment =
357 					sm->last_victim[p.gc_mode];
358 				sm->last_victim[p.gc_mode] = 0;
359 				p.offset = 0;
360 				continue;
361 			}
362 			break;
363 		}
364 
365 		p.offset = segno + p.ofs_unit;
366 		if (p.ofs_unit > 1) {
367 			p.offset -= segno % p.ofs_unit;
368 			nsearched += count_bits(p.dirty_segmap,
369 						p.offset - p.ofs_unit,
370 						p.ofs_unit);
371 		} else {
372 			nsearched++;
373 		}
374 
375 		secno = GET_SEC_FROM_SEG(sbi, segno);
376 
377 		if (sec_usage_check(sbi, secno))
378 			goto next;
379 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
380 			goto next;
381 		if (gc_type == FG_GC && p.alloc_mode == LFS &&
382 					no_fggc_candidate(sbi, secno))
383 			goto next;
384 
385 		cost = get_gc_cost(sbi, segno, &p);
386 
387 		if (p.min_cost > cost) {
388 			p.min_segno = segno;
389 			p.min_cost = cost;
390 		}
391 next:
392 		if (nsearched >= p.max_search) {
393 			if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
394 				sm->last_victim[p.gc_mode] = last_victim + 1;
395 			else
396 				sm->last_victim[p.gc_mode] = segno + 1;
397 			sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi);
398 			break;
399 		}
400 	}
401 	if (p.min_segno != NULL_SEGNO) {
402 got_it:
403 		if (p.alloc_mode == LFS) {
404 			secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
405 			if (gc_type == FG_GC)
406 				sbi->cur_victim_sec = secno;
407 			else
408 				set_bit(secno, dirty_i->victim_secmap);
409 		}
410 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
411 
412 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
413 				sbi->cur_victim_sec,
414 				prefree_segments(sbi), free_segments(sbi));
415 	}
416 out:
417 	mutex_unlock(&dirty_i->seglist_lock);
418 
419 	return (p.min_segno == NULL_SEGNO) ? 0 : 1;
420 }
421 
422 static const struct victim_selection default_v_ops = {
423 	.get_victim = get_victim_by_default,
424 };
425 
426 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
427 {
428 	struct inode_entry *ie;
429 
430 	ie = radix_tree_lookup(&gc_list->iroot, ino);
431 	if (ie)
432 		return ie->inode;
433 	return NULL;
434 }
435 
436 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
437 {
438 	struct inode_entry *new_ie;
439 
440 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
441 		iput(inode);
442 		return;
443 	}
444 	new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
445 	new_ie->inode = inode;
446 
447 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
448 	list_add_tail(&new_ie->list, &gc_list->ilist);
449 }
450 
451 static void put_gc_inode(struct gc_inode_list *gc_list)
452 {
453 	struct inode_entry *ie, *next_ie;
454 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
455 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
456 		iput(ie->inode);
457 		list_del(&ie->list);
458 		kmem_cache_free(inode_entry_slab, ie);
459 	}
460 }
461 
462 static int check_valid_map(struct f2fs_sb_info *sbi,
463 				unsigned int segno, int offset)
464 {
465 	struct sit_info *sit_i = SIT_I(sbi);
466 	struct seg_entry *sentry;
467 	int ret;
468 
469 	mutex_lock(&sit_i->sentry_lock);
470 	sentry = get_seg_entry(sbi, segno);
471 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
472 	mutex_unlock(&sit_i->sentry_lock);
473 	return ret;
474 }
475 
476 /*
477  * This function compares node address got in summary with that in NAT.
478  * On validity, copy that node with cold status, otherwise (invalid node)
479  * ignore that.
480  */
481 static void gc_node_segment(struct f2fs_sb_info *sbi,
482 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
483 {
484 	struct f2fs_summary *entry;
485 	block_t start_addr;
486 	int off;
487 	int phase = 0;
488 
489 	start_addr = START_BLOCK(sbi, segno);
490 
491 next_step:
492 	entry = sum;
493 
494 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
495 		nid_t nid = le32_to_cpu(entry->nid);
496 		struct page *node_page;
497 		struct node_info ni;
498 
499 		/* stop BG_GC if there is not enough free sections. */
500 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
501 			return;
502 
503 		if (check_valid_map(sbi, segno, off) == 0)
504 			continue;
505 
506 		if (phase == 0) {
507 			ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
508 							META_NAT, true);
509 			continue;
510 		}
511 
512 		if (phase == 1) {
513 			ra_node_page(sbi, nid);
514 			continue;
515 		}
516 
517 		/* phase == 2 */
518 		node_page = get_node_page(sbi, nid);
519 		if (IS_ERR(node_page))
520 			continue;
521 
522 		/* block may become invalid during get_node_page */
523 		if (check_valid_map(sbi, segno, off) == 0) {
524 			f2fs_put_page(node_page, 1);
525 			continue;
526 		}
527 
528 		get_node_info(sbi, nid, &ni);
529 		if (ni.blk_addr != start_addr + off) {
530 			f2fs_put_page(node_page, 1);
531 			continue;
532 		}
533 
534 		move_node_page(node_page, gc_type);
535 		stat_inc_node_blk_count(sbi, 1, gc_type);
536 	}
537 
538 	if (++phase < 3)
539 		goto next_step;
540 }
541 
542 /*
543  * Calculate start block index indicating the given node offset.
544  * Be careful, caller should give this node offset only indicating direct node
545  * blocks. If any node offsets, which point the other types of node blocks such
546  * as indirect or double indirect node blocks, are given, it must be a caller's
547  * bug.
548  */
549 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
550 {
551 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
552 	unsigned int bidx;
553 
554 	if (node_ofs == 0)
555 		return 0;
556 
557 	if (node_ofs <= 2) {
558 		bidx = node_ofs - 1;
559 	} else if (node_ofs <= indirect_blks) {
560 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
561 		bidx = node_ofs - 2 - dec;
562 	} else {
563 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
564 		bidx = node_ofs - 5 - dec;
565 	}
566 	return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
567 }
568 
569 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
570 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
571 {
572 	struct page *node_page;
573 	nid_t nid;
574 	unsigned int ofs_in_node;
575 	block_t source_blkaddr;
576 
577 	nid = le32_to_cpu(sum->nid);
578 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
579 
580 	node_page = get_node_page(sbi, nid);
581 	if (IS_ERR(node_page))
582 		return false;
583 
584 	get_node_info(sbi, nid, dni);
585 
586 	if (sum->version != dni->version) {
587 		f2fs_msg(sbi->sb, KERN_WARNING,
588 				"%s: valid data with mismatched node version.",
589 				__func__);
590 		set_sbi_flag(sbi, SBI_NEED_FSCK);
591 	}
592 
593 	*nofs = ofs_of_node(node_page);
594 	source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node);
595 	f2fs_put_page(node_page, 1);
596 
597 	if (source_blkaddr != blkaddr)
598 		return false;
599 	return true;
600 }
601 
602 /*
603  * Move data block via META_MAPPING while keeping locked data page.
604  * This can be used to move blocks, aka LBAs, directly on disk.
605  */
606 static void move_data_block(struct inode *inode, block_t bidx,
607 					unsigned int segno, int off)
608 {
609 	struct f2fs_io_info fio = {
610 		.sbi = F2FS_I_SB(inode),
611 		.type = DATA,
612 		.temp = COLD,
613 		.op = REQ_OP_READ,
614 		.op_flags = 0,
615 		.encrypted_page = NULL,
616 		.in_list = false,
617 	};
618 	struct dnode_of_data dn;
619 	struct f2fs_summary sum;
620 	struct node_info ni;
621 	struct page *page;
622 	block_t newaddr;
623 	int err;
624 
625 	/* do not read out */
626 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
627 	if (!page)
628 		return;
629 
630 	if (!check_valid_map(F2FS_I_SB(inode), segno, off))
631 		goto out;
632 
633 	if (f2fs_is_atomic_file(inode))
634 		goto out;
635 
636 	set_new_dnode(&dn, inode, NULL, NULL, 0);
637 	err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
638 	if (err)
639 		goto out;
640 
641 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
642 		ClearPageUptodate(page);
643 		goto put_out;
644 	}
645 
646 	/*
647 	 * don't cache encrypted data into meta inode until previous dirty
648 	 * data were writebacked to avoid racing between GC and flush.
649 	 */
650 	f2fs_wait_on_page_writeback(page, DATA, true);
651 
652 	get_node_info(fio.sbi, dn.nid, &ni);
653 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
654 
655 	/* read page */
656 	fio.page = page;
657 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
658 
659 	allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
660 					&sum, CURSEG_COLD_DATA, NULL, false);
661 
662 	fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
663 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
664 	if (!fio.encrypted_page) {
665 		err = -ENOMEM;
666 		goto recover_block;
667 	}
668 
669 	err = f2fs_submit_page_bio(&fio);
670 	if (err)
671 		goto put_page_out;
672 
673 	/* write page */
674 	lock_page(fio.encrypted_page);
675 
676 	if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
677 		err = -EIO;
678 		goto put_page_out;
679 	}
680 	if (unlikely(!PageUptodate(fio.encrypted_page))) {
681 		err = -EIO;
682 		goto put_page_out;
683 	}
684 
685 	set_page_dirty(fio.encrypted_page);
686 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
687 	if (clear_page_dirty_for_io(fio.encrypted_page))
688 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
689 
690 	set_page_writeback(fio.encrypted_page);
691 
692 	/* allocate block address */
693 	f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
694 
695 	fio.op = REQ_OP_WRITE;
696 	fio.op_flags = REQ_SYNC;
697 	fio.new_blkaddr = newaddr;
698 	f2fs_submit_page_write(&fio);
699 
700 	f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
701 
702 	f2fs_update_data_blkaddr(&dn, newaddr);
703 	set_inode_flag(inode, FI_APPEND_WRITE);
704 	if (page->index == 0)
705 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
706 put_page_out:
707 	f2fs_put_page(fio.encrypted_page, 1);
708 recover_block:
709 	if (err)
710 		__f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
711 								true, true);
712 put_out:
713 	f2fs_put_dnode(&dn);
714 out:
715 	f2fs_put_page(page, 1);
716 }
717 
718 static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
719 							unsigned int segno, int off)
720 {
721 	struct page *page;
722 
723 	page = get_lock_data_page(inode, bidx, true);
724 	if (IS_ERR(page))
725 		return;
726 
727 	if (!check_valid_map(F2FS_I_SB(inode), segno, off))
728 		goto out;
729 
730 	if (f2fs_is_atomic_file(inode))
731 		goto out;
732 
733 	if (gc_type == BG_GC) {
734 		if (PageWriteback(page))
735 			goto out;
736 		set_page_dirty(page);
737 		set_cold_data(page);
738 	} else {
739 		struct f2fs_io_info fio = {
740 			.sbi = F2FS_I_SB(inode),
741 			.type = DATA,
742 			.temp = COLD,
743 			.op = REQ_OP_WRITE,
744 			.op_flags = REQ_SYNC,
745 			.old_blkaddr = NULL_ADDR,
746 			.page = page,
747 			.encrypted_page = NULL,
748 			.need_lock = LOCK_REQ,
749 			.io_type = FS_GC_DATA_IO,
750 		};
751 		bool is_dirty = PageDirty(page);
752 		int err;
753 
754 retry:
755 		set_page_dirty(page);
756 		f2fs_wait_on_page_writeback(page, DATA, true);
757 		if (clear_page_dirty_for_io(page)) {
758 			inode_dec_dirty_pages(inode);
759 			remove_dirty_inode(inode);
760 		}
761 
762 		set_cold_data(page);
763 
764 		err = do_write_data_page(&fio);
765 		if (err == -ENOMEM && is_dirty) {
766 			congestion_wait(BLK_RW_ASYNC, HZ/50);
767 			goto retry;
768 		}
769 	}
770 out:
771 	f2fs_put_page(page, 1);
772 }
773 
774 /*
775  * This function tries to get parent node of victim data block, and identifies
776  * data block validity. If the block is valid, copy that with cold status and
777  * modify parent node.
778  * If the parent node is not valid or the data block address is different,
779  * the victim data block is ignored.
780  */
781 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
782 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
783 {
784 	struct super_block *sb = sbi->sb;
785 	struct f2fs_summary *entry;
786 	block_t start_addr;
787 	int off;
788 	int phase = 0;
789 
790 	start_addr = START_BLOCK(sbi, segno);
791 
792 next_step:
793 	entry = sum;
794 
795 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
796 		struct page *data_page;
797 		struct inode *inode;
798 		struct node_info dni; /* dnode info for the data */
799 		unsigned int ofs_in_node, nofs;
800 		block_t start_bidx;
801 		nid_t nid = le32_to_cpu(entry->nid);
802 
803 		/* stop BG_GC if there is not enough free sections. */
804 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
805 			return;
806 
807 		if (check_valid_map(sbi, segno, off) == 0)
808 			continue;
809 
810 		if (phase == 0) {
811 			ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
812 							META_NAT, true);
813 			continue;
814 		}
815 
816 		if (phase == 1) {
817 			ra_node_page(sbi, nid);
818 			continue;
819 		}
820 
821 		/* Get an inode by ino with checking validity */
822 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
823 			continue;
824 
825 		if (phase == 2) {
826 			ra_node_page(sbi, dni.ino);
827 			continue;
828 		}
829 
830 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
831 
832 		if (phase == 3) {
833 			inode = f2fs_iget(sb, dni.ino);
834 			if (IS_ERR(inode) || is_bad_inode(inode))
835 				continue;
836 
837 			/* if encrypted inode, let's go phase 3 */
838 			if (f2fs_encrypted_file(inode)) {
839 				add_gc_inode(gc_list, inode);
840 				continue;
841 			}
842 
843 			start_bidx = start_bidx_of_node(nofs, inode);
844 			data_page = get_read_data_page(inode,
845 					start_bidx + ofs_in_node, REQ_RAHEAD,
846 					true);
847 			if (IS_ERR(data_page)) {
848 				iput(inode);
849 				continue;
850 			}
851 
852 			f2fs_put_page(data_page, 0);
853 			add_gc_inode(gc_list, inode);
854 			continue;
855 		}
856 
857 		/* phase 4 */
858 		inode = find_gc_inode(gc_list, dni.ino);
859 		if (inode) {
860 			struct f2fs_inode_info *fi = F2FS_I(inode);
861 			bool locked = false;
862 
863 			if (S_ISREG(inode->i_mode)) {
864 				if (!down_write_trylock(&fi->dio_rwsem[READ]))
865 					continue;
866 				if (!down_write_trylock(
867 						&fi->dio_rwsem[WRITE])) {
868 					up_write(&fi->dio_rwsem[READ]);
869 					continue;
870 				}
871 				locked = true;
872 
873 				/* wait for all inflight aio data */
874 				inode_dio_wait(inode);
875 			}
876 
877 			start_bidx = start_bidx_of_node(nofs, inode)
878 								+ ofs_in_node;
879 			if (f2fs_encrypted_file(inode))
880 				move_data_block(inode, start_bidx, segno, off);
881 			else
882 				move_data_page(inode, start_bidx, gc_type,
883 								segno, off);
884 
885 			if (locked) {
886 				up_write(&fi->dio_rwsem[WRITE]);
887 				up_write(&fi->dio_rwsem[READ]);
888 			}
889 
890 			stat_inc_data_blk_count(sbi, 1, gc_type);
891 		}
892 	}
893 
894 	if (++phase < 5)
895 		goto next_step;
896 }
897 
898 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
899 			int gc_type)
900 {
901 	struct sit_info *sit_i = SIT_I(sbi);
902 	int ret;
903 
904 	mutex_lock(&sit_i->sentry_lock);
905 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
906 					      NO_CHECK_TYPE, LFS);
907 	mutex_unlock(&sit_i->sentry_lock);
908 	return ret;
909 }
910 
911 static int do_garbage_collect(struct f2fs_sb_info *sbi,
912 				unsigned int start_segno,
913 				struct gc_inode_list *gc_list, int gc_type)
914 {
915 	struct page *sum_page;
916 	struct f2fs_summary_block *sum;
917 	struct blk_plug plug;
918 	unsigned int segno = start_segno;
919 	unsigned int end_segno = start_segno + sbi->segs_per_sec;
920 	int seg_freed = 0;
921 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
922 						SUM_TYPE_DATA : SUM_TYPE_NODE;
923 
924 	/* readahead multi ssa blocks those have contiguous address */
925 	if (sbi->segs_per_sec > 1)
926 		ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
927 					sbi->segs_per_sec, META_SSA, true);
928 
929 	/* reference all summary page */
930 	while (segno < end_segno) {
931 		sum_page = get_sum_page(sbi, segno++);
932 		unlock_page(sum_page);
933 	}
934 
935 	blk_start_plug(&plug);
936 
937 	for (segno = start_segno; segno < end_segno; segno++) {
938 
939 		/* find segment summary of victim */
940 		sum_page = find_get_page(META_MAPPING(sbi),
941 					GET_SUM_BLOCK(sbi, segno));
942 		f2fs_put_page(sum_page, 0);
943 
944 		if (get_valid_blocks(sbi, segno, false) == 0 ||
945 				!PageUptodate(sum_page) ||
946 				unlikely(f2fs_cp_error(sbi)))
947 			goto next;
948 
949 		sum = page_address(sum_page);
950 		f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
951 
952 		/*
953 		 * this is to avoid deadlock:
954 		 * - lock_page(sum_page)         - f2fs_replace_block
955 		 *  - check_valid_map()            - mutex_lock(sentry_lock)
956 		 *   - mutex_lock(sentry_lock)     - change_curseg()
957 		 *                                  - lock_page(sum_page)
958 		 */
959 		if (type == SUM_TYPE_NODE)
960 			gc_node_segment(sbi, sum->entries, segno, gc_type);
961 		else
962 			gc_data_segment(sbi, sum->entries, gc_list, segno,
963 								gc_type);
964 
965 		stat_inc_seg_count(sbi, type, gc_type);
966 
967 		if (gc_type == FG_GC &&
968 				get_valid_blocks(sbi, segno, false) == 0)
969 			seg_freed++;
970 next:
971 		f2fs_put_page(sum_page, 0);
972 	}
973 
974 	if (gc_type == FG_GC)
975 		f2fs_submit_merged_write(sbi,
976 				(type == SUM_TYPE_NODE) ? NODE : DATA);
977 
978 	blk_finish_plug(&plug);
979 
980 	stat_inc_call_count(sbi->stat_info);
981 
982 	return seg_freed;
983 }
984 
985 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
986 			bool background, unsigned int segno)
987 {
988 	int gc_type = sync ? FG_GC : BG_GC;
989 	int sec_freed = 0, seg_freed = 0, total_freed = 0;
990 	int ret = 0;
991 	struct cp_control cpc;
992 	unsigned int init_segno = segno;
993 	struct gc_inode_list gc_list = {
994 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
995 		.iroot = RADIX_TREE_INIT(GFP_NOFS),
996 	};
997 
998 	trace_f2fs_gc_begin(sbi->sb, sync, background,
999 				get_pages(sbi, F2FS_DIRTY_NODES),
1000 				get_pages(sbi, F2FS_DIRTY_DENTS),
1001 				get_pages(sbi, F2FS_DIRTY_IMETA),
1002 				free_sections(sbi),
1003 				free_segments(sbi),
1004 				reserved_segments(sbi),
1005 				prefree_segments(sbi));
1006 
1007 	cpc.reason = __get_cp_reason(sbi);
1008 gc_more:
1009 	if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE))) {
1010 		ret = -EINVAL;
1011 		goto stop;
1012 	}
1013 	if (unlikely(f2fs_cp_error(sbi))) {
1014 		ret = -EIO;
1015 		goto stop;
1016 	}
1017 
1018 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1019 		/*
1020 		 * For example, if there are many prefree_segments below given
1021 		 * threshold, we can make them free by checkpoint. Then, we
1022 		 * secure free segments which doesn't need fggc any more.
1023 		 */
1024 		if (prefree_segments(sbi)) {
1025 			ret = write_checkpoint(sbi, &cpc);
1026 			if (ret)
1027 				goto stop;
1028 		}
1029 		if (has_not_enough_free_secs(sbi, 0, 0))
1030 			gc_type = FG_GC;
1031 	}
1032 
1033 	/* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1034 	if (gc_type == BG_GC && !background) {
1035 		ret = -EINVAL;
1036 		goto stop;
1037 	}
1038 	if (!__get_victim(sbi, &segno, gc_type)) {
1039 		ret = -ENODATA;
1040 		goto stop;
1041 	}
1042 
1043 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
1044 	if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
1045 		sec_freed++;
1046 	total_freed += seg_freed;
1047 
1048 	if (gc_type == FG_GC)
1049 		sbi->cur_victim_sec = NULL_SEGNO;
1050 
1051 	if (!sync) {
1052 		if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1053 			segno = NULL_SEGNO;
1054 			goto gc_more;
1055 		}
1056 
1057 		if (gc_type == FG_GC)
1058 			ret = write_checkpoint(sbi, &cpc);
1059 	}
1060 stop:
1061 	SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1062 	SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1063 
1064 	trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1065 				get_pages(sbi, F2FS_DIRTY_NODES),
1066 				get_pages(sbi, F2FS_DIRTY_DENTS),
1067 				get_pages(sbi, F2FS_DIRTY_IMETA),
1068 				free_sections(sbi),
1069 				free_segments(sbi),
1070 				reserved_segments(sbi),
1071 				prefree_segments(sbi));
1072 
1073 	mutex_unlock(&sbi->gc_mutex);
1074 
1075 	put_gc_inode(&gc_list);
1076 
1077 	if (sync)
1078 		ret = sec_freed ? 0 : -EAGAIN;
1079 	return ret;
1080 }
1081 
1082 void build_gc_manager(struct f2fs_sb_info *sbi)
1083 {
1084 	u64 main_count, resv_count, ovp_count;
1085 
1086 	DIRTY_I(sbi)->v_ops = &default_v_ops;
1087 
1088 	/* threshold of # of valid blocks in a section for victims of FG_GC */
1089 	main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
1090 	resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
1091 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1092 
1093 	sbi->fggc_threshold = div64_u64((main_count - ovp_count) *
1094 				BLKS_PER_SEC(sbi), (main_count - resv_count));
1095 
1096 	/* give warm/cold data area from slower device */
1097 	if (sbi->s_ndevs && sbi->segs_per_sec == 1)
1098 		SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1099 				GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1100 }
1101