1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/init.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/kthread.h> 14 #include <linux/delay.h> 15 #include <linux/freezer.h> 16 #include <linux/sched/signal.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "gc.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *victim_entry_slab; 25 26 static unsigned int count_bits(const unsigned long *addr, 27 unsigned int offset, unsigned int len); 28 29 static int gc_thread_func(void *data) 30 { 31 struct f2fs_sb_info *sbi = data; 32 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 33 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 34 unsigned int wait_ms; 35 36 wait_ms = gc_th->min_sleep_time; 37 38 set_freezable(); 39 do { 40 bool sync_mode; 41 42 wait_event_interruptible_timeout(*wq, 43 kthread_should_stop() || freezing(current) || 44 gc_th->gc_wake, 45 msecs_to_jiffies(wait_ms)); 46 47 /* give it a try one time */ 48 if (gc_th->gc_wake) 49 gc_th->gc_wake = 0; 50 51 if (try_to_freeze()) { 52 stat_other_skip_bggc_count(sbi); 53 continue; 54 } 55 if (kthread_should_stop()) 56 break; 57 58 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 59 increase_sleep_time(gc_th, &wait_ms); 60 stat_other_skip_bggc_count(sbi); 61 continue; 62 } 63 64 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 65 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 66 f2fs_stop_checkpoint(sbi, false); 67 } 68 69 if (!sb_start_write_trylock(sbi->sb)) { 70 stat_other_skip_bggc_count(sbi); 71 continue; 72 } 73 74 /* 75 * [GC triggering condition] 76 * 0. GC is not conducted currently. 77 * 1. There are enough dirty segments. 78 * 2. IO subsystem is idle by checking the # of writeback pages. 79 * 3. IO subsystem is idle by checking the # of requests in 80 * bdev's request list. 81 * 82 * Note) We have to avoid triggering GCs frequently. 83 * Because it is possible that some segments can be 84 * invalidated soon after by user update or deletion. 85 * So, I'd like to wait some time to collect dirty segments. 86 */ 87 if (sbi->gc_mode == GC_URGENT_HIGH) { 88 wait_ms = gc_th->urgent_sleep_time; 89 down_write(&sbi->gc_lock); 90 goto do_gc; 91 } 92 93 if (!down_write_trylock(&sbi->gc_lock)) { 94 stat_other_skip_bggc_count(sbi); 95 goto next; 96 } 97 98 if (!is_idle(sbi, GC_TIME)) { 99 increase_sleep_time(gc_th, &wait_ms); 100 up_write(&sbi->gc_lock); 101 stat_io_skip_bggc_count(sbi); 102 goto next; 103 } 104 105 if (has_enough_invalid_blocks(sbi)) 106 decrease_sleep_time(gc_th, &wait_ms); 107 else 108 increase_sleep_time(gc_th, &wait_ms); 109 do_gc: 110 stat_inc_bggc_count(sbi->stat_info); 111 112 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 113 114 /* if return value is not zero, no victim was selected */ 115 if (f2fs_gc(sbi, sync_mode, true, NULL_SEGNO)) 116 wait_ms = gc_th->no_gc_sleep_time; 117 118 trace_f2fs_background_gc(sbi->sb, wait_ms, 119 prefree_segments(sbi), free_segments(sbi)); 120 121 /* balancing f2fs's metadata periodically */ 122 f2fs_balance_fs_bg(sbi, true); 123 next: 124 sb_end_write(sbi->sb); 125 126 } while (!kthread_should_stop()); 127 return 0; 128 } 129 130 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 131 { 132 struct f2fs_gc_kthread *gc_th; 133 dev_t dev = sbi->sb->s_bdev->bd_dev; 134 int err = 0; 135 136 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 137 if (!gc_th) { 138 err = -ENOMEM; 139 goto out; 140 } 141 142 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 143 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 144 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 145 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 146 147 gc_th->gc_wake= 0; 148 149 sbi->gc_thread = gc_th; 150 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 151 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 152 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 153 if (IS_ERR(gc_th->f2fs_gc_task)) { 154 err = PTR_ERR(gc_th->f2fs_gc_task); 155 kfree(gc_th); 156 sbi->gc_thread = NULL; 157 } 158 out: 159 return err; 160 } 161 162 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 163 { 164 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 165 if (!gc_th) 166 return; 167 kthread_stop(gc_th->f2fs_gc_task); 168 kfree(gc_th); 169 sbi->gc_thread = NULL; 170 } 171 172 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 173 { 174 int gc_mode; 175 176 if (gc_type == BG_GC) { 177 if (sbi->am.atgc_enabled) 178 gc_mode = GC_AT; 179 else 180 gc_mode = GC_CB; 181 } else { 182 gc_mode = GC_GREEDY; 183 } 184 185 switch (sbi->gc_mode) { 186 case GC_IDLE_CB: 187 gc_mode = GC_CB; 188 break; 189 case GC_IDLE_GREEDY: 190 case GC_URGENT_HIGH: 191 gc_mode = GC_GREEDY; 192 break; 193 case GC_IDLE_AT: 194 gc_mode = GC_AT; 195 break; 196 } 197 198 return gc_mode; 199 } 200 201 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 202 int type, struct victim_sel_policy *p) 203 { 204 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 205 206 if (p->alloc_mode == SSR) { 207 p->gc_mode = GC_GREEDY; 208 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 209 p->max_search = dirty_i->nr_dirty[type]; 210 p->ofs_unit = 1; 211 } else if (p->alloc_mode == AT_SSR) { 212 p->gc_mode = GC_GREEDY; 213 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 214 p->max_search = dirty_i->nr_dirty[type]; 215 p->ofs_unit = 1; 216 } else { 217 p->gc_mode = select_gc_type(sbi, gc_type); 218 p->ofs_unit = sbi->segs_per_sec; 219 if (__is_large_section(sbi)) { 220 p->dirty_bitmap = dirty_i->dirty_secmap; 221 p->max_search = count_bits(p->dirty_bitmap, 222 0, MAIN_SECS(sbi)); 223 } else { 224 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 225 p->max_search = dirty_i->nr_dirty[DIRTY]; 226 } 227 } 228 229 /* 230 * adjust candidates range, should select all dirty segments for 231 * foreground GC and urgent GC cases. 232 */ 233 if (gc_type != FG_GC && 234 (sbi->gc_mode != GC_URGENT_HIGH) && 235 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 236 p->max_search > sbi->max_victim_search) 237 p->max_search = sbi->max_victim_search; 238 239 /* let's select beginning hot/small space first in no_heap mode*/ 240 if (test_opt(sbi, NOHEAP) && 241 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 242 p->offset = 0; 243 else 244 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 245 } 246 247 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 248 struct victim_sel_policy *p) 249 { 250 /* SSR allocates in a segment unit */ 251 if (p->alloc_mode == SSR) 252 return sbi->blocks_per_seg; 253 else if (p->alloc_mode == AT_SSR) 254 return UINT_MAX; 255 256 /* LFS */ 257 if (p->gc_mode == GC_GREEDY) 258 return 2 * sbi->blocks_per_seg * p->ofs_unit; 259 else if (p->gc_mode == GC_CB) 260 return UINT_MAX; 261 else if (p->gc_mode == GC_AT) 262 return UINT_MAX; 263 else /* No other gc_mode */ 264 return 0; 265 } 266 267 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 268 { 269 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 270 unsigned int secno; 271 272 /* 273 * If the gc_type is FG_GC, we can select victim segments 274 * selected by background GC before. 275 * Those segments guarantee they have small valid blocks. 276 */ 277 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 278 if (sec_usage_check(sbi, secno)) 279 continue; 280 clear_bit(secno, dirty_i->victim_secmap); 281 return GET_SEG_FROM_SEC(sbi, secno); 282 } 283 return NULL_SEGNO; 284 } 285 286 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 287 { 288 struct sit_info *sit_i = SIT_I(sbi); 289 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 290 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 291 unsigned long long mtime = 0; 292 unsigned int vblocks; 293 unsigned char age = 0; 294 unsigned char u; 295 unsigned int i; 296 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 297 298 for (i = 0; i < usable_segs_per_sec; i++) 299 mtime += get_seg_entry(sbi, start + i)->mtime; 300 vblocks = get_valid_blocks(sbi, segno, true); 301 302 mtime = div_u64(mtime, usable_segs_per_sec); 303 vblocks = div_u64(vblocks, usable_segs_per_sec); 304 305 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 306 307 /* Handle if the system time has changed by the user */ 308 if (mtime < sit_i->min_mtime) 309 sit_i->min_mtime = mtime; 310 if (mtime > sit_i->max_mtime) 311 sit_i->max_mtime = mtime; 312 if (sit_i->max_mtime != sit_i->min_mtime) 313 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 314 sit_i->max_mtime - sit_i->min_mtime); 315 316 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 317 } 318 319 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 320 unsigned int segno, struct victim_sel_policy *p) 321 { 322 if (p->alloc_mode == SSR) 323 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 324 325 /* alloc_mode == LFS */ 326 if (p->gc_mode == GC_GREEDY) 327 return get_valid_blocks(sbi, segno, true); 328 else if (p->gc_mode == GC_CB) 329 return get_cb_cost(sbi, segno); 330 331 f2fs_bug_on(sbi, 1); 332 return 0; 333 } 334 335 static unsigned int count_bits(const unsigned long *addr, 336 unsigned int offset, unsigned int len) 337 { 338 unsigned int end = offset + len, sum = 0; 339 340 while (offset < end) { 341 if (test_bit(offset++, addr)) 342 ++sum; 343 } 344 return sum; 345 } 346 347 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 348 unsigned long long mtime, unsigned int segno, 349 struct rb_node *parent, struct rb_node **p, 350 bool left_most) 351 { 352 struct atgc_management *am = &sbi->am; 353 struct victim_entry *ve; 354 355 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS); 356 357 ve->mtime = mtime; 358 ve->segno = segno; 359 360 rb_link_node(&ve->rb_node, parent, p); 361 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 362 363 list_add_tail(&ve->list, &am->victim_list); 364 365 am->victim_count++; 366 367 return ve; 368 } 369 370 static void insert_victim_entry(struct f2fs_sb_info *sbi, 371 unsigned long long mtime, unsigned int segno) 372 { 373 struct atgc_management *am = &sbi->am; 374 struct rb_node **p; 375 struct rb_node *parent = NULL; 376 bool left_most = true; 377 378 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 379 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 380 } 381 382 static void add_victim_entry(struct f2fs_sb_info *sbi, 383 struct victim_sel_policy *p, unsigned int segno) 384 { 385 struct sit_info *sit_i = SIT_I(sbi); 386 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 387 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 388 unsigned long long mtime = 0; 389 unsigned int i; 390 391 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 392 if (p->gc_mode == GC_AT && 393 get_valid_blocks(sbi, segno, true) == 0) 394 return; 395 396 if (p->alloc_mode == AT_SSR && 397 get_seg_entry(sbi, segno)->ckpt_valid_blocks == 0) 398 return; 399 } 400 401 for (i = 0; i < sbi->segs_per_sec; i++) 402 mtime += get_seg_entry(sbi, start + i)->mtime; 403 mtime = div_u64(mtime, sbi->segs_per_sec); 404 405 /* Handle if the system time has changed by the user */ 406 if (mtime < sit_i->min_mtime) 407 sit_i->min_mtime = mtime; 408 if (mtime > sit_i->max_mtime) 409 sit_i->max_mtime = mtime; 410 if (mtime < sit_i->dirty_min_mtime) 411 sit_i->dirty_min_mtime = mtime; 412 if (mtime > sit_i->dirty_max_mtime) 413 sit_i->dirty_max_mtime = mtime; 414 415 /* don't choose young section as candidate */ 416 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 417 return; 418 419 insert_victim_entry(sbi, mtime, segno); 420 } 421 422 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 423 struct victim_sel_policy *p) 424 { 425 struct atgc_management *am = &sbi->am; 426 struct rb_node *parent = NULL; 427 bool left_most; 428 429 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 430 431 return parent; 432 } 433 434 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 435 struct victim_sel_policy *p) 436 { 437 struct sit_info *sit_i = SIT_I(sbi); 438 struct atgc_management *am = &sbi->am; 439 struct rb_root_cached *root = &am->root; 440 struct rb_node *node; 441 struct rb_entry *re; 442 struct victim_entry *ve; 443 unsigned long long total_time; 444 unsigned long long age, u, accu; 445 unsigned long long max_mtime = sit_i->dirty_max_mtime; 446 unsigned long long min_mtime = sit_i->dirty_min_mtime; 447 unsigned int sec_blocks = BLKS_PER_SEC(sbi); 448 unsigned int vblocks; 449 unsigned int dirty_threshold = max(am->max_candidate_count, 450 am->candidate_ratio * 451 am->victim_count / 100); 452 unsigned int age_weight = am->age_weight; 453 unsigned int cost; 454 unsigned int iter = 0; 455 456 if (max_mtime < min_mtime) 457 return; 458 459 max_mtime += 1; 460 total_time = max_mtime - min_mtime; 461 462 accu = div64_u64(ULLONG_MAX, total_time); 463 accu = min_t(unsigned long long, div_u64(accu, 100), 464 DEFAULT_ACCURACY_CLASS); 465 466 node = rb_first_cached(root); 467 next: 468 re = rb_entry_safe(node, struct rb_entry, rb_node); 469 if (!re) 470 return; 471 472 ve = (struct victim_entry *)re; 473 474 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 475 goto skip; 476 477 /* age = 10000 * x% * 60 */ 478 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 479 age_weight; 480 481 vblocks = get_valid_blocks(sbi, ve->segno, true); 482 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 483 484 /* u = 10000 * x% * 40 */ 485 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 486 (100 - age_weight); 487 488 f2fs_bug_on(sbi, age + u >= UINT_MAX); 489 490 cost = UINT_MAX - (age + u); 491 iter++; 492 493 if (cost < p->min_cost || 494 (cost == p->min_cost && age > p->oldest_age)) { 495 p->min_cost = cost; 496 p->oldest_age = age; 497 p->min_segno = ve->segno; 498 } 499 skip: 500 if (iter < dirty_threshold) { 501 node = rb_next(node); 502 goto next; 503 } 504 } 505 506 /* 507 * select candidates around source section in range of 508 * [target - dirty_threshold, target + dirty_threshold] 509 */ 510 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 511 struct victim_sel_policy *p) 512 { 513 struct sit_info *sit_i = SIT_I(sbi); 514 struct atgc_management *am = &sbi->am; 515 struct rb_node *node; 516 struct rb_entry *re; 517 struct victim_entry *ve; 518 unsigned long long age; 519 unsigned long long max_mtime = sit_i->dirty_max_mtime; 520 unsigned long long min_mtime = sit_i->dirty_min_mtime; 521 unsigned int seg_blocks = sbi->blocks_per_seg; 522 unsigned int vblocks; 523 unsigned int dirty_threshold = max(am->max_candidate_count, 524 am->candidate_ratio * 525 am->victim_count / 100); 526 unsigned int cost; 527 unsigned int iter = 0; 528 int stage = 0; 529 530 if (max_mtime < min_mtime) 531 return; 532 max_mtime += 1; 533 next_stage: 534 node = lookup_central_victim(sbi, p); 535 next_node: 536 re = rb_entry_safe(node, struct rb_entry, rb_node); 537 if (!re) { 538 if (stage == 0) 539 goto skip_stage; 540 return; 541 } 542 543 ve = (struct victim_entry *)re; 544 545 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 546 goto skip_node; 547 548 age = max_mtime - ve->mtime; 549 550 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 551 f2fs_bug_on(sbi, !vblocks); 552 553 /* rare case */ 554 if (vblocks == seg_blocks) 555 goto skip_node; 556 557 iter++; 558 559 age = max_mtime - abs(p->age - age); 560 cost = UINT_MAX - vblocks; 561 562 if (cost < p->min_cost || 563 (cost == p->min_cost && age > p->oldest_age)) { 564 p->min_cost = cost; 565 p->oldest_age = age; 566 p->min_segno = ve->segno; 567 } 568 skip_node: 569 if (iter < dirty_threshold) { 570 if (stage == 0) 571 node = rb_prev(node); 572 else if (stage == 1) 573 node = rb_next(node); 574 goto next_node; 575 } 576 skip_stage: 577 if (stage < 1) { 578 stage++; 579 iter = 0; 580 goto next_stage; 581 } 582 } 583 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 584 struct victim_sel_policy *p) 585 { 586 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 587 &sbi->am.root, true)); 588 589 if (p->gc_mode == GC_AT) 590 atgc_lookup_victim(sbi, p); 591 else if (p->alloc_mode == AT_SSR) 592 atssr_lookup_victim(sbi, p); 593 else 594 f2fs_bug_on(sbi, 1); 595 } 596 597 static void release_victim_entry(struct f2fs_sb_info *sbi) 598 { 599 struct atgc_management *am = &sbi->am; 600 struct victim_entry *ve, *tmp; 601 602 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 603 list_del(&ve->list); 604 kmem_cache_free(victim_entry_slab, ve); 605 am->victim_count--; 606 } 607 608 am->root = RB_ROOT_CACHED; 609 610 f2fs_bug_on(sbi, am->victim_count); 611 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 612 } 613 614 /* 615 * This function is called from two paths. 616 * One is garbage collection and the other is SSR segment selection. 617 * When it is called during GC, it just gets a victim segment 618 * and it does not remove it from dirty seglist. 619 * When it is called from SSR segment selection, it finds a segment 620 * which has minimum valid blocks and removes it from dirty seglist. 621 */ 622 static int get_victim_by_default(struct f2fs_sb_info *sbi, 623 unsigned int *result, int gc_type, int type, 624 char alloc_mode, unsigned long long age) 625 { 626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 627 struct sit_info *sm = SIT_I(sbi); 628 struct victim_sel_policy p; 629 unsigned int secno, last_victim; 630 unsigned int last_segment; 631 unsigned int nsearched; 632 bool is_atgc; 633 int ret = 0; 634 635 mutex_lock(&dirty_i->seglist_lock); 636 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 637 638 p.alloc_mode = alloc_mode; 639 p.age = age; 640 p.age_threshold = sbi->am.age_threshold; 641 642 retry: 643 select_policy(sbi, gc_type, type, &p); 644 p.min_segno = NULL_SEGNO; 645 p.oldest_age = 0; 646 p.min_cost = get_max_cost(sbi, &p); 647 648 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 649 nsearched = 0; 650 651 if (is_atgc) 652 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 653 654 if (*result != NULL_SEGNO) { 655 if (!get_valid_blocks(sbi, *result, false)) { 656 ret = -ENODATA; 657 goto out; 658 } 659 660 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 661 ret = -EBUSY; 662 else 663 p.min_segno = *result; 664 goto out; 665 } 666 667 ret = -ENODATA; 668 if (p.max_search == 0) 669 goto out; 670 671 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 672 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 673 p.min_segno = sbi->next_victim_seg[BG_GC]; 674 *result = p.min_segno; 675 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 676 goto got_result; 677 } 678 if (gc_type == FG_GC && 679 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 680 p.min_segno = sbi->next_victim_seg[FG_GC]; 681 *result = p.min_segno; 682 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 683 goto got_result; 684 } 685 } 686 687 last_victim = sm->last_victim[p.gc_mode]; 688 if (p.alloc_mode == LFS && gc_type == FG_GC) { 689 p.min_segno = check_bg_victims(sbi); 690 if (p.min_segno != NULL_SEGNO) 691 goto got_it; 692 } 693 694 while (1) { 695 unsigned long cost, *dirty_bitmap; 696 unsigned int unit_no, segno; 697 698 dirty_bitmap = p.dirty_bitmap; 699 unit_no = find_next_bit(dirty_bitmap, 700 last_segment / p.ofs_unit, 701 p.offset / p.ofs_unit); 702 segno = unit_no * p.ofs_unit; 703 if (segno >= last_segment) { 704 if (sm->last_victim[p.gc_mode]) { 705 last_segment = 706 sm->last_victim[p.gc_mode]; 707 sm->last_victim[p.gc_mode] = 0; 708 p.offset = 0; 709 continue; 710 } 711 break; 712 } 713 714 p.offset = segno + p.ofs_unit; 715 nsearched++; 716 717 #ifdef CONFIG_F2FS_CHECK_FS 718 /* 719 * skip selecting the invalid segno (that is failed due to block 720 * validity check failure during GC) to avoid endless GC loop in 721 * such cases. 722 */ 723 if (test_bit(segno, sm->invalid_segmap)) 724 goto next; 725 #endif 726 727 secno = GET_SEC_FROM_SEG(sbi, segno); 728 729 if (sec_usage_check(sbi, secno)) 730 goto next; 731 /* Don't touch checkpointed data */ 732 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 733 get_ckpt_valid_blocks(sbi, segno) && 734 p.alloc_mode == LFS)) 735 goto next; 736 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 737 goto next; 738 739 if (is_atgc) { 740 add_victim_entry(sbi, &p, segno); 741 goto next; 742 } 743 744 cost = get_gc_cost(sbi, segno, &p); 745 746 if (p.min_cost > cost) { 747 p.min_segno = segno; 748 p.min_cost = cost; 749 } 750 next: 751 if (nsearched >= p.max_search) { 752 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 753 sm->last_victim[p.gc_mode] = 754 last_victim + p.ofs_unit; 755 else 756 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 757 sm->last_victim[p.gc_mode] %= 758 (MAIN_SECS(sbi) * sbi->segs_per_sec); 759 break; 760 } 761 } 762 763 /* get victim for GC_AT/AT_SSR */ 764 if (is_atgc) { 765 lookup_victim_by_age(sbi, &p); 766 release_victim_entry(sbi); 767 } 768 769 if (is_atgc && p.min_segno == NULL_SEGNO && 770 sm->elapsed_time < p.age_threshold) { 771 p.age_threshold = 0; 772 goto retry; 773 } 774 775 if (p.min_segno != NULL_SEGNO) { 776 got_it: 777 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 778 got_result: 779 if (p.alloc_mode == LFS) { 780 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 781 if (gc_type == FG_GC) 782 sbi->cur_victim_sec = secno; 783 else 784 set_bit(secno, dirty_i->victim_secmap); 785 } 786 ret = 0; 787 788 } 789 out: 790 if (p.min_segno != NULL_SEGNO) 791 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 792 sbi->cur_victim_sec, 793 prefree_segments(sbi), free_segments(sbi)); 794 mutex_unlock(&dirty_i->seglist_lock); 795 796 return ret; 797 } 798 799 static const struct victim_selection default_v_ops = { 800 .get_victim = get_victim_by_default, 801 }; 802 803 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 804 { 805 struct inode_entry *ie; 806 807 ie = radix_tree_lookup(&gc_list->iroot, ino); 808 if (ie) 809 return ie->inode; 810 return NULL; 811 } 812 813 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 814 { 815 struct inode_entry *new_ie; 816 817 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 818 iput(inode); 819 return; 820 } 821 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS); 822 new_ie->inode = inode; 823 824 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 825 list_add_tail(&new_ie->list, &gc_list->ilist); 826 } 827 828 static void put_gc_inode(struct gc_inode_list *gc_list) 829 { 830 struct inode_entry *ie, *next_ie; 831 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 832 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 833 iput(ie->inode); 834 list_del(&ie->list); 835 kmem_cache_free(f2fs_inode_entry_slab, ie); 836 } 837 } 838 839 static int check_valid_map(struct f2fs_sb_info *sbi, 840 unsigned int segno, int offset) 841 { 842 struct sit_info *sit_i = SIT_I(sbi); 843 struct seg_entry *sentry; 844 int ret; 845 846 down_read(&sit_i->sentry_lock); 847 sentry = get_seg_entry(sbi, segno); 848 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 849 up_read(&sit_i->sentry_lock); 850 return ret; 851 } 852 853 /* 854 * This function compares node address got in summary with that in NAT. 855 * On validity, copy that node with cold status, otherwise (invalid node) 856 * ignore that. 857 */ 858 static int gc_node_segment(struct f2fs_sb_info *sbi, 859 struct f2fs_summary *sum, unsigned int segno, int gc_type) 860 { 861 struct f2fs_summary *entry; 862 block_t start_addr; 863 int off; 864 int phase = 0; 865 bool fggc = (gc_type == FG_GC); 866 int submitted = 0; 867 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 868 869 start_addr = START_BLOCK(sbi, segno); 870 871 next_step: 872 entry = sum; 873 874 if (fggc && phase == 2) 875 atomic_inc(&sbi->wb_sync_req[NODE]); 876 877 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 878 nid_t nid = le32_to_cpu(entry->nid); 879 struct page *node_page; 880 struct node_info ni; 881 int err; 882 883 /* stop BG_GC if there is not enough free sections. */ 884 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 885 return submitted; 886 887 if (check_valid_map(sbi, segno, off) == 0) 888 continue; 889 890 if (phase == 0) { 891 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 892 META_NAT, true); 893 continue; 894 } 895 896 if (phase == 1) { 897 f2fs_ra_node_page(sbi, nid); 898 continue; 899 } 900 901 /* phase == 2 */ 902 node_page = f2fs_get_node_page(sbi, nid); 903 if (IS_ERR(node_page)) 904 continue; 905 906 /* block may become invalid during f2fs_get_node_page */ 907 if (check_valid_map(sbi, segno, off) == 0) { 908 f2fs_put_page(node_page, 1); 909 continue; 910 } 911 912 if (f2fs_get_node_info(sbi, nid, &ni)) { 913 f2fs_put_page(node_page, 1); 914 continue; 915 } 916 917 if (ni.blk_addr != start_addr + off) { 918 f2fs_put_page(node_page, 1); 919 continue; 920 } 921 922 err = f2fs_move_node_page(node_page, gc_type); 923 if (!err && gc_type == FG_GC) 924 submitted++; 925 stat_inc_node_blk_count(sbi, 1, gc_type); 926 } 927 928 if (++phase < 3) 929 goto next_step; 930 931 if (fggc) 932 atomic_dec(&sbi->wb_sync_req[NODE]); 933 return submitted; 934 } 935 936 /* 937 * Calculate start block index indicating the given node offset. 938 * Be careful, caller should give this node offset only indicating direct node 939 * blocks. If any node offsets, which point the other types of node blocks such 940 * as indirect or double indirect node blocks, are given, it must be a caller's 941 * bug. 942 */ 943 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 944 { 945 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 946 unsigned int bidx; 947 948 if (node_ofs == 0) 949 return 0; 950 951 if (node_ofs <= 2) { 952 bidx = node_ofs - 1; 953 } else if (node_ofs <= indirect_blks) { 954 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 955 bidx = node_ofs - 2 - dec; 956 } else { 957 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 958 bidx = node_ofs - 5 - dec; 959 } 960 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 961 } 962 963 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 964 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 965 { 966 struct page *node_page; 967 nid_t nid; 968 unsigned int ofs_in_node; 969 block_t source_blkaddr; 970 971 nid = le32_to_cpu(sum->nid); 972 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 973 974 node_page = f2fs_get_node_page(sbi, nid); 975 if (IS_ERR(node_page)) 976 return false; 977 978 if (f2fs_get_node_info(sbi, nid, dni)) { 979 f2fs_put_page(node_page, 1); 980 return false; 981 } 982 983 if (sum->version != dni->version) { 984 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 985 __func__); 986 set_sbi_flag(sbi, SBI_NEED_FSCK); 987 } 988 989 *nofs = ofs_of_node(node_page); 990 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 991 f2fs_put_page(node_page, 1); 992 993 if (source_blkaddr != blkaddr) { 994 #ifdef CONFIG_F2FS_CHECK_FS 995 unsigned int segno = GET_SEGNO(sbi, blkaddr); 996 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 997 998 if (unlikely(check_valid_map(sbi, segno, offset))) { 999 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1000 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u\n", 1001 blkaddr, source_blkaddr, segno); 1002 f2fs_bug_on(sbi, 1); 1003 } 1004 } 1005 #endif 1006 return false; 1007 } 1008 return true; 1009 } 1010 1011 static int ra_data_block(struct inode *inode, pgoff_t index) 1012 { 1013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1014 struct address_space *mapping = inode->i_mapping; 1015 struct dnode_of_data dn; 1016 struct page *page; 1017 struct extent_info ei = {0, 0, 0}; 1018 struct f2fs_io_info fio = { 1019 .sbi = sbi, 1020 .ino = inode->i_ino, 1021 .type = DATA, 1022 .temp = COLD, 1023 .op = REQ_OP_READ, 1024 .op_flags = 0, 1025 .encrypted_page = NULL, 1026 .in_list = false, 1027 .retry = false, 1028 }; 1029 int err; 1030 1031 page = f2fs_grab_cache_page(mapping, index, true); 1032 if (!page) 1033 return -ENOMEM; 1034 1035 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1036 dn.data_blkaddr = ei.blk + index - ei.fofs; 1037 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1038 DATA_GENERIC_ENHANCE_READ))) { 1039 err = -EFSCORRUPTED; 1040 goto put_page; 1041 } 1042 goto got_it; 1043 } 1044 1045 set_new_dnode(&dn, inode, NULL, NULL, 0); 1046 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1047 if (err) 1048 goto put_page; 1049 f2fs_put_dnode(&dn); 1050 1051 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1052 err = -ENOENT; 1053 goto put_page; 1054 } 1055 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1056 DATA_GENERIC_ENHANCE))) { 1057 err = -EFSCORRUPTED; 1058 goto put_page; 1059 } 1060 got_it: 1061 /* read page */ 1062 fio.page = page; 1063 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1064 1065 /* 1066 * don't cache encrypted data into meta inode until previous dirty 1067 * data were writebacked to avoid racing between GC and flush. 1068 */ 1069 f2fs_wait_on_page_writeback(page, DATA, true, true); 1070 1071 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1072 1073 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1074 dn.data_blkaddr, 1075 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1076 if (!fio.encrypted_page) { 1077 err = -ENOMEM; 1078 goto put_page; 1079 } 1080 1081 err = f2fs_submit_page_bio(&fio); 1082 if (err) 1083 goto put_encrypted_page; 1084 f2fs_put_page(fio.encrypted_page, 0); 1085 f2fs_put_page(page, 1); 1086 1087 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1088 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1089 1090 return 0; 1091 put_encrypted_page: 1092 f2fs_put_page(fio.encrypted_page, 1); 1093 put_page: 1094 f2fs_put_page(page, 1); 1095 return err; 1096 } 1097 1098 /* 1099 * Move data block via META_MAPPING while keeping locked data page. 1100 * This can be used to move blocks, aka LBAs, directly on disk. 1101 */ 1102 static int move_data_block(struct inode *inode, block_t bidx, 1103 int gc_type, unsigned int segno, int off) 1104 { 1105 struct f2fs_io_info fio = { 1106 .sbi = F2FS_I_SB(inode), 1107 .ino = inode->i_ino, 1108 .type = DATA, 1109 .temp = COLD, 1110 .op = REQ_OP_READ, 1111 .op_flags = 0, 1112 .encrypted_page = NULL, 1113 .in_list = false, 1114 .retry = false, 1115 }; 1116 struct dnode_of_data dn; 1117 struct f2fs_summary sum; 1118 struct node_info ni; 1119 struct page *page, *mpage; 1120 block_t newaddr; 1121 int err = 0; 1122 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1123 int type = fio.sbi->am.atgc_enabled ? 1124 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1125 1126 /* do not read out */ 1127 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1128 if (!page) 1129 return -ENOMEM; 1130 1131 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1132 err = -ENOENT; 1133 goto out; 1134 } 1135 1136 if (f2fs_is_atomic_file(inode)) { 1137 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1138 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1139 err = -EAGAIN; 1140 goto out; 1141 } 1142 1143 if (f2fs_is_pinned_file(inode)) { 1144 f2fs_pin_file_control(inode, true); 1145 err = -EAGAIN; 1146 goto out; 1147 } 1148 1149 set_new_dnode(&dn, inode, NULL, NULL, 0); 1150 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1151 if (err) 1152 goto out; 1153 1154 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1155 ClearPageUptodate(page); 1156 err = -ENOENT; 1157 goto put_out; 1158 } 1159 1160 /* 1161 * don't cache encrypted data into meta inode until previous dirty 1162 * data were writebacked to avoid racing between GC and flush. 1163 */ 1164 f2fs_wait_on_page_writeback(page, DATA, true, true); 1165 1166 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1167 1168 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1169 if (err) 1170 goto put_out; 1171 1172 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1173 1174 /* read page */ 1175 fio.page = page; 1176 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1177 1178 if (lfs_mode) 1179 down_write(&fio.sbi->io_order_lock); 1180 1181 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1182 fio.old_blkaddr, false); 1183 if (!mpage) { 1184 err = -ENOMEM; 1185 goto up_out; 1186 } 1187 1188 fio.encrypted_page = mpage; 1189 1190 /* read source block in mpage */ 1191 if (!PageUptodate(mpage)) { 1192 err = f2fs_submit_page_bio(&fio); 1193 if (err) { 1194 f2fs_put_page(mpage, 1); 1195 goto up_out; 1196 } 1197 1198 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1199 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1200 1201 lock_page(mpage); 1202 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1203 !PageUptodate(mpage))) { 1204 err = -EIO; 1205 f2fs_put_page(mpage, 1); 1206 goto up_out; 1207 } 1208 } 1209 1210 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1211 &sum, type, NULL); 1212 1213 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1214 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1215 if (!fio.encrypted_page) { 1216 err = -ENOMEM; 1217 f2fs_put_page(mpage, 1); 1218 goto recover_block; 1219 } 1220 1221 /* write target block */ 1222 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1223 memcpy(page_address(fio.encrypted_page), 1224 page_address(mpage), PAGE_SIZE); 1225 f2fs_put_page(mpage, 1); 1226 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1227 fio.old_blkaddr, fio.old_blkaddr); 1228 1229 set_page_dirty(fio.encrypted_page); 1230 if (clear_page_dirty_for_io(fio.encrypted_page)) 1231 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1232 1233 set_page_writeback(fio.encrypted_page); 1234 ClearPageError(page); 1235 1236 /* allocate block address */ 1237 f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); 1238 1239 fio.op = REQ_OP_WRITE; 1240 fio.op_flags = REQ_SYNC; 1241 fio.new_blkaddr = newaddr; 1242 f2fs_submit_page_write(&fio); 1243 if (fio.retry) { 1244 err = -EAGAIN; 1245 if (PageWriteback(fio.encrypted_page)) 1246 end_page_writeback(fio.encrypted_page); 1247 goto put_page_out; 1248 } 1249 1250 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1251 1252 f2fs_update_data_blkaddr(&dn, newaddr); 1253 set_inode_flag(inode, FI_APPEND_WRITE); 1254 if (page->index == 0) 1255 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1256 put_page_out: 1257 f2fs_put_page(fio.encrypted_page, 1); 1258 recover_block: 1259 if (err) 1260 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1261 true, true, true); 1262 up_out: 1263 if (lfs_mode) 1264 up_write(&fio.sbi->io_order_lock); 1265 put_out: 1266 f2fs_put_dnode(&dn); 1267 out: 1268 f2fs_put_page(page, 1); 1269 return err; 1270 } 1271 1272 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1273 unsigned int segno, int off) 1274 { 1275 struct page *page; 1276 int err = 0; 1277 1278 page = f2fs_get_lock_data_page(inode, bidx, true); 1279 if (IS_ERR(page)) 1280 return PTR_ERR(page); 1281 1282 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1283 err = -ENOENT; 1284 goto out; 1285 } 1286 1287 if (f2fs_is_atomic_file(inode)) { 1288 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1289 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1290 err = -EAGAIN; 1291 goto out; 1292 } 1293 if (f2fs_is_pinned_file(inode)) { 1294 if (gc_type == FG_GC) 1295 f2fs_pin_file_control(inode, true); 1296 err = -EAGAIN; 1297 goto out; 1298 } 1299 1300 if (gc_type == BG_GC) { 1301 if (PageWriteback(page)) { 1302 err = -EAGAIN; 1303 goto out; 1304 } 1305 set_page_dirty(page); 1306 set_cold_data(page); 1307 } else { 1308 struct f2fs_io_info fio = { 1309 .sbi = F2FS_I_SB(inode), 1310 .ino = inode->i_ino, 1311 .type = DATA, 1312 .temp = COLD, 1313 .op = REQ_OP_WRITE, 1314 .op_flags = REQ_SYNC, 1315 .old_blkaddr = NULL_ADDR, 1316 .page = page, 1317 .encrypted_page = NULL, 1318 .need_lock = LOCK_REQ, 1319 .io_type = FS_GC_DATA_IO, 1320 }; 1321 bool is_dirty = PageDirty(page); 1322 1323 retry: 1324 f2fs_wait_on_page_writeback(page, DATA, true, true); 1325 1326 set_page_dirty(page); 1327 if (clear_page_dirty_for_io(page)) { 1328 inode_dec_dirty_pages(inode); 1329 f2fs_remove_dirty_inode(inode); 1330 } 1331 1332 set_cold_data(page); 1333 1334 err = f2fs_do_write_data_page(&fio); 1335 if (err) { 1336 clear_cold_data(page); 1337 if (err == -ENOMEM) { 1338 congestion_wait(BLK_RW_ASYNC, 1339 DEFAULT_IO_TIMEOUT); 1340 goto retry; 1341 } 1342 if (is_dirty) 1343 set_page_dirty(page); 1344 } 1345 } 1346 out: 1347 f2fs_put_page(page, 1); 1348 return err; 1349 } 1350 1351 /* 1352 * This function tries to get parent node of victim data block, and identifies 1353 * data block validity. If the block is valid, copy that with cold status and 1354 * modify parent node. 1355 * If the parent node is not valid or the data block address is different, 1356 * the victim data block is ignored. 1357 */ 1358 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1359 struct gc_inode_list *gc_list, unsigned int segno, int gc_type) 1360 { 1361 struct super_block *sb = sbi->sb; 1362 struct f2fs_summary *entry; 1363 block_t start_addr; 1364 int off; 1365 int phase = 0; 1366 int submitted = 0; 1367 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1368 1369 start_addr = START_BLOCK(sbi, segno); 1370 1371 next_step: 1372 entry = sum; 1373 1374 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1375 struct page *data_page; 1376 struct inode *inode; 1377 struct node_info dni; /* dnode info for the data */ 1378 unsigned int ofs_in_node, nofs; 1379 block_t start_bidx; 1380 nid_t nid = le32_to_cpu(entry->nid); 1381 1382 /* 1383 * stop BG_GC if there is not enough free sections. 1384 * Or, stop GC if the segment becomes fully valid caused by 1385 * race condition along with SSR block allocation. 1386 */ 1387 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1388 get_valid_blocks(sbi, segno, true) == 1389 BLKS_PER_SEC(sbi)) 1390 return submitted; 1391 1392 if (check_valid_map(sbi, segno, off) == 0) 1393 continue; 1394 1395 if (phase == 0) { 1396 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1397 META_NAT, true); 1398 continue; 1399 } 1400 1401 if (phase == 1) { 1402 f2fs_ra_node_page(sbi, nid); 1403 continue; 1404 } 1405 1406 /* Get an inode by ino with checking validity */ 1407 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1408 continue; 1409 1410 if (phase == 2) { 1411 f2fs_ra_node_page(sbi, dni.ino); 1412 continue; 1413 } 1414 1415 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1416 1417 if (phase == 3) { 1418 inode = f2fs_iget(sb, dni.ino); 1419 if (IS_ERR(inode) || is_bad_inode(inode)) { 1420 set_sbi_flag(sbi, SBI_NEED_FSCK); 1421 continue; 1422 } 1423 1424 if (!down_write_trylock( 1425 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1426 iput(inode); 1427 sbi->skipped_gc_rwsem++; 1428 continue; 1429 } 1430 1431 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1432 ofs_in_node; 1433 1434 if (f2fs_post_read_required(inode)) { 1435 int err = ra_data_block(inode, start_bidx); 1436 1437 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1438 if (err) { 1439 iput(inode); 1440 continue; 1441 } 1442 add_gc_inode(gc_list, inode); 1443 continue; 1444 } 1445 1446 data_page = f2fs_get_read_data_page(inode, 1447 start_bidx, REQ_RAHEAD, true); 1448 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1449 if (IS_ERR(data_page)) { 1450 iput(inode); 1451 continue; 1452 } 1453 1454 f2fs_put_page(data_page, 0); 1455 add_gc_inode(gc_list, inode); 1456 continue; 1457 } 1458 1459 /* phase 4 */ 1460 inode = find_gc_inode(gc_list, dni.ino); 1461 if (inode) { 1462 struct f2fs_inode_info *fi = F2FS_I(inode); 1463 bool locked = false; 1464 int err; 1465 1466 if (S_ISREG(inode->i_mode)) { 1467 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) 1468 continue; 1469 if (!down_write_trylock( 1470 &fi->i_gc_rwsem[WRITE])) { 1471 sbi->skipped_gc_rwsem++; 1472 up_write(&fi->i_gc_rwsem[READ]); 1473 continue; 1474 } 1475 locked = true; 1476 1477 /* wait for all inflight aio data */ 1478 inode_dio_wait(inode); 1479 } 1480 1481 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1482 + ofs_in_node; 1483 if (f2fs_post_read_required(inode)) 1484 err = move_data_block(inode, start_bidx, 1485 gc_type, segno, off); 1486 else 1487 err = move_data_page(inode, start_bidx, gc_type, 1488 segno, off); 1489 1490 if (!err && (gc_type == FG_GC || 1491 f2fs_post_read_required(inode))) 1492 submitted++; 1493 1494 if (locked) { 1495 up_write(&fi->i_gc_rwsem[WRITE]); 1496 up_write(&fi->i_gc_rwsem[READ]); 1497 } 1498 1499 stat_inc_data_blk_count(sbi, 1, gc_type); 1500 } 1501 } 1502 1503 if (++phase < 5) 1504 goto next_step; 1505 1506 return submitted; 1507 } 1508 1509 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1510 int gc_type) 1511 { 1512 struct sit_info *sit_i = SIT_I(sbi); 1513 int ret; 1514 1515 down_write(&sit_i->sentry_lock); 1516 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1517 NO_CHECK_TYPE, LFS, 0); 1518 up_write(&sit_i->sentry_lock); 1519 return ret; 1520 } 1521 1522 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1523 unsigned int start_segno, 1524 struct gc_inode_list *gc_list, int gc_type) 1525 { 1526 struct page *sum_page; 1527 struct f2fs_summary_block *sum; 1528 struct blk_plug plug; 1529 unsigned int segno = start_segno; 1530 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1531 int seg_freed = 0, migrated = 0; 1532 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1533 SUM_TYPE_DATA : SUM_TYPE_NODE; 1534 int submitted = 0; 1535 1536 if (__is_large_section(sbi)) 1537 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1538 1539 /* 1540 * zone-capacity can be less than zone-size in zoned devices, 1541 * resulting in less than expected usable segments in the zone, 1542 * calculate the end segno in the zone which can be garbage collected 1543 */ 1544 if (f2fs_sb_has_blkzoned(sbi)) 1545 end_segno -= sbi->segs_per_sec - 1546 f2fs_usable_segs_in_sec(sbi, segno); 1547 1548 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1549 1550 /* readahead multi ssa blocks those have contiguous address */ 1551 if (__is_large_section(sbi)) 1552 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1553 end_segno - segno, META_SSA, true); 1554 1555 /* reference all summary page */ 1556 while (segno < end_segno) { 1557 sum_page = f2fs_get_sum_page(sbi, segno++); 1558 if (IS_ERR(sum_page)) { 1559 int err = PTR_ERR(sum_page); 1560 1561 end_segno = segno - 1; 1562 for (segno = start_segno; segno < end_segno; segno++) { 1563 sum_page = find_get_page(META_MAPPING(sbi), 1564 GET_SUM_BLOCK(sbi, segno)); 1565 f2fs_put_page(sum_page, 0); 1566 f2fs_put_page(sum_page, 0); 1567 } 1568 return err; 1569 } 1570 unlock_page(sum_page); 1571 } 1572 1573 blk_start_plug(&plug); 1574 1575 for (segno = start_segno; segno < end_segno; segno++) { 1576 1577 /* find segment summary of victim */ 1578 sum_page = find_get_page(META_MAPPING(sbi), 1579 GET_SUM_BLOCK(sbi, segno)); 1580 f2fs_put_page(sum_page, 0); 1581 1582 if (get_valid_blocks(sbi, segno, false) == 0) 1583 goto freed; 1584 if (gc_type == BG_GC && __is_large_section(sbi) && 1585 migrated >= sbi->migration_granularity) 1586 goto skip; 1587 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1588 goto skip; 1589 1590 sum = page_address(sum_page); 1591 if (type != GET_SUM_TYPE((&sum->footer))) { 1592 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1593 segno, type, GET_SUM_TYPE((&sum->footer))); 1594 set_sbi_flag(sbi, SBI_NEED_FSCK); 1595 f2fs_stop_checkpoint(sbi, false); 1596 goto skip; 1597 } 1598 1599 /* 1600 * this is to avoid deadlock: 1601 * - lock_page(sum_page) - f2fs_replace_block 1602 * - check_valid_map() - down_write(sentry_lock) 1603 * - down_read(sentry_lock) - change_curseg() 1604 * - lock_page(sum_page) 1605 */ 1606 if (type == SUM_TYPE_NODE) 1607 submitted += gc_node_segment(sbi, sum->entries, segno, 1608 gc_type); 1609 else 1610 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1611 segno, gc_type); 1612 1613 stat_inc_seg_count(sbi, type, gc_type); 1614 migrated++; 1615 1616 freed: 1617 if (gc_type == FG_GC && 1618 get_valid_blocks(sbi, segno, false) == 0) 1619 seg_freed++; 1620 1621 if (__is_large_section(sbi) && segno + 1 < end_segno) 1622 sbi->next_victim_seg[gc_type] = segno + 1; 1623 skip: 1624 f2fs_put_page(sum_page, 0); 1625 } 1626 1627 if (submitted) 1628 f2fs_submit_merged_write(sbi, 1629 (type == SUM_TYPE_NODE) ? NODE : DATA); 1630 1631 blk_finish_plug(&plug); 1632 1633 stat_inc_call_count(sbi->stat_info); 1634 1635 return seg_freed; 1636 } 1637 1638 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1639 bool background, unsigned int segno) 1640 { 1641 int gc_type = sync ? FG_GC : BG_GC; 1642 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1643 int ret = 0; 1644 struct cp_control cpc; 1645 unsigned int init_segno = segno; 1646 struct gc_inode_list gc_list = { 1647 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1648 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1649 }; 1650 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1651 unsigned long long first_skipped; 1652 unsigned int skipped_round = 0, round = 0; 1653 1654 trace_f2fs_gc_begin(sbi->sb, sync, background, 1655 get_pages(sbi, F2FS_DIRTY_NODES), 1656 get_pages(sbi, F2FS_DIRTY_DENTS), 1657 get_pages(sbi, F2FS_DIRTY_IMETA), 1658 free_sections(sbi), 1659 free_segments(sbi), 1660 reserved_segments(sbi), 1661 prefree_segments(sbi)); 1662 1663 cpc.reason = __get_cp_reason(sbi); 1664 sbi->skipped_gc_rwsem = 0; 1665 first_skipped = last_skipped; 1666 gc_more: 1667 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1668 ret = -EINVAL; 1669 goto stop; 1670 } 1671 if (unlikely(f2fs_cp_error(sbi))) { 1672 ret = -EIO; 1673 goto stop; 1674 } 1675 1676 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1677 /* 1678 * For example, if there are many prefree_segments below given 1679 * threshold, we can make them free by checkpoint. Then, we 1680 * secure free segments which doesn't need fggc any more. 1681 */ 1682 if (prefree_segments(sbi) && 1683 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1684 ret = f2fs_write_checkpoint(sbi, &cpc); 1685 if (ret) 1686 goto stop; 1687 } 1688 if (has_not_enough_free_secs(sbi, 0, 0)) 1689 gc_type = FG_GC; 1690 } 1691 1692 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1693 if (gc_type == BG_GC && !background) { 1694 ret = -EINVAL; 1695 goto stop; 1696 } 1697 ret = __get_victim(sbi, &segno, gc_type); 1698 if (ret) 1699 goto stop; 1700 1701 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); 1702 if (gc_type == FG_GC && 1703 seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1704 sec_freed++; 1705 total_freed += seg_freed; 1706 1707 if (gc_type == FG_GC) { 1708 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1709 sbi->skipped_gc_rwsem) 1710 skipped_round++; 1711 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1712 round++; 1713 } 1714 1715 if (gc_type == FG_GC && seg_freed) 1716 sbi->cur_victim_sec = NULL_SEGNO; 1717 1718 if (sync) 1719 goto stop; 1720 1721 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1722 if (skipped_round <= MAX_SKIP_GC_COUNT || 1723 skipped_round * 2 < round) { 1724 segno = NULL_SEGNO; 1725 goto gc_more; 1726 } 1727 1728 if (first_skipped < last_skipped && 1729 (last_skipped - first_skipped) > 1730 sbi->skipped_gc_rwsem) { 1731 f2fs_drop_inmem_pages_all(sbi, true); 1732 segno = NULL_SEGNO; 1733 goto gc_more; 1734 } 1735 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1736 ret = f2fs_write_checkpoint(sbi, &cpc); 1737 } 1738 stop: 1739 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1740 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1741 1742 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1743 get_pages(sbi, F2FS_DIRTY_NODES), 1744 get_pages(sbi, F2FS_DIRTY_DENTS), 1745 get_pages(sbi, F2FS_DIRTY_IMETA), 1746 free_sections(sbi), 1747 free_segments(sbi), 1748 reserved_segments(sbi), 1749 prefree_segments(sbi)); 1750 1751 up_write(&sbi->gc_lock); 1752 1753 put_gc_inode(&gc_list); 1754 1755 if (sync && !ret) 1756 ret = sec_freed ? 0 : -EAGAIN; 1757 return ret; 1758 } 1759 1760 int __init f2fs_create_garbage_collection_cache(void) 1761 { 1762 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1763 sizeof(struct victim_entry)); 1764 if (!victim_entry_slab) 1765 return -ENOMEM; 1766 return 0; 1767 } 1768 1769 void f2fs_destroy_garbage_collection_cache(void) 1770 { 1771 kmem_cache_destroy(victim_entry_slab); 1772 } 1773 1774 static void init_atgc_management(struct f2fs_sb_info *sbi) 1775 { 1776 struct atgc_management *am = &sbi->am; 1777 1778 if (test_opt(sbi, ATGC) && 1779 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1780 am->atgc_enabled = true; 1781 1782 am->root = RB_ROOT_CACHED; 1783 INIT_LIST_HEAD(&am->victim_list); 1784 am->victim_count = 0; 1785 1786 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1787 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1788 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1789 } 1790 1791 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1792 { 1793 DIRTY_I(sbi)->v_ops = &default_v_ops; 1794 1795 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1796 1797 /* give warm/cold data area from slower device */ 1798 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1799 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1800 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1801 1802 init_atgc_management(sbi); 1803 } 1804 1805 static int free_segment_range(struct f2fs_sb_info *sbi, 1806 unsigned int secs, bool gc_only) 1807 { 1808 unsigned int segno, next_inuse, start, end; 1809 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1810 int gc_mode, gc_type; 1811 int err = 0; 1812 int type; 1813 1814 /* Force block allocation for GC */ 1815 MAIN_SECS(sbi) -= secs; 1816 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1817 end = MAIN_SEGS(sbi) - 1; 1818 1819 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1820 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1821 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1822 SIT_I(sbi)->last_victim[gc_mode] = 0; 1823 1824 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1825 if (sbi->next_victim_seg[gc_type] >= start) 1826 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1827 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1828 1829 /* Move out cursegs from the target range */ 1830 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1831 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1832 1833 /* do GC to move out valid blocks in the range */ 1834 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1835 struct gc_inode_list gc_list = { 1836 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1837 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1838 }; 1839 1840 do_garbage_collect(sbi, segno, &gc_list, FG_GC); 1841 put_gc_inode(&gc_list); 1842 1843 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1844 err = -EAGAIN; 1845 goto out; 1846 } 1847 if (fatal_signal_pending(current)) { 1848 err = -ERESTARTSYS; 1849 goto out; 1850 } 1851 } 1852 if (gc_only) 1853 goto out; 1854 1855 err = f2fs_write_checkpoint(sbi, &cpc); 1856 if (err) 1857 goto out; 1858 1859 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1860 if (next_inuse <= end) { 1861 f2fs_err(sbi, "segno %u should be free but still inuse!", 1862 next_inuse); 1863 f2fs_bug_on(sbi, 1); 1864 } 1865 out: 1866 MAIN_SECS(sbi) += secs; 1867 return err; 1868 } 1869 1870 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1871 { 1872 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1873 int section_count; 1874 int segment_count; 1875 int segment_count_main; 1876 long long block_count; 1877 int segs = secs * sbi->segs_per_sec; 1878 1879 down_write(&sbi->sb_lock); 1880 1881 section_count = le32_to_cpu(raw_sb->section_count); 1882 segment_count = le32_to_cpu(raw_sb->segment_count); 1883 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1884 block_count = le64_to_cpu(raw_sb->block_count); 1885 1886 raw_sb->section_count = cpu_to_le32(section_count + secs); 1887 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1888 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1889 raw_sb->block_count = cpu_to_le64(block_count + 1890 (long long)segs * sbi->blocks_per_seg); 1891 if (f2fs_is_multi_device(sbi)) { 1892 int last_dev = sbi->s_ndevs - 1; 1893 int dev_segs = 1894 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 1895 1896 raw_sb->devs[last_dev].total_segments = 1897 cpu_to_le32(dev_segs + segs); 1898 } 1899 1900 up_write(&sbi->sb_lock); 1901 } 1902 1903 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1904 { 1905 int segs = secs * sbi->segs_per_sec; 1906 long long blks = (long long)segs * sbi->blocks_per_seg; 1907 long long user_block_count = 1908 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1909 1910 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1911 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1912 MAIN_SECS(sbi) += secs; 1913 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1914 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1915 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 1916 1917 if (f2fs_is_multi_device(sbi)) { 1918 int last_dev = sbi->s_ndevs - 1; 1919 1920 FDEV(last_dev).total_segments = 1921 (int)FDEV(last_dev).total_segments + segs; 1922 FDEV(last_dev).end_blk = 1923 (long long)FDEV(last_dev).end_blk + blks; 1924 #ifdef CONFIG_BLK_DEV_ZONED 1925 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 1926 (int)(blks >> sbi->log_blocks_per_blkz); 1927 #endif 1928 } 1929 } 1930 1931 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1932 { 1933 __u64 old_block_count, shrunk_blocks; 1934 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1935 unsigned int secs; 1936 int err = 0; 1937 __u32 rem; 1938 1939 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 1940 if (block_count > old_block_count) 1941 return -EINVAL; 1942 1943 if (f2fs_is_multi_device(sbi)) { 1944 int last_dev = sbi->s_ndevs - 1; 1945 __u64 last_segs = FDEV(last_dev).total_segments; 1946 1947 if (block_count + last_segs * sbi->blocks_per_seg <= 1948 old_block_count) 1949 return -EINVAL; 1950 } 1951 1952 /* new fs size should align to section size */ 1953 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 1954 if (rem) 1955 return -EINVAL; 1956 1957 if (block_count == old_block_count) 1958 return 0; 1959 1960 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1961 f2fs_err(sbi, "Should run fsck to repair first."); 1962 return -EFSCORRUPTED; 1963 } 1964 1965 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1966 f2fs_err(sbi, "Checkpoint should be enabled."); 1967 return -EINVAL; 1968 } 1969 1970 shrunk_blocks = old_block_count - block_count; 1971 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 1972 1973 /* stop other GC */ 1974 if (!down_write_trylock(&sbi->gc_lock)) 1975 return -EAGAIN; 1976 1977 /* stop CP to protect MAIN_SEC in free_segment_range */ 1978 f2fs_lock_op(sbi); 1979 err = free_segment_range(sbi, secs, true); 1980 f2fs_unlock_op(sbi); 1981 up_write(&sbi->gc_lock); 1982 if (err) 1983 return err; 1984 1985 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 1986 1987 freeze_super(sbi->sb); 1988 down_write(&sbi->gc_lock); 1989 mutex_lock(&sbi->cp_mutex); 1990 1991 spin_lock(&sbi->stat_lock); 1992 if (shrunk_blocks + valid_user_blocks(sbi) + 1993 sbi->current_reserved_blocks + sbi->unusable_block_count + 1994 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 1995 err = -ENOSPC; 1996 else 1997 sbi->user_block_count -= shrunk_blocks; 1998 spin_unlock(&sbi->stat_lock); 1999 if (err) 2000 goto out_err; 2001 2002 err = free_segment_range(sbi, secs, false); 2003 if (err) 2004 goto recover_out; 2005 2006 update_sb_metadata(sbi, -secs); 2007 2008 err = f2fs_commit_super(sbi, false); 2009 if (err) { 2010 update_sb_metadata(sbi, secs); 2011 goto recover_out; 2012 } 2013 2014 update_fs_metadata(sbi, -secs); 2015 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2016 set_sbi_flag(sbi, SBI_IS_DIRTY); 2017 2018 err = f2fs_write_checkpoint(sbi, &cpc); 2019 if (err) { 2020 update_fs_metadata(sbi, secs); 2021 update_sb_metadata(sbi, secs); 2022 f2fs_commit_super(sbi, false); 2023 } 2024 recover_out: 2025 if (err) { 2026 set_sbi_flag(sbi, SBI_NEED_FSCK); 2027 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2028 2029 spin_lock(&sbi->stat_lock); 2030 sbi->user_block_count += shrunk_blocks; 2031 spin_unlock(&sbi->stat_lock); 2032 } 2033 out_err: 2034 mutex_unlock(&sbi->cp_mutex); 2035 up_write(&sbi->gc_lock); 2036 thaw_super(sbi->sb); 2037 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2038 return err; 2039 } 2040