1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_interruptible_timeout(*wq, 50 kthread_should_stop() || freezing(current) || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = false; 61 62 if (try_to_freeze()) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 76 f2fs_stop_checkpoint(sbi, false, 77 STOP_CP_REASON_FAULT_INJECT); 78 79 if (!sb_start_write_trylock(sbi->sb)) { 80 stat_other_skip_bggc_count(sbi); 81 continue; 82 } 83 84 /* 85 * [GC triggering condition] 86 * 0. GC is not conducted currently. 87 * 1. There are enough dirty segments. 88 * 2. IO subsystem is idle by checking the # of writeback pages. 89 * 3. IO subsystem is idle by checking the # of requests in 90 * bdev's request list. 91 * 92 * Note) We have to avoid triggering GCs frequently. 93 * Because it is possible that some segments can be 94 * invalidated soon after by user update or deletion. 95 * So, I'd like to wait some time to collect dirty segments. 96 */ 97 if (sbi->gc_mode == GC_URGENT_HIGH || 98 sbi->gc_mode == GC_URGENT_MID) { 99 wait_ms = gc_th->urgent_sleep_time; 100 f2fs_down_write(&sbi->gc_lock); 101 goto do_gc; 102 } 103 104 if (foreground) { 105 f2fs_down_write(&sbi->gc_lock); 106 goto do_gc; 107 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 108 stat_other_skip_bggc_count(sbi); 109 goto next; 110 } 111 112 if (!is_idle(sbi, GC_TIME)) { 113 increase_sleep_time(gc_th, &wait_ms); 114 f2fs_up_write(&sbi->gc_lock); 115 stat_io_skip_bggc_count(sbi); 116 goto next; 117 } 118 119 if (has_enough_invalid_blocks(sbi)) 120 decrease_sleep_time(gc_th, &wait_ms); 121 else 122 increase_sleep_time(gc_th, &wait_ms); 123 do_gc: 124 if (!foreground) 125 stat_inc_bggc_count(sbi->stat_info); 126 127 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 128 129 /* foreground GC was been triggered via f2fs_balance_fs() */ 130 if (foreground) 131 sync_mode = false; 132 133 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 134 gc_control.no_bg_gc = foreground; 135 gc_control.nr_free_secs = foreground ? 1 : 0; 136 137 /* if return value is not zero, no victim was selected */ 138 if (f2fs_gc(sbi, &gc_control)) { 139 /* don't bother wait_ms by foreground gc */ 140 if (!foreground) 141 wait_ms = gc_th->no_gc_sleep_time; 142 } else { 143 /* reset wait_ms to default sleep time */ 144 if (wait_ms == gc_th->no_gc_sleep_time) 145 wait_ms = gc_th->min_sleep_time; 146 } 147 148 if (foreground) 149 wake_up_all(&gc_th->fggc_wq); 150 151 trace_f2fs_background_gc(sbi->sb, wait_ms, 152 prefree_segments(sbi), free_segments(sbi)); 153 154 /* balancing f2fs's metadata periodically */ 155 f2fs_balance_fs_bg(sbi, true); 156 next: 157 if (sbi->gc_mode != GC_NORMAL) { 158 spin_lock(&sbi->gc_remaining_trials_lock); 159 if (sbi->gc_remaining_trials) { 160 sbi->gc_remaining_trials--; 161 if (!sbi->gc_remaining_trials) 162 sbi->gc_mode = GC_NORMAL; 163 } 164 spin_unlock(&sbi->gc_remaining_trials_lock); 165 } 166 sb_end_write(sbi->sb); 167 168 } while (!kthread_should_stop()); 169 return 0; 170 } 171 172 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 173 { 174 struct f2fs_gc_kthread *gc_th; 175 dev_t dev = sbi->sb->s_bdev->bd_dev; 176 177 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 178 if (!gc_th) 179 return -ENOMEM; 180 181 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 182 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 183 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 184 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 185 186 gc_th->gc_wake = false; 187 188 sbi->gc_thread = gc_th; 189 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 190 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 191 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 192 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 193 if (IS_ERR(gc_th->f2fs_gc_task)) { 194 int err = PTR_ERR(gc_th->f2fs_gc_task); 195 196 kfree(gc_th); 197 sbi->gc_thread = NULL; 198 return err; 199 } 200 201 return 0; 202 } 203 204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 205 { 206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 207 208 if (!gc_th) 209 return; 210 kthread_stop(gc_th->f2fs_gc_task); 211 wake_up_all(&gc_th->fggc_wq); 212 kfree(gc_th); 213 sbi->gc_thread = NULL; 214 } 215 216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 217 { 218 int gc_mode; 219 220 if (gc_type == BG_GC) { 221 if (sbi->am.atgc_enabled) 222 gc_mode = GC_AT; 223 else 224 gc_mode = GC_CB; 225 } else { 226 gc_mode = GC_GREEDY; 227 } 228 229 switch (sbi->gc_mode) { 230 case GC_IDLE_CB: 231 gc_mode = GC_CB; 232 break; 233 case GC_IDLE_GREEDY: 234 case GC_URGENT_HIGH: 235 gc_mode = GC_GREEDY; 236 break; 237 case GC_IDLE_AT: 238 gc_mode = GC_AT; 239 break; 240 } 241 242 return gc_mode; 243 } 244 245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 246 int type, struct victim_sel_policy *p) 247 { 248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 249 250 if (p->alloc_mode == SSR) { 251 p->gc_mode = GC_GREEDY; 252 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 253 p->max_search = dirty_i->nr_dirty[type]; 254 p->ofs_unit = 1; 255 } else if (p->alloc_mode == AT_SSR) { 256 p->gc_mode = GC_GREEDY; 257 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 258 p->max_search = dirty_i->nr_dirty[type]; 259 p->ofs_unit = 1; 260 } else { 261 p->gc_mode = select_gc_type(sbi, gc_type); 262 p->ofs_unit = sbi->segs_per_sec; 263 if (__is_large_section(sbi)) { 264 p->dirty_bitmap = dirty_i->dirty_secmap; 265 p->max_search = count_bits(p->dirty_bitmap, 266 0, MAIN_SECS(sbi)); 267 } else { 268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 269 p->max_search = dirty_i->nr_dirty[DIRTY]; 270 } 271 } 272 273 /* 274 * adjust candidates range, should select all dirty segments for 275 * foreground GC and urgent GC cases. 276 */ 277 if (gc_type != FG_GC && 278 (sbi->gc_mode != GC_URGENT_HIGH) && 279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 280 p->max_search > sbi->max_victim_search) 281 p->max_search = sbi->max_victim_search; 282 283 /* let's select beginning hot/small space first in no_heap mode*/ 284 if (f2fs_need_rand_seg(sbi)) 285 p->offset = get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 286 else if (test_opt(sbi, NOHEAP) && 287 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 288 p->offset = 0; 289 else 290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 291 } 292 293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 294 struct victim_sel_policy *p) 295 { 296 /* SSR allocates in a segment unit */ 297 if (p->alloc_mode == SSR) 298 return sbi->blocks_per_seg; 299 else if (p->alloc_mode == AT_SSR) 300 return UINT_MAX; 301 302 /* LFS */ 303 if (p->gc_mode == GC_GREEDY) 304 return 2 * sbi->blocks_per_seg * p->ofs_unit; 305 else if (p->gc_mode == GC_CB) 306 return UINT_MAX; 307 else if (p->gc_mode == GC_AT) 308 return UINT_MAX; 309 else /* No other gc_mode */ 310 return 0; 311 } 312 313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 314 { 315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 316 unsigned int secno; 317 318 /* 319 * If the gc_type is FG_GC, we can select victim segments 320 * selected by background GC before. 321 * Those segments guarantee they have small valid blocks. 322 */ 323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 324 if (sec_usage_check(sbi, secno)) 325 continue; 326 clear_bit(secno, dirty_i->victim_secmap); 327 return GET_SEG_FROM_SEC(sbi, secno); 328 } 329 return NULL_SEGNO; 330 } 331 332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 333 { 334 struct sit_info *sit_i = SIT_I(sbi); 335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 337 unsigned long long mtime = 0; 338 unsigned int vblocks; 339 unsigned char age = 0; 340 unsigned char u; 341 unsigned int i; 342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 343 344 for (i = 0; i < usable_segs_per_sec; i++) 345 mtime += get_seg_entry(sbi, start + i)->mtime; 346 vblocks = get_valid_blocks(sbi, segno, true); 347 348 mtime = div_u64(mtime, usable_segs_per_sec); 349 vblocks = div_u64(vblocks, usable_segs_per_sec); 350 351 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 352 353 /* Handle if the system time has changed by the user */ 354 if (mtime < sit_i->min_mtime) 355 sit_i->min_mtime = mtime; 356 if (mtime > sit_i->max_mtime) 357 sit_i->max_mtime = mtime; 358 if (sit_i->max_mtime != sit_i->min_mtime) 359 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 360 sit_i->max_mtime - sit_i->min_mtime); 361 362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 363 } 364 365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 366 unsigned int segno, struct victim_sel_policy *p) 367 { 368 if (p->alloc_mode == SSR) 369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 370 371 /* alloc_mode == LFS */ 372 if (p->gc_mode == GC_GREEDY) 373 return get_valid_blocks(sbi, segno, true); 374 else if (p->gc_mode == GC_CB) 375 return get_cb_cost(sbi, segno); 376 377 f2fs_bug_on(sbi, 1); 378 return 0; 379 } 380 381 static unsigned int count_bits(const unsigned long *addr, 382 unsigned int offset, unsigned int len) 383 { 384 unsigned int end = offset + len, sum = 0; 385 386 while (offset < end) { 387 if (test_bit(offset++, addr)) 388 ++sum; 389 } 390 return sum; 391 } 392 393 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 394 unsigned long long mtime, unsigned int segno, 395 struct rb_node *parent, struct rb_node **p, 396 bool left_most) 397 { 398 struct atgc_management *am = &sbi->am; 399 struct victim_entry *ve; 400 401 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 402 GFP_NOFS, true, NULL); 403 404 ve->mtime = mtime; 405 ve->segno = segno; 406 407 rb_link_node(&ve->rb_node, parent, p); 408 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 409 410 list_add_tail(&ve->list, &am->victim_list); 411 412 am->victim_count++; 413 414 return ve; 415 } 416 417 static void insert_victim_entry(struct f2fs_sb_info *sbi, 418 unsigned long long mtime, unsigned int segno) 419 { 420 struct atgc_management *am = &sbi->am; 421 struct rb_node **p; 422 struct rb_node *parent = NULL; 423 bool left_most = true; 424 425 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 426 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 427 } 428 429 static void add_victim_entry(struct f2fs_sb_info *sbi, 430 struct victim_sel_policy *p, unsigned int segno) 431 { 432 struct sit_info *sit_i = SIT_I(sbi); 433 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 434 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 435 unsigned long long mtime = 0; 436 unsigned int i; 437 438 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 439 if (p->gc_mode == GC_AT && 440 get_valid_blocks(sbi, segno, true) == 0) 441 return; 442 } 443 444 for (i = 0; i < sbi->segs_per_sec; i++) 445 mtime += get_seg_entry(sbi, start + i)->mtime; 446 mtime = div_u64(mtime, sbi->segs_per_sec); 447 448 /* Handle if the system time has changed by the user */ 449 if (mtime < sit_i->min_mtime) 450 sit_i->min_mtime = mtime; 451 if (mtime > sit_i->max_mtime) 452 sit_i->max_mtime = mtime; 453 if (mtime < sit_i->dirty_min_mtime) 454 sit_i->dirty_min_mtime = mtime; 455 if (mtime > sit_i->dirty_max_mtime) 456 sit_i->dirty_max_mtime = mtime; 457 458 /* don't choose young section as candidate */ 459 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 460 return; 461 462 insert_victim_entry(sbi, mtime, segno); 463 } 464 465 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 466 struct victim_sel_policy *p) 467 { 468 struct atgc_management *am = &sbi->am; 469 struct rb_node *parent = NULL; 470 bool left_most; 471 472 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 473 474 return parent; 475 } 476 477 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 478 struct victim_sel_policy *p) 479 { 480 struct sit_info *sit_i = SIT_I(sbi); 481 struct atgc_management *am = &sbi->am; 482 struct rb_root_cached *root = &am->root; 483 struct rb_node *node; 484 struct rb_entry *re; 485 struct victim_entry *ve; 486 unsigned long long total_time; 487 unsigned long long age, u, accu; 488 unsigned long long max_mtime = sit_i->dirty_max_mtime; 489 unsigned long long min_mtime = sit_i->dirty_min_mtime; 490 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 491 unsigned int vblocks; 492 unsigned int dirty_threshold = max(am->max_candidate_count, 493 am->candidate_ratio * 494 am->victim_count / 100); 495 unsigned int age_weight = am->age_weight; 496 unsigned int cost; 497 unsigned int iter = 0; 498 499 if (max_mtime < min_mtime) 500 return; 501 502 max_mtime += 1; 503 total_time = max_mtime - min_mtime; 504 505 accu = div64_u64(ULLONG_MAX, total_time); 506 accu = min_t(unsigned long long, div_u64(accu, 100), 507 DEFAULT_ACCURACY_CLASS); 508 509 node = rb_first_cached(root); 510 next: 511 re = rb_entry_safe(node, struct rb_entry, rb_node); 512 if (!re) 513 return; 514 515 ve = (struct victim_entry *)re; 516 517 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 518 goto skip; 519 520 /* age = 10000 * x% * 60 */ 521 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 522 age_weight; 523 524 vblocks = get_valid_blocks(sbi, ve->segno, true); 525 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 526 527 /* u = 10000 * x% * 40 */ 528 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 529 (100 - age_weight); 530 531 f2fs_bug_on(sbi, age + u >= UINT_MAX); 532 533 cost = UINT_MAX - (age + u); 534 iter++; 535 536 if (cost < p->min_cost || 537 (cost == p->min_cost && age > p->oldest_age)) { 538 p->min_cost = cost; 539 p->oldest_age = age; 540 p->min_segno = ve->segno; 541 } 542 skip: 543 if (iter < dirty_threshold) { 544 node = rb_next(node); 545 goto next; 546 } 547 } 548 549 /* 550 * select candidates around source section in range of 551 * [target - dirty_threshold, target + dirty_threshold] 552 */ 553 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 554 struct victim_sel_policy *p) 555 { 556 struct sit_info *sit_i = SIT_I(sbi); 557 struct atgc_management *am = &sbi->am; 558 struct rb_node *node; 559 struct rb_entry *re; 560 struct victim_entry *ve; 561 unsigned long long age; 562 unsigned long long max_mtime = sit_i->dirty_max_mtime; 563 unsigned long long min_mtime = sit_i->dirty_min_mtime; 564 unsigned int seg_blocks = sbi->blocks_per_seg; 565 unsigned int vblocks; 566 unsigned int dirty_threshold = max(am->max_candidate_count, 567 am->candidate_ratio * 568 am->victim_count / 100); 569 unsigned int cost; 570 unsigned int iter = 0; 571 int stage = 0; 572 573 if (max_mtime < min_mtime) 574 return; 575 max_mtime += 1; 576 next_stage: 577 node = lookup_central_victim(sbi, p); 578 next_node: 579 re = rb_entry_safe(node, struct rb_entry, rb_node); 580 if (!re) { 581 if (stage == 0) 582 goto skip_stage; 583 return; 584 } 585 586 ve = (struct victim_entry *)re; 587 588 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 589 goto skip_node; 590 591 age = max_mtime - ve->mtime; 592 593 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 594 f2fs_bug_on(sbi, !vblocks); 595 596 /* rare case */ 597 if (vblocks == seg_blocks) 598 goto skip_node; 599 600 iter++; 601 602 age = max_mtime - abs(p->age - age); 603 cost = UINT_MAX - vblocks; 604 605 if (cost < p->min_cost || 606 (cost == p->min_cost && age > p->oldest_age)) { 607 p->min_cost = cost; 608 p->oldest_age = age; 609 p->min_segno = ve->segno; 610 } 611 skip_node: 612 if (iter < dirty_threshold) { 613 if (stage == 0) 614 node = rb_prev(node); 615 else if (stage == 1) 616 node = rb_next(node); 617 goto next_node; 618 } 619 skip_stage: 620 if (stage < 1) { 621 stage++; 622 iter = 0; 623 goto next_stage; 624 } 625 } 626 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 627 struct victim_sel_policy *p) 628 { 629 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 630 &sbi->am.root, true)); 631 632 if (p->gc_mode == GC_AT) 633 atgc_lookup_victim(sbi, p); 634 else if (p->alloc_mode == AT_SSR) 635 atssr_lookup_victim(sbi, p); 636 else 637 f2fs_bug_on(sbi, 1); 638 } 639 640 static void release_victim_entry(struct f2fs_sb_info *sbi) 641 { 642 struct atgc_management *am = &sbi->am; 643 struct victim_entry *ve, *tmp; 644 645 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 646 list_del(&ve->list); 647 kmem_cache_free(victim_entry_slab, ve); 648 am->victim_count--; 649 } 650 651 am->root = RB_ROOT_CACHED; 652 653 f2fs_bug_on(sbi, am->victim_count); 654 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 655 } 656 657 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 658 { 659 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 660 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 661 662 if (!dirty_i->enable_pin_section) 663 return false; 664 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 665 dirty_i->pinned_secmap_cnt++; 666 return true; 667 } 668 669 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 670 { 671 return dirty_i->pinned_secmap_cnt; 672 } 673 674 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 675 unsigned int secno) 676 { 677 return dirty_i->enable_pin_section && 678 f2fs_pinned_section_exists(dirty_i) && 679 test_bit(secno, dirty_i->pinned_secmap); 680 } 681 682 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 683 { 684 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 685 686 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 687 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 688 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 689 } 690 DIRTY_I(sbi)->enable_pin_section = enable; 691 } 692 693 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 694 unsigned int segno) 695 { 696 if (!f2fs_is_pinned_file(inode)) 697 return 0; 698 if (gc_type != FG_GC) 699 return -EBUSY; 700 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 701 f2fs_pin_file_control(inode, true); 702 return -EAGAIN; 703 } 704 705 /* 706 * This function is called from two paths. 707 * One is garbage collection and the other is SSR segment selection. 708 * When it is called during GC, it just gets a victim segment 709 * and it does not remove it from dirty seglist. 710 * When it is called from SSR segment selection, it finds a segment 711 * which has minimum valid blocks and removes it from dirty seglist. 712 */ 713 static int get_victim_by_default(struct f2fs_sb_info *sbi, 714 unsigned int *result, int gc_type, int type, 715 char alloc_mode, unsigned long long age) 716 { 717 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 718 struct sit_info *sm = SIT_I(sbi); 719 struct victim_sel_policy p; 720 unsigned int secno, last_victim; 721 unsigned int last_segment; 722 unsigned int nsearched; 723 bool is_atgc; 724 int ret = 0; 725 726 mutex_lock(&dirty_i->seglist_lock); 727 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 728 729 p.alloc_mode = alloc_mode; 730 p.age = age; 731 p.age_threshold = sbi->am.age_threshold; 732 733 retry: 734 select_policy(sbi, gc_type, type, &p); 735 p.min_segno = NULL_SEGNO; 736 p.oldest_age = 0; 737 p.min_cost = get_max_cost(sbi, &p); 738 739 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 740 nsearched = 0; 741 742 if (is_atgc) 743 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 744 745 if (*result != NULL_SEGNO) { 746 if (!get_valid_blocks(sbi, *result, false)) { 747 ret = -ENODATA; 748 goto out; 749 } 750 751 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 752 ret = -EBUSY; 753 else 754 p.min_segno = *result; 755 goto out; 756 } 757 758 ret = -ENODATA; 759 if (p.max_search == 0) 760 goto out; 761 762 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 763 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 764 p.min_segno = sbi->next_victim_seg[BG_GC]; 765 *result = p.min_segno; 766 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 767 goto got_result; 768 } 769 if (gc_type == FG_GC && 770 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 771 p.min_segno = sbi->next_victim_seg[FG_GC]; 772 *result = p.min_segno; 773 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 774 goto got_result; 775 } 776 } 777 778 last_victim = sm->last_victim[p.gc_mode]; 779 if (p.alloc_mode == LFS && gc_type == FG_GC) { 780 p.min_segno = check_bg_victims(sbi); 781 if (p.min_segno != NULL_SEGNO) 782 goto got_it; 783 } 784 785 while (1) { 786 unsigned long cost, *dirty_bitmap; 787 unsigned int unit_no, segno; 788 789 dirty_bitmap = p.dirty_bitmap; 790 unit_no = find_next_bit(dirty_bitmap, 791 last_segment / p.ofs_unit, 792 p.offset / p.ofs_unit); 793 segno = unit_no * p.ofs_unit; 794 if (segno >= last_segment) { 795 if (sm->last_victim[p.gc_mode]) { 796 last_segment = 797 sm->last_victim[p.gc_mode]; 798 sm->last_victim[p.gc_mode] = 0; 799 p.offset = 0; 800 continue; 801 } 802 break; 803 } 804 805 p.offset = segno + p.ofs_unit; 806 nsearched++; 807 808 #ifdef CONFIG_F2FS_CHECK_FS 809 /* 810 * skip selecting the invalid segno (that is failed due to block 811 * validity check failure during GC) to avoid endless GC loop in 812 * such cases. 813 */ 814 if (test_bit(segno, sm->invalid_segmap)) 815 goto next; 816 #endif 817 818 secno = GET_SEC_FROM_SEG(sbi, segno); 819 820 if (sec_usage_check(sbi, secno)) 821 goto next; 822 823 /* Don't touch checkpointed data */ 824 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 825 if (p.alloc_mode == LFS) { 826 /* 827 * LFS is set to find source section during GC. 828 * The victim should have no checkpointed data. 829 */ 830 if (get_ckpt_valid_blocks(sbi, segno, true)) 831 goto next; 832 } else { 833 /* 834 * SSR | AT_SSR are set to find target segment 835 * for writes which can be full by checkpointed 836 * and newly written blocks. 837 */ 838 if (!f2fs_segment_has_free_slot(sbi, segno)) 839 goto next; 840 } 841 } 842 843 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 844 goto next; 845 846 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 847 goto next; 848 849 if (is_atgc) { 850 add_victim_entry(sbi, &p, segno); 851 goto next; 852 } 853 854 cost = get_gc_cost(sbi, segno, &p); 855 856 if (p.min_cost > cost) { 857 p.min_segno = segno; 858 p.min_cost = cost; 859 } 860 next: 861 if (nsearched >= p.max_search) { 862 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 863 sm->last_victim[p.gc_mode] = 864 last_victim + p.ofs_unit; 865 else 866 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 867 sm->last_victim[p.gc_mode] %= 868 (MAIN_SECS(sbi) * sbi->segs_per_sec); 869 break; 870 } 871 } 872 873 /* get victim for GC_AT/AT_SSR */ 874 if (is_atgc) { 875 lookup_victim_by_age(sbi, &p); 876 release_victim_entry(sbi); 877 } 878 879 if (is_atgc && p.min_segno == NULL_SEGNO && 880 sm->elapsed_time < p.age_threshold) { 881 p.age_threshold = 0; 882 goto retry; 883 } 884 885 if (p.min_segno != NULL_SEGNO) { 886 got_it: 887 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 888 got_result: 889 if (p.alloc_mode == LFS) { 890 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 891 if (gc_type == FG_GC) 892 sbi->cur_victim_sec = secno; 893 else 894 set_bit(secno, dirty_i->victim_secmap); 895 } 896 ret = 0; 897 898 } 899 out: 900 if (p.min_segno != NULL_SEGNO) 901 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 902 sbi->cur_victim_sec, 903 prefree_segments(sbi), free_segments(sbi)); 904 mutex_unlock(&dirty_i->seglist_lock); 905 906 return ret; 907 } 908 909 static const struct victim_selection default_v_ops = { 910 .get_victim = get_victim_by_default, 911 }; 912 913 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 914 { 915 struct inode_entry *ie; 916 917 ie = radix_tree_lookup(&gc_list->iroot, ino); 918 if (ie) 919 return ie->inode; 920 return NULL; 921 } 922 923 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 924 { 925 struct inode_entry *new_ie; 926 927 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 928 iput(inode); 929 return; 930 } 931 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 932 GFP_NOFS, true, NULL); 933 new_ie->inode = inode; 934 935 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 936 list_add_tail(&new_ie->list, &gc_list->ilist); 937 } 938 939 static void put_gc_inode(struct gc_inode_list *gc_list) 940 { 941 struct inode_entry *ie, *next_ie; 942 943 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 944 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 945 iput(ie->inode); 946 list_del(&ie->list); 947 kmem_cache_free(f2fs_inode_entry_slab, ie); 948 } 949 } 950 951 static int check_valid_map(struct f2fs_sb_info *sbi, 952 unsigned int segno, int offset) 953 { 954 struct sit_info *sit_i = SIT_I(sbi); 955 struct seg_entry *sentry; 956 int ret; 957 958 down_read(&sit_i->sentry_lock); 959 sentry = get_seg_entry(sbi, segno); 960 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 961 up_read(&sit_i->sentry_lock); 962 return ret; 963 } 964 965 /* 966 * This function compares node address got in summary with that in NAT. 967 * On validity, copy that node with cold status, otherwise (invalid node) 968 * ignore that. 969 */ 970 static int gc_node_segment(struct f2fs_sb_info *sbi, 971 struct f2fs_summary *sum, unsigned int segno, int gc_type) 972 { 973 struct f2fs_summary *entry; 974 block_t start_addr; 975 int off; 976 int phase = 0; 977 bool fggc = (gc_type == FG_GC); 978 int submitted = 0; 979 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 980 981 start_addr = START_BLOCK(sbi, segno); 982 983 next_step: 984 entry = sum; 985 986 if (fggc && phase == 2) 987 atomic_inc(&sbi->wb_sync_req[NODE]); 988 989 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 990 nid_t nid = le32_to_cpu(entry->nid); 991 struct page *node_page; 992 struct node_info ni; 993 int err; 994 995 /* stop BG_GC if there is not enough free sections. */ 996 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 997 return submitted; 998 999 if (check_valid_map(sbi, segno, off) == 0) 1000 continue; 1001 1002 if (phase == 0) { 1003 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1004 META_NAT, true); 1005 continue; 1006 } 1007 1008 if (phase == 1) { 1009 f2fs_ra_node_page(sbi, nid); 1010 continue; 1011 } 1012 1013 /* phase == 2 */ 1014 node_page = f2fs_get_node_page(sbi, nid); 1015 if (IS_ERR(node_page)) 1016 continue; 1017 1018 /* block may become invalid during f2fs_get_node_page */ 1019 if (check_valid_map(sbi, segno, off) == 0) { 1020 f2fs_put_page(node_page, 1); 1021 continue; 1022 } 1023 1024 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1025 f2fs_put_page(node_page, 1); 1026 continue; 1027 } 1028 1029 if (ni.blk_addr != start_addr + off) { 1030 f2fs_put_page(node_page, 1); 1031 continue; 1032 } 1033 1034 err = f2fs_move_node_page(node_page, gc_type); 1035 if (!err && gc_type == FG_GC) 1036 submitted++; 1037 stat_inc_node_blk_count(sbi, 1, gc_type); 1038 } 1039 1040 if (++phase < 3) 1041 goto next_step; 1042 1043 if (fggc) 1044 atomic_dec(&sbi->wb_sync_req[NODE]); 1045 return submitted; 1046 } 1047 1048 /* 1049 * Calculate start block index indicating the given node offset. 1050 * Be careful, caller should give this node offset only indicating direct node 1051 * blocks. If any node offsets, which point the other types of node blocks such 1052 * as indirect or double indirect node blocks, are given, it must be a caller's 1053 * bug. 1054 */ 1055 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1056 { 1057 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1058 unsigned int bidx; 1059 1060 if (node_ofs == 0) 1061 return 0; 1062 1063 if (node_ofs <= 2) { 1064 bidx = node_ofs - 1; 1065 } else if (node_ofs <= indirect_blks) { 1066 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1067 1068 bidx = node_ofs - 2 - dec; 1069 } else { 1070 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1071 1072 bidx = node_ofs - 5 - dec; 1073 } 1074 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1075 } 1076 1077 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1078 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1079 { 1080 struct page *node_page; 1081 nid_t nid; 1082 unsigned int ofs_in_node, max_addrs, base; 1083 block_t source_blkaddr; 1084 1085 nid = le32_to_cpu(sum->nid); 1086 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1087 1088 node_page = f2fs_get_node_page(sbi, nid); 1089 if (IS_ERR(node_page)) 1090 return false; 1091 1092 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1093 f2fs_put_page(node_page, 1); 1094 return false; 1095 } 1096 1097 if (sum->version != dni->version) { 1098 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1099 __func__); 1100 set_sbi_flag(sbi, SBI_NEED_FSCK); 1101 } 1102 1103 if (f2fs_check_nid_range(sbi, dni->ino)) { 1104 f2fs_put_page(node_page, 1); 1105 return false; 1106 } 1107 1108 if (IS_INODE(node_page)) { 1109 base = offset_in_addr(F2FS_INODE(node_page)); 1110 max_addrs = DEF_ADDRS_PER_INODE; 1111 } else { 1112 base = 0; 1113 max_addrs = DEF_ADDRS_PER_BLOCK; 1114 } 1115 1116 if (base + ofs_in_node >= max_addrs) { 1117 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u", 1118 base, ofs_in_node, max_addrs, dni->ino, dni->nid); 1119 f2fs_put_page(node_page, 1); 1120 return false; 1121 } 1122 1123 *nofs = ofs_of_node(node_page); 1124 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1125 f2fs_put_page(node_page, 1); 1126 1127 if (source_blkaddr != blkaddr) { 1128 #ifdef CONFIG_F2FS_CHECK_FS 1129 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1130 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1131 1132 if (unlikely(check_valid_map(sbi, segno, offset))) { 1133 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1134 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1135 blkaddr, source_blkaddr, segno); 1136 set_sbi_flag(sbi, SBI_NEED_FSCK); 1137 } 1138 } 1139 #endif 1140 return false; 1141 } 1142 return true; 1143 } 1144 1145 static int ra_data_block(struct inode *inode, pgoff_t index) 1146 { 1147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1148 struct address_space *mapping = inode->i_mapping; 1149 struct dnode_of_data dn; 1150 struct page *page; 1151 struct f2fs_io_info fio = { 1152 .sbi = sbi, 1153 .ino = inode->i_ino, 1154 .type = DATA, 1155 .temp = COLD, 1156 .op = REQ_OP_READ, 1157 .op_flags = 0, 1158 .encrypted_page = NULL, 1159 .in_list = 0, 1160 .retry = 0, 1161 }; 1162 int err; 1163 1164 page = f2fs_grab_cache_page(mapping, index, true); 1165 if (!page) 1166 return -ENOMEM; 1167 1168 if (f2fs_lookup_read_extent_cache_block(inode, index, 1169 &dn.data_blkaddr)) { 1170 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1171 DATA_GENERIC_ENHANCE_READ))) { 1172 err = -EFSCORRUPTED; 1173 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1174 goto put_page; 1175 } 1176 goto got_it; 1177 } 1178 1179 set_new_dnode(&dn, inode, NULL, NULL, 0); 1180 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1181 if (err) 1182 goto put_page; 1183 f2fs_put_dnode(&dn); 1184 1185 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1186 err = -ENOENT; 1187 goto put_page; 1188 } 1189 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1190 DATA_GENERIC_ENHANCE))) { 1191 err = -EFSCORRUPTED; 1192 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1193 goto put_page; 1194 } 1195 got_it: 1196 /* read page */ 1197 fio.page = page; 1198 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1199 1200 /* 1201 * don't cache encrypted data into meta inode until previous dirty 1202 * data were writebacked to avoid racing between GC and flush. 1203 */ 1204 f2fs_wait_on_page_writeback(page, DATA, true, true); 1205 1206 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1207 1208 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1209 dn.data_blkaddr, 1210 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1211 if (!fio.encrypted_page) { 1212 err = -ENOMEM; 1213 goto put_page; 1214 } 1215 1216 err = f2fs_submit_page_bio(&fio); 1217 if (err) 1218 goto put_encrypted_page; 1219 f2fs_put_page(fio.encrypted_page, 0); 1220 f2fs_put_page(page, 1); 1221 1222 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1223 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1224 1225 return 0; 1226 put_encrypted_page: 1227 f2fs_put_page(fio.encrypted_page, 1); 1228 put_page: 1229 f2fs_put_page(page, 1); 1230 return err; 1231 } 1232 1233 /* 1234 * Move data block via META_MAPPING while keeping locked data page. 1235 * This can be used to move blocks, aka LBAs, directly on disk. 1236 */ 1237 static int move_data_block(struct inode *inode, block_t bidx, 1238 int gc_type, unsigned int segno, int off) 1239 { 1240 struct f2fs_io_info fio = { 1241 .sbi = F2FS_I_SB(inode), 1242 .ino = inode->i_ino, 1243 .type = DATA, 1244 .temp = COLD, 1245 .op = REQ_OP_READ, 1246 .op_flags = 0, 1247 .encrypted_page = NULL, 1248 .in_list = 0, 1249 .retry = 0, 1250 }; 1251 struct dnode_of_data dn; 1252 struct f2fs_summary sum; 1253 struct node_info ni; 1254 struct page *page, *mpage; 1255 block_t newaddr; 1256 int err = 0; 1257 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1258 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1259 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1260 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1261 1262 /* do not read out */ 1263 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1264 if (!page) 1265 return -ENOMEM; 1266 1267 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1268 err = -ENOENT; 1269 goto out; 1270 } 1271 1272 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1273 if (err) 1274 goto out; 1275 1276 set_new_dnode(&dn, inode, NULL, NULL, 0); 1277 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1278 if (err) 1279 goto out; 1280 1281 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1282 ClearPageUptodate(page); 1283 err = -ENOENT; 1284 goto put_out; 1285 } 1286 1287 /* 1288 * don't cache encrypted data into meta inode until previous dirty 1289 * data were writebacked to avoid racing between GC and flush. 1290 */ 1291 f2fs_wait_on_page_writeback(page, DATA, true, true); 1292 1293 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1294 1295 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1296 if (err) 1297 goto put_out; 1298 1299 /* read page */ 1300 fio.page = page; 1301 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1302 1303 if (lfs_mode) 1304 f2fs_down_write(&fio.sbi->io_order_lock); 1305 1306 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1307 fio.old_blkaddr, false); 1308 if (!mpage) { 1309 err = -ENOMEM; 1310 goto up_out; 1311 } 1312 1313 fio.encrypted_page = mpage; 1314 1315 /* read source block in mpage */ 1316 if (!PageUptodate(mpage)) { 1317 err = f2fs_submit_page_bio(&fio); 1318 if (err) { 1319 f2fs_put_page(mpage, 1); 1320 goto up_out; 1321 } 1322 1323 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1324 F2FS_BLKSIZE); 1325 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1326 F2FS_BLKSIZE); 1327 1328 lock_page(mpage); 1329 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1330 !PageUptodate(mpage))) { 1331 err = -EIO; 1332 f2fs_put_page(mpage, 1); 1333 goto up_out; 1334 } 1335 } 1336 1337 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1338 1339 /* allocate block address */ 1340 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1341 &sum, type, NULL); 1342 1343 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1344 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1345 if (!fio.encrypted_page) { 1346 err = -ENOMEM; 1347 f2fs_put_page(mpage, 1); 1348 goto recover_block; 1349 } 1350 1351 /* write target block */ 1352 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1353 memcpy(page_address(fio.encrypted_page), 1354 page_address(mpage), PAGE_SIZE); 1355 f2fs_put_page(mpage, 1); 1356 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1357 fio.old_blkaddr, fio.old_blkaddr); 1358 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1359 1360 set_page_dirty(fio.encrypted_page); 1361 if (clear_page_dirty_for_io(fio.encrypted_page)) 1362 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1363 1364 set_page_writeback(fio.encrypted_page); 1365 1366 fio.op = REQ_OP_WRITE; 1367 fio.op_flags = REQ_SYNC; 1368 fio.new_blkaddr = newaddr; 1369 f2fs_submit_page_write(&fio); 1370 if (fio.retry) { 1371 err = -EAGAIN; 1372 if (PageWriteback(fio.encrypted_page)) 1373 end_page_writeback(fio.encrypted_page); 1374 goto put_page_out; 1375 } 1376 1377 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1378 1379 f2fs_update_data_blkaddr(&dn, newaddr); 1380 set_inode_flag(inode, FI_APPEND_WRITE); 1381 if (page->index == 0) 1382 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1383 put_page_out: 1384 f2fs_put_page(fio.encrypted_page, 1); 1385 recover_block: 1386 if (err) 1387 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1388 true, true, true); 1389 up_out: 1390 if (lfs_mode) 1391 f2fs_up_write(&fio.sbi->io_order_lock); 1392 put_out: 1393 f2fs_put_dnode(&dn); 1394 out: 1395 f2fs_put_page(page, 1); 1396 return err; 1397 } 1398 1399 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1400 unsigned int segno, int off) 1401 { 1402 struct page *page; 1403 int err = 0; 1404 1405 page = f2fs_get_lock_data_page(inode, bidx, true); 1406 if (IS_ERR(page)) 1407 return PTR_ERR(page); 1408 1409 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1410 err = -ENOENT; 1411 goto out; 1412 } 1413 1414 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1415 if (err) 1416 goto out; 1417 1418 if (gc_type == BG_GC) { 1419 if (PageWriteback(page)) { 1420 err = -EAGAIN; 1421 goto out; 1422 } 1423 set_page_dirty(page); 1424 set_page_private_gcing(page); 1425 } else { 1426 struct f2fs_io_info fio = { 1427 .sbi = F2FS_I_SB(inode), 1428 .ino = inode->i_ino, 1429 .type = DATA, 1430 .temp = COLD, 1431 .op = REQ_OP_WRITE, 1432 .op_flags = REQ_SYNC, 1433 .old_blkaddr = NULL_ADDR, 1434 .page = page, 1435 .encrypted_page = NULL, 1436 .need_lock = LOCK_REQ, 1437 .io_type = FS_GC_DATA_IO, 1438 }; 1439 bool is_dirty = PageDirty(page); 1440 1441 retry: 1442 f2fs_wait_on_page_writeback(page, DATA, true, true); 1443 1444 set_page_dirty(page); 1445 if (clear_page_dirty_for_io(page)) { 1446 inode_dec_dirty_pages(inode); 1447 f2fs_remove_dirty_inode(inode); 1448 } 1449 1450 set_page_private_gcing(page); 1451 1452 err = f2fs_do_write_data_page(&fio); 1453 if (err) { 1454 clear_page_private_gcing(page); 1455 if (err == -ENOMEM) { 1456 memalloc_retry_wait(GFP_NOFS); 1457 goto retry; 1458 } 1459 if (is_dirty) 1460 set_page_dirty(page); 1461 } 1462 } 1463 out: 1464 f2fs_put_page(page, 1); 1465 return err; 1466 } 1467 1468 /* 1469 * This function tries to get parent node of victim data block, and identifies 1470 * data block validity. If the block is valid, copy that with cold status and 1471 * modify parent node. 1472 * If the parent node is not valid or the data block address is different, 1473 * the victim data block is ignored. 1474 */ 1475 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1476 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1477 bool force_migrate) 1478 { 1479 struct super_block *sb = sbi->sb; 1480 struct f2fs_summary *entry; 1481 block_t start_addr; 1482 int off; 1483 int phase = 0; 1484 int submitted = 0; 1485 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1486 1487 start_addr = START_BLOCK(sbi, segno); 1488 1489 next_step: 1490 entry = sum; 1491 1492 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1493 struct page *data_page; 1494 struct inode *inode; 1495 struct node_info dni; /* dnode info for the data */ 1496 unsigned int ofs_in_node, nofs; 1497 block_t start_bidx; 1498 nid_t nid = le32_to_cpu(entry->nid); 1499 1500 /* 1501 * stop BG_GC if there is not enough free sections. 1502 * Or, stop GC if the segment becomes fully valid caused by 1503 * race condition along with SSR block allocation. 1504 */ 1505 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1506 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1507 CAP_BLKS_PER_SEC(sbi))) 1508 return submitted; 1509 1510 if (check_valid_map(sbi, segno, off) == 0) 1511 continue; 1512 1513 if (phase == 0) { 1514 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1515 META_NAT, true); 1516 continue; 1517 } 1518 1519 if (phase == 1) { 1520 f2fs_ra_node_page(sbi, nid); 1521 continue; 1522 } 1523 1524 /* Get an inode by ino with checking validity */ 1525 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1526 continue; 1527 1528 if (phase == 2) { 1529 f2fs_ra_node_page(sbi, dni.ino); 1530 continue; 1531 } 1532 1533 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1534 1535 if (phase == 3) { 1536 int err; 1537 1538 inode = f2fs_iget(sb, dni.ino); 1539 if (IS_ERR(inode) || is_bad_inode(inode) || 1540 special_file(inode->i_mode)) 1541 continue; 1542 1543 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1544 if (err == -EAGAIN) { 1545 iput(inode); 1546 return submitted; 1547 } 1548 1549 if (!f2fs_down_write_trylock( 1550 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1551 iput(inode); 1552 sbi->skipped_gc_rwsem++; 1553 continue; 1554 } 1555 1556 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1557 ofs_in_node; 1558 1559 if (f2fs_post_read_required(inode)) { 1560 int err = ra_data_block(inode, start_bidx); 1561 1562 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1563 if (err) { 1564 iput(inode); 1565 continue; 1566 } 1567 add_gc_inode(gc_list, inode); 1568 continue; 1569 } 1570 1571 data_page = f2fs_get_read_data_page(inode, start_bidx, 1572 REQ_RAHEAD, true, NULL); 1573 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1574 if (IS_ERR(data_page)) { 1575 iput(inode); 1576 continue; 1577 } 1578 1579 f2fs_put_page(data_page, 0); 1580 add_gc_inode(gc_list, inode); 1581 continue; 1582 } 1583 1584 /* phase 4 */ 1585 inode = find_gc_inode(gc_list, dni.ino); 1586 if (inode) { 1587 struct f2fs_inode_info *fi = F2FS_I(inode); 1588 bool locked = false; 1589 int err; 1590 1591 if (S_ISREG(inode->i_mode)) { 1592 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) { 1593 sbi->skipped_gc_rwsem++; 1594 continue; 1595 } 1596 if (!f2fs_down_write_trylock( 1597 &fi->i_gc_rwsem[WRITE])) { 1598 sbi->skipped_gc_rwsem++; 1599 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1600 continue; 1601 } 1602 locked = true; 1603 1604 /* wait for all inflight aio data */ 1605 inode_dio_wait(inode); 1606 } 1607 1608 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1609 + ofs_in_node; 1610 if (f2fs_post_read_required(inode)) 1611 err = move_data_block(inode, start_bidx, 1612 gc_type, segno, off); 1613 else 1614 err = move_data_page(inode, start_bidx, gc_type, 1615 segno, off); 1616 1617 if (!err && (gc_type == FG_GC || 1618 f2fs_post_read_required(inode))) 1619 submitted++; 1620 1621 if (locked) { 1622 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1623 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1624 } 1625 1626 stat_inc_data_blk_count(sbi, 1, gc_type); 1627 } 1628 } 1629 1630 if (++phase < 5) 1631 goto next_step; 1632 1633 return submitted; 1634 } 1635 1636 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1637 int gc_type) 1638 { 1639 struct sit_info *sit_i = SIT_I(sbi); 1640 int ret; 1641 1642 down_write(&sit_i->sentry_lock); 1643 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1644 NO_CHECK_TYPE, LFS, 0); 1645 up_write(&sit_i->sentry_lock); 1646 return ret; 1647 } 1648 1649 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1650 unsigned int start_segno, 1651 struct gc_inode_list *gc_list, int gc_type, 1652 bool force_migrate) 1653 { 1654 struct page *sum_page; 1655 struct f2fs_summary_block *sum; 1656 struct blk_plug plug; 1657 unsigned int segno = start_segno; 1658 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1659 int seg_freed = 0, migrated = 0; 1660 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1661 SUM_TYPE_DATA : SUM_TYPE_NODE; 1662 int submitted = 0; 1663 1664 if (__is_large_section(sbi)) 1665 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1666 1667 /* 1668 * zone-capacity can be less than zone-size in zoned devices, 1669 * resulting in less than expected usable segments in the zone, 1670 * calculate the end segno in the zone which can be garbage collected 1671 */ 1672 if (f2fs_sb_has_blkzoned(sbi)) 1673 end_segno -= sbi->segs_per_sec - 1674 f2fs_usable_segs_in_sec(sbi, segno); 1675 1676 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1677 1678 /* readahead multi ssa blocks those have contiguous address */ 1679 if (__is_large_section(sbi)) 1680 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1681 end_segno - segno, META_SSA, true); 1682 1683 /* reference all summary page */ 1684 while (segno < end_segno) { 1685 sum_page = f2fs_get_sum_page(sbi, segno++); 1686 if (IS_ERR(sum_page)) { 1687 int err = PTR_ERR(sum_page); 1688 1689 end_segno = segno - 1; 1690 for (segno = start_segno; segno < end_segno; segno++) { 1691 sum_page = find_get_page(META_MAPPING(sbi), 1692 GET_SUM_BLOCK(sbi, segno)); 1693 f2fs_put_page(sum_page, 0); 1694 f2fs_put_page(sum_page, 0); 1695 } 1696 return err; 1697 } 1698 unlock_page(sum_page); 1699 } 1700 1701 blk_start_plug(&plug); 1702 1703 for (segno = start_segno; segno < end_segno; segno++) { 1704 1705 /* find segment summary of victim */ 1706 sum_page = find_get_page(META_MAPPING(sbi), 1707 GET_SUM_BLOCK(sbi, segno)); 1708 f2fs_put_page(sum_page, 0); 1709 1710 if (get_valid_blocks(sbi, segno, false) == 0) 1711 goto freed; 1712 if (gc_type == BG_GC && __is_large_section(sbi) && 1713 migrated >= sbi->migration_granularity) 1714 goto skip; 1715 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1716 goto skip; 1717 1718 sum = page_address(sum_page); 1719 if (type != GET_SUM_TYPE((&sum->footer))) { 1720 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1721 segno, type, GET_SUM_TYPE((&sum->footer))); 1722 set_sbi_flag(sbi, SBI_NEED_FSCK); 1723 f2fs_stop_checkpoint(sbi, false, 1724 STOP_CP_REASON_CORRUPTED_SUMMARY); 1725 goto skip; 1726 } 1727 1728 /* 1729 * this is to avoid deadlock: 1730 * - lock_page(sum_page) - f2fs_replace_block 1731 * - check_valid_map() - down_write(sentry_lock) 1732 * - down_read(sentry_lock) - change_curseg() 1733 * - lock_page(sum_page) 1734 */ 1735 if (type == SUM_TYPE_NODE) 1736 submitted += gc_node_segment(sbi, sum->entries, segno, 1737 gc_type); 1738 else 1739 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1740 segno, gc_type, 1741 force_migrate); 1742 1743 stat_inc_seg_count(sbi, type, gc_type); 1744 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1745 migrated++; 1746 1747 freed: 1748 if (gc_type == FG_GC && 1749 get_valid_blocks(sbi, segno, false) == 0) 1750 seg_freed++; 1751 1752 if (__is_large_section(sbi)) 1753 sbi->next_victim_seg[gc_type] = 1754 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO; 1755 skip: 1756 f2fs_put_page(sum_page, 0); 1757 } 1758 1759 if (submitted) 1760 f2fs_submit_merged_write(sbi, 1761 (type == SUM_TYPE_NODE) ? NODE : DATA); 1762 1763 blk_finish_plug(&plug); 1764 1765 stat_inc_call_count(sbi->stat_info); 1766 1767 return seg_freed; 1768 } 1769 1770 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1771 { 1772 int gc_type = gc_control->init_gc_type; 1773 unsigned int segno = gc_control->victim_segno; 1774 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1775 int ret = 0; 1776 struct cp_control cpc; 1777 struct gc_inode_list gc_list = { 1778 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1779 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1780 }; 1781 unsigned int skipped_round = 0, round = 0; 1782 1783 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1784 gc_control->nr_free_secs, 1785 get_pages(sbi, F2FS_DIRTY_NODES), 1786 get_pages(sbi, F2FS_DIRTY_DENTS), 1787 get_pages(sbi, F2FS_DIRTY_IMETA), 1788 free_sections(sbi), 1789 free_segments(sbi), 1790 reserved_segments(sbi), 1791 prefree_segments(sbi)); 1792 1793 cpc.reason = __get_cp_reason(sbi); 1794 sbi->skipped_gc_rwsem = 0; 1795 gc_more: 1796 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1797 ret = -EINVAL; 1798 goto stop; 1799 } 1800 if (unlikely(f2fs_cp_error(sbi))) { 1801 ret = -EIO; 1802 goto stop; 1803 } 1804 1805 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1806 /* 1807 * For example, if there are many prefree_segments below given 1808 * threshold, we can make them free by checkpoint. Then, we 1809 * secure free segments which doesn't need fggc any more. 1810 */ 1811 if (prefree_segments(sbi)) { 1812 ret = f2fs_write_checkpoint(sbi, &cpc); 1813 if (ret) 1814 goto stop; 1815 } 1816 if (has_not_enough_free_secs(sbi, 0, 0)) 1817 gc_type = FG_GC; 1818 } 1819 1820 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1821 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1822 ret = -EINVAL; 1823 goto stop; 1824 } 1825 retry: 1826 ret = __get_victim(sbi, &segno, gc_type); 1827 if (ret) { 1828 /* allow to search victim from sections has pinned data */ 1829 if (ret == -ENODATA && gc_type == FG_GC && 1830 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1831 f2fs_unpin_all_sections(sbi, false); 1832 goto retry; 1833 } 1834 goto stop; 1835 } 1836 1837 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1838 gc_control->should_migrate_blocks); 1839 total_freed += seg_freed; 1840 1841 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1842 sec_freed++; 1843 1844 if (gc_type == FG_GC) 1845 sbi->cur_victim_sec = NULL_SEGNO; 1846 1847 if (gc_control->init_gc_type == FG_GC || 1848 !has_not_enough_free_secs(sbi, 1849 (gc_type == FG_GC) ? sec_freed : 0, 0)) { 1850 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs) 1851 goto go_gc_more; 1852 goto stop; 1853 } 1854 1855 /* FG_GC stops GC by skip_count */ 1856 if (gc_type == FG_GC) { 1857 if (sbi->skipped_gc_rwsem) 1858 skipped_round++; 1859 round++; 1860 if (skipped_round > MAX_SKIP_GC_COUNT && 1861 skipped_round * 2 >= round) { 1862 ret = f2fs_write_checkpoint(sbi, &cpc); 1863 goto stop; 1864 } 1865 } 1866 1867 /* Write checkpoint to reclaim prefree segments */ 1868 if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE && 1869 prefree_segments(sbi)) { 1870 ret = f2fs_write_checkpoint(sbi, &cpc); 1871 if (ret) 1872 goto stop; 1873 } 1874 go_gc_more: 1875 segno = NULL_SEGNO; 1876 goto gc_more; 1877 1878 stop: 1879 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1880 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1881 1882 if (gc_type == FG_GC) 1883 f2fs_unpin_all_sections(sbi, true); 1884 1885 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1886 get_pages(sbi, F2FS_DIRTY_NODES), 1887 get_pages(sbi, F2FS_DIRTY_DENTS), 1888 get_pages(sbi, F2FS_DIRTY_IMETA), 1889 free_sections(sbi), 1890 free_segments(sbi), 1891 reserved_segments(sbi), 1892 prefree_segments(sbi)); 1893 1894 f2fs_up_write(&sbi->gc_lock); 1895 1896 put_gc_inode(&gc_list); 1897 1898 if (gc_control->err_gc_skipped && !ret) 1899 ret = sec_freed ? 0 : -EAGAIN; 1900 return ret; 1901 } 1902 1903 int __init f2fs_create_garbage_collection_cache(void) 1904 { 1905 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1906 sizeof(struct victim_entry)); 1907 return victim_entry_slab ? 0 : -ENOMEM; 1908 } 1909 1910 void f2fs_destroy_garbage_collection_cache(void) 1911 { 1912 kmem_cache_destroy(victim_entry_slab); 1913 } 1914 1915 static void init_atgc_management(struct f2fs_sb_info *sbi) 1916 { 1917 struct atgc_management *am = &sbi->am; 1918 1919 if (test_opt(sbi, ATGC) && 1920 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1921 am->atgc_enabled = true; 1922 1923 am->root = RB_ROOT_CACHED; 1924 INIT_LIST_HEAD(&am->victim_list); 1925 am->victim_count = 0; 1926 1927 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1928 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1929 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1930 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1931 } 1932 1933 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1934 { 1935 DIRTY_I(sbi)->v_ops = &default_v_ops; 1936 1937 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1938 1939 /* give warm/cold data area from slower device */ 1940 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1941 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1942 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1943 1944 init_atgc_management(sbi); 1945 } 1946 1947 static int free_segment_range(struct f2fs_sb_info *sbi, 1948 unsigned int secs, bool gc_only) 1949 { 1950 unsigned int segno, next_inuse, start, end; 1951 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1952 int gc_mode, gc_type; 1953 int err = 0; 1954 int type; 1955 1956 /* Force block allocation for GC */ 1957 MAIN_SECS(sbi) -= secs; 1958 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1959 end = MAIN_SEGS(sbi) - 1; 1960 1961 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1962 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1963 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1964 SIT_I(sbi)->last_victim[gc_mode] = 0; 1965 1966 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1967 if (sbi->next_victim_seg[gc_type] >= start) 1968 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1969 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1970 1971 /* Move out cursegs from the target range */ 1972 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1973 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1974 1975 /* do GC to move out valid blocks in the range */ 1976 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1977 struct gc_inode_list gc_list = { 1978 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1979 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1980 }; 1981 1982 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1983 put_gc_inode(&gc_list); 1984 1985 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1986 err = -EAGAIN; 1987 goto out; 1988 } 1989 if (fatal_signal_pending(current)) { 1990 err = -ERESTARTSYS; 1991 goto out; 1992 } 1993 } 1994 if (gc_only) 1995 goto out; 1996 1997 err = f2fs_write_checkpoint(sbi, &cpc); 1998 if (err) 1999 goto out; 2000 2001 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 2002 if (next_inuse <= end) { 2003 f2fs_err(sbi, "segno %u should be free but still inuse!", 2004 next_inuse); 2005 f2fs_bug_on(sbi, 1); 2006 } 2007 out: 2008 MAIN_SECS(sbi) += secs; 2009 return err; 2010 } 2011 2012 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2013 { 2014 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2015 int section_count; 2016 int segment_count; 2017 int segment_count_main; 2018 long long block_count; 2019 int segs = secs * sbi->segs_per_sec; 2020 2021 f2fs_down_write(&sbi->sb_lock); 2022 2023 section_count = le32_to_cpu(raw_sb->section_count); 2024 segment_count = le32_to_cpu(raw_sb->segment_count); 2025 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2026 block_count = le64_to_cpu(raw_sb->block_count); 2027 2028 raw_sb->section_count = cpu_to_le32(section_count + secs); 2029 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2030 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2031 raw_sb->block_count = cpu_to_le64(block_count + 2032 (long long)segs * sbi->blocks_per_seg); 2033 if (f2fs_is_multi_device(sbi)) { 2034 int last_dev = sbi->s_ndevs - 1; 2035 int dev_segs = 2036 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2037 2038 raw_sb->devs[last_dev].total_segments = 2039 cpu_to_le32(dev_segs + segs); 2040 } 2041 2042 f2fs_up_write(&sbi->sb_lock); 2043 } 2044 2045 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2046 { 2047 int segs = secs * sbi->segs_per_sec; 2048 long long blks = (long long)segs * sbi->blocks_per_seg; 2049 long long user_block_count = 2050 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2051 2052 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2053 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2054 MAIN_SECS(sbi) += secs; 2055 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2056 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2057 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2058 2059 if (f2fs_is_multi_device(sbi)) { 2060 int last_dev = sbi->s_ndevs - 1; 2061 2062 FDEV(last_dev).total_segments = 2063 (int)FDEV(last_dev).total_segments + segs; 2064 FDEV(last_dev).end_blk = 2065 (long long)FDEV(last_dev).end_blk + blks; 2066 #ifdef CONFIG_BLK_DEV_ZONED 2067 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 2068 (int)(blks >> sbi->log_blocks_per_blkz); 2069 #endif 2070 } 2071 } 2072 2073 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 2074 { 2075 __u64 old_block_count, shrunk_blocks; 2076 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2077 unsigned int secs; 2078 int err = 0; 2079 __u32 rem; 2080 2081 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2082 if (block_count > old_block_count) 2083 return -EINVAL; 2084 2085 if (f2fs_is_multi_device(sbi)) { 2086 int last_dev = sbi->s_ndevs - 1; 2087 __u64 last_segs = FDEV(last_dev).total_segments; 2088 2089 if (block_count + last_segs * sbi->blocks_per_seg <= 2090 old_block_count) 2091 return -EINVAL; 2092 } 2093 2094 /* new fs size should align to section size */ 2095 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2096 if (rem) 2097 return -EINVAL; 2098 2099 if (block_count == old_block_count) 2100 return 0; 2101 2102 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2103 f2fs_err(sbi, "Should run fsck to repair first."); 2104 return -EFSCORRUPTED; 2105 } 2106 2107 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2108 f2fs_err(sbi, "Checkpoint should be enabled."); 2109 return -EINVAL; 2110 } 2111 2112 shrunk_blocks = old_block_count - block_count; 2113 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2114 2115 /* stop other GC */ 2116 if (!f2fs_down_write_trylock(&sbi->gc_lock)) 2117 return -EAGAIN; 2118 2119 /* stop CP to protect MAIN_SEC in free_segment_range */ 2120 f2fs_lock_op(sbi); 2121 2122 spin_lock(&sbi->stat_lock); 2123 if (shrunk_blocks + valid_user_blocks(sbi) + 2124 sbi->current_reserved_blocks + sbi->unusable_block_count + 2125 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2126 err = -ENOSPC; 2127 spin_unlock(&sbi->stat_lock); 2128 2129 if (err) 2130 goto out_unlock; 2131 2132 err = free_segment_range(sbi, secs, true); 2133 2134 out_unlock: 2135 f2fs_unlock_op(sbi); 2136 f2fs_up_write(&sbi->gc_lock); 2137 if (err) 2138 return err; 2139 2140 freeze_super(sbi->sb); 2141 f2fs_down_write(&sbi->gc_lock); 2142 f2fs_down_write(&sbi->cp_global_sem); 2143 2144 spin_lock(&sbi->stat_lock); 2145 if (shrunk_blocks + valid_user_blocks(sbi) + 2146 sbi->current_reserved_blocks + sbi->unusable_block_count + 2147 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2148 err = -ENOSPC; 2149 else 2150 sbi->user_block_count -= shrunk_blocks; 2151 spin_unlock(&sbi->stat_lock); 2152 if (err) 2153 goto out_err; 2154 2155 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2156 err = free_segment_range(sbi, secs, false); 2157 if (err) 2158 goto recover_out; 2159 2160 update_sb_metadata(sbi, -secs); 2161 2162 err = f2fs_commit_super(sbi, false); 2163 if (err) { 2164 update_sb_metadata(sbi, secs); 2165 goto recover_out; 2166 } 2167 2168 update_fs_metadata(sbi, -secs); 2169 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2170 set_sbi_flag(sbi, SBI_IS_DIRTY); 2171 2172 err = f2fs_write_checkpoint(sbi, &cpc); 2173 if (err) { 2174 update_fs_metadata(sbi, secs); 2175 update_sb_metadata(sbi, secs); 2176 f2fs_commit_super(sbi, false); 2177 } 2178 recover_out: 2179 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2180 if (err) { 2181 set_sbi_flag(sbi, SBI_NEED_FSCK); 2182 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2183 2184 spin_lock(&sbi->stat_lock); 2185 sbi->user_block_count += shrunk_blocks; 2186 spin_unlock(&sbi->stat_lock); 2187 } 2188 out_err: 2189 f2fs_up_write(&sbi->cp_global_sem); 2190 f2fs_up_write(&sbi->gc_lock); 2191 thaw_super(sbi->sb); 2192 return err; 2193 } 2194