xref: /openbmc/linux/fs/f2fs/gc.c (revision 6a551c11)
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25 
26 static int gc_thread_func(void *data)
27 {
28 	struct f2fs_sb_info *sbi = data;
29 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 	long wait_ms;
32 
33 	wait_ms = gc_th->min_sleep_time;
34 
35 	do {
36 		if (try_to_freeze())
37 			continue;
38 		else
39 			wait_event_interruptible_timeout(*wq,
40 						kthread_should_stop(),
41 						msecs_to_jiffies(wait_ms));
42 		if (kthread_should_stop())
43 			break;
44 
45 		if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46 			increase_sleep_time(gc_th, &wait_ms);
47 			continue;
48 		}
49 
50 		/*
51 		 * [GC triggering condition]
52 		 * 0. GC is not conducted currently.
53 		 * 1. There are enough dirty segments.
54 		 * 2. IO subsystem is idle by checking the # of writeback pages.
55 		 * 3. IO subsystem is idle by checking the # of requests in
56 		 *    bdev's request list.
57 		 *
58 		 * Note) We have to avoid triggering GCs frequently.
59 		 * Because it is possible that some segments can be
60 		 * invalidated soon after by user update or deletion.
61 		 * So, I'd like to wait some time to collect dirty segments.
62 		 */
63 		if (!mutex_trylock(&sbi->gc_mutex))
64 			continue;
65 
66 		if (!is_idle(sbi)) {
67 			increase_sleep_time(gc_th, &wait_ms);
68 			mutex_unlock(&sbi->gc_mutex);
69 			continue;
70 		}
71 
72 		if (has_enough_invalid_blocks(sbi))
73 			decrease_sleep_time(gc_th, &wait_ms);
74 		else
75 			increase_sleep_time(gc_th, &wait_ms);
76 
77 		stat_inc_bggc_count(sbi);
78 
79 		/* if return value is not zero, no victim was selected */
80 		if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
81 			wait_ms = gc_th->no_gc_sleep_time;
82 
83 		trace_f2fs_background_gc(sbi->sb, wait_ms,
84 				prefree_segments(sbi), free_segments(sbi));
85 
86 		/* balancing f2fs's metadata periodically */
87 		f2fs_balance_fs_bg(sbi);
88 
89 	} while (!kthread_should_stop());
90 	return 0;
91 }
92 
93 int start_gc_thread(struct f2fs_sb_info *sbi)
94 {
95 	struct f2fs_gc_kthread *gc_th;
96 	dev_t dev = sbi->sb->s_bdev->bd_dev;
97 	int err = 0;
98 
99 	gc_th = f2fs_kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
100 	if (!gc_th) {
101 		err = -ENOMEM;
102 		goto out;
103 	}
104 
105 	gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
106 	gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
107 	gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
108 
109 	gc_th->gc_idle = 0;
110 
111 	sbi->gc_thread = gc_th;
112 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
113 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
114 			"f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
115 	if (IS_ERR(gc_th->f2fs_gc_task)) {
116 		err = PTR_ERR(gc_th->f2fs_gc_task);
117 		kfree(gc_th);
118 		sbi->gc_thread = NULL;
119 	}
120 out:
121 	return err;
122 }
123 
124 void stop_gc_thread(struct f2fs_sb_info *sbi)
125 {
126 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
127 	if (!gc_th)
128 		return;
129 	kthread_stop(gc_th->f2fs_gc_task);
130 	kfree(gc_th);
131 	sbi->gc_thread = NULL;
132 }
133 
134 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
135 {
136 	int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
137 
138 	if (gc_th && gc_th->gc_idle) {
139 		if (gc_th->gc_idle == 1)
140 			gc_mode = GC_CB;
141 		else if (gc_th->gc_idle == 2)
142 			gc_mode = GC_GREEDY;
143 	}
144 	return gc_mode;
145 }
146 
147 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
148 			int type, struct victim_sel_policy *p)
149 {
150 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
151 
152 	if (p->alloc_mode == SSR) {
153 		p->gc_mode = GC_GREEDY;
154 		p->dirty_segmap = dirty_i->dirty_segmap[type];
155 		p->max_search = dirty_i->nr_dirty[type];
156 		p->ofs_unit = 1;
157 	} else {
158 		p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
159 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
160 		p->max_search = dirty_i->nr_dirty[DIRTY];
161 		p->ofs_unit = sbi->segs_per_sec;
162 	}
163 
164 	if (p->max_search > sbi->max_victim_search)
165 		p->max_search = sbi->max_victim_search;
166 
167 	p->offset = sbi->last_victim[p->gc_mode];
168 }
169 
170 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
171 				struct victim_sel_policy *p)
172 {
173 	/* SSR allocates in a segment unit */
174 	if (p->alloc_mode == SSR)
175 		return sbi->blocks_per_seg;
176 	if (p->gc_mode == GC_GREEDY)
177 		return sbi->blocks_per_seg * p->ofs_unit;
178 	else if (p->gc_mode == GC_CB)
179 		return UINT_MAX;
180 	else /* No other gc_mode */
181 		return 0;
182 }
183 
184 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
185 {
186 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
187 	unsigned int secno;
188 
189 	/*
190 	 * If the gc_type is FG_GC, we can select victim segments
191 	 * selected by background GC before.
192 	 * Those segments guarantee they have small valid blocks.
193 	 */
194 	for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
195 		if (sec_usage_check(sbi, secno))
196 			continue;
197 		clear_bit(secno, dirty_i->victim_secmap);
198 		return secno * sbi->segs_per_sec;
199 	}
200 	return NULL_SEGNO;
201 }
202 
203 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
204 {
205 	struct sit_info *sit_i = SIT_I(sbi);
206 	unsigned int secno = GET_SECNO(sbi, segno);
207 	unsigned int start = secno * sbi->segs_per_sec;
208 	unsigned long long mtime = 0;
209 	unsigned int vblocks;
210 	unsigned char age = 0;
211 	unsigned char u;
212 	unsigned int i;
213 
214 	for (i = 0; i < sbi->segs_per_sec; i++)
215 		mtime += get_seg_entry(sbi, start + i)->mtime;
216 	vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
217 
218 	mtime = div_u64(mtime, sbi->segs_per_sec);
219 	vblocks = div_u64(vblocks, sbi->segs_per_sec);
220 
221 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
222 
223 	/* Handle if the system time has changed by the user */
224 	if (mtime < sit_i->min_mtime)
225 		sit_i->min_mtime = mtime;
226 	if (mtime > sit_i->max_mtime)
227 		sit_i->max_mtime = mtime;
228 	if (sit_i->max_mtime != sit_i->min_mtime)
229 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
230 				sit_i->max_mtime - sit_i->min_mtime);
231 
232 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
233 }
234 
235 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
236 			unsigned int segno, struct victim_sel_policy *p)
237 {
238 	if (p->alloc_mode == SSR)
239 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
240 
241 	/* alloc_mode == LFS */
242 	if (p->gc_mode == GC_GREEDY)
243 		return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
244 	else
245 		return get_cb_cost(sbi, segno);
246 }
247 
248 static unsigned int count_bits(const unsigned long *addr,
249 				unsigned int offset, unsigned int len)
250 {
251 	unsigned int end = offset + len, sum = 0;
252 
253 	while (offset < end) {
254 		if (test_bit(offset++, addr))
255 			++sum;
256 	}
257 	return sum;
258 }
259 
260 /*
261  * This function is called from two paths.
262  * One is garbage collection and the other is SSR segment selection.
263  * When it is called during GC, it just gets a victim segment
264  * and it does not remove it from dirty seglist.
265  * When it is called from SSR segment selection, it finds a segment
266  * which has minimum valid blocks and removes it from dirty seglist.
267  */
268 static int get_victim_by_default(struct f2fs_sb_info *sbi,
269 		unsigned int *result, int gc_type, int type, char alloc_mode)
270 {
271 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
272 	struct victim_sel_policy p;
273 	unsigned int secno, max_cost, last_victim;
274 	unsigned int last_segment = MAIN_SEGS(sbi);
275 	unsigned int nsearched = 0;
276 
277 	mutex_lock(&dirty_i->seglist_lock);
278 
279 	p.alloc_mode = alloc_mode;
280 	select_policy(sbi, gc_type, type, &p);
281 
282 	p.min_segno = NULL_SEGNO;
283 	p.min_cost = max_cost = get_max_cost(sbi, &p);
284 
285 	if (p.max_search == 0)
286 		goto out;
287 
288 	last_victim = sbi->last_victim[p.gc_mode];
289 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
290 		p.min_segno = check_bg_victims(sbi);
291 		if (p.min_segno != NULL_SEGNO)
292 			goto got_it;
293 	}
294 
295 	while (1) {
296 		unsigned long cost;
297 		unsigned int segno;
298 
299 		segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
300 		if (segno >= last_segment) {
301 			if (sbi->last_victim[p.gc_mode]) {
302 				last_segment = sbi->last_victim[p.gc_mode];
303 				sbi->last_victim[p.gc_mode] = 0;
304 				p.offset = 0;
305 				continue;
306 			}
307 			break;
308 		}
309 
310 		p.offset = segno + p.ofs_unit;
311 		if (p.ofs_unit > 1) {
312 			p.offset -= segno % p.ofs_unit;
313 			nsearched += count_bits(p.dirty_segmap,
314 						p.offset - p.ofs_unit,
315 						p.ofs_unit);
316 		} else {
317 			nsearched++;
318 		}
319 
320 
321 		secno = GET_SECNO(sbi, segno);
322 
323 		if (sec_usage_check(sbi, secno))
324 			goto next;
325 		if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
326 			goto next;
327 
328 		cost = get_gc_cost(sbi, segno, &p);
329 
330 		if (p.min_cost > cost) {
331 			p.min_segno = segno;
332 			p.min_cost = cost;
333 		}
334 next:
335 		if (nsearched >= p.max_search) {
336 			if (!sbi->last_victim[p.gc_mode] && segno <= last_victim)
337 				sbi->last_victim[p.gc_mode] = last_victim + 1;
338 			else
339 				sbi->last_victim[p.gc_mode] = segno + 1;
340 			break;
341 		}
342 	}
343 	if (p.min_segno != NULL_SEGNO) {
344 got_it:
345 		if (p.alloc_mode == LFS) {
346 			secno = GET_SECNO(sbi, p.min_segno);
347 			if (gc_type == FG_GC)
348 				sbi->cur_victim_sec = secno;
349 			else
350 				set_bit(secno, dirty_i->victim_secmap);
351 		}
352 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
353 
354 		trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
355 				sbi->cur_victim_sec,
356 				prefree_segments(sbi), free_segments(sbi));
357 	}
358 out:
359 	mutex_unlock(&dirty_i->seglist_lock);
360 
361 	return (p.min_segno == NULL_SEGNO) ? 0 : 1;
362 }
363 
364 static const struct victim_selection default_v_ops = {
365 	.get_victim = get_victim_by_default,
366 };
367 
368 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
369 {
370 	struct inode_entry *ie;
371 
372 	ie = radix_tree_lookup(&gc_list->iroot, ino);
373 	if (ie)
374 		return ie->inode;
375 	return NULL;
376 }
377 
378 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
379 {
380 	struct inode_entry *new_ie;
381 
382 	if (inode == find_gc_inode(gc_list, inode->i_ino)) {
383 		iput(inode);
384 		return;
385 	}
386 	new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
387 	new_ie->inode = inode;
388 
389 	f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
390 	list_add_tail(&new_ie->list, &gc_list->ilist);
391 }
392 
393 static void put_gc_inode(struct gc_inode_list *gc_list)
394 {
395 	struct inode_entry *ie, *next_ie;
396 	list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
397 		radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
398 		iput(ie->inode);
399 		list_del(&ie->list);
400 		kmem_cache_free(inode_entry_slab, ie);
401 	}
402 }
403 
404 static int check_valid_map(struct f2fs_sb_info *sbi,
405 				unsigned int segno, int offset)
406 {
407 	struct sit_info *sit_i = SIT_I(sbi);
408 	struct seg_entry *sentry;
409 	int ret;
410 
411 	mutex_lock(&sit_i->sentry_lock);
412 	sentry = get_seg_entry(sbi, segno);
413 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
414 	mutex_unlock(&sit_i->sentry_lock);
415 	return ret;
416 }
417 
418 /*
419  * This function compares node address got in summary with that in NAT.
420  * On validity, copy that node with cold status, otherwise (invalid node)
421  * ignore that.
422  */
423 static void gc_node_segment(struct f2fs_sb_info *sbi,
424 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
425 {
426 	bool initial = true;
427 	struct f2fs_summary *entry;
428 	block_t start_addr;
429 	int off;
430 
431 	start_addr = START_BLOCK(sbi, segno);
432 
433 next_step:
434 	entry = sum;
435 
436 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
437 		nid_t nid = le32_to_cpu(entry->nid);
438 		struct page *node_page;
439 		struct node_info ni;
440 
441 		/* stop BG_GC if there is not enough free sections. */
442 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
443 			return;
444 
445 		if (check_valid_map(sbi, segno, off) == 0)
446 			continue;
447 
448 		if (initial) {
449 			ra_node_page(sbi, nid);
450 			continue;
451 		}
452 		node_page = get_node_page(sbi, nid);
453 		if (IS_ERR(node_page))
454 			continue;
455 
456 		/* block may become invalid during get_node_page */
457 		if (check_valid_map(sbi, segno, off) == 0) {
458 			f2fs_put_page(node_page, 1);
459 			continue;
460 		}
461 
462 		get_node_info(sbi, nid, &ni);
463 		if (ni.blk_addr != start_addr + off) {
464 			f2fs_put_page(node_page, 1);
465 			continue;
466 		}
467 
468 		move_node_page(node_page, gc_type);
469 		stat_inc_node_blk_count(sbi, 1, gc_type);
470 	}
471 
472 	if (initial) {
473 		initial = false;
474 		goto next_step;
475 	}
476 }
477 
478 /*
479  * Calculate start block index indicating the given node offset.
480  * Be careful, caller should give this node offset only indicating direct node
481  * blocks. If any node offsets, which point the other types of node blocks such
482  * as indirect or double indirect node blocks, are given, it must be a caller's
483  * bug.
484  */
485 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
486 {
487 	unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
488 	unsigned int bidx;
489 
490 	if (node_ofs == 0)
491 		return 0;
492 
493 	if (node_ofs <= 2) {
494 		bidx = node_ofs - 1;
495 	} else if (node_ofs <= indirect_blks) {
496 		int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
497 		bidx = node_ofs - 2 - dec;
498 	} else {
499 		int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
500 		bidx = node_ofs - 5 - dec;
501 	}
502 	return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
503 }
504 
505 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
506 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
507 {
508 	struct page *node_page;
509 	nid_t nid;
510 	unsigned int ofs_in_node;
511 	block_t source_blkaddr;
512 
513 	nid = le32_to_cpu(sum->nid);
514 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
515 
516 	node_page = get_node_page(sbi, nid);
517 	if (IS_ERR(node_page))
518 		return false;
519 
520 	get_node_info(sbi, nid, dni);
521 
522 	if (sum->version != dni->version) {
523 		f2fs_put_page(node_page, 1);
524 		return false;
525 	}
526 
527 	*nofs = ofs_of_node(node_page);
528 	source_blkaddr = datablock_addr(node_page, ofs_in_node);
529 	f2fs_put_page(node_page, 1);
530 
531 	if (source_blkaddr != blkaddr)
532 		return false;
533 	return true;
534 }
535 
536 static void move_encrypted_block(struct inode *inode, block_t bidx)
537 {
538 	struct f2fs_io_info fio = {
539 		.sbi = F2FS_I_SB(inode),
540 		.type = DATA,
541 		.rw = READ_SYNC,
542 		.encrypted_page = NULL,
543 	};
544 	struct dnode_of_data dn;
545 	struct f2fs_summary sum;
546 	struct node_info ni;
547 	struct page *page;
548 	block_t newaddr;
549 	int err;
550 
551 	/* do not read out */
552 	page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
553 	if (!page)
554 		return;
555 
556 	set_new_dnode(&dn, inode, NULL, NULL, 0);
557 	err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
558 	if (err)
559 		goto out;
560 
561 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
562 		ClearPageUptodate(page);
563 		goto put_out;
564 	}
565 
566 	/*
567 	 * don't cache encrypted data into meta inode until previous dirty
568 	 * data were writebacked to avoid racing between GC and flush.
569 	 */
570 	f2fs_wait_on_page_writeback(page, DATA, true);
571 
572 	get_node_info(fio.sbi, dn.nid, &ni);
573 	set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
574 
575 	/* read page */
576 	fio.page = page;
577 	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
578 
579 	allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
580 							&sum, CURSEG_COLD_DATA);
581 
582 	fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
583 					FGP_LOCK | FGP_CREAT, GFP_NOFS);
584 	if (!fio.encrypted_page) {
585 		err = -ENOMEM;
586 		goto recover_block;
587 	}
588 
589 	err = f2fs_submit_page_bio(&fio);
590 	if (err)
591 		goto put_page_out;
592 
593 	/* write page */
594 	lock_page(fio.encrypted_page);
595 
596 	if (unlikely(!PageUptodate(fio.encrypted_page))) {
597 		err = -EIO;
598 		goto put_page_out;
599 	}
600 	if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
601 		err = -EIO;
602 		goto put_page_out;
603 	}
604 
605 	set_page_dirty(fio.encrypted_page);
606 	f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
607 	if (clear_page_dirty_for_io(fio.encrypted_page))
608 		dec_page_count(fio.sbi, F2FS_DIRTY_META);
609 
610 	set_page_writeback(fio.encrypted_page);
611 
612 	/* allocate block address */
613 	f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
614 
615 	fio.rw = WRITE_SYNC;
616 	fio.new_blkaddr = newaddr;
617 	f2fs_submit_page_mbio(&fio);
618 
619 	f2fs_update_data_blkaddr(&dn, newaddr);
620 	set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
621 	if (page->index == 0)
622 		set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
623 put_page_out:
624 	f2fs_put_page(fio.encrypted_page, 1);
625 recover_block:
626 	if (err)
627 		__f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
628 								true, true);
629 put_out:
630 	f2fs_put_dnode(&dn);
631 out:
632 	f2fs_put_page(page, 1);
633 }
634 
635 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
636 {
637 	struct page *page;
638 
639 	page = get_lock_data_page(inode, bidx, true);
640 	if (IS_ERR(page))
641 		return;
642 
643 	if (gc_type == BG_GC) {
644 		if (PageWriteback(page))
645 			goto out;
646 		set_page_dirty(page);
647 		set_cold_data(page);
648 	} else {
649 		struct f2fs_io_info fio = {
650 			.sbi = F2FS_I_SB(inode),
651 			.type = DATA,
652 			.rw = WRITE_SYNC,
653 			.page = page,
654 			.encrypted_page = NULL,
655 		};
656 		set_page_dirty(page);
657 		f2fs_wait_on_page_writeback(page, DATA, true);
658 		if (clear_page_dirty_for_io(page))
659 			inode_dec_dirty_pages(inode);
660 		set_cold_data(page);
661 		do_write_data_page(&fio);
662 		clear_cold_data(page);
663 	}
664 out:
665 	f2fs_put_page(page, 1);
666 }
667 
668 /*
669  * This function tries to get parent node of victim data block, and identifies
670  * data block validity. If the block is valid, copy that with cold status and
671  * modify parent node.
672  * If the parent node is not valid or the data block address is different,
673  * the victim data block is ignored.
674  */
675 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
676 		struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
677 {
678 	struct super_block *sb = sbi->sb;
679 	struct f2fs_summary *entry;
680 	block_t start_addr;
681 	int off;
682 	int phase = 0;
683 
684 	start_addr = START_BLOCK(sbi, segno);
685 
686 next_step:
687 	entry = sum;
688 
689 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
690 		struct page *data_page;
691 		struct inode *inode;
692 		struct node_info dni; /* dnode info for the data */
693 		unsigned int ofs_in_node, nofs;
694 		block_t start_bidx;
695 
696 		/* stop BG_GC if there is not enough free sections. */
697 		if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
698 			return;
699 
700 		if (check_valid_map(sbi, segno, off) == 0)
701 			continue;
702 
703 		if (phase == 0) {
704 			ra_node_page(sbi, le32_to_cpu(entry->nid));
705 			continue;
706 		}
707 
708 		/* Get an inode by ino with checking validity */
709 		if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
710 			continue;
711 
712 		if (phase == 1) {
713 			ra_node_page(sbi, dni.ino);
714 			continue;
715 		}
716 
717 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
718 
719 		if (phase == 2) {
720 			inode = f2fs_iget(sb, dni.ino);
721 			if (IS_ERR(inode) || is_bad_inode(inode))
722 				continue;
723 
724 			/* if encrypted inode, let's go phase 3 */
725 			if (f2fs_encrypted_inode(inode) &&
726 						S_ISREG(inode->i_mode)) {
727 				add_gc_inode(gc_list, inode);
728 				continue;
729 			}
730 
731 			start_bidx = start_bidx_of_node(nofs, inode);
732 			data_page = get_read_data_page(inode,
733 					start_bidx + ofs_in_node, READA, true);
734 			if (IS_ERR(data_page)) {
735 				iput(inode);
736 				continue;
737 			}
738 
739 			f2fs_put_page(data_page, 0);
740 			add_gc_inode(gc_list, inode);
741 			continue;
742 		}
743 
744 		/* phase 3 */
745 		inode = find_gc_inode(gc_list, dni.ino);
746 		if (inode) {
747 			start_bidx = start_bidx_of_node(nofs, inode)
748 								+ ofs_in_node;
749 			if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
750 				move_encrypted_block(inode, start_bidx);
751 			else
752 				move_data_page(inode, start_bidx, gc_type);
753 			stat_inc_data_blk_count(sbi, 1, gc_type);
754 		}
755 	}
756 
757 	if (++phase < 4)
758 		goto next_step;
759 }
760 
761 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
762 			int gc_type)
763 {
764 	struct sit_info *sit_i = SIT_I(sbi);
765 	int ret;
766 
767 	mutex_lock(&sit_i->sentry_lock);
768 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
769 					      NO_CHECK_TYPE, LFS);
770 	mutex_unlock(&sit_i->sentry_lock);
771 	return ret;
772 }
773 
774 static int do_garbage_collect(struct f2fs_sb_info *sbi,
775 				unsigned int start_segno,
776 				struct gc_inode_list *gc_list, int gc_type)
777 {
778 	struct page *sum_page;
779 	struct f2fs_summary_block *sum;
780 	struct blk_plug plug;
781 	unsigned int segno = start_segno;
782 	unsigned int end_segno = start_segno + sbi->segs_per_sec;
783 	int seg_freed = 0;
784 	unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
785 						SUM_TYPE_DATA : SUM_TYPE_NODE;
786 
787 	/* readahead multi ssa blocks those have contiguous address */
788 	if (sbi->segs_per_sec > 1)
789 		ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
790 					sbi->segs_per_sec, META_SSA, true);
791 
792 	/* reference all summary page */
793 	while (segno < end_segno) {
794 		sum_page = get_sum_page(sbi, segno++);
795 		unlock_page(sum_page);
796 	}
797 
798 	blk_start_plug(&plug);
799 
800 	for (segno = start_segno; segno < end_segno; segno++) {
801 		/* find segment summary of victim */
802 		sum_page = find_get_page(META_MAPPING(sbi),
803 					GET_SUM_BLOCK(sbi, segno));
804 		f2fs_bug_on(sbi, !PageUptodate(sum_page));
805 		f2fs_put_page(sum_page, 0);
806 
807 		sum = page_address(sum_page);
808 		f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
809 
810 		/*
811 		 * this is to avoid deadlock:
812 		 * - lock_page(sum_page)         - f2fs_replace_block
813 		 *  - check_valid_map()            - mutex_lock(sentry_lock)
814 		 *   - mutex_lock(sentry_lock)     - change_curseg()
815 		 *                                  - lock_page(sum_page)
816 		 */
817 
818 		if (type == SUM_TYPE_NODE)
819 			gc_node_segment(sbi, sum->entries, segno, gc_type);
820 		else
821 			gc_data_segment(sbi, sum->entries, gc_list, segno,
822 								gc_type);
823 
824 		stat_inc_seg_count(sbi, type, gc_type);
825 
826 		f2fs_put_page(sum_page, 0);
827 	}
828 
829 	if (gc_type == FG_GC)
830 		f2fs_submit_merged_bio(sbi,
831 				(type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
832 
833 	blk_finish_plug(&plug);
834 
835 	if (gc_type == FG_GC) {
836 		while (start_segno < end_segno)
837 			if (get_valid_blocks(sbi, start_segno++, 1) == 0)
838 				seg_freed++;
839 	}
840 
841 	stat_inc_call_count(sbi->stat_info);
842 
843 	return seg_freed;
844 }
845 
846 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
847 {
848 	unsigned int segno;
849 	int gc_type = sync ? FG_GC : BG_GC;
850 	int sec_freed = 0, seg_freed;
851 	int ret = -EINVAL;
852 	struct cp_control cpc;
853 	struct gc_inode_list gc_list = {
854 		.ilist = LIST_HEAD_INIT(gc_list.ilist),
855 		.iroot = RADIX_TREE_INIT(GFP_NOFS),
856 	};
857 
858 	cpc.reason = __get_cp_reason(sbi);
859 gc_more:
860 	segno = NULL_SEGNO;
861 
862 	if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
863 		goto stop;
864 	if (unlikely(f2fs_cp_error(sbi))) {
865 		ret = -EIO;
866 		goto stop;
867 	}
868 
869 	if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
870 		gc_type = FG_GC;
871 		/*
872 		 * If there is no victim and no prefree segment but still not
873 		 * enough free sections, we should flush dent/node blocks and do
874 		 * garbage collections.
875 		 */
876 		if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
877 			write_checkpoint(sbi, &cpc);
878 		else if (has_not_enough_free_secs(sbi, 0))
879 			write_checkpoint(sbi, &cpc);
880 	}
881 
882 	if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
883 		goto stop;
884 	ret = 0;
885 
886 	seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
887 
888 	if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
889 		sec_freed++;
890 
891 	if (gc_type == FG_GC)
892 		sbi->cur_victim_sec = NULL_SEGNO;
893 
894 	if (!sync) {
895 		if (has_not_enough_free_secs(sbi, sec_freed))
896 			goto gc_more;
897 
898 		if (gc_type == FG_GC)
899 			write_checkpoint(sbi, &cpc);
900 	}
901 stop:
902 	mutex_unlock(&sbi->gc_mutex);
903 
904 	put_gc_inode(&gc_list);
905 
906 	if (sync)
907 		ret = sec_freed ? 0 : -EAGAIN;
908 	return ret;
909 }
910 
911 void build_gc_manager(struct f2fs_sb_info *sbi)
912 {
913 	DIRTY_I(sbi)->v_ops = &default_v_ops;
914 }
915